Tools Plus

PROFESSIONAL

LIBRARIES + FRAMEWORK

Language
% [ B[ E l- o | (B [ocice
(O Pascal
; Qe
[ saves Time 24
Saves Money = ﬁ%%ﬁ 6

& Easy to Use N 4 s & 7

[4 Radical () Nice EB
[ ok ] Jslick @ Hot C
[JRavin® O Cool 9)

C / C++ and Pascal
System 6, 7 and Mac OS 8

User Manual

@isfdge Software







Tools Plus

PROFESSIONAL
LIBRARIES + FRAMEWORK

Version 6

@r’s\fdge Software

Water’s Edge Software
2441 Lakeshore Road West
Box 70022

Oakville, Ontario

Canada, L6L 6M9



Important Information for Evaluation Kit Registrants

A special edition of Tools Plus is distributed as an Evaluation Kit that can be obtained, free of charge, from user groups
and various electronic bulletin boards and the Internet. Users of the Tools Plus Evaluation Kit are bound by restrictive
terms and conditions that do not apply to registered Tools Plus developers who have purchased a license.

If you have obtained a Tools Plus Development Kit as a result of registering an Evaluation Kit, discontinue using the
evaluation kit and take advantage of the latest Tools Plus features. You must recompile your applications using the
licensed libraries that come with the Development Kit. Do not revert to using editions of Tools Plus that are distributed
as evaluation software.

Free Updates and Software Upgrades

Please see the Technical Support chapter at the end of this manual for important
information about receiving free software updates and free upgrades.

Copyright ©1989-2001 Water’s Edge Software

Tools Plus™, Tools Plus Professional™, Tools Plus Pro™, Tools Plus Academic™, and Tools Plus Lite™ are
trademarks of Water’s Edge Software.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission
of Water’s Edge Software.

4th Dimension® is a registered trademarks of ACIUS

Adobe®, Acrobat® and Photoshop® are trademarks of Adobe Systems Incorporated. Acrobat Reader copyright ©
1987-1997 Adobe Systems Incorporated.

Apple®and Lisa® and are registered trademarks of Apple Computer, Inc.

Finder™, Macintosh®, MultiFinder™, QuickTime™ and ResEdit™ are trademarks of Apple Computer, Inc.
Power Macintosh™ is a trademark of Apple Computer, Inc. used under license

MacPaint® and MacDraw® are registered trademark of Claris Corporation

Infinity Windoid™ is a trademark of Infinity Systems

PowerPC™ is a trademark of International Business Machines Corporation, used under license therefrom

Resorcerer® is a registered trademark of Mathemesthetics Inc.

CodeWarrior™ is a trademark or Metrowerks Inc.

Microsoft® and Word® are registered trademark of Microsoft Corporation

Symantec C™, Symantec C++™, THINK C™, THINK Pascal™ and THINK Reference™ are trademarks of
Symantec Corporation

Eudora™ is a trademark of the University of Illinois Board of Trustees, licensed to Quallcomm Incorporated

Published in Canada.

Tools Plus libraries, framework, and user manual were designed and created by Steve Makohin and Steven Waters.

We express gratitude to Marcel Achim of Metrowerks for his work on the CodeWarrior compiler. Without his
assistance, dedication and responsiveness, Tools Plus for CodeWarrior would not be here today.

Thanks to Marlene Atcheson, Phil Calippe, Greg Galanos, Intellisoft Development Inc., “Kevin” at Symantec, Trent
McLeod, Tony Minichillo, Herb Payerl, Diane Postill, Karen Postill, Rick Ruse, and Stan Witkowski. Thank you to
Ken Bereskin of Apple for his technical expertise in Macintosh programming in the early days, and to Les Titze for his
technical prowess and encouragement when Tools Plus was in its infancy.

A special thank you goes to Greg Kowal for his direction, insight and mentoring, and to Eugene Roman for his
business sense and his chutzpah. And of course, thank you to all Tools Plus developers and beta testers for making
Tools Plus a success!

This document was created on a Macintosh computer using Word 5.1a, MacPaint, MacDraw and Photoshop
applications. Tools Plus and its user manual were designed and created entirely on Macintosh computers. Information
in this manual is subject to change without notice.



Tools Plus™ and SuperCDEFs™
Software License and Support Agreement (SLSA),
and Limited Warranty

This legal document is an agreement between Water’s Edge Software of 2441 Lakeshore Road West, #70022,
Oakville, Ontario, Canada, L6L. 6M9, and you, the licensee, (herein referred to as “LICENSEE”). This legally binding
agreement takes effect when signed by Water’s Edge Software and the LICENSEE, or when you open the CD
wrapping, which ever comes first, and is in effect for the duration, and under the conditions stated herein. All parts of
this agreement, those being [i] Software License, [ii] Support Agreement, [iii] Limited Warranty, and
[iv] Acknowledgment, are collectively referred to herein as the “SLSA.”

BY SIGNING THIS SLSA and/or OPENING THE CD PACKAGE, YOU ARE AGREEING TO BECOME
BOUND BY THE TERMS OF THIS SLSA, WHICH INCLUDES THE SOFTWARE LICENSE, SUPPORT
AGREEMENT, LIMITED WARRANTY, and ACKNOWLEDGMENT.

In order to preserve and protect its rights under applicable law, Water’s Edge Software does not sell any rights in its
SOFTWARE. Rather, Water’s Edge Software grants the right to use its SOFTWARE by means of an SLSA. Water’s
Edge Software specifically retains title to all Water’s Edge Software computer software.

SOFTWARE LICENSE

1. SCOPE OF LICENSE: This Software License’s scope pertains to the following products and items that are
contained on the Tools Plus Professional 6 CD-ROM:
[i] Tools Plus libraries, in compiled form

[ii] Tools Plus libraries, in source code form
[iii] Tools Plus interface files for Pascal, and header files for C/C++
[iv] Tools Plus framework source code
[vl] SuperCDEFs control definition (‘CDEF’) resources
[vi] SuperCDEFs source code

[vii] SuperCDEFs source code interface files

[viii] Tools Plus User Manual
[ix] SuperCDEFs User Manual
[x] Any documentation otherwise enclosed on the CD

2. TERMINOLOGY: A common terminology is used throughout this agreement as follows:

[i] Tools Plus and its related files, regardless of their form, and SuperCDEFs and its related files, regardless
of their form, are referred to herein collectively as “SOFTWARE”. This includes, but is not limited to
the following items from section 1: i, ii, iii, iv, v, vi, vii. This also includes all variations of Tools Plus
libraries, Tools Plus source code, SuperCDEFs ‘CDEF’ resources, and SuperCDEFs source code, and the
interface and/or header files that are related to Tools Plus and/or SuperCDEFs, including variants of these
items that are modified by you, the LICENSEE, or by other LICENSEES as part of the Water’s Edge
Software Open Source Program, described herein.

[ii] A subset of the SOFTWARE is “SOURCE CODE” that is comprised of all variations of Tools Plus
source code, SuperCDEFs source code, and the interface and/or header files that are related to Tools Plus
and/or SuperCDEFs, including variants of these items that are modified by you, the LICENSEE, or by
other LICENSEES as part of the Water’s Edge Software Open Source Program, described herein. This
includes, but is not limited to the following items from section 1: ii, iii, iv, vi, vii.

[iii] The Tools Plus User Manual and the SuperCDEFs user manual, regardless of their form, that being
electronic, printed, or otherwise, are referred to herein collectively as “DOCUMENTATION”. This
includes, but is not limited to the following items from section 1: viii, ix, x.

[iv] The term “distribute” is used to denote when an entity is exposed, or allowed to be exposed to any
person or entity other than the LICENSEE.

3. GRANT OF LICENSE. In consideration of payment of the License fee, which is a part of the price you paid for
Tools Plus, and your agreement to abide by the terms and conditions of this SLSA, Water’s Edge Software, as
Licensor, grants you, the LICENSEE, a non-exclusive right to use and display a copy of the SOFTWARE on a single
COMPUTER (i.e., a single-user CPU) at a single location, so long as you comply with the terms of this SLSA. The
LICENSEE is also granted a non-exclusive right to use and display a copy of the DOCUMENTATION. Water’s Edge
Software reserves all rights not expressly granted to the LICENSEE.



4. OWNERSHIP OF SOFTWARE. As the LICENSEE, you own the magnetic disk, CD-ROM, or other physical
media on which the SOFTWARE is originally or subsequently recorded or fixed, but an express condition of this
License is that Water’s Edge Software retains title and ownership of the SOFTWARE and DOCUMENTATION,
regardless of the form or media in or on which the original and other copies may exist. This SLSA is not a sale of the
original SOFTWARE or DOCUMENTATION or any copy or of any variant of the SOFTWARE.

5. MODIFICATION RESTRICTIONS. You, the LICENSEE, may modify the SOURCE CODE providing that your
modifications are confined to changes that are compiled into the Tools Plus libraries, and/or are compiled into a
SuperCDEF ‘CDEF’ resource or a functional equivalent thereof in newer versions of the Macintosh Operating System.
You may also modify the Tools Plus header files (C/C++) and interface files (Pascal) to reflect changes you make to
the SOURCE CODE. Only original Tools Plus source code, or variants thereof, may be compiled into Tools Plus
libraries. You may add new routines to Tools Plus libraries. You may modify the Tools Plus framework.

6. COPY RESTRICTIONS. The SOFTWARE and DOCUMENTATION are copyrighted, and are protected by
Canadian and United States copyright laws, and international treaty provisions. Water’s Edge Software retains these
copyrights, including copyrights to modified SOURCE CODE. The LICENSEE agrees to treat modified SOURCE
CODE in the same fashion as original SOURCE CODE from Water’s Edge Software.

(6.1) Unauthorized copying of SOFTWARE or DOCUMENTATION, including SOFTWARE that has been
modified, merged, or included with other software, is expressly forbidden unless otherwise stated in this SLSA. You
may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by
the terms of this SLSA.

(6.2) Water’s Edge Software grants you, the LICENSEE, the right to integrate compiled Tools Plus libraries with
source code produced by you in your development of executable applications and “plug-ins” using the SOFTWARE.
Water’s Edge Software also grants you the right to compile the SOFTWARE and to imbed the resulting object code
into executable applications and “plug-in” products that you have developed, and the right to distribute such products
with such imbedded object code, without royalty to Water’s Edge Software, PROVIDED that you: (a) imbed the object
code in such a manner as to prevent its extraction from your products, or access from your products in a form that
would allow it to be imbedded in another executable application, or accessed by another application or “plug-in”; (b)
agree to indemnify, hold harmless, and defend Water’s Edge Software from any claims or lawsuits, including
attorney’s fees, that may arise from the use or distribution of your products containing such imbedded object code.
Whether the imbedding of such object code complies with this SLSA shall be subject solely to the reasonable
determination of Water’s Edge Software. For the purpose of making any such determination, you agree to provide
Water’s Edge Software, at its request, and at not cost to Water’s Edge Software, a copy of any executable application
or “plug-in” you have developed that contains object code compiled from this SOFTWARE.

(6.3) You may distribute SuperCDEFs ‘CDEF’ resources, or derivatives thereof, only as part of an executable
application or “plug-in” that you create.

(6.4) This SLSA expressly forbids the distribution of the SOFTWARE in a form that other developers may access,
which includes, but is not limited to libraries and/or ‘CDEF’ resources that are based on the SOFTWARE. You may,
however, create an executable application or “plug-in” that is used by developers, such as an application generator or
source code generator, providing that the resulting application, source code, or other produced item are not dependent
upon the SOFTWARE in order to perform its function.

(6.5) You, the LICENSEE, may print a single copy of the electronic user manual for your own use.

Except as specifically provided above, you shall not copy, modify, transfer, license, sublicense, rent, lease, sell,
convey, translate, convert to any programming language or format or decompile or disassemble the SOFTWARE, or
any portion of the SOFTWARE, nor assign or transfer the license or any interest herein.

7. USE RESTRICTIONS. As the LICENSEE, you may physically transfer the SOFTWARE from one computer to
another, provided that the SOFTWARE is used on only one computer at a time. You may not electronically transfer
the SOFTWARE from one computer to another over a network. You may not distribute, or allow to be distributed,
copies of the SOFTWARE or DOCUMENTATION to others. You may not modify, adapt, translate, reverse engineer,
decompile, disassemble, or create derivative works based on the SOFTWARE unless specifically provided in the
SLSA.

8. TRANSFER RESTRICTIONS. This SOFTWARE is licensed only to you, the LICENSEE, and may not be
transferred to anyone without the prior written consent of Water’s Edge Software. Any authorized transferee of the
SOFTWARE shall be bound by the terms and conditions of this SLSA. In no event may you transfer, assign, rent,
lease, sell or otherwise dispose of the SOFTWARE, on a temporary or permanent basis, except as expressly provided
herein.

9. COPYRIGHT NOTICE. Applications and “plug-ins” created with the SOFTWARE must prominently and legibly
display a copyright notice in their startup window and/or “About...” box using a font that is no smaller than 9 points
shown in high-contrast colors. Any documentation relating to applications and/or “plug-ins” that are dependent upon
Tools Plus libraries, regardless of its form, must also display a Water’s Edge Software copyright notice. One of the
following notices must be used, or the LICENSEE must obtain permission in writing from Water’s Edge Software to
use an alternative notice.



(a) Tools Plus™ libraries copyright © 1989-2001 Water’s Edge Software

(b) Created with Tools Plus™ © 1989-2001 Water’s Edge Software

(c) Portions of this application © 1989-2001 Water’s Edge Software. All rights reserved.
In the case of SuperCDEFs, one of the following notices must be used or the LICENSEE must obtain permission in
writing from Water’s Edge Software to use an alternative notice

(a) SuperCDEFs™ copyright © 1996-2001 Water’s Edge Software

(b) Custom controls copyright © 1996-2001 Water’s Edge Software

(c) Portions of this application © 1996-2001 Water’s Edge Software. All rights reserved.
You many not modify the embedded copyright notice in SuperCDEFs unless you change the look or feel of the
control. In such cases, you must replace the embedded copyright notice from Water’s Edge Software with one of your
own.

10. OPEN SOURCE PROGRAM: You, the LICENSEE, may work collaboratively with other developers who are
licensed under this SLSA, and whose standing is in good order. This collaborative work may include, but not be
limited to the exchange of source code, documentation, know-how, and other proprietary information. You may only
provide, exchange or solicit such information through channels that are officially sanctioned by Water’s Edge
Software.

11. NON-DISCLOSURE: The SOFTWARE and DOCUMENTATION include proprietary information and trade
secrets. You, the LICENSEE, agree to keep this information confidential, and to defend it from being distributed, or
from becoming known to anyone, with the exception of your participation in the Open Source Program as defined
herein. You agree to use whatever means are necessary, within reason, to ensure that this.

12. TERMINATION. This SLSA takes effect when it is signed by both the LICENSEE and by Water’s Edge
Software or when you open the CD wrapping, which ever comes first, and it remains in effect until it is terminated.
This SLSA will terminate automatically without notice from Water’s Edge Software if you, the LICENSEE, fail to
comply with any provision of the SLSA. Upon termination you shall destroy all copies of the SOFTWARE and
DOCUMENTATION, including modified copies and/or copies that are imbedded in other products, if any, or return
them, postage prepaid, to Water’s Edge Software.

(12.1) You, the LICENSEE, may voluntarily stop using the SOFTWARE and DOCUMENTATION on a permanent
basis providing that you destroy the SOFTWARE and DOCUMENTATION, including modified copies and/or copies
that are imbedded in other products, if any, or return them, postage prepaid, to Water’s Edge Software.

(12.2) In the event that you, the LICENSEE, voluntarily stop using the SOFTWARE and DOCUMENTATION on a
permanent basis, and/or if the SLSA is terminated, you must continue to indemnify, hold harmless, and defend
Water’s Edge Software from any claims or lawsuits, including attorney’s fees, that may arise from the use or
distribution of your products containing the SOFTWARE, even if those products are distributed outside of the terms of
this SLSA.

(12.3) You agree that violation of this SLSA constitutes great and irreparable damage to Water’s Edge Software, and
that you may be held liable for such damages, including punitive damages, and be prosecuted to the fullest extent of
the law.

SUPPORT AGREEMENT

In recognition that the LICENSEE has access to Tools Plus source code and SuperCDEFs source code, and that the
LICENSEE has the ability to modify and append the SOURCE CODE, and that interdependencies may exist between
portions of original, unmodified Water’s Edge Software SOURCE CODE and the LICENSEE’s modifications and/or
additions, and with the understanding that the LICENSEE’s efforts may negatively influence the SOFTWARE or
cause it to fail, Water’s Edge Software does not offer technical support for the SOFTWARE.

LIMITED WARRANTY

THE SOFTWARE AND DOCUMENTATION (INCLUDING INSTRUCTIONS FOR USE) ARE PROVIDED “AS
IS” WITHOUT WARRANTY OF ANY KIND. FURTHER, WATER’S EDGE SOFTWARE DOES NOT
WARRANTY, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF USE, OF THE SOFTWARE OR DOCUMENTATION IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS
AND PERFORMANCE OF THE SOFTWARE IS ASSUMED BY YOU, THE LICENSEE. IF THE SOFTWARE OR
DOCUMENTATION ARE DEFECTIVE, YOU (AND NOT WATER’S EDGE SOFTWARE OR ITS DEALERS,
DISTRIBUTORS, AGENTS, OR EMPLOYEES), ASSUME THE ENTIRE COST OF ALL NECESSARY
SERVICING, REPAIR, OR CORRECTION.

Water’s Edge Software warrants to the original LICENSEE that the CD-ROM on which the SOFTWARE is
recorded is free from defects in materials and workmanship under normal use and service for a period of ninety (90)
days from the date of shipment. Water’s Edge Software’s entire liability and your exclusive remedy as to the CD-ROM
shall be, at Water’s Edge Software’ option, either (a) return the purchase price or (b) replacement of the disk that does
not meet Water’s Edge Software Limited Warranty and which is returned to Water’s Edge Software postage prepaid. If
failure of this CD-ROM has resulted from accident, abuse, or misapplication, Water’s Edge Software shall have no




responsibility to replace the CD-ROM or provide a refund. In the event of replacement of the CD-ROM, the
replacement CD-ROM will be warranted for the remainder of the warranty period or thirty (30) days, whichever is the
longer.

The above is the only warranty of any kind, either expressed or implied, statutory or otherwise, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose that is made by Water’s Edge
Software on this product.

No oral or written information or advice given by Water’s Edge Software, its dealers, distributors, agents or
employees shall create a warranty or in any way increase the scope of this warranty, and you may not rely on any such
information or advice.

Neither Water’s Edge Software, nor anyone else who has been involved in the creation, production, or delivery of
the SOFTWARE or DOCUMENTATION shall be liable for any direct, indirect, consequential or incidental damages
(including damages for the loss of business profits, business interruption, loss of business information, and the like)
arising out of the use or inability to use such product even if Water’s Edge Software has been advised of the possibility
of such damages.

THIS WARRANTY GIVES YOU SPECIFIC RIGHTS. YOU MAY HAVE OTHER RIGHTS WHICH VARY
FROM STATE TO STATE (AND PROVINCE TO PROVINCE) AND CERTAIN LIMITATIONS CONTAINED IN
THIS WARRANTY MAY NOT APPLY TO YOU. Water’s Edge Software’s liability to you for actual damages from
any cause whatsoever, and regardless of the form (whether in contract, tort (including negligence), product liability or
otherwise), will be limited to $50.

ACKNOWLEDGMENT

You acknowledge that you have read the SLSA, understand it, and agree to be bound by its terms and conditions.
You also agree that the exclusive statement of agreement between the parties and supersede all proposals or prior oral
or written agreements, or any other communications between the parties relating to the subject matter of the SLSA.



Contents

1 Introduction to Tools Plus

TOOIS PIUS OVEIVIEW .....eeiuiiniieiiiiieiieiieie ettt 27
Differences Between Tools Plus Packages .........ccccovceeveencenncnne. 27
The (Optional) Tools Plus Framework..........c.ccccecvervuienieriennnnn. 28
Visual Design Environment ...........ccocceevueeveenieenieniieenieenienneen. 28
Tools Plus User Manual Formats .........c...coeceevveenieniennecnniennneen. 28
Printing the User Manual ...........ccccoeevevienevinnnnenenicncnineneneenes 29

Registered Developer Benefits Period...........cccoccoieencninincncnenne. 29
An Ordinary Application’s Architecture (without Tools Plus)... 30
A Tools Plus Application’s Architecture ..........ccoceevveereerrveennen. 32
Powerful Features Using Simpler, Higher-Level Coding ........... 33
Event Processing is Virtually Eliminated...........cccccoccevenennennen. 34
Apple Event Support is Built into Tools Plus ...........cccccceeeeennee 34
Supports Resource-Based and Dynamic Interface Design.......... 35
Accessing Tools Plus Libraries ..........ccccceeeveneenenveenennieneeneenne. 35
Creating New Applications With Tools Plus .........c.ccceevevvennnenn. 36
Using Tools Plus in an Existing Application .........c.ccceeeevcveenneen. 36

Range ChecKing.........ccovecieiiieiinieiiieiciieeecceeneees e 37

The Tools Plus Advantage............cocecueeveeeeeerrenerenenenenseneneneenenne 37

Who can benefit from Tools PIUS........ccccccecveieininiininininencncienns 39

What kind of applications can be written with Tools Plus................. 39

What is Tools Plus not suitable for .........c..ccocceveneininnncniincnicnene 40

System ReqUIremMents ........coceevuerrienieenienieeeeneeeiee st 40

Tools Plus Performance.............coccceveerniienieniiienienieeiieeieeeeeeeeene 41

Special Considerations with Mac OS Versions........c..cecceceveevervennennee 42

Assumptions made when this manual was Written............c.ccceceeeennen. 43

Conventions used throughout this manual .........c..cccccooeeviniininienenne 43

SOftware UPAates........ceeveerieriiieniieiiienieeieesteeieesireeieeste st esveeeee s 44

Evaluation Kit RegiStrants..........cccceeveerniereeniiieniienieenieeieenee e 44

For your information (recommended reading) ........c..ccccceeecvencenennen. 44

How to Get Started with Tools Plus.........ccccoecieriiiiniiiniieeeeee 45

Stress Testing APPLICAtIONS ......ovueeveirieeriirienieeierieeeeee e 45
Spotlight and other Testing TOOIS .......ccccoeeverieneniiinenieneeeee 46

Creating and Editing RESOUICES ........c.coveeriieniieniiiiiieeieeieeeieeeeee, 46

The List Manager, List Boxes, Tables and Beyond .............ccccceeuenne 47

TOOIS Plus FEAtUTES .....covviriiiiiiiiiiiiieiteeeeeeteeeete et 48

2 Installing Tools Plus

Water’s Edge Software

Installing Tools Plus in CodeWarrior C (68K) .......ccccceeverieieneennene 59
Adding Tools Plus to a CodeWarrior C (68K) Project ............... 60
Adding Tools Plus to a CodeWarrior C (68K) Plug-In .............. 60

Installing Tools Plus in CodeWarrior Pascal (68K).........cccccoeeueennen. 62
Adding Tools Plus to a CodeWarrior Pascal (68K) Project........ 63
Adding Tools Plus to a CodeWarrior Pascal (68K) Plug-In........ 63

Installing Tools Plus in CodeWarrior C (PPC) .......ccccceevevieieneenne 65
Adding Tools Plus to a CodeWarrior C (PPC) Project................ 66
Adding Tools Plus to a CodeWarrior C (PPC) Plug-In .............. 66

Installing Tools Plus in CodeWarrior Pascal (PPC)........cccccceevevnennn 67
Adding Tools Plus to a CodeWarrior Pascal (PPC) Project........ 68
Adding Tools Plus to a CodeWarrior Pascal (PPC) Plug-In....... 68

Installing Tools Plus in THINK C/C++ (68K) 5,6 and 7 .................. 69
Adding Tools Plus to a THINK C (68K) Project...........cccceueee. 69

Contents



Tools Plus

10

Installing Tools Plus in Symantec C/C++ (68K) 8.0.5 or later-.......... 70
Adding Tools Plus to an SPM C/C++ (68K) Project.................. 70
Installing Tools Plus in Symantec C/C++ (PPC) 8.6 or later ............. 71
Adding Tools Plus to an SPM C/C++ (PPC) Project.................. 71
Installing Tools Plus in THINK Pascal (68K) ......cc.ccceveeviirniennennne. 72
Adding Tools Plus to a THINK Pascal (68K) Project ................ 72
After ComPiling .......ocveeiiriiiiiiiieiieeceee e 73
Compiling the CodeWarrior C (68K) Demo Application.................. 74
Compiling the CodeWarrior Pascal (68K) Demo Application .......... 75
Compiling the CodeWarrior C (PPC) Demo Application ................. 76
Compiling the CodeWarrior Pascal (PPC) Demo Application .......... 77
Compiling the THINK C (68K) 5, 6 or 7 Demo Application ............ 79
Compiling the SPM C/C++ (68K) 8 Demo Application.................... 80
Compiling the SPM C/C++ (PPC) 8 Demo Application ................... 81
Compiling the THINK Pascal (68K) Demo Application.................... 82
3 Designing Your Application

OVEIVIEW ..ot s 83
High Level Structure of a Tools Plus Application ...........ccccceceeuenneee 84
A Macintosh Event, in Brief ........c...oooovviiiiiiiiiiiieieceeeee e 84
Macintosh Event QUEUE ...........cooviiieiiiiiiiiieeeiee e 84
Key UP EVENLS ..oueiiiiiiiiiiiicieeteeetecetee ettt 85
Tools Plus Events, and the Event Loop versus an Event Handler ..... 85
The Event Handler Routine..........cc.coccooevvienieniniencnicnincnececnce 86
Recursion in the Event Handler Routine............ccoccoeviieiiiiniinncnneens 87
System 5 and 6’s Finder/MultiFinder, and System 7 and higher ....... 88
FINAET ..ottt 88
MUItIFINRT ....viiiiiiiiiiiiiiicceeeeee e 88
System 7 and higher.........coccevviiiriiriiiinieeeeceeee e 89

The C Header file (ToOISPIUS.H) .......coooevriiiieiiiiiiiieeieeeee e 89
Pascal Strings versus C Strings ..........ccocceceveevrerieenierieenieeceennenn 89
Using C and/or Pascal strings in Tools Plus parameters............. 89
Setting your Prefixes ....ccoveevererieenenienienieieiereeeeeeee e 90
Appearance MaNAZET ........coovveevueeriieniienieeiienieeree st eiee st sree s 91
Multi-system compatibility with custom window & controls .... 91
Using the Appearance Manager............ccceveeeveeneenceernieenieeeneenns 91
Embedding Controls .........ccccoceevvevieciinieniineeieieeceeeeeeen 92

Dialogs and the Dialog Manager ..........c.ccoceeevverveveneeneenenencnenennenne 92
Power Macintosh Performance ............ccoceeveevevievniniinnnninicncnnene. 92
Off-screen GrafPorts and GWorlds.........ccccceevecieciniiinininincncnnenne. 93
Writing Plug-Ins or External Code Modules ..........cccccoeevevriieriennnnenns 93
What t0 read NEXt .....ccoeoviiiiiiiiiiiiii 96

4 Initialization

Initializing ToolS PIUS .......ccccooiiiiiiiiiiicceeecece 97
Stack and NEAP .....coceevereririiriiiirereteee e 98
Other application initializing activities .........cccccevvevvevveveeererrerennenne. 99
Initialization Failure ..........cccccocvviiiiininininccccccccceee, 104
Other InitialiZation .........c.cccocieviiiiiniiininice, 104
The CUTSOT ..ot 104
Deinitializing Tools PIUS ..........cccoeciriiiiniiiniceceeceeeees 105
Set maximum stack size in a 680x0 application ..........ccccccceveeuennene. 105
Change an application’s maximum stack Size .......c.ccoceeverienennnnne 106
Setting the parameter range error action routine........c..cccceceevveeueene. 106



S Windows
OVEIVIBW .ttt ettt ettt sttt st e sttt ettt e b et enbeeseenbeene 109
Resource-Based Programming ..........c..ccoceveevenienenienencenene. 109
WiINAOW TYPES weenvieiniieriieeiieniieeiteete ettt st 111
Title Bar, Close box, and Zoom bOX ...........coovvvevvviiiinvvvrerienenens 111
SIZ8 BOX ittt s 112
Color Backdrops and Background Themes .........c..ccccoceeennenee 112
Maximum Number of Open Windows.........cccceceeveeienenicennnnne. 112
Tool Bar and Floating Palettes ..........c..cccceveenenienennienenienene. 113
Standard Windows .........ccoccevereeninieneniininicneeeececeeeee e 113
ACtive WINAOW ...ceeiiiiiiiiiiiniiiienieeiceeetceeete et 113
WOrK Window ........cooiiiiiiiiiiiiiieieceeeeeeteee e 114
Current Window ........occoveevieiieienieeeeeee e 114
Editing Field Window ..........ccoccecerieiinieninieneeienceeseee e 114
Modal WINAOWS .....c.coiviiririiiiienieieieiceeeeeee et 115
WiINAOW LaYETS ..ccveeveiiiiiinieiiieeieeee sttt 115
Global and Local Co-0rdinates ...........ceceeveeeeneeeeneeneencennennees 116
Objects in WINAOWS .....cc.coieiirieniiiieienieieereeereeeeeeeeeee e 116
The ‘dftb’ Resource - Font and Color Settings ...........c.coveuee. 116
Substituting Window ProcIDS .........ccccceceiiiiiininiinieinceee 118
Live Window Dragging and Resizing...........ccocceveevervencnnnennen. 118
Special Considerations ..........cceceereercieeriercieeneeerieeneesveenee s 118
Handling Windows.........cocceeriiinieniiiniienieeiee e 118
Opening a WiNAOW .........cceeciirieriinieniiienie e eneneas 119
Appearance and Behavior Specification ..........c..coceevevereniennene 120
Floating Palette, Custom WDEFs and Appearance Manager ... 122
Opening a dialog ....c..cecveeveeriiniiniinieneeteeetereet e 127
Attach a dialog list t0 @ WINAOW ......ceevvivriiiiiienieniieniecieesiee e 131
Appending a dialog list to @ WindOW .........cceeeeeeeriiriiienieeniieenienieene 131
Setting defaults for fields created from edit text items .................... 132
Setting defaults for fields created from static text items .................. 132
Setting defaults for editing fields created by ‘CNTL’ resources...... 132
Setting defaults for static text fields created by ‘CNTL’ resources . 133
Setting defaults for list boxes created by ‘CNTL’ resources ........... 133
Setting defaults for pop-up menus created by ‘CNTL’ resources.... 133
Opening a toOl DA .........ccceeviiriiiiiniiiiiccceeee e 134
Tool bar inside @ WINAOW .........cceeieiirieiinieeeieeeee e 134
Getting the first unused window NUMDET .........cccceveriererienienieeee 135
Setting the backdrop color for new Windows.........cccceceveevincenncnne. 135
Clearing the backdrop color for new windows .........ccccceeevververcneenns 135
Setting the backdrop color for an open window ..........ccccceevveeuenee. 136
Setting the background theme for an open window ........................ 136
Setting the background theme for the next new window ................. 137
Closing a window, tool bar, or palette...........coceeeerienencenencenenen. 137
Changing a WindOW’S SIZ€ .......cccceeeruireenierienienienientenieerenieeeeniene 138
MOVING @ WINAOW ...eviiiiiiiiieiieeieeite ettt eiee st esteesbeesreeeee s 138
Hiding/showing a Window ...........ccceeieriiinieniiiiniieiieeeesieeseeeeeee 139
Activating @ WINAOW ......c.ccocuerieiririeniinieiieeeeeeese e e 140
Remove keyboard focus from a window ..........cccceceevevcnenincncnnennes 140
Making a window current without activating it .........cc.cceceeveeienuene 141
Making the active Window CUITENE ........ccceveeviereenieneenienienienieieane 141
Changing a Window’s title .......cceveueeriieriiinienieiie e 141
Setting @ Window’s SiZ€ HMILS ......eevveerieriiienieniiiieeeeec e 142
Setting the “standard” and “user” co-ordinates for zooming ........... 142
Getting the “standard” and “user” co-ordinates for zooming........... 143
Setting a dialog item’s display rectangle..........ccccooeevereerieneenenncns 143
Getting a dialog item’s display rectangle ...........cooceveererienencicnncnns 144
Setting font settings for new dialogs as they are created.................. 144

Water’s Edge Software

Contents

11



Tools Plus

12

6 Buttons

Getting font settings used by new dialogs as they are created ......... 144
Getting a window’s status information .........c..ceeceeeeeverveencneenennns 145
Manually refreshing user interface elements ........cc.cceeeceevveereennnenne 146
Determine the Nth window from the front..........c..cccccoveiinnninnne. 147
Getting your app’s active window number .............cccceeceevervenuennnens 148
Getting your app’s current wWindow NUMDET .......c.cccecvevveerererennens 148
Getting your app’s frontmost window number ...........c.cceocereerennnes 148
Getting your app’s tool bar NUMDbET .........cccceverienervieneniienieieeene 149
Getting your app’s frontmost floating palette’s number .................. 149
Getting your app’s frontmost standard window number.................. 149
Getting your app’s work window number ..........c..ccccoeeecininniinnene 150
Getting the window number of your app’s active edit field............. 150
Getting the window number containing the keyboard focus ........... 150
Determining if @ Window 1S OPen .........cevereenerienennienienieneeieene 151
Determining if a window iS ViSible ........ccccvevvverviiniieenienieeieeienne 151
Determining if @ Window iS aCtiVe .......ccceevvierieriiienienrieenieeeeneeens 151
Determining @ WindOW’S tyPe ......ccceeueevueruierierienienienieneeneseerennens 152
Determining which object has the keyboard focus ..........ccccceceeucnne. 152
Getting @ WindOW’S POINET ......cc.eeeeriierieriieieneeee e neeeaeens 153
Auto-resizing subsequently created objects ........c..ceceveevierienienneene 153
Hiding/showing the Finder and other applications ...........cccccceuee. 153
Turn the live window dragging/resizing option on or off ................ 154
Replace a window type throughout the application ..............c.......... 154
The Infinity Windoid ........ccccceviroiriinininininenenccceeeeececeene 155
OVEIVIBW ...ttt ettt ettt ettt et sae et e sbeestesbeenbesbeenbesanns 157
BUtton TYPES ..eeveenieiieieniieieeteieetesteete sttt sttt 157
BUtton States ........cccoeviiiiininiiiiiereecceeeee e 157
Button Titles.......ccooviiiiiiiiiiiiiicc 158
FONES et 158
(70 o) SRS 158
Default BUtton .........ccceceeieiriniinienenienieieeteeeeeeeeeeee e 158
Selecting Buttons and Command Keys........c..cccevveeieniiniennenne. 158
Substituting Button ProcIDS ........cccceeciiivieniiinienieeiienieeieene 158
Handling BUttons ..........coceeviiinieniiiienieeiee e 159
Appearance Manager Controls ..........ccccoceeirieninnencnieniennens 159
Push Button (CDEF 23) .....ccccovivininineneicicieeeeeeneenens 160

Check Box (CDEF 23).....cociiiiiiiniinieienicicicreeceeeneenes 160

Radio Button (CDEF 23) .......ccooiiiiiiieeeiieciee e, 160

Bevel Button (CDEF 2) ....cccvvviiiiiiiiiieeeeeeeee e 160

Tabs (CDEF 8) ......cccciiiiiiiiiiiiiiiicciciciccce 161
Disclosure Triangles (CDEF 4) ......ccccoovivviiiiiinienneineens 162

ClIOCK (CDEF 15) vttt 162

Group Box (CDEF 10) .....cccooivininininienieicicieeeieeeeenns 162

Chasing Arrows (CDEF 7).c..ccccvvievinviiniiniiniiicnceienene, 163

Little Arrows (CDEF 6) ....ccvvviiiiiiiiiiieeiieciee e, 163

Static Text (CDEF 18) ....ccvvvviiieiiiieeeeeeeee e, 163

Placard (CDEF 14)......cccocririniininineneneniciceeeeeeeeeenens 163

Visual Separator (CDEF 9)......cccccccoviiiiniiiiiieeceeeee 164

Image Well (CDEF 11)...ccccoconiiiniiniiiiiicieeeieeceeenee 164

Pop-Up Arrow (CDEF 12) .....cccevviiiiniiiiniininieneeienenne. 164

Picture Control (CDEF 19) .......cccooviiiiiiiiiieeieeceeee e, 164

Icon Control (CDEF 20) ......ccooovviviiieiiiieeeeeieeeeeeeeveeeeene 165
Window Header (CDEF 21) ......ccccoviveeciiieieeeeeeeee e 165

User Pane (CDEF 16) ......cccccccvieviieeieeieceeeeeceeee e 165
Appearance Manager and Keyboard Focus ...........c.cccccceeennene. 166
Creating a NeW DULTON ...c..covviriiniiiiiieienceeesceec et 166



Appearance and Behavior Specification ...........ccccoeeeevencennennen. 167

Custom Control Definitions (CDEFS)...........cccccccoeviieciieennenn. 168
Automatically embedding cOntrols .........ccceeeveerienrieeniieniieenieenieenns 171
Embedding a button into @ button ...........ceeceeeveeenieniieenieeniieenienieene 172
Embedding a button into a scroll bar-...........cccceceeceevievinceninvenennen. 172
Getting the first unused button NUMDbET .......c.ccoeverererrcrenineneneenne. 173
Setting colors for new buttons as they are created ...........cc.ccccceue..e. 173
Resetting the colors for new buttons to the default .......................... 173
Deleting @ BULLON .....eevevieiiieriieiiesieeteee ettt st 174
Hiding/showing a button ...........ceceevieiiiiniiniiiiieneeeesieesee e 174
Determining if a button is Visible ...........cccoovieviniiiiinieniniineee 175
Activating a button (giving it the keyboard focus) ......c..ccceccreruenne. 175
Getting a button’s CO-0rdinates ...........ceceeveeveereerieneenieneere e 176
Enabling/Disabling a button ...........ccccceeeveereenieneeneneenenienenieniene 176
Determining if a button is enabled ...........ccoceeveeriiiinieniiienieeeeen. 177
Selecting/Deselecting @ BUtton ........ccueevveeriiiiieeniienieeneeeieenieeieene 177
Determining if a button is selected..........cccoceeverienirieniniieniniennenns 177
Getting a button’s minimum value limit ........c.cccceceevnvninenrcncnenne. 178
Setting a button’s minimum value Hmit ...........cceceveeieneninennne. 178
Getting a button’s maximum value limit........c..coccevvevinvencnnenennen. 178
Setting a button’s maximum value limit ...........cccovvveeveeneiinneennennne. 179
Getting a button’s current Value ...........cocceevvveerieriieeneeniieeneensieenneenn 179
Setting a button’s current value ............cccoceeveereeienenieneeceneeceenneens 179
Changing a button’s title ........cccccevevieierieneinieeneeencneeeeese e 180
Flashing a button (simulating selection) ........c..ceccevveerereerencenennen. 180
MOVING @ DULLON ..ottt et 180
Changing co-ordinates without moving the image .........c.ccccceue..e. 181
Changing a BULtON’S SIZE ...ccvereveerieeriierieeniieeieeieesieeniee e e seeene 181
Changing a button’s co-0rdinates.............ccoceeveereerereeseneenrenseennenns 181
Specifying how a button is automatically moved/resized ................ 182
Setting a button’s font, size and style SEttings.........cccceveevvereeuennenns 183
Getting a button’s font, size and style Settings........c.cceeevverenvennene 183
Setting a button’s COLOTS ....ccvierieriiierieeieerie et 184
Getting a bUttON’S COLOTS ...evuvervieriiiiieniieeniieeieeieesreesiee st e e seeenee 184
Setting a default BUtton ...........ccoeveverierieniinerieiereesenceeee e 185
Removing the “default button” status from a window ..................... 185
Getting a button’s control handle .............cooceeveriiininienicnienenieeee 185
Replace a button type throughout the application ...........cc.cceceenuennee. 186

7 Picture Buttons

Water’s Edge Software

OVEIVIBW ..oniiiiniieiieiieiteeteete ettt ettt sttt ae st sane b sanenne e 187
BUton TYPES .eevveeiieiiieiteeieete ettt s 187
Button Behavior ........coocooiiiiiiiiniieeeeee 187
Selection EffectS.......ocvevirieiiiieieeeeeeecee e 188
Disabling Effects ........cccceiiiiiiiiiinieieeeeee e 188
Button’s Value and Stages .........cccceveveevienienienienienieneneeneene 188
Handling Picture BUttons ...........ccoecuveviieriiennienieeneeeieesieeieenne 189

Creating a new piCture bUuttOn ........cccceeveveerieriieeniesiieeniesieeseeeieenne 189
Resource IDS ......oovuieriiiiiniiiiteceeeceeee et 190

Icon Resource IDS .......cooveevieiiiiniiniiiiciiececeeeeeeee 190
3D SICN BUtOnNS ....oveeuieiieiieiieiceieneeeee e 191
PICT Resource IDS ........coeeieniienienieniinienceeeniceeeneeeeeen 191
Behavior and Appearance Specification ...........cceecveerveerueennen. 192
Rate of Repeating EVents .........ccccoecuvenieniieinienieenienieenieeieene 197
Picture Buttons on Color Backgrounds..........c.ccccccoveviencenennen. 197

Getting the first unused picture button nUMbET .........ccccrerrererennenne. 198

Deleting a picture button ........cccevevveeverierrenieinieieeeeneneeeee e 199

Hiding/showing a picture button .........c..cccceeveevernienenencenencenennen. 199

Contents

13



Tools Plus

14

Determining if a picture button is visible........c..ccoceevenieieniencncnne 200
Getting a picture button’s co-0rdinates ............ceeereerereenereenennns 200
Enabling/Disabling a picture button............cceecveeveerierseenieeeneennenns 201
Determining if a picture button is enabled ..........cccoocveeveeriiincennnnne 201
Selecting/Deselecting a picture button ...........ccccceeecveeeeceencenneneenne. 201
Determining if a picture button is selected........c.ccoceoerveveeceencecnnenne. 202
Getting a picture button’s minimum value limit ............cc.ccoceneenes 202
Setting a picture button’s minimum value limit...........cccccoceneneenne. 202
Getting a picture button’s maximum value limit .......cccceeceevvennenne 203
Setting a picture button’s maximum value limit.........ccccceevueereennen. 203
Getting a picture button’s current value ..........cccccoceeveneecreneenennnenn. 203
Setting a picture button’s current value ..........cccceeeevveveeveererrcrcenenne. 204
Setting a picture button’s value and selection state ............ccccceucee.. 204
Setting a picture button’s value change rate..........ccccceceeveereeeeneenne. 205
Setting a picture button’s value change speed .........ccecceevverrennenne. 205
Flashing a picture button (simulating selection) ..........cc.cccevveruuennee. 206
Moving a picture BUttON .........cccueeieviirienirieieeieeereeereee e 206
Changing co-ordinates without moving the image ..........ccccccceueuen. 206
Specifying how a picture button is automatically moved ................ 207

8 Scroll Bars

OVEIVIEW ettt sttt ettt 209
SCroll Bar States......c.cceoireenerienenienieeienecteseeeeeeee e 210
COLOTS .. 210
TEXE ettt ettt ettt ettt ettt st e 210
Scroll Bar SPeed .......ccoecveeeireririnienienieeeeeeeteeeeee e 210
Substituting Scroll Bar ProcIDs..........ccccooeevinieninieniiienenee, 211
Handling Scroll Bars .........coccecveviiiiniiniiniiiiiecntencnienenns 211

Processing doScrollBar Events.........ccccoveveevieniieneeneennne, 211
ACHION TOULINE ....eovveiiiniiiieiirieetieeeneeeee et 211
Appearance Manager Controls ..........ccccoceeirieninnencnieniennens 212
Scroll Bar (CDEF 24) ....c..cocoviviniininieieieieeeeeeeeeeenene 213
Slider (CDEF 3) ..couooviiiiiniiieieieeeieieeeeeeeeeeeneee e 213
Progress Indicator or “Thermometer” (CDEF 5)............... 213
Little Arrows (CDEF 6) ....ccvvviiiiiiiiiiieeieeee e, 213
Appearance Manager and Keyboard Focus ..........cccccceveennennne. 214

Creating a new scroll bar ..........cccooiiiiniiiiniiee 214
Appearance and Behavior Specification ..........ccccceceeceeerennenne. 215
Custom Control Definitions (CDEFS)............cccceeeeiieecieeennee. 216

Embedding a scroll bar into a button ..........ccccceceveevienenncneenicnene 218

Embedding a scroll bar into a scroll bar...........ccocceeveieevieniiieneennene 218

Getting the first unused scroll bar numMber ...........ccoecveeveeriiineennene 219

Setting colors for new scroll bars as they are created ...................... 219

Resetting the colors for new scroll bars to the default ..................... 220

Deleting a SCroll Dar ........cccovieviriiiiiieieeeeeeeeee e 220

Hiding/showing a scroll bar ..........cccccocevirieninicninneniceecene 221

Determining if a scroll bar is Visible ..........cceceeviirieenieniiienienienne, 221

Activating a scroll bar (giving it the keyboard focus)...................... 222

Getting a scroll bar’s co-0rdinates ..........cccceeeeveneevieneeceneenneneenn. 222

Enabling/Disabling a scroll bar..........cc.cocceeveneneninienninncnceenne, 223

Determining if a scroll bar is enabled ..........ccoccevinvininiincnienenen, 223

Getting a scroll bar’s minimum value limit ........c..cooceveenenienennne 223

Setting a scroll bar’s minimum value limit ...........cccocceevceeriieeneennen. 224

Getting a scroll bar’s maximum value limit..........ccoceeveevieineennnnn. 224

Setting a scroll bar’s maximum value limit ...........ccccoceecenieneneenne. 224

Getting a scroll bar’s current valte .........c..coeeveeereeneeieieeceeencncnnens 224

Setting a scroll bar’s current value ..........cccceoeveerieeieneenieneeieneenee. 225

Moving a SCIOll DAr ....cc.ooveiiiiiiiiiiiieienee et 225



Contents

Changing co-ordinates without moving the image .........c...c.cceoc..... 225
Changing a SCroll bar’s SIZe.........coceeverienirienenienienieneeteseeeeene 226
Changing a scroll bar’s cO-0rdinates ...........ceeceereerrreeneescieenieenseeenns 226
Specifying how a scroll bar is automatically moved/resized ........... 227
Setting a scroll bar’s font, size and style settings..........c..ccceeeennenne. 228
Getting a scroll bar’s font, size and style settings ........c..ceccevevveruenne. 228
Setting a scroll bar’s COIOTS ......c..cceverierienieieieiiieiceec e 229
Getting a scroll bar’s COIOTS .......couerieriirieninienieieneeie e 229
Setting the line scrolling speed for new scroll bars ...........ccceeeueenee. 230
Setting the page scrolling speed for new scroll bars .............cc..c...... 230
Setting a scroll bar’s line scrolling speed........c..ccccceeeceenieciineenncnne. 231
Setting a scroll bar’s page scrolling speed ........c.ccccecevvererencncnnennes 231
Setting a scroll bar’s action rOULINE ..........cceceevereererieenensienieeienieans 231
Getting info in a scroll bar’s action routine............c.cceeeeveereercennennen. 233
Getting a scroll bar’s control handle ............cccovviirviiniiniiiniieneens 233

9 Editing Fields

OVEIVIEW .oiiiiiiiiiiiiiiicicecee e 235
The Field’s String .........coceveiiiienieienieeceereeeeeeere e 235
Dynamic String Handles ...........cccooeiiiiiniiniiieeeeeceeee 235
The Active Field ..o 236
Editing Field Window ...........cocceoerieiinieninieninieneeienceeeees 236
Activating a Field and Editing TeXt ........cccoevvervieeriieriiienrenieenns 236
Length Limited Fields ........cccoooveviiniiiiiinieniieieeceeeeieeen 237
Clicking and Tabbing .......c..ccccecerievienieiinieineiececeeeeene 237
Keyboard Focus on Tool Bars and Floating Palettes ................ 238
Alignment of Text in a Field.........ccccoceveiinininininnncneenn 239
FONES .. 239
COLOTS . 239
Disabled Fields .........ccooiviniiiiiniiiiiiiiiiiiicicnccee 240
Filtering Characters ..........cocevueecierieniineeniieeeeeecneeeeseene e 240
WOrd WIap .....ooviiiiiiicceeee e 240
User Interaction with Fields .......c..ccccoeeeviiininininincnincnenne 241
Mac 512KE and Mac Plus keyboard with numeric pad............ 243
The Edit MenU ......cccoociviiiiiiiiiiniiiiiciciciciccccscecene 243
Large Fields and Buffers..........cooceeveiiiiiniiniiiniicccieeieeen 244
Fields with Scroll Bars ........c.ccoveeviiiiienieniiiiieccceieeeeeeee 244
Memory Management ...........c..ccceveeceieeeniieienieeeneeeeseeee e 245

DEeSK SCrap ....eevveeeeeieiieieeetee e 245
TeXtEdit SCIap.....cooeverieriiienieenteeeeteeee e 246
Scrap “Undo” TeXE...ooveeeuierieeiienieeieenieeeieeneeeieeseeseeenne 246
Field’s StriNg ....c.eevieeiiiniiiieenieeiteeeeeee e 246
Field’s Edited TeXt.....cccoviervieineinieiienieeteeeeeieeeeeeeene 246
Edited “Undo” TEeXt ....ccccoverrereieieieieeeeeeneneseeeresie e 247
“Low Memory” Protection .........c.ccecceeceenereeneneeneeieneans 247
Tips for Conserving Memory........cccceeeevveveenieneenieneenenne 247
Handling Fields .......ccccoeviiriiiiniiniiiiecieeeeeeerteeie e 247
Special Handling of Fields .........cccccovviiniiniiiniiniciceeeeee, 248
Appearance Manager and Keyboard Focus ..............ccccceceeneee 248
Appearance Manager COontrols .........ccccoeeeeceecerrerenrenicrenenennens 248
Edit Text (CDEF 17) ..ccccoeoieiiiiiiiieieieeneeeeese e 249
Static Text (CDEF 18) ....ccoovuiiiiiiiieieeeiee e 249
Creating a Field Using a ‘CNTL’ Resource.......cc.ccoeceevverueene 249

Allocating memory for a field’s String .........cceeceevveenierieeneennieenneen. 250

Creating a new field........c..cccooiiiiiiiiiniinice e 250
Appearance and Behavior Specification ..........c..coceeveverenuenene 251
Single Line Fields........coccovieiiiiiniiieieeeeeeeceeeceeee 253

Embedding a field into @ BUtton .........cccceceveevierienenienenienienieeee 257

Water’s Edge Software 15



Tools Plus

16

10 List Boxes

Embedding a field into a scroll bar ...........ccccooceeriniineniencnienene, 257
Getting the first unused field nUMbeT..........ccoceevieriivieniniinieicene 258
Deleting a field ......oceeeieiiiiiiieeieceeeee e 258
Hiding/showing a field ..........ccocceeviiiiiiniiiiienieceeeeeee e 259
Determining if a field is visible..........ccccoovieviniiiiniininiiiceens 259
Getting a field’s CO-OTdiNates ..........ccceeererrirenerienienreneeeeeeeeeeenes 260
Setting a field’s font, size and style SEttings ..........cccceeeeveereeeneenncnne 260
Getting a field’s font, size and style Settings........c.ccevvereerervenennens 261
Setting a field’s COIOTS....couiiriiiiieiiieieeieeeeeeeee e 261
Getting a field’s COIOTS ...cueiriiiriiiiiiiieieeeee e 262
Activating a field (giving it the keyboard focus) .......c..ccccceceeienee. 262
Getting a field’s selection range ...........cceceeveeververvenvenvenreneereeeeeenenes 263
Setting a field’s selection range ..........cccceeeeverieniieiieneeiieneeeereene. 263
Deactivating a field ........ccooeeiiniiiiiniiiiineees 263
Enabling/Disabling a field .........cccccovvieniiiinienieeiienieeieeneeeeeee 264
Determining if a field is enabled........c.ccoovevviiiiiiniinniiniiiieeeee 264
Clicking in an inactive field or keyboard focus item ....................... 264
Detecting a Tab in an active field or keyboard focus item............... 265
Tabbing to the next/previous field or keyboard focus item ............. 266
Getting the active field’s edited teXt .......cevereerirreneniienenienennns 267
Getting a handle to the active field’s edited teXt......c.cceevveervernennnn. 267
Getting the active field’s edited text length ..........ccocvevieriiiniennen. 267
Getting a field’s StrNG.......cceevveviieiierieiericece e 268
Getting a handle a field’s String ..........ccooceeeeveenenieeeeeeee 268
Getting a field’s string length ..........cccoccvininenininicncniceeceee, 269
Determining if a field iS @mMPty .......ccceeveereerinieeninieneniencniereeens 269
Saving the active field’s edited text as the field’s string.................. 269
Getting the window number of your app’s active edit field............. 270
Getting the active field’s number ............ccccooceeieniiiinieiineiiene 270
Turning field length limiting on/off .........c..coceoenineneniineiceenne, 270
Set field length limiting for an existing field ...........ccccecereenenenee. 271
Turning string handle resizing on/off...........c..cocceiiviniiiininncnnenn 271
Set appearance and behavior for disabled fields .........c.cccoceeneennnen. 271
Set appearance and behavior for a disabled field..............ccccoeuee.e. 273
Pasting into a field under your application’s control ....................... 274
Moving @ field ......cocerueririniniiereeeceee e 276
Changing co-ordinates without moving the image ............c.cccceeue. 276
Scrolling fields ......cooeeriiieninieneiieeeeeee e 276
Changing a field’s SIZ€ .......cccueeveeriiiiiienieeeerie et 277
Changing a field’s cO-0rdinates ..........ccoceeveereerreeniensieenieeeeneens 277
Specifying how a field is automatically moved/resized................... 278
Scrolling a field to its default poSItion ........c..ccceceevvevvereevenerccncnnenne. 279
Creating a new field filter...........ccocvrviniininininniccccccceee, 279
Apply a filter to subsequently created editing fields..........c..cc.c...... 280
Specify minimum free memory required after “undo” is set up ...... 281
Specify minimum free memory for editing teXt.......cceccevveervernenne. 281
Specify “low memory while typing” threshold..............cccceceeenee. 282
Getting a field’s TextEdit handle ............ccocooviiiiniiiiniiieee 282
OVEIVIBW ...ttt ettt ettt ettt see et sae et sbeenbesbeenbesaeans 283
Auto-Positioning OPtions ...........ceceeeeveereenereenenieeneneenennens 284
FONES ..ot 284
COLOTS .. 284
Appearance Manager Controls ...........cccoceeerieninnencnieniennens 284
List BoX (CDEF 22)....ccccoctviiiinininienienieieieeeeeeeeeeeeenes 285
Creating a List Box Using a ‘CNTL’ Resource............ccceu..... 285
Appearance Manager and Keyboard Focus ...........c.ccccccecuenee. 285



Special Considerations ...........cecceveeeererieniesieneeieeeee e 285
Handling List BOXES .....ccceevuiriineniiienieienieicieeteeeeeeee 286
Creating a NewW LSt DOX ...ccvieruierieeniieeieiiie ettt 286
Appearance and Behavior Specification .........c.ccceceeveervieenneen. 287
Embedding a list box into a button...........cceceeeeereeieniencniienenieneens 290
Embedding a list box into a scroll bar.........c.cccecvevenvcnenincncnenne. 290
Getting the first unused list box numMber ...........ccceceevevvirinincnenenne. 291
Deleting a liSt DOX ...oc.eeieriinienieienieientet et 291
Hiding/showing a liSt DOX ....c.ccceeviiiniiniieiienieeie e 292
Determining if a list box is VISIbIE .......coceerviieniiniiiiniiiiieiceieeen 292
Activating a list box (giving it the keyboard focus)...........cccceceeenee. 293
Getting a list bOX’s CO-OrdiNALES.......ccuevveeeerreieirereneeeseneseenenee 293
Adding a new line / replacing an existing line in a list box ............. 294
Inserting resource names into a liSt bOX .......cccceveevereencniencninenienne 295
Copy a set of strings to a list BOX ....eeevveereiiriieenieniienienieerie e 295
Getting @ [INE’S TEXE .eevuveriierieriienieeitente ettt etee et e st esiaesee e 296
Searching lines for specific text (alphabetic order)............c..cccuuee. 296
Selecting/Deselecting @ line .........coccvvevvereenieniecieceienineneneseneneenen 297
Determine if a line is selected .........ccccevveveinircinininicneninenenenen 297
Determine the next selected line numMber ........c.ccecvvirivincninenene. 298
Inserting a blank line into a liSt BOX .....cocceevvveerieriiienienieerieeieeen 298
Deleting @ lINE .....ccc.eevieiiiiinieiiierieetese ettt 299
Determining if a list box is enabled.........c..cceeeevinieiinniinienennen. 299
Setting a list box’s font, size and style Settings ........cc.ceccvverveeerennene 300
Getting a list box’s font, size and style settings .........cc.cceceevereenncee 300
Setting a list BOX S COLOTS ...cc.eevueeiiriiiinienienieeeereeeeee e 301
Getting a list BOX’S COIOTS....cuviriiiiiiieiieiie ettt 301
Determining the number of lines in a list bOX ......cccceceneeniniencnee. 301
Turning a list box’s drawing on/off ...........ccccevieiininiiniiiineeee. 302
MoOVING @ LISEDOX ..cuvevitiiiieiiieicicecieeeeceetee e 302
Changing co-ordinates without moving the image .........c..c.ccecc..... 303
Changing a list DOX’S S1Z€.......coeevuirieniiiienienieeeereeeeee e 303
Changing a list bOX’S CO-OTAINALES .......eevverrveeriieriienienieeriie e 303
Specifying how a list box is automatically moved/resized .............. 304
Getting a list box’s list handle ..........cc.coceeieiiniiiiniiieee. 305
11 Pop-Up Menus

OVEIVIEW ..ntiiietieiieeteeeeete et et ettt ettt e ste st este et e sbesstesbeentesbeeneanneans 307
FONES ..t 308
COLOTS et 308
Command Keys & Hierarchical Pop-Up Menus....................... 309
Creating a Pop-Up Menu Using a ‘CNTL’ Resource................ 309
Pure System Pop-Up Menu..........ccccccvvveevinviencencncennennen. 309

Tools Plus Pop-Up Menu (CDEF 63) ........ccccecveninenennene 309

Bevel Button Pop-Up Menu (CDEF 2) ........cccoccovenienenen. 310
Handling Pop-Up Menus .......cccccoceevienienienieniinieienieeneeneee 310
Creating a NeW POP-UP MEMNU......cerueerurerreerreenuernreesiseeseesseessaessseenns 311
Appearance and Behavior .........c.ccevceivviiinieniiiinieniicieeeeen 312
Pop-Up Menus on Color Backgrounds ..........cccceceveeevencennennen. 314
Embedding a pop-up menu into a button ..........cccceceeceeeeenerennennenn 316
Embedding a pop-up menu into a scroll bar .........c..cccceveeevercenennen. 317
Getting the first unused pop-up menu NUMDbET ........c.cevervenierrennenne 317
Attaching or detaching a hierarchical menu to a pop-up menu........ 318
Setting colors for new pop-up menus as they are created ................ 318
Resetting the colors for new pop-up menus to the default............... 319
Adding, changing or renaming a pop-up menu item..........c..ceeeveeee. 319
MEtaCharaCers ......coceeveeuerieriinienienieteiereeeeetee et 319
Inserting a pop-UP MENU TLEM.....ccuevueerierieririeneeieneeenteieeeeiene 321

Water’s Edge Software

Contents

17



Tools Plus

18

12 Panels

Inserting resource names into a POP-UP MENU.........ceruereeeruereeruennnans 321
Deleting a pop-up menu or pop-Up Menu iteMm ........ccceeeerereeruennnens 322
Getting a pop-up menu’s CO-OTdiNALES ......ccveerrerrreereerrieenreeieennens 323
Hiding/showing a pop-up Menu ..........cceceeevueerierieeniensieeniesieeneens 323
Determining if a pop-up menu is Visible.........cccccevveeveeriiinneeniennne. 324
Getting a pop-Up MENU IteM’S tEXL ....eoveerurreiereeeierieeieeieeeeeeeeeeeneene 324
Renaming a pop-up Menu item ..........cecueveeriereenienienenieneneenieeeens 325
Enabling or disabling a pop-up menu or pop-up menu item............ 325
Determining if a pop-up menu is enabled ...........ccoceevveriieinrennenne. 326
Displaying or hiding the Check mark .........cccccocceeriieiniiniiinnieneennne. 326
Displaying or clearing special marks ...........cceceeveenierieinienneeneen. 326
Getting a pop-up menu item’s special mark...........cocceveeiinieniennenne. 327
Setting a pop-Up MENU IteM’S ICOM ...c.veeuverueeieniieieeiienieeeeneeeeeseeenees 327
Getting a pop-Up MENU IteM’S 1CON ....eeuverveeverieeieriieniereenieneeniennens 328
Changing a pop-up menu item’s Style........ceceeveerieereercieenneneeenn 328
Determining the number of items in a pop-up Menu ..........ccceeuneenn. 328
Determining the selected item in a pop-up MenU..........cccecveevueennenn. 329
MOVING & POP-UP MENU .....eenernieeeenieiteeeenteeteeseeeeeseeneeeneeseeeneeseeeneas 329
Changing co-ordinates without moving the image ............c.cccceeue. 329
Changing a pop-Up MENU’S SIZE ....cevverueeruereenierienienienieerenieeeeneeene 330
Changing a pop-up menu’s cCO-0rdinates ..........cecceereueerveerversueennens 330
Specifying how a pop-up menu is automatically moved/resized ..... 331
Setting a pop-up menu’s font, size and style settings ..........c........... 331
Getting a pop-up menu’s font, size and style settings...................... 332
Setting a pop-up MeNU’S COLOTS .....covurrierirriiniieieieeieeeeeee e 332
Getting a pop-Up MENU’S COIOLS ...evuviriieniiriiiiiienierienieeesieeie e 333
Setting a pop-up Menu item’s COlOTS .....ccvrrrurerueeniieeieerieesieereeeneeen 333
Getting a pop-up menu item’s COLOTS ...c..eevvuierverrieerieeieenieerieenieeans 334
Getting a pop-up menu’s control or menu handle.............ccccoeeneen. 334
(02075 074 1) SRR 335

(000) (o) G 12 o) (=1 PP 336
Creating a New Panel.........coccecveveriiiniiiiiniiieieeceere et 336

Appearance and Behavior Specification ..........cccecceevvveneennenne 337
Getting the first unused panel nuUMbeT ..........cccceeveeviieiiiniiiineennen. 341
Setting the standard color table’s COlOrS ......c..ccceveeceniecieneeiinneene. 342
Getting the standard color table’s COlors.......c.ccoevveircirnieeeenencnnens 342
Setting the custom color table’s COlOrs ........ccceevueriirenieiienieieeeene 343
Getting the custom color table’s COlors........ccooeevireeneriencnienennens 344
Deleting a Panel ........oocueeveeiieeriienieeeeie ettt 344
Hiding/showing a panel .........cccccoooiiiviiniiiiiiniiiiienieeceeeeeeeee 345
Determining if a panel is visible .........ccccocooiniiiniininiiienn, 345
Getting a panel’s CO-0rdinates...........coeeverververuenuereeneeieeeeeenenennens 346
MoOVINg @ PANel......cc.eeiiiiiiiiiieiiie e 346
Changing co-ordinates without moving the image ............cccccoeee. 347
Changing a Panel’s SIZE........cccverveereerieeniierieenieesieeseesieesresneenns 347
Changing a panel’s CO-OTdiNALes .......cceverrreerieerrieerieenieenieenee e 347
Specifying how a panel is automatically moved/resized ................. 348
Setting a panel’s font, size and style SEttings ..........ccccceeceeerrercrnenne. 349
Getting a panel’s font, size and style Settings ..........cccceceeceeerverennens 349
Setting a panel’s COLOTS .......couerirvieririeniiierieeeeeeee e 350
Getting a panel’s COIOTS ....ccuivruieriiirierieeiie et 350



13 Menus

OVEIVIBW .ttt ettt ettt sttt st e sttt ettt e b et enbeeseenbeene 353

Menus in PIug-Ins ......ccccooerviiniiiiniiiiieiecceeeeeeseee e 354

COLOTS .. 354

Menus Accessed by MultiFinder and System 7 or higher ........ 354

Edit MENU .....ooouiiiiiiiiiieeeeeeteeteeeeee et 355

Menus and Editing Fields.........cccooeiiiiiiinieiieeeeeeee 356

Apple Menu and Desk ACCESSOTIES.....c.eervirueeririenenienieeeennen. 356

Menus and Desk ACCESSOTIES .....c..euevereieieieieiieiinenesenieneens 357

Help Menu and Applications Menu ..........cccceevvveervercieeneennieenns 357

Command Key Equivalents .........c.cccocoeevviriiiniiennieniienienieene 358

Planning for Balloon Help ......cc.ccooeviiiiniiiiniiiicicceeene 358

Handling Menus .........ccoooeeiuiiieieiieieeeeetee e 358
Creating the Apple menu () ...........coeuririnirueurinieeeieeeei e 359
Creating and renaming a menu Or MENU iteM ......c..cevverueervenreeruenneens 359

MEtaCharacCters .........ceoereeriereenierienienieeentereeeeete e 360
Creating a menu using a ‘MENU’ 1€S0UICE .......cccveriereeenieerieeennen. 361
Creating a set of menus using an ‘MBAR’ resource............c..c........ 362
Identify the Select All edit menu iteMm..........cceeveereereerereereneeenee. 363
Getting the first unused menu NUMDET .........coceveiviiiiinenieienieeee 363
Getting the first unused hierarchical menu number ...........c..cccc..ce. 363
Attaching or detaching a hierarchical menu...........ccoceeeverierneenenn. 364
INSerting @ MENU LM c...eevuviiiieriieiie ettt 364
Inserting resource names into @ MENU .....c...ccceeveeveereeruereenreneennennen 365
Deleting a menu or MenU item ......c..ccevverueeerereeereneneeenenenrennenne 366
Updating the menu bar (redrawing it) ........cccceeceeveveeneneenencenennen. 367
Hiding/showing a menu bar..........ccccccevvieniniininnininneneecneeeeen 367
Getting default menu colors for your application ............ccceeeveeueenee 368
Setting default menu colors for your application ..........ccccceevveeneenee 368
Getting @ MENU’S COLOTS ......ouiruiiiirieiieietieeee e 369
Setting @ MeNU’S COLOTS .....evueruiriiieieieieieieeeeeeeceeee e 369
Getting a menu item’s COLOTS .....cuiruieriirieniieienietereeee e 370
Setting a menu item’s COLOTS ....c.eveeruiriererienierienerteneetenie e 370
Getting a MEeNU 1EM’S tEXL .evvverveerireerieeriierieereesieesreseeesieeeseenenens 371
Renaming a menu item........ocuevveeiiiniieinieiieenieeieeeeee e 371
Enabling or disabling a menu or menu item .......cc.cccceceverererennennen 372
Displaying or hiding the Check mark .........cccccecevvivvnvninincncnene. 372
Displaying or hiding special marks .........cccceceveeveninneninnenceeen. 373
Getting a menu item’s special mark .........ccoccevereeneniencniencnenen. 373
Setting a menu item’s Command-key equivalent .............ccccceeueenee. 374
Getting a menu item’s Command-key equivalent ............ccceecueenennne 374
Setting @ MeNU itemM’S ICOM .....evuieririeiirieeereeerese e 374
Getting @ MenU iteM’S ICOM ....eovevierierieieieieieieeeeeeee et 375
Changing a menu item’s Style .........ccoeeierieiieneeiienieie e 375
Determining the number of items in @ MeNU .........ccceeveereerereennennen. 376
Determining a menu’s parent MENU ..........coceereerereerversueeneeesueenenens 376
Determining a menu item’s SUDMENU........cocveereeeriieenieniieeniienieeneenn 377
Highlight or unhighlight a menu .........cccccocoeviniiiiniiee. 377
Getting a menu’s handle..........occoooieiiiiiiiniieee e 377

14 Cursors

Water’s Edge Software

OVEIVIEW ..evveviieeieeieeeeeeeeettee e e e eeaae et e e e eetaeeeeesesaaaeeeesessaeeesssenasreeeeeens 379
(000 (o) QG111 5o ) ¢ TSRO 379
Automatic Cursor Changes .........ccceveevvieeneenieeniienieeneesieennenn 379
The WatCh CUISOT ....vvvieeeeeiveiee e e eeeeiree et e e e eeas 380
Starting your appliCation ..........cc.coceeeuereereereenienieeneneeneenennens 380
The CursSor TabIe ......cccuvvvviiiiiieieeeieeeee e 381
Advanced FEatures .....ccvvvvviiievieiieiieeeiee e 381

Contents

19



Tools Plus

20

Cursor ANIMAtION.........cceevririririrenteerenerretereeeeeeee e e 382

Handling Cursors .....c..cocueveererieniiieneeieseeeeeeeteieeee e 383
Changing the cursor’s Shape .........ccceevevirriieriieenienieeeerie e 383
Resetting cursor shape according to window orientation................. 384
Setting the cursor animation SEQUENCE ........c..coceeeveeverreereenreeeerneenne 384
Keeping cursor animation running ...........ceceeeevereervervenveeereereeeeennes 384
Creating a New Cursor table .........cccovieririeiiniieneriere e 385
Getting the first unused cursor table number .........c.ccoceevereenienneee 385
Deleting a cursor table .........ccoveeviieriienieiienieeeee e 385
Creating/replacing a cursor zone (using a rectangle) ........c..cc..c...... 386
Creating/replacing a cursor zone (using a region) ........ccccceceeeveeneee 386
Getting the first unused cursor zone NUMDET .......cc.cceeveeeveereenenne. 387
Deleting @ CUSOT ZONE.......cueeuieriieieniieieniteiesieeee e sae st see e eanns 387
Changing the cursor for a cursor table or Zone ...........c.cceecevvenennes 387
Getting a cursor zone’s bounding rectangle ..........ccoceeveevveeneennnens 388
Getting a CUrSOr ZONE S TEZION ...eevveevieruieriiieriieeieesiieeteesiressaeenieenns 388
Indicate that cursor zone regions have been altered......................... 388
Making a window use a cursor table (or stop using one)................. 389
Determining which cursor zone contains a specified point ............. 389
Determine which cursor zone contains the cursor ..........ccccceceenee.e. 389
Enabling/disabling button clicks during a watch cursor .................. 390

15 Balloon Help

OVETVIBW ..ottt ettt ettt sttt sae et st sae s nesaeesnesanens 391
Help Inheritance..........cceeveeieienieicneeneieeeceeeceeeeeeeeen 392
Balloon Help for the Finder (‘hfdr’ resource).........cccceeeeeruenneee 392
Balloon Help for Menus (‘hmnu’ resource)...........ceceeveeveneene. 392
Balloon Help for Objects in Windows.........ccccecveverieniennennenne 392

Using ‘hdlg’ and/or ‘hrct” Resources in Dialogs or
DAAlOZ LiStS ..eeuviiiieniiieiieeieeiieeieeiee et 393
Manually Assigning Help Resources Data to a
User Interface Element ...........ccccoecevieiininieniecnenee. 394
Manually Assigning Help Data Without Using Resources 395
hdlg’ and ‘hmnu’ Resource Settings .........ccocevveeverveenerienennens 397
Efficiently Storing Numerous Help Messages...........ccccueeuuenee. 397
Balloon Help Performance ISSUES .........ccocuevviienierciiiniennieenees 397
Issues with THINK Pascal .........ccoceevieniiniiiniiiieniiieeeeee, 398

Setting Help for a Button ..........coccoeeerenienienienenieieeeeeeeeececeene 399

Setting Help for a Picture Button ............coceevevieniniiininiincecnenee, 401

Setting Help for a Scroll Bar.........ccoeoveviiieniniicniiiinieenceenene 401

Setting Help for a Field or Static TeXt ........cccceevevirneercieinienienieene, 402

Setting Help for a List BOX .cc.coevviiiiiiiiiniiiieieeieeececeeeeen 402

Setting Help for a Pop-Up Menu .........ccccoceeeiivieiiiniinincnicceenee. 403

Setting Help for a Panel .........c.ccocovevenenencneneniiccieeeececeee, 404

Setting Help for a Cursor Table ..........cccceeeevinieniniieniienceeeeee, 404

Setting Help for a Cursor Zomne ...........cccoeeevereevienieenieneenieneeneeneenns 405

Setting Help for a non-Tools Plus Control..........cccceevveeiieenvennenne. 406

Deleting a non-Tools Plus control ...........cccceeeveeveenienseenienneennenns 406

Forcing Recalculation of Balloon Help .......c..cccccoeeiiniiiinninne 407

16 Event Management

OVEIVIEW ...eiiiteiieieeiteteette ettt et e st e e st et e sateeesaeenaesseensesseenseeneans 409

Polling versus DiSpatChing .........ccccccevevererinenenenienienieeeeeceeenennen 409

Task SWItChING ..c..eoiviiiiiiiiiiieeee e 410

Macintosh EVENtS .....c...coceecieriiiiiniiniinieniiieccecneecneeeseeeeeeenne 411

The Event QUEUE ..........ceeeiiieeeiiieciiee ettt e eeeaee e 411

Watch Cursor -- a busy SYStem ........ccccecveviecienieiieieiieeeeeeeneeenne. 412



Water’s Edge Software

Tools Plus Event Record ...........cocooieiiiiiiiiiniiiieccec e 412
Event Record Fields .........coooviiiiiiiniininiiniiiinceeseecteceeee 415
Event MOdIfiers .......c.cceverierenieninieenecieeteseeeeseete e 416
Event Modifiers Using C ........ccoceeviirnienieiniienieereesieeseeeieenne 417
Event Modifiers Using Pascal..........cccocceeinvininvininncnnncnnn. 418
Background Processing ..........coceeevereeieieneeenenieneneneneneseseseennes 418
The Event Handler Routine ..........cccccoeeieiiiiininiinieccec e, 419
The Window Event Handler Routine ...........cccccoceeveniencniencnicnens 420
Modal Event Handling ........cccceecveerieeiiienieiieeiesieeniesie e 421
Filtering Events (the Event Filter Routine) ..........ccoccceveieviiieniennnnnns 421
Serial EVENLS ....cocuiiiiiiiieiieiiieteeeeeee ettt 422
Tools Plus Event Codes........ccueiirieiinieniieieneeeeeeee e 423
Translating Toolbox events to Tools Plus events...........c.cccceeeennee 424
Automatic Apple Event SUPPOIT .....cccooeeverieniniieneiienieeieneeieee 426
Simulated Apple Event SUPPOTT.......cceevveeriieriieniiiieeniecieesie e 427
Routines for Handling and Processing Events ........c..cccccoceeenienen. 429
Setting an event handler routine for a window ...........c..ccc.c...... 429
Setting an event handler routine for a window ...........c..cccceee.. 429
Process events continuously ..........cccceeeevenieniinieninienceceee 430
Process a single event while the application is busy................. 430
Process a single toolbOX EVent ..........ccceeecueerieeriieeneenieenienieenns 431
Set an Apple EVent €1T0T .....ccc.eeveeeiieeniiiiiieieeieeniesieesee e 431
Determine number of files to be opened or printed .................. 432
Retrieve file info for a file that needs to be opened or printed..432
Stop processing events, return control to application ............... 433
Determine if Tools Plus is set to stop processing events .......... 434
Scheduling background processing...........coeceeevveervercreenivensuennne 434
Determining if “scheduling processing” is supported............... 435
Wait for subsequent Clicks .........ccccocevieviinieniinieenicicieeeene 435
Discontinuing multiple clicks or drags.........cccccceceevevvcrenencnnene 435
Ignoring the first click of a multiple click sequence.................. 436
Determining if your application is suspended..........cc.ccccceuneen. 436
Determine if Tools Plus is processing a series of events .......... 437
Stop Tools Plus processing a series of events.........cocceeveeeueenne 437
Timers and Timer EVENtS ........cccccoviiriiiniiiiieniinieeieeeceeeeeeeen 438
How Tools Plus Generates Timer Events ...........cccccoecenieeennen. 439
TIMET ACCUTACY ...veuvenvintenieieeeiieireeeteeeeet ettt 439
Timer Resolution........ccccoevvieniiiienieiiinienieeeceeenceescee e 440
Timers and doNothing (null) Events..........cccccoevvieriiiiniennennnnnn. 441
The Possibility of a Timer OVerflow ........cccccoceevierieiniennenns 441
Creating a new Timer .........c.ccoccevieiiniiiinieiieccec e 442
Deleting @ tiMer .....c.eoueeeerieieciieieeteeee ettt 445
Responding to EVENtS .......co.eeiiiiiiiiiiieniieieceeecee e 446
AOACHIVALE ..ottt 446
AOAULOKEY ..ottt sttt 447
AOBULLON ..ceeiiiiiciiiiccicrcc et e 448
dOChEINFIEld .....coveriiriiiiiiriiieeececcetetece e 449
dOChgMONItOrSEttiNgS ...ccvevvevervenieieieieeeieteeeeeeneseeeresreneens 450
AOChEWINAOW ..ottt e 450
AOCHCK e 451
AOCTCKCONTIOL ...ttt 454
AOCTICKDESK ..ottt 454
AOCHCKTOFOCUS ...ceuvieiieeiieiiieitente ettt 454
AODCACTIVALE ..ottt 455
AOGOAWAY ..ottt 456
AOGIOWWINAOW ..ottt 457
AOKEYDOWN ....ieniiiiiiieeiieeieeste ettt sttt 457
dOKeyINControl ........ccocueevieeniiiiieniiiiieeieeee et 459

Contents

21



Tools Plus

22

AOKEYUD .o 459
AOLISTBOX ..ottt 460
AOMaNUAIEVENL ........ooiiiiiiiiiiiiiieieiece e 461
AOMEIU ...ttt e eeeare e e e eeeearaeeeeeenees 462
AOMOVECUTSOT ...oeviiiiiiiiieeeee ettt e e e e e e e e e e e e e e e eesnns 463
AOMOVEWINAOW ...ttt 463
AONOHING ..ot 463
doOPEeNAPPLICALION ....c..eviiiiriiiiieiiieete ettt 464
dOOPENDOCUMENLS ......evererieiieeieeiie ettt 465
AOPICtBULLON ....cooiivviieiieiiieee et 466
AOPOPUDPMENU .....cceiiiiiiiiieiieieie et 467
AOPIERETTESI ..o 467
AOPIINtDOCUMENTS ......cooviiviiiiiiiiiiieeiee e 469
dOQUItAPPLICALION ..c.eeueiiiiieiieieeteieete et 470
AORETITESN ... 471
AORESUIME ......uuvviieieeeiiiiee ettt eeeree e e e eeraeeeeeens 471
AOSCIOIIBAT ..o 472
dOSUSPENA ... 473
AOTIMET .t e eeaae e e e 473
AOZOOMWINAOW ..o 473
“Field To Event” Cross reference ........coovvveeeevvuveeeeeenineeeeeeeenveeneens 475

17 Color Drawing & Multiple Monitors

OVEIVIEW ..ot 477
USINg One MONILOT ......cocuevuieieriieiiniieienieee et 477
Using Multiple MONItOIS .......coeeererenienienieierereeeeeeeeeeenenes 477
Physical MONILOTS .......cccceveririiniinienienieieierceereeeeeeee e 479
Detecting Monitor and Screen Changes ..........ccocceceevereenennnene 479
Changing Screen SEttings ......ceevveerveerieeriieriieerieeeeeneeesieenneens 479

Determining if Color QuickDraw is used .........ccceevveeveerieeneeneennne. 479

Determining the number of logical screens ........c..cccceeeecverienennnee 480

Beginning color-dependent drawing on a window ..........ccccecceene. 480

Ending color-dependent drawing on a window .........c..cccceeeeienncene 481

Determining the number of colors on a screen .........ccoceveeeeneennens 481

Determining if the screen is set to draw in color .......cc.ceceeeeienene. 482

Test for changes in MONILOT SELHNGS ..cvvevveerverrieerieerierieeeeeeeene 482

Determining the number of physical monitors...........c..ccceeeevenee. 482

Determining the number of colors on a MONitor..........ccceceeeeeruenen. 483

Determining if the monitor is set to draw in color ............cccceeueneee. 483

Get a handle to the monitor’s Graphics Device .....c...ccceveveeiennnee 484

Determine the main monitor NUMDET ...........ccoceveiiiiiiiiiiiiiiiinne, 484

Determining if a rectangle’s area is visible in a window ................. 484

Determining if a region is visible in a window ..........c.ccccccecvenenne, 485

Getting a window’s foreground color ........cccccevvevieiriniincnencncnnens 485

Getting a window’s background color .........c.cceceriiiiininiencenicnene 486

Setting a window’s foreground Color ..........ccceevevirieneniencnniencenne. 486

Setting a window’s background COlOT.........cceevuverieriieeneirieeiennenn 486

Storing a color’s components in an RGB Color record ................... 487

Erasing an area on @ Window ........cccccocevirieneiienenneneeieneeieeenn 487

Erasing an area on @ WindoW ........ccccocerevvenieneneenienieneeneeneeeeeeennene 487

Calculating a disabled COIOT ........cccovirieniiiiiieeeeeee 488

Resetting the current window’s pen to default values ..................... 489

Using the system’s highlight COlOT.........ccooverieiiiiniieiienieeeeee 489

Drawing text on the highlight color .........cocoeeviiiiiiiniiniiiiiieee 489

Highlighting a rectangle and preparing to draw text..........c.cccceu.ee. 490

Highlighting a region and preparing to draw teXt ........cccccceveeveruennen. 491

Getting the current window’s pen Settings ..........coceeveevevverveeeeenenne. 491

Setting the current window’s pen Settings .........c..ceceeveeveeneeeeneenne. 492



18 User Notification

OVEIVIEW ..eiiiiiiieiiiieieeeieestteeteesteesbe e teesbeessaeesseesssesnseenseessseensnennses 493

NOtifying the USEr......cocueiuirieniiiiiniieiineeieeeeree et 493
Define settings for notifying the User..........cccoeveevvievienceeniennieennennn 494
Notifying the user that your application needs attention.................. 495

19 Dynamic Alerts

20

Water’s Edge Software

OVETVIEW .ottt ettt sttt ettt et et ettt 497
Multitasking in Dynamic AlEIts .......cccccceeeeveecerverenienienenenennens 497
TCOMS e 498
TEXE et e 498
BULIONS ..o 498
Routine’s Value.......cccccooiiiiiiiiiiiniiiiiiiie 498
Automatic User Notification .........cccceevvveeveeniieenieniieeneenieenieens 498
Appearance Manager ..........c..cccevieiiiiiiiiniieiieecee e 499
ALETt SAMPIES ....oviiiiiiirieiiiteerteceeeeeeeet et 499

Displaying a dynamic alert..........ccceceererveererrieneeneneenenieneneeniens 501
Custom Button Combinations ..........c..ceceeeeeveenerneenerneneenenne. 501
Advanced TeChNIQUES .......cccceveeriiiiriiiiieierieeeeeeete e 502

Changing button titles on dynamic alerts .........c..cccceeveeeuereenrencnennens 503

Getting preferences for dynamic alerts .........cc.ccccecevvevverenencncnnenne. 503

Setting preferences for dynamic alerts ............cccceceveeiencencncennnne. 504

Allow/disallow doNothing events during alerts............cc.ceceeeennne. 505

Determine number of open dynamic alerts ..........ccocceeveeerieeneencneenns 505

Miscellaneous Routines

OVEIVIEW .ottt 507
Drawing StrNES ....c..coceevverieiienieienieieeeere et 507
DIawing teXt...ceeeiriruierirerintentententeteteeee ettt ettt seesae e 509
Drawing a PICTUIE .....cceeuereruiriinienienieieieeeeereeetee e 509
PICT Resource IDs.......ccovevuiriivienienieieicicieieeeeeene s 510
Appearance and Behavior .........ccccevevviienieniienienieenieeieeen 510
Drawing a picture offset in its frame...........coeceevevrieeniieniienieneene 513
Drawing an iCOM ........coueiieriieiienieiinieie e 514
Intelligent Icon Drawing ........ccccceeeeveeinverneninienicneneneneneenenne 514
Tcon Family .....coooiiiiiiiiiiiee e 515
Icon Selection ........cocceieiviriniinienieiciciceccee e 515
Drawing the Icon, Selecting, Disabling, and Masking.............. 516
Creating Your OwWn ICONS .....cceevvveeviiiniiinieniiiieeieeeeeeeeeene 516
Set the default appearance for disabled icons .........ccccocceceveecnennces 518
Maintaining Indexed String (‘STR#’) Structures.......c..ccccecevvervenene 519
Creating an indexed String StrUCUIE........c..cccecveueeeeererinenennens 519
Counting the number of Strings......cc.ccoceevereerenienenienenienene 520
Getting @ SN .eevveevieeieeieesieeieeeieeiteeteestee e esieesbeesenesseenes 520
Setting @ SIHNG c..veevvieriierieeiie ettt ettt s 520
Inserting or appending a New String .........c..cccceeveevvveveennieeennenne. 521
Deleting @ String .....c.eeceeeeereeeieie e 521
BitMaps and PIXIMaps .......coocerierienieniinienieeteneeee et 522
Creating a bitmap .....cc.cecvereevierieniiienereeeeeeeee e 522
Drawing to @ bitmap .....c.eeeveevveeniieniieiienieeee et see e 522
Copying to a bitmap or to @ Window ..........ccecueeveerieeneenneeenneen. 523
Creating a BitMap or PIXMap ......cccccoeevieiiiiiniiiinicccccnceeee 523
Destroying a BitMap or PIXMap .....c.ccccccevveirinvenenininenineneneenen 524
Converting a BitMap or PixMap to a region .........ccceceveevencenennen. 525
Determining the System VErsion .........ccccceceeveereevieneeneneeneneenennes 525
Determining the Tools Plus Version ..........cccceeeeevcieeniencieeneennieennnen. 526
Play the System Error sound ............cccoeeveevieniiennienieenienieeneeeieene 527

Contents

23



Tools Plus

24

21

22

23

24

25

26

Wait for a specified time .........ccooeeverieienieeneeeeeee e 527
Synchronizing to Vertical Retrace ..........ccccceevvvevenvienenciencenicneene. 528
Drawing “Zoom Lines” ........cccceriirrieniieiniienieeiee e sieesve e 528
Drawing a standard Macintosh progress thermometer ..................... 530
Determining if Appearance Manager is available..............c............ 530
Determining if Appearance Manager routines are available............ 531
Determining if Appearance Manager iS running.........c..ccoceeeevueennens 531
Set all bytes in @ record t0 ZETr0 ......coeeveereeriereerieneeienieeeneeie e 532
Determine if two records are equal .........occeeeveeereenieeniencieenienieene 532
Determining the minimum value of two numbers ...........c..ccueueeee. 533
Determining the maximum value of two numbers............c..cccoc..ee. 533
Multiple Languages
OVEIVIEW ...ttt ettt ettt sttt et eaeesee et e saeetesaeesaesseenseeneenseeneans 535
Where do those words appear? ..........cccceeeevereenenieneeneneene. 535
Changing the WOTdS ..........ccceerieririieneenenienienieeeteeeee e 535
The STR# RESOUICE .....ccvevveiiiriiiieiinieeieneeieeeeieereeereaeeene 535
Changing the 1anguage ...........cocceevvieriieniieiiienieceeste e 537
Other Macintosh Features
OVETVIEW ..ottt sttt ettt ettt ettt e st et e st e e sbeesaneeans 539
ALBTES .ttt 539
DiIAlOES .o e 539
Custom CONtrols .........cceceeeviriiniirienienieieieiereeeeeeeee e 540
LSS vt 540
Memory
OVEIVIEW ..ot 541
Testing Memory Requirements...........ccccocceeereeneniiencnceenennns 541
Testing for Memory Availability ..........cccceeveveniecienncnenenncnn 542
Editing Fields ....cc.oooiiiiiiiieieeeeeee e 543
Handle BIOCKS ......ccoooiiiiiiiiiniiiiieccccecceeeeee 543
The Style Table ......ccceeviiiiieriiiieee e 544
G00d MemMOTy habits .......ccceeriiiriiiniiiiierieeeereeeeeee e 544
Font Heights
Font heights table .........c..oceoiiiiniiniieececceee 545

Special Routines
Use these routines with caution, or don’t use them! ..........cccuveeee... 547

Completing Your Application

OVEIVIEW ..ottt e et e et e e et e e e eate e eeaeeeeaeeaan 553
APPLICAtion’S ICONS ...couveriiiiieiiiiiiieieeien ettt 554

Tcon Family ...oocveevieiiiiiiiciecceeee e 554
File Types, Creators, and the Application Signature ....................... 555

Signature (the Creator COde) .......cooeervernieriierneenienieerieeeeennes 555
BUNAIE ..o 556
VETSION ..veiiiieiieeeieeieeeteeteesteesteestaeeteesseesbeessseeseessseesseesssessaenseenns 556
ST RESOUICES ...vveivieeieeiieiieeieeciie ettt eeieesaeebeesaeesveeneee e 557
SIZE’ RESOUICE ....eeeuvieiiieiiieriieeiiesteesitesteesieesteesieesseenieesseenseesaeees 558

Cloned SIZE IeSOUICES .......eeeveveeeririeeeiieeeireeesveeesreeeeareeseneens 559



27 Technical Support

Water’s Edge Software

What does Technical Support do? ........cceoeevenieiinieninieeeceeee, 561
What doesn’t Technical Support do? ........cccceveeveenenienenienenieniens 561
Electronic Mail (Email) and Web Support.........ccccevvevcienienneennnnn. 561
ML SUPPOTL...eeiiniiiiiiiiieeie ettt sttt et 562
Fax SUPPOIT ..ceeoiiiiiiiiieceeecee e e 562
Telephone SUPPOIT.......c.eceverierierienieieieietetetee e 562
Notification by Email .......ccccooiiiiiiiiiiiiiieeeeeteeeee 562
Updates and Upgrades by Email .........cccccoevviiniiiininnininiiceenen. 562
Updates by the WED ......cocuiiriiiiiiiiieiececteeete et 563
Mail UPAALES ...veeneiieiiieiieeie ettt s 563
Tools Plus Developer Forum............ccooceeeieeniniinieniniccnceenee. 563
Known Bug LSt .....cccoeeiiininiiniieeieieeeecreeeceeecseees e 563
BUg ALCTT SEIVICE ..euviiiiiieiieieeiieieeee ettt 563
Registered Developer Benefits Period...........ccocceveveenincincncenennen. 563
How to Submit Queries or Problem Reports..........cccevceevvieniennnnnnne 564
INAEX ... 567

Contents

25



Tools Plus

26



1 Introduction

1 Introduction to Tools Plus

Tools Plus Overview

The Tools Plus Libraries + framework lets Macintosh developers easily create professional looking applications using
Metrowerks CodeWarrior, Symantec (THINK) C/C++, or THINK Pascal compilers. Additionally, CodeWarrior users
can create plug-ins. Virtually any user interface element is created with a single line of simple code. Once created,
elements work with each other without the need for additional support code, thereby letting you eliminate thousands of
lines of source code. Over 80% of the effort is gone! Tools Plus can also bring Macintosh resources to life in ways that
the Macintosh’s toolbox can’t.

User interface elements, everything from a simple button to a sophisticated dialog, come to life with a single line of
code. Windows drag, zoom and resize. Buttons click. Pop-up menus pop. The Edit menu edits. Scroll bars scroll. In
spite of Tools Plus’s power and robust features, it is easy to learn and easy to use making it ideal for novices,
intermediate developers, and experts alike.

Tools Plus supports and automates all standard user interface elements and seamlessly integrates support for popular
extras like floating palettes, a tool bar, the best picture buttons in the industry, tabs, sliders, a complete “3D look” (with
or without the Appearance Manager) and much more.

Using Tools Plus simplifies your programming and accelerates development. Less than 200 core Tools Plus routines
replace the need for many hundreds of Mac toolbox routines, and tens of thousands of lines of source code. You’ll
create applications in less time, with much less source code, with far fewer bugs, and with more features than if you
had used ordinary C/C++ or Pascal. The resulting executables are compact, lightning quick, and efficient.

Tools Plus libraries can be compiled into applications or plug-ins that run on any Macintosh (512KE or higher), Power
Macintosh or Mac OS compatible running on System 6 using Finder or MultiFinder, System 7, or Mac OS 8 and
higher. Tools Plus is royalty free. A single license lets you create an unlimited number of applications, and sell an
unlimited number of copies.

Differences Between Tools Plus Packages
Tools Plus is available in a number of packages, each being tailored to a specific audience:

* Tools Plus Pro: This is the complete Tools Plus developer kit with libraries for CodeWarrior C/C++ and Pascal,
Symantec C/C++, THINK C/C++, and THINK Pascal. 680x0 and PowerPC-native libraries are included. The
user manual is in electronic format only (PDF, also known as Adobe Acrobat format which produces the best
visual results and is suitable for printing, and eDoc format which requires the least resources and runs quickest).
Also included as an added bonus are SuperCDEFs world class-controls, custom color window WDEFs, and other
additional color resources. You must purchase this Software Development Kit in order to use it.

* Tools Plus Lite: Similar to Tools Plus Pro, except it has only CodeWarrior 680x0 libraries. Tools Plus Lite is
ideal for developers who want the power of Tools Plus with a minimal investment. Tools Plus Lite is available
through select channels for a limited time only. You can easily and economically upgrade to Tools Plus Pro.

¢ Tools Plus Academic: Similar to Tools Plus Pro, except that it does not include SuperCDEFs controls, and it
bears “personal use” licensing restrictions. Tools Plus Academic is available only to students and members of
faculty of accredited academic institutions. You can easily and economically upgrade to Tools Plus Pro.

* Tools Plus Evaluation Kit: This is the only Tools Plus kit that is available free of charge. You can get it from
the Water’s Edge Software web site, the Internet, electronic bulletin boards, and other sources. It is designed to
give a developer the opportunity to try Tools Plus before buying it. It contains almost all of Tools Plus Pro’s
routines, and an electronic user manual in eDoc format only. SuperCDEFs are not included. The Evaluation Kit’s
Software License Agreement lets a developer try Tools Plus for thirty days, after which time he must either
purchase Tools Plus (Pro, Lite or Academic), or stop using the Evaluation Kit.

Water’s Edge Software 27



Tools Plus

The (Optional) Tools Plus Framework

The Tools Plus framework is included with Tools Plus libraries, but you don’t have to use the framework because the
power of Tools Plus is in the libraries. They replace the need for complex toolbox coding. The Tools Plus development
kit also includes a framework that is essentially a “skeleton” for a fully functioning application. Realize that Tools Plus
libraries are fully enabled and complete without using our framework. You can easily design your own framework as
though you were doing “macro coding” because Tools Plus libraries do all the dirty work for you. Our framework is
just one of many approaches you can use to write an application when you have Tools Plus libraries at hand. This is
why we emphasize that using the Tools Plus framework is optional.

When you explore the Tools Plus framework, the surprising part will be how easily you can add “flesh” to the
framework, that is to add the features, look and feel that make your application unique. That’s because Tools Plus
libraries have literally thousands of features and options that you can add to your application, simply by adding one
line of code. Our framework is an excellent starting point for most kinds of developers:

Novice programmers are provided with an example of a full application showing them how to structure their project
and how to create an application that not only has all basic functionality, but easily supports all Tools Plus features.

Programmers who are new to Macintosh can ease their transition from a UNIX or PC environment, and readily
apply their existing skills to the Macintosh with the assistance of Tools Plus libraries. For their convenience, we
provide the sample framework just so they don’t have to start with a “blank sheet of paper.”

New Tools Plus developers who already know how to program a Macintosh now have a jump start to help them get
going right away. Our framework makes it easy to harness the power of Tools Plus libraries and get results fast.

See the “Framework Example” folder for complete details about the sample framework.

Visual Design Environment

There are a number of rapid development tools that are made up of a “visual designer” paired with a code generator.
The appeal of these tools is that you can design your interface visually. Their drawback may have as significant an
impact on you because these code generators do just that: they generate generous volumes of complex toolbox code
that you will have to learn and maintain. Worse still, the code they generate often depends on an even larger, multi-
megabyte C++ class library, or on a rigidly structured set of source code modules.

Tools Plus takes a very different approach. We removed the burden from the “visual designer” to generate perfectly
executing, elegant, and maintainable source code, and put the emphasis on our libraries to “do the right thing” and to
“do them right” with minimal instructions from the developer. All that is required from you is a small amount of truly
simple source code.

But the appeal of a visual designer is not lost on Tools Plus. Tools Plus libraries and its optional framework leverage
the power of your existing tools, specifically your resource editor, to enable you to visually design your application’s
user interface. You can always upgrade or replace your user interface design environment (your resource editor) and
Tools Plus will make the best use of your design, thus giving you the best of both worlds. If you have a powerful
resource editor like Resorcerer from Mathemasthetics (see “Creating and Editing Resources” later in this chapter), you
can attain near-WYSIWYG (What You See Is What You Get) visual designing capabilities.

Imagine being able to create a fully operation window and all its user interface elements with one line of code
(LoadDialog(3, DialogID)), and being able to access any user interface element with an equally simple line of code
(SelectButton(12,0n)). Remember: as soon as you create it, it works! That’s why Tools Plus libraries and optional
framework, teamed with a resource editor, gives you an exceptional rapid-development arsenal.

Tools Plus User Manual Formats

The Tools Plus Pro, Tools Plus Academic and Tools Plus Lite software development kits (SDK) ship with two user
manuals, both of which are identical in content, but different in format only:

* An electronic user manual in eDoc format

¢ An electronic user manual in PDF, or Portable Document Format (Adobe Acrobat format)
The Tools Plus Evaluation Kit, a free kit that lets you try Tools Plus before buying it, includes only an eDoc manual.

28



1 Introduction

Unlike a printed user manual whose page numbers start at 1 at the first chapter, the page numbers in the electronic user
manuals are numbered sequentially starting from the title page, which is identified as page one. This is done so that
you can reference the table of contents and index, and simply “go to” a required page number.

eDoc for Simplicity and Speed

The eDoc electronic user manual is designed for instant gratification, ease of use, and speed. The advantages that this
format presents are:

* You can view the manual by double clicking it. There is nothing to install first.
* You need much less disk space than with PDF (under 2 MB)

» Text searches are much faster than with PDF

* Displaying anything is faster than with PDF

With all these advantages, eDoc has a few disadvantages as well:
e If you print an eDoc manual, it does not look as good as PDF
* If a font that is required by the eDoc manual does not already exist on your system, a substitute font is used. This
may deliver suboptimal viewing and printing results.
¢ Some parts of the eDoc manual have been optimized for viewing on a monitor as opposed to printing. Their
lower resolution will not look as detailed when printed.
¢ eDocs can only be viewed on a Macintosh

PDF for Perfect Printing

The PDF electronic user manual is designed for “perfect” viewing and printing. The advantages that this format
presents are:

* The document contains all required fonts, high resolution images, and line art for the best possible printing
results.
When viewed on a monitor, PDF files show all text as anti-aliased. Many people prefer this to standard text.
PDF files can be viewed on Macintosh, Windows™ , OS/2™ and Unix™ computers.
All viewing detail is preserved, no matter how much you magnify the image.
The PDF viewer has more sophisticated viewing and navigation services than eDoc.

PDF has several disadvantages as well:
* You must install viewing software on your hard disk before you can view or print a PDF document. All Tools
Plus SDKSs include Adobe Acrobat Reader which consumes several megabytes of disk space.
* Viewing and searching PDF files is much slower than eDoc
* Some people don’t like the anti-aliased text, preferring the crisper, standard Macintosh fonts.

All Tools Plus SDK CDs include Adobe Acrobat Reader, an application that lets you view and print PDF files. See the
“Acrobat Reader” folder on your CD that includes instructions on how to install Acrobat Reader in a “Read Me” file.
We recommend that you install the “Reader+Search” variant of Acrobat for the greatest versatility. If you already have
an Acrobat Reader installed that is the same version or newer than the one on the Tools Plus CD, you do not need to
install Acrobat Reader.

Printing the User Manual

If you purchase Tools Plus, you may print one (1) copy of the user manual for your own use. You may not print
multiple copies, or allow multiple copies to be printed. Use the PDF version of the user manual for printing because it
delivers the best visual results, and it does not require the installation of any special fonts.

Registered Developer Benefits Period
As part of your Tools Plus licensing fee, Water’s Edge Software provides the following products and services to you
for one full year starting from your initial purchase, at no additional cost:

* Prompt, world-class technical support with no limit to the number of emails/calls

» Software updates (bug fixes and minor revisions)

* Software upgrades (major releases containing considerable new functionality and/or improvements to existing
services and features)

Water’s Edge Software 29



Tools Plus

* Access to the electronic Tools Plus Developer Forum where you can meet other Tools Plus developers and
leverage their expertise and experiences.

* Access to the online Tools Plus Known Bug List (a detailed list of all known bugs confirmed to date, their status,
work arounds, and what we are doing about them)

* Subscription to the Tools Plus Bug Alert Service. This service sends you an email as soon as a new bug is
discovered and confirmed in Tools Plus libraries + framework. The email details the impact of the bug, work
arounds, and what we are doing about it. This service is highly recommended for all developers!

* Subscription to Water's Edge Software's press releases, as well as internal communiqués that are intended only for
Tools Plus licensees. This service keeps you informed about what we are doing and the projects that are being
planned.

Your benefit period starts with your initial Tools Plus purchase, and continues for one full year. Software updates and
upgrades include delivery to you at no additional cost. Our goal is to have at least two substantial releases per year. We
automatically send you a reminder when it is time to renew your benefits period for an additional year. The reminder
includes complete details about your renewal.

An Ordinary Application’s Architecture (without Tools Plus)

Ordinary applications, those written without Tools Plus, have an architecture that can be represented by the model
shown in figure 1 on the following page. All of Macintosh’s capabilities can be accessed through the routines in the
Macintosh’s built-in toolbox and through the data structures that are created and maintained by those routines. An
ordinary application creates its interface and makes it work by using the toolbox’s routines.

Numerous complexities arise because the application must also continuously manage the relationships between user
interface elements, and between elements and their environment, again by using toolbox routines. The Event Manager,
for example, can effect TextEdit, the Menu Manager, Window Manager, Dialog Manager, Control Manager, List
Manager, and others.

To further complicate matters, parts of the toolbox are available only on certain Macintosh models such as Color
QuickDraw that is available only on the Macintosh II series and newer computers. Similarly, parts of the toolbox are
available only on certain system versions, such as System 7’s pop-up menu CDEF (Control DEFinition) and System
7.5’s floating palette WDEF (Window DEFinition). Even identical Macintosh models running the same system version
can be quite different to the application’s world just by attaching a second monitor to one of the Macs. All these
variations mean the programmer must do things differently depending on the Macintosh model, the system version and
computer configuration that is running his application, or he must account for all the possibilities if the application
might run on a variety of Macintosh models, system versions or configurations.

The final aspect of an ordinary application, although this is not readily apparent in the model in figure 1, is that the
entire Macintosh toolbox gives the application access to the Macintosh’s capabilities on a low level, meaning that even
simple things like creating a color button can take dozens of lines of code, and making it work can take dozens or
hundreds of lines more. Complex tasks like make a floating palette work and function properly with all other user
interface elements can require over a thousand lines of source code.

Many features found in today’s popular Macintosh applications don’t even exist in the toolbox. Although System 7.5
was the first to include a floating palette WDEF (Window DEFinition resource that gives your application the look of a
floating palette), there is nothing in the System 7.5 toolbox that makes the window behave like a floating palette. In an
ordinary application, the programmer must accomplish this himself using toolbox routines. The same applies to a tool
bar, picture buttons, and an editing field with scroll bars attached to it. When working with the toolbox, all work
involves low level coding, and low level coding means the developer must assemble a number of toolbox routines to
create just about anything that is useful.

30



1 Introduction

Ordinary Application

: | | | | | | | | | | | | | | | | -
— H
9
9
9
9
9
9
J
d .
[ 0 :
“
*I IS
1#‘ [ &= === >
- K ° g
[ N
Gl O = ] £
e J g
@ O e e o ) q:_,n '%
= (15 || y . ok g
O | | 5 5 s 11218 (|| & 2 [ |l 5 =
a =} = oh oh &h = < < Py > o S
i~ S < & o < = = 3] ) = 1) =
4 © s = = = = b= S § o A S s S
= = 8 < < = < 5 2 =1 ) 'g < I
=N | Ko | R | = = |3 N ER I ERIE S |E (s =
N ERIERIE 2 = |[2 = (|12 |[2I[E ||Z £ 2 || N
ER G o] 3 2 5 s S |l |8 g || 5 = 5] 6 S
o |lo ||= [|= o = = |z |18 [|o [|= S|z ||a g
=
The Macintosh Toolbox

Figure 1 -- An ordinary application’s architecture without Tools Plus. The application must interact correctly with the necessary
toolbox managers to create the application’s user interface and to make it work. The application must also manage the relationships
between the toolbox’s various managers.

To summarize some characteristics that are common in an ordinary application, that being one written without Tools

Plus:

The developer uses the toolbox’s routines to create his application’s interface.

The developer typically writes multiple lines of source code that access numerous toolbox routines to accomplish
even simple tasks, like creating a color button (i.e., create something usable by assembling a number of toolbox
routines and writing the necessary support code to make them work right).

The developer uses the toolbox’s routines to respond to low level Event Manager events, and writes source code
to decode the event data, determine its meaning, and apply events to the various parts of the interface, again by
using more toolbox routines.

The developer writes code to maintain the relationships between various user interface elements and to account
for all user interaction and machine conditions.

The developer accounts for variations between Macintosh models, variations between system versions, and
variations in Macintosh configurations within his application’s code and his selective use of toolbox routines.

Various developer tools are available to address some of these chores, and we’ll compare them to Tools Plus later in
this section.

Water’s Edge Software 31



Tools Plus

A Tools Plus Application’s Architecture

Applications written with Tools Plus can be represented by the model shown below in figure 2. The shaded area at the
bottom of the model represents the Macintosh toolbox, just like in applications that don’t use Tools Plus (as seen in
figure 1). The striking difference is that your application no longer has to deal with the toolbox directly. Instead, Tools
Plus provides a relatively small number of routines (just a few hundred) that are logically organized and designed to do
immediately usable things. As a result, you can create working user interface elements with a single line of code, and
those user elements automatically behave like they should regardless of the Macintosh model, system version, or
machine configuration that runs your application.

Tools Plus Application

L
1)) o = 4]
» o 7] on

- g 2 02z | = e % & » @« 2 < = = . O = 2

5| 2 | § |55 |%g |E£2 | z8 2| 2 | % § |E¢€ 5% | g5 £:2

> = = o= 5 =0 j o o, O 15 S = == @ 2 E=I= = =

m g 8 = T2 | hshia m o) = > < o5 =3 £ 5

g | £ 2 | &A& s £= | = = S | g e €| a8

Z
Tools Plus™ libraries
2
N
&0
S
=
3
s
g
5] ~
3 5} g 5 . @ s 2
s e E = = = 2 ) ) .Q_.Lg S I E
o) £ g & o & = o 3 i = = o) S
~ s S < S < S = g = 2 = % S
M ERIE: g g g ls | & E 2 || || & £
] =) 3 & S = & = s = = » 2 5 S
alle g |lg = = 3 = e llells || & S |lg (= =
=4 = 2 © o 83| =} 3 ) =] b= = &=
£ ° £ 2 5 S = g = = = o S |2 = N
o Q > 3] (3} e o= o o) [ =} 5 )
o ||o ||= ||= i 3 | e = [[= [[&a [[o ||5 S ||lz [|a g
\
The Macintosh Toolbox

Figure 2 -- An application’s architecture when using Tools Plus. You create ready-to-use user interface elements and Tools Plus
makes them work. This results in a dramatic reduction in effort, source code volume, and code complexity.

To summarize some characteristics of an application that is written with Tools Plus:
* The developer uses a single Tools Plus routine to create virtually any element of his application’s interface.
¢ Tools Plus makes user interface elements work, and automatically manages relationships between elements.
¢ Tools Plus virtually eliminates event management by applying events correctly to the various elements.
* Tools Plus accounts for variances in Macintosh models, system versions, and computer configurations.
* The developer experiences an approximate 80% to 95% reduction in development effort and source code volume.
* Applications run quickly and requires little memory or disk space.

32



1 Introduction

A developer who uses Tools Plus libraries while writing an application can focus his attention on creating his
application instead of tending to the mechanics involved in creating elements, making them work, establishing
relationships between elements, complex event processing, and variations between Macintosh models, system versions
and configurations. The result is a much more effective developer or development team.

The model in figure 2 also illustrates that Tools Plus does not prevent you from using the Macintosh’s toolbox if you
choose to do so. You may decide that you want to add a new feature that does not exist in Tools Plus, or you may need
to access low level information. In these cases, you can use the Macintosh’s toolbox routines as you normally do.
When using Tools Plus libraries, you can write your application using either Object Oriented Programming (OOP) or
procedural (traditional) coding techniques.

Powerful Features Using Simpler, Higher-Level Coding

Tools Plus doesn’t just make programming easier by making a developer more efficient. It simplifies the Macintosh
programming experience by letting you program at a consistently higher level throughout your development, testing
and support cycle. Programming is substantialy simpler because Tools Plus’s routines are ready to use, unlike the
routines found in the Macintosh toolbox that need to be organized into usable tasks or operations. All you need is a
single Tools Plus routine to create a user interface element, establish its relationships with other user elements, and
make it work.

A simple example of this is the Apple menu. With Tools Plus, you can give your application full reign over desk
accessories just by creating the Apple menu with the AppleMenu routine (one line of code). Tools Plus automatically
takes care of all activities pertaining to desk accessories, such as when the user selects a desk accessory from the Apple
menu, repositions the accessory by dragging it, clicks buttons or types in the accessory, copies and pastes text in the
desk accessory, and eventually closes it. All this is handled automatically by Tools Plus meaning you don’t have to
write any code for it. Tools Plus also accounts for your application running on System 6’s Finder and MultiFinder as
well as the full-time MultiFinder that runs on System 7.0 and later. All you need to know is that when you create the
Apple menu, it will work perfectly in all situations.

Another example of an immediately usable operation is Tools Plus’s LoadMenuBar routine: it loads an ‘MBAR’
resource, reads, loads and installs all the pull-down menus itemized in the ‘MBAR’ resource including an Apple menu,
a fully functioning Edit menu, and all other pull-down menus. It also loads, installs and attaches all hierarchical menus
that are attached to the pull-down menus. All this is accomplished with a single line of code. The best part is that you
don’t need to write any code to make the menus work, including the Edit menu’s Undo/Redo, Cut, Copy, Paste, Clear
and Select All items. They all work correctly as soon as they are created.

Tools Plus’s features integrate with each other according to the User Interface guidelines found in Inside Macintosh.
An active editing field, for example, automatically intercepts and processes key-strokes from the keyboard. An editing
field’s text can also be affected by the Edit menu, which lets the user Cut, Copy, Paste, and Clear the text, as well as
transfer text between your application and other applications and desk accessories via the clipboard. The Edit menu is
automatically updated by the user’s actions in the active editing field: when an insertion point is in the field, the Edit
menu’s “Cut” and “Copy” commands are disabled, since no text is selected for cutting or copying. These relationships
between the Edit menu, and editing field and the user are all automatic in Tools Plus.

Tools Plus supports and automates all standard user interface elements and seamlessly integrates support for popular
extras like floating palettes, a tool bar, picture buttons, tabs, sliders, a complete “3D look” and much more. It also
includes a wealth of features that are sought after by developers, such as cursor animation, zoom lines like those found
in the Finder, hiding the menu bar and/or the Finder and other applications, and automatic reconciliation with Macs
that lack Color QuickDraw. In almost all cases, a Tools Plus feature is implemented using one line of simple code.

Tools Plus lets you say “run” using one word instead of painfully describing how to run using several carefully worded
and precise paragraphs. You can see how using Tools Plus frees you, the programmer, to do more important things like
writing applications instead of trying to make all the pieces work!

Water’s Edge Software 33



Tools Plus

Event Processing is Virtually Eliminated

Tools Plus practically eliminates the need for event processing code in your application. An entire chapter called
“Event Management” is dedicated to this subject in this user manual, so only a brief overview is presented here. Unlike
traditional Macintosh applications that use the toolbox’s GetNextEvent or WaitNextEvent routines to get a low level
event which then must be manually processed, a Tools Plus simply calls an “event handler” routine (which you write)
whenever an event is available. Events are generated by user activity such as typing or mouse-clicks, and by system
activity like refreshing a window, or inserting a floppy disk. You can write a single event handler routine for your
entire application, and optionally write event handler routines that handle events for specific windows.

The big difference between using Tools Plus and the toolbox is that Tools Plus does everything it possibly can before
informing your application of an event. Many events are processed internally and are never reported to your
application, such as when the user types in an editing field. This is because the field automatically processes the typing
and there is no need to tell your application about it. Other events are reported to your application, such as when the
user selects a button or clicks a window’s close box.

Tools Plus also translates the Macintosh’s events into something your application can use right away, so instead of
getting a generic, low level “mouse down” event, your application gets a highly informative and very specific Tools
Plus event such as: the “Save” button was selected in the “Add Customer” window (or button 4 was selected in
window 15).

The following example illustrates the difference between an ordinary C or Pascal program, and a program that is
written with Tools Plus. The left column represents the steps a traditional program has to take to detect and process a
very simple event, whereas the right column has the benefit of Tools Plus. Note that the left column is highly
simplified!

Ordinary C or Pascal Programming Programming with Tools Plus
Get an event 1 Tools Plus calls your event handler routine
Determine the type of event (a “mouse-down”) = Button was selected (button 3 in window 15)

Determine its location (a window’s content region)
Determine where in the window (a “control”)
Track the mouse in and out of the control

AN N W =

If the mouse button was released inside the control’s
region, report that the control was selected. Otherwise
ignore the entire event.

Mouse-down event
in a control (a control handle is known)
in a window (a window pointer is known)

Of course, additional steps could be taken in traditional C, C++ or Pascal to obtain a window number and button
number, but this is possible at the expense of more programming and added complexity in your source code.

Tools Plus gets an event from the toolbox’s event manager, automatically applies it correctly to your application’s user
interface, and reports a highly informative and specific Tools Plus event to your application only if your application
needs to be informed of something. For developers with advanced event processing needs, Tools Plus optionally lets
your application get an event directly from the toolbox’s Event Manager, inspect the event record, possibly alter it or
discard it, and even sythesize an event (i.e., a fake “mouse down”), then pass that event to Tools Plus for processing.
This gives you everything from fully automatic event processing to manual event processing capabilities.

Apple Event Support is Built into Tools Plus

An application that is written with Tools Plus does not need to be Apple Event aware, but we strongly recommend that
you make it so, especially if your application will run on Mac OS 8.5 or later. Tools Plus automatically supports all

four required Apple Events: “open application”, “open documents”, “print documents”, and “quit application”. See the
Event Management chapter’s section named “Automatic Apple Event Support” for details.

34



1 Introduction

Supports Resource-Based and Dynamic Interface Design

Tools Plus lets you define your application’s user interface in several ways. In all cases, Tools Plus dramatically
facilitates development by making user interface elements work as soon as they are created, and by providing powerful
routines that make it easy for your application to interact with those elements.

Dynamic Interface: As the name suggests, your application can create user interface elements completely under its
own control without you having to define resources. Virtually any element of your application’s user interface can be
created with a single line of code. Creating your application’s interface dynamically has the following advantages:

» The application’s interface can be created based on external data. Your could, for example, write a system that
lets you store user interface definitions in a database then create those interface elements as required.

* New Macintosh developers may find it daunting to learn a resource editor and to create an application along a
dual path by defining resources and writing code to call those resources.

* Your application’s source code has a complete definition of its user interface, so you don’t have to refer to a
collection of resources for this information.

* Your application has an additional degree of security to protect it from power users who are familiar with a
resource editor. By having the user interface defined in your application’s code instead of resources, power users
are less capable of altering the application.

* Reduced interaction with slow media like a floppy disk or a CD-ROM may increase performance.

* Some developers may prefer this approach over resource-based development.

Resource-Based Interface: You define elements of your user application’s interface by creating resources using a
resource editor such as Apple’s ResEdit. These resources can include menus (‘MENU’ resource), a menu bar
(‘MBAR’ resource), dialogs (‘DLOG’ and ‘DITL’ resource defining a window and its user interface elements), a
single control (‘CNTL’ resource), and other elements. Resource-based interface design has the following advantages:

» The user interface can be designed visually using an inexpensive resource editor such as Apple’s ResEdit

* The user interface definition can be separated from your application’s source code to allow the interface to be
changed without having to recompile your application

* It facilitates localization
* You can apply custom colors to windows and controls without writing any code
» Typically reduces the amount of source code you need to accomplish a task
e It can save memory
Tools Plus routines completely replace the need to use the toolbox’s Dialog Manager thereby letting you avoid the

numerous complexities and short-comings that are typically encountered when trying to make your application’s user
interface work and behave like a Macintosh should.

Combination: Sometimes it may be appropriate to create parts of your user interface dynamically while defining other
parts with resources. Tools Plus makes this easy because you use the same routines to interact with user interface
elements that are created dynamically as those that are created using resources. This differs significantly from other
systems in general, and from the Macintosh toolbox specifically, both of which require that you program in a different
manner depending on whether you define your interface by using resources or not.

Accessing Tools Plus Libraries

Tools Plus arrives as a set of compiled 680x0 libraries or as a single compiled Power Macintosh library. It also
includes a C/C++ header file or a Pascal interface file. You compile the Tools Plus libraries into your application, a
process that takes just seconds, then you access to the routines in the libraries by using the C/C++ header file or Pascal
interface file. As far as your application is concerned, Tools Plus routines can be seen as a replacement for many,
many toolbox routines.

Water’s Edge Software 35



Tools Plus

Creating New Applications With Tools Plus

If you are starting a new application using Tools Plus and you are already familiar with the Macintosh toolbox, then
using Tools Plus will feel very familiar. However, you will immediately notice that very little code is required to create
your user interface and make it work, and that your event management code almost disappears.

As with all projects, alway devote considerable energy to designing your system before you even think of coding it.
Include functional definitions and detailed designs on paper for all windows and menus. Clearly define how all user
interface elements work and how they relate to your system’s functionality. This up-front detailed design work will
save countless hours in modifications and corrections later on in your development cycle.

If it is practical for you to do so, define all your menus and dialogs as resources using a resource editor. A powerful
resource editor like Resorcerer lets you visually define complex dialogs with settings for font, font size, style and item
color information. When creating dialogs, define “non-standard” user interface elements, ones that the ordinary Dialog
Manager does not know about like Tools Plus’s picture buttons and panels, as “user items.” Later, when your
application opens the dialog and creates its contents using a single line of code, your application can read those user
item co-ordinates and create the user interface elements using Tools Plus routines. Tools Plus lets you bring those
resources to life with a single line of code.

If it is not practical to define windows, dialogs and menus using resources, Tools Plus also provides powerful routines
to let you easily accomplish the same things completely under your application’s control. In the case of dialogs, which
are simply windows containing user interface elements, you will need to use a system that lets you draw the interface
to scale and obtain object co-ordinates. Here are some popular solutions:

1 Use a resource editor to design your dialogs. When you select an item, the resource editor can provide the
object’s co-ordinates.

2 Draw your interface using a drawing application like MacDraw. Don’t use a painting package like MacPaint
unless it lets you keeps objects as separate elements, even when they overlap. Drawing applications typically
have an option that lets you display object co-ordinates in pixels.

3 The least expensive solution, although also the least versitile, is to draw your interface on graph paper.

To translate your interface design to a working interface, use Tools Plus routines to create each element in the
interface. These routines require co-ordinates for each element, and you can provide those co-ordinates from your
design. Run your application and take a screen capture (8-Shift-3) of your dialog and print it. If you used a drawing
application to design your interface, display the original drawing on your screen and get a screen capture and print it.
Take the two screen captures, your original design drawn to scale and your actual application, overlay them, and put
them up to a window. You will immediately see where any elements are out by a pixel or two. Write down all the
corrections (i.e., shift this edge down two pixels) on your printed copy, then go back to your source code and alter your
co-ordinates by that amount.

The tutorials and demo application that are included with Tools Plus provide examples for creating and using just
about any user interface element.

Using Tools Plus in an Existing Application

Some developers may be put off by the prospect of modifying their existing applications to take advantage of Tools
Plus’s wealth of features, professional appearance, and boost in developer effectiveness. Developers who have updated
fairly large applications to use Tools Plus were able to realize these advantages in only a few days, and in doing so,
they removed hundreds or thousands of lines of low-level code and they simplified their applications.

Tools Plus can use your existing resources, thus retaining your original interface design. The following steps update an
ordinary application to incorporate Tools Plus:

1 Use Tools Plus routines to create your menus and/or to use your menu resources (likely one line of code). See the
Menu chapter for details.

2 Use Tools Plus routines to create your windows and/or to use your dialog resources (likely one line of code per
window or dialog). See the Windows chapter for details.

3 Remove code that gets an event from the toolbox (GetNextEvent or WaitNextEvent routines).

4 Alter your event loop such that it is enclosed within a routine, thus becoming your event handler routine. See the
Event Management chapter for details on how to write an event handler routine. It’s nearly identical to traditional
event loop, just simpler.

36



1 Introduction

5 Update your event handler routine to respond to Tools Plus’s highly informative and specific events instead of
low-level events from the Event Manager. The Event Management chapter details this.

6 Use powerful Tools Plus routines to interact with your user interface elements instead of using toolbox routines.

In each step you will remove reams of complex and obsolete source code that used to interact with the toolbox and its
variety of managers. You will replace that code with very few lines using Tools Plus routines. In most cases, many
lines of conventional code will be replaced with a single Tools Plus routine.

Resist the temptation to add new features as you initially update your application to use Tools Plus. Your first
objective is to make your application work as it has before, but with the advantages of simpler and less voluminous
source code. This is a typical trait of applications that use Tools Plus. When your application is working using Tools
Plus routines, you can then easily start adding Tools Plus features to your application to give it new capabilities and a
completely professional appearance.

Range Checking

Tools Plus has built-in parameter range checking that is always active, even when you turn off your compiler’s range
checking option. This feature is available to both C and Pascal programmers. Although this feature adds about 1K of
code and requires a very slight amount of processing time, the benefits are well worth it when you consider the time
you will save during application development.

If your application passes a parameter to a Tools Plus routine with a value that is out of the required range, an alert is
displayed stating:

Error: Parameter passed to a Tools Plus routine is not within the legal range of values.

When this occurs, the offended Tools Plus routine is not executed. Instead, an alert is displayed with the above
message and a “Continue” button. Your application resumes executing, bypassing the offended routine, when the user
clicks the Continue button.

To facilitate debugging, you can install your own action routine that will be called instead of displaying the parameter
range alert. If you have a stop point in this routine, you can step out of the routine line by line and eventually return to
the offended Tools Plus routine. See the SetParamRangeErrProc routine for details on how to install your own action
routine.

The Tools Plus Advantage
There are many advantages to using Tools Plus when you are writing a Macintosh application:

Easy to learn...
You’ll be creating professional quality applications soon after you open Tools Plus. With other tools, you may
well end up spending months learning complex class libraries or how to use a development environment that is
less than intuitive.

Flexible...
Tools Plus does not demand that you adhere to a rigid framework or to cumbersome design constraints. It fits in
with your programming style, whether your code is procedural or object-oriented. Code generators and other
application frameworks impose their style and inherent restrictions upon you, forcing you to learn a new way of
programming and to adopt someone else’s style and preferences.

Simpler...
Programming with Tools Plus is a simplified experience throughout your application’s development, testing and
maintenance cycle. Application generators are great for quickly creating the “first cut” of your application. After
that’s done, they make you resort to low level coding throughout the remainder of your development, testing and
maintenance cycle. Your initial gains can easily be negated over the remainder of your project. Tools Plus
virtually eliminates low-level coding drudgery.

Water’s Edge Software 37



Tools Plus

Reduces code...
A single Tools Plus routine is often equivalent to hundreds of lines of conventional code. Tools Plus lets you
eliminate (or never create) thousands of lines of source. Less code results in fewer bugs and much simpler,
maintainable source code. Class libraries can easily add 50,000 lines of code to your application.

Expandable...
You can easily add new elements to your user interface after you create your program. Typically, all you need is
one line of code to create the item and a case for it in your event handler routine. Tools Plus takes care of making
the new element work correctly and manages its relationship with other user interface elements.

Non-obstructive...
Tools Plus is designed to handle the vast majority of your application’s user interface and event-related work. You
can easily add functionality that is beyond the scope of Tools Plus libraries, such as support for QuickTime and
other technologies that have not been invented yet.

Compiles quickly...
Tools Plus is made up of a small number of libraries and files and takes just seconds to compile into your
application. Compare that with code generators that create dozens of source files that are dependent on dozens
(sometimes hundreds) of other files. It takes just a few seconds to compile Tools Plus libraries into your
application instead of ten minutes or more with large class libraries or a complex framework.

Compact and fast running...
Tools Plus libraries require little memory or disk space. This helps you create applications that are compact and
efficient. You also get lightning performance that you would expect from hand-optimized code. These benefits are
passed onto your projects to help you produce commercial quality applications.

System Independent...
Tools Plus routines work seamlessly with System 5 and System 6 (when running under Finder and MultiFinder),
and System 7 or higher. They also run on both 680x0 series and PowerPC processors in emulation and native
mode. They sense the presence or absence of Color QuickDraw and automatically account for the differences.
They require no special consideration for math co-processors. It is easy to write applications that are backward
compatible with older systems while giving them powerful features that are typically available only in newer ones.

Consistent...
Tools Plus for PowerPC is identical to Tools Plus for 680x0 processors, thereby easing your transition to Power
Macintosh. The C/C++ header and Pascal interface are nearly identical helping you make the transition from
Pascal to C/C++ if you should choose to do so.

Portable and reusable...
You can move code between applications more easily because Tools Plus resolves the toolbox’s complexity
within the our libraries instead of your code. A single Tools Plus routine can be equated to the complexity and
interdependencies existing in dozens of files in a class library, or thousands of lines of conventional code.

Safe...
Tools Plus routines are safer to use than Macintosh toolbox routines because they shield you from potential
pointer and handle dereferencing problems and from numerous logical errors. Your application accesses GUI
elements using numbers instead of pointers and handles (i.e., button 5 on window 18). All routines can be used on
any model Macintosh running on any system, so you don’t have to make special allowances if the Mac running
your application has multiple monitors or doesn’t have Color QuickDraw.

Self-managed interdependencies. ..
Every element of Tools Plus is aware of all the other elements. They all work together harmoniously so when you
add a new user interface element to your application, it works as soon as it is created. This lets you concentrate on
writing your application instead of trying to get all the pieces to work, and to work properly with each other.

Event processing that makes sense...
The revolutionary Event Translator in Tools Plus reports usable occurrences in a comprehensive, immediately
accessible record. An example of this is telling your application “the Cancel button in the Search dialog was
selected.” This is much simpler than decoding event messages and tracking controls, handles and pointers, as
required when dealing with the toolbox directly. Tools Plus simply calls your event handler routine and tells it
everything it needs to know.

38



1 Introduction

Depth versus scope...
Large class libraries often address many aspects of Macintosh’s abilities. By comparison, Tools Plus focuses
firmly on the user interface and event processing. We offer a great depth in this area instead of having a broad
scope that may not handle any one thing extraordinarily well. Our approach lets us deliver user interface features
that are unparalleled by competing products. Our picture buttons are a prime example of power melded with
simplicity.

Broadens your horizons...
Tools Plus lets you easily incorporate many aspects of the Macintosh’s impeccable user interface that you may
otherwise have excluded due to their complexity. You’ll find the unwieldy becomes possible, typically with a
single line of code.

Ever expanding...
Tools Plus libraries are constantly being expanded, enhanced and optimized based largely on our users’ requests,
so you benefit from innovations that are happening in a community of developers around the world. And even
though Tools Plus is always giving you more features and ease of use, it is always lean and fast running.

Economical...
There are no runtime costs for Tools Plus. That means registered users can distribute an unlimited number of
copies of an unlimited number of applications they have written with Tools Plus without having to pay additional
fees or royalties. We also offer free updates and significant discounts on major upgrades.

Well supported...
Tools Plus starts with the best support there is: by delivering a product of outstanding quality. Our user manual is
frequently praised by our customers, and our technical support staff can quickly assist you wherever you may be
located.

Who can benefit from Tools Plus
Just about anybody writing an application on the Macintosh in C, C++, or Pascal can benefit from using Tools Plus. It
is useful to different people for different reasons:

* Novice programmers can start developing applications more readily and with greater confidence. The task of
programming is simplified to produce quicker results with fewer bugs. And you don’t have to learn a resource
editor (such as Apple’s ResEdit) before you start using Tools Plus.

 Seasoned programmers can use Tools Plus to develop an application in less time and with fewer bugs.

What kind of applications can be written with Tools Plus

Tools Plus does not limit you to writing certain kinds of applications, in that it does not preclude you from exercising
your technical or creative skills on the Macintosh. It merely helps simplify and manage the user interface and event
processing that is so prevalent in Macintosh programs. Varying programming needs are addressed by Tools Plus:

* Quick and Dirty applications can be written in less time. These programs can have all the features of finished
Macintosh applications, which makes them easier to work with.

* Full fledged applications that are suitable for shrink-wrapping can be created using Tools Plus.
* Many kinds of plug-ins (available only in Tools Plus for CodeWarrior).
* Just about any program can be written more quickly and with less effort by using Tools Plus.

Water’s Edge Software 39



Tools Plus

What is Tools Plus not suitable for

Tools Plus is intended for application developers. It was designed to be the event processing and translating engine
within an application, so Tools Plus definitely cannot be used to create any of the following:

* Drivers, control panels, system extensions (INITs)
e Some external code modules®
* CFM68K projects

* Desk accessories (you can still use Tools Plus to write an application that looks and feels like a desk accessory
while running under System 7 or later)

* It is absolutely useless for writing “faceless” applications. Why use Tools Plus if your app has no user interface
at all?

* For technical developers who want to know why this is so, or for those astute individuals who are inclined to amaze us
with what they can accomplish with Tools Plus, here are some details:

* Normally, Tools Plus gets an event from the Event Manager by calling GetNextEvent or WaitNextEvent, then
processes it automatically. If you have an unusual requirement where you need to get an event directly from the
Event Manager, inspect it, possibly discard it, or even apply it elsewhere without letting Tools Plus process it, you
can do so. You can also call the Event Manager directly. In either case, you can pass that event to Tools Plus for
processing.

¢ Tools Plus wants to know about all windows and menus in your application. In the case of plug-ins, you must
create your plug-in’s windows using Tools Plus routines, and you cannot create menus since the host application
has already created them. What you put inside your plug-in’s windows is completely up to you, and Tools Plus has
plenty of routines to make it really easy.

* Some applications interfere with the Macintosh’s natural processes. ACI’s 4th Dimension, for example, makes
modal windows such as the dBoxProc window behave modelessly, as can be demonstrated by creating a dBoxProc
window using the toolbox’s NewCWindow routine, then polling for events with the toolbox’s WaitNextEvent
routine. If the host application “breaks” part of the toolbox, then Tools Plus may not behave correctly as a plug-in
within that host application.

Tools Plus libraries must be compiled into your application and cannot reside in a shared library. This requirement is
for licensing purposes only to prevent other unlicensed developers from accessing Tools Plus libraries.

System Requirements

Computer

Tools Plus makes extensive use of ROM routines that are found only in the 128k ROMs (version 117) or higher.
Applications written with Tools Plus will run on the Macintosh 512KE (the “E” stands for enhanced with the new
ROMs) or higher. They will not run on a Lisa (also called a Macintosh XL), Macintosh 128K or a standard Macintosh
512K computer. These applications will also run on Power Macintoshes.

Compiler

Tools Plus can be used by programmers developing with:
CodeWarrior C/C++ (68K or PPC) from the CW6 CD or later, including CodeWarrior Pro
CodeWarrior Pascal (68K or PPC) from the CW6 CD or later, including CodeWarrior Pro
THINK C/C++ 5.0.4 or later (68K)
THINK C/C++ 6.0.1 or later (68K)
THINK C/C++ 7.0 or later (68K)
Symantec C/C++ 8.0.5 or later (68K, Symantec Project Manager, also called SPM)
Symantec C/C++ 8.6 or later (PPC, Symantec Project Manager, also called SPM)
THINK Pascal 4.0.2 or later (68K)

Note that Metrowerks ships a "Discover Programming" kit that includes a CodeWarrior IDE (Integrated Development
Environment) and instructional material. Tools Plus supports this kit. It is a cost-effective alternative for those who
cannot afford the full CodeWarrior IDE.

40



1 Introduction

Development Tools

Every Macintosh developer should have a copy of ResEdit, Apple’s resource editor application. It is easy to use,
indispensable, and best of all, free from your Apple dealer. Always get the latest version (2.1.3 at this writing), since it
is always being upgraded and improved. Beginners can get by without ResEdit, but you won’t want to.

Power users will welcome a powerful resource editor like Resorcerer from Mathemasthetics. It lets you fully realize
the potential benefits of resource-based programming by letting you set color and styles for dialog items.

System

Applications created with Tools Plus can run under System 5, System 6 and System 7 or higher. We recommend you
use at least System 6 (optimally 6.0.8) or System 7 because Apple has fixed various bugs and many features have been
added to the newer versions of the system.

While developing applications using Tools Plus, you will still have to observe the requirements and limitations of your
development environment. THINK C 5.0 requires System 5.0 or higher. THINK Pascal 4.0 requires System 6.0.5 or
higher. CodeWarrior requires System 7 or higher. Consult your compiler’s User Manual for details.

Memory

Applications created with Tools Plus can run with less than 200k, depending on the size and complexity of your
application. The overhead associated with Tools Plus is typically about 150k for 680x0 libraries and slightly higher for
PowerPC native libraries.

While developing applications using Tools Plus, you will still have to observe the requirements and limitations of your
development environment. THINK C 5.0 and THINK Pascal 4.0 both require 2MB of RAM when using System 7.
CodeWarrior requires 8MB. Consult your compiler’s User Manual for details.

Disk Space

Tools Plus libraries and related files require only a few hundred K of disk space. When compiled, Tools Plus libraries
add about 100k to 150k to your 680x0 application’s size, and slightly more to your PPC application’s size (add both
680x0 and PPC for fat binary applications).

While developing applications using Tools Plus, you will still have to observe the requirements and limitations of your
development environment. THINK C 5.0 and THINK Pascal 4.0 both require about 2MB of disk space.

Finished Applications

Please be aware that you, as a programmer, have the capacity to write applications that have requirements far in excess
of Tools Plus’s minimum system requirements. It is possible that you may choose to write a program that requires a
PowerPC processor, Mac 0S 8.5.1 or later, 300 megabytes of RAM, and a pair of 20 inch color monitors. Be aware
that your finished application will likely have needs that exceed Tools Plus’s minimum requirements.

Tools Plus Performance

Tools Plus libraries are hand-tuned, lightning-quick performers. Magazine reviews have praised Tools Plus for being
smaller and faster than any competitor, but there are several things that can slow Tools Plus down:

e THINK Pascal development environment on a PowerPC: When running the THINK Pascal development
environment on a Power Macintosh, THINK Pascal takes a while to load up all of Tools Plus’s libraries into
memory. This issue shows up on any sizable application, and not just those using Tools Plus. On a 100 MHz
PowerPC 603, the time between hitting the “Run” command and seeing your first window can be around 40
seconds. You can reduce this time by getting Connectix SpeedDoubler which accelerates 680x0 code running on
a PowerPC, including THINK Pascal, especially during the lengthy startup process. Alternatively, you can get a
fast Power Macintosh such as any G3, the slowest of which reduces the startup time to 5 seconds. Note that this
delay exists only in the development environment, and not in compiled applications.

* Symantec C++ 8.6 compiling PowerPC-native Tools Plus libraries: Symantec never overcame some inherent
design shortcomings that would allow to recompile Tools Plus source code to a native Symantec format. Instead,
they released a Metrowerks to Symantec library translator which isn’t too quick. You will notice slow
performance during compilation the first time you compile an application or plug-in with Tools Plus libraries.
Subsequent recompiles will be quicker. The final application performs quickly, just like you’d expect.

Water’s Edge Software 41



Tools Plus

Background processing: If your application needs better performance during background processing (when
receiving null events), see the SetNullTime routine for more information on this. Also note that windows with
animated Appearance Manager controls, such as the “chasing arrows,” clock control, active editing field, or the
busy “barber pole” progress indicator, will slow down background processing.

Special Considerations with Mac OS Versions

Over the years, Apple has introduced issues into the Mac OS that may affect your application or plug-in. It is
important for you to realize that these issues plague all Macintosh developers to some degree, and not just those who
use Tools Plus libraries + framework. As at the time of this publication, the following issues were still noted:

42

Appearance Manager versions 1.0 through 1.0.1, shipped before Mac OS 8.5, contain deficiencies that do not
permit you to create some controls correctly, such as tabs and window headers. You should upgrade to
Appearance Manager 1.0.3 or later on System 7 or Mac OS 8 prior to 8.5. Mac OS 8.5 integrates the Appearance
Manager into the operating system, so you need not upgrade it.

The Appearance Manager, when running under System 7.x, exhibits cosmetic issues such as menus lists whose
gray background turns to white when the mouse is moved off a selected item.

Mac OS 8.5 has severe stability issues. You should upgrade to Mac OS 8.5.1 or later.

In Mac OS 8.5 and later, the OS becomes unstable when applications running within the THINK Pascal
development environment quit or are reset. This instability will cause a crash or hang later. This does not affect
double-clickable applications that are created by THINK Pascal.

Starting with Mac OS 8.5, the Memory Manager behaves somewhat differently than in prior system versions.
The implications are far reaching: bugs in your source code that “ran perfectly” in prior system versions may now
cause problems, or vise versa. Use a memory testing application like QC (detailed later) to test your application
on an older system version than Mac OS 8.5, if possible.

At the time of this publication, memory stress testing tools (QC, detailed later) confirmed that Tools Plus
libraries were “clean” when running under Mac OS 8.1 or older. QC forces all memory errors that may
potentially occur, to be triggered during testing. These tests confirm that Tools Plus source code is not
performing illegal operations. These testing tools indicate that Mac OS 8.5 (and possibly later versions) are
performing invalid operations that may show up as crashes, hangs, or other anomalies. It is imperative to realize
that these issues are not related to Tools Plus.

Mac OS 8.5 introduced user-changeable themes that change the appearance of the user interface (menus,
windows and controls all adopt a different look ranging from Apple’s standard Platinum gray-scale theme, to the
outrageous “Gizmo” theme). Although beta versions of themes were distributed only as part of the developer
program, Apple did not release final versions of themes with Mac OS 8.5. These beta themes did, however, make
their way onto the Internet and are being used by many users. Note that some of these beta themes, and possibly
subsequently released themes, may have bugs that can cause problems in your applications. The Drawing Board
theme, for example, causes Mac OS to become unstable when you change the keyboard focus between two list
box controls. Other such bugs may be lurking in themes. Realize this when you create your application or plug-
in, and make sure you document it for your users. If your application causes hangs or crashes, test the application
on Apple’s default Platinum theme. It is a sure sign of a faulty theme if the problem disappears when your
application runs on another theme.

At the time of this publication, inconsistencies were observed between themes. For example, the indicator on a
vertical slider moves up as its value increases, unlike a scroll bar. This is true in all themes except Drawing
Board. Beware that other inconsistencies may exist in themes. This is the fault of the themes, and not of the
applications and plug-ins that are using them.



1 Introduction

Assumptions made when this manual was written

Several assumptions have been made when writing this manual:

* You are already a C, C++ or Pascal programmer, or are learning to be one on your own. This manual does
not teach you how to program in C/C++ or Pascal, nor does it teach you how to use the Macintosh’s
toolbox routines. It teaches you how to use Tools Plus.

* This manual makes no attempt to teach you how to use THINK C/C++, THINK Pascal, CodeWarrior
C/C++ or CodeWarrior Pascal. Please consult your User Manual in such matters, or contact the
manufacturer of your compiler.

* This manual makes no attempt to teach you how to use ResEdit, or any other application or tool that is part
of your development environment.

* You already know how to use the Macintosh, and are familiar with its terms such as clicking, dragging,
selecting, etc.

 This manual does not assume that all programmers and users are male. For the sake of easier reading and to
avoid awkward genderless grammar, the term “he” implies either gender within this manual.

Conventions used throughout this manual

1y

2)

3)
4)

5)

6)

7

8)

Whenever examples of source code are provided, they appear in a different font as illustrated below.
pascal void WindowClose (short Window);

Any information that is exclusive to either C/C++ or Pascal is marked with the following symbols:
Information following this symbol is exclusive to C/C++
Information following this symbol is exclusive to Pascal

Each Tools Plus routine is documented with both a C/C++ header and Pascal interface.

Source code examples are given in Pascal, just like Inside Macintosh. In situations where the C/C++ source code
differs (usually due to differences in record structure), an example is also provided in C.

The Pascal terms function and procedure are used throughout this manual. For the benefit of C programmers, a
function is a routine that returns a value. The following table provides an example:

C Pascal
Procedure | pascal void DeleteListBox(short ListBox); | procedure DeleteListBox(ListBox:INTEGER);
Function pascal short FirstWindowNumber (void); function FirstWindowNumber: integer;

Important information is highlighted with notes and warnings.
ﬁ{) Note: A note that may be interesting or useful (don’t skip these)
33> Warning: A point you need to be cautious about.
This manual is not intended to replace Inside Macintosh or its equivalent. It does not detail the fundamentals of

Macintosh programming, such as screen versus window co-ordinate systems (local versus global), commonly used
structures (points, rectangles, grafPort, etc.), using the Macintosh toolbox, etc.

For the benefit of new programmers, portions of this manual address the basics of building a Macintosh
application, such as some differences between System 6’s Finder and MultiFinder and how to complete a double-
clickable application.

Water’s Edge Software 43



Tools Plus

Software Updates

Whenever you receive an updated version of Tools Plus, replace your existing Tools Plus files with those supplied by
the update. This includes all the library files (ToolsPlus.Libx), ToolsPlus.h header and ToolsPlus.c source files if you
are a C/C++ programmer, and ToolsPlus.p interface file if you are a Pascal programmer. If your application uses
floating palettes, use the latest version of the Palette WDEF (Window definition resource). Do not mix files from
different versions of Tools Plus.

Registered Tools Plus users are entitled to take advantage of free updates and major upgrades. See the Technical
Support chapter for details pertaining to determining the latest version and information on how to get updates.

Water’s Edge Software is enhancing Tools Plus on an on-going basis by optimizing code and adding new features. We
will inform registered users of newly available updates either by mail or by electronic mail.

Note: In order to ensure uninterrupted software update notification, please inform us if your mailing address or email
account changes.

Evaluation Kit Registrants

A special edition of Tools Plus is distributed as an Evaluation Kit that can be obtained, free of charge, from user
groups and various electronic bulletin boards and the Internet. Users of the Tools Plus Evaluation Kit are bound by
restrictive terms and conditions that do not apply to registered Tools Plus developers who have purchased a license. If
you have obtained a Tools Plus Development Kit as a result of registering an Evaluation Kit, discontinue using the
evaluation kit and take advantage of the latest Tools Plus features. You must recompile your applications using the
licensed libraries that come with the Development Kit.

Warning: Do not revert to using evaluation versions of Tools Plus. If you come across a newer version of Tools Plus
in an Evaluation Kit and you have not received your equivalent registered upgrade, please contact Water’s
Edge Software.

For your information (recommended reading)

For any Macintosh programmer, we suggest you either own or have access to the entire series of “Inside Macintosh”
technical reference guides by Addison Wesley. They are the definitive Macintosh bible for programmers of any
caliber. They’re worth their weight in midnight oil if you want to get into serious Macintosh programming.

Another indispensable tool is THINK Reference, an on-line reference manual for C or Pascal programmers. It
describes all the Mac’s data structures, variables, constants, functions and procedures. It also has valuable
programming tips.

To program a Macintosh, you’ll have to know the basics of the Macintosh toolbox. We recommend the following:

¢ Get familiar with QuickDraw by reading the relevant chapter in Inside Macintosh (or equivalent). This
section details drawing in the Macintosh’s graphic environment.

¢ Get familiar with the Font Manager by reading the relevant chapter of Inside Macintosh (or equivalent). This
section deals with drawing text on the Macintosh’s screen

* Have a working knowledge of the Macintosh’s Memory Manager. This section deals with pointers, handles,
and memory fragmentation. Tools Plus manages itself nicely by eliminating memory fragmentation, but the
work you do outside Tools Plus should also be clean.

* The thing that differentiates a good Macintosh application from the rest of the world is that a user will find
the program easy to learn and use. These benefits can be attributed greatly to a consistent and well-designed
user interface. Learn the dos and don’ts of graphic user interface (GUI) design, then learn some more! Inside
Macintosh also introduces you to the Macintosh’s GUI and its standards. Another good way of learning is to
get exposure to (and become familiar with) a wide range of Macintosh applications. You’ll spot the good
ones and the not so good ones after a while!

44



1 Introduction

How to Get Started with Tools Plus

Tools Plus does a lot of things, but remember, it is not important to know everything about Tools Plus before you start
using it. Here’s a quick way of getting started with Tools Plus:
1 Install Tools Plus.

Read the Designing Your Application chapter for some basic guidelines on designing your application.

Take a look at our demo application for some basic ideas.

Run through all the tutorials included on your Tools Plus disk.

Create a simple application that:

- creates pull-down menus
- has a main event handler

Play with it and get familiar with the basic functionality.

6  Expand your application to open a single window, and update your event handler to respond to events
related to windows (doRefresh and doGoAway). Play with the application and get comfortable with it.

7  Add a few buttons and update your event handler to respond to button events (doButton). Again, get a feel
for the application by playing around with it.

8  Add more GUI elements. Do one type of element at a time, like list boxes first then pop-up menus later.
Each time you add a new type of GUI element, update your event handler to account for the new GUI
elements and familiarize yourself with the growing application.

9 Add a second window and get a feel for how Tools Plus makes multiple window’s work. Update your event
handler to respond to doChgWindow events (a request by the user to activate another window).

10 Create a floating palette which is just another type of window, and notice how Tools Plus takes care of
making it behave like a palette.

11 Add atool bar (again, just a specific type of window), and experience how Tools Plus keeps it all working
perfectly.

[ N SRS I 9]

As a general rule, start with a very simple application, then incrementally add features while building your familiarity
with Tools Plus.

Stress Testing Applications

Many of the bugs you will encounter as an application developer will be due to memory-related issues: forgetting to
lock a handle when required, using a routine designed for an ordinary handle on a resource handle or vice versa,
writing to an invalid memory address, unanticipated memory movement, unanticipated resource purging, and so on.
Most of these problems appear intermittently making them difficult to reproduce and even harder to isolate, identify,
and resolve. Worse still, the cause of a bug may have occurred dozens or even thousands of lines earlier, and the
symptoms may appear only when part of your application tries to reference memory that has been corrupted by
previous operations.

If you don’t already have stress testing tools, or if you are looking for a good one that’s affordable, look into QC™
from Onyx Technology. QC is a control panel that monitors the execution of a target application while you are testing
it. It alerts you when it notices improper or questionable behavior that may manifest as a bug immediately or later in
your application’s execution. QC is priced at around $100 (US), and you can get it by email. Using QC during
development and testing will save you countless hours of “hunt and destroy” debugging. It will also reduce your users’
need for technical support due to enhanced application reliability and stability.

For more information about QC, please contact its creators at:

Onyx Technology sales@onyx-tech.com
7811 27th West http://www.onyx-tech.com
Bradenton, FL. 34209 Phone: 1-941-795-7801
USA Fax: 1-941-795-5901

Water’s Edge Software 45



Tools Plus

Spotlight and other Testing Tools

Be aware that application testing tools do not always tell you the whole story. Such is the case with Onyx
Technologies’ Spotlight, a product that examines a running application and warns you, the developer, if the application
appears to be doing something improper. Tools Plus, like most other applications, does a number of perfectly legal
operations that Spotlight and similar products may misinterpret as potential problems. An example is our CursorShape
routine: when your application calls CursorShape, Tools Plus first tries to locate a color cursor (‘crsr’ resource). It uses
the toolbox’s GetCCursor routine that may fail if a color cursor is not found. This is where Spotlight may report a
warning even though Tools Plus does the right thing by checking to see if the color cursor was loaded, and if it wasn’t,
CursorShape calls the toolbox’s GetCursor routine and checks that cursor as well.

Similar things happen when Tools Plus tries to load other resources using GetResource, discovers they are not
available, then does the right thing and moves onward.

What this means to you, the developer, is that you should not assume that such warnings delivered by your testing
software are correct. We use similar testing and stressing tools as we develop Tools Plus libraries, so we discover
genuine problems and rectify them in our lab. You never see them. If your testing software can turn off warnings in
libraries or places where you do not have the source code, please make use of this option. This will reduce or eliminate
the number of false warnings you get.

If your testing software detects a memory leak or if you are really, really sure that a problem you have detected is
inside Tools Plus, please feel free to contact us and we’ll re-check and re-test our code to eliminate your worries.

Creating and Editing Resources

One of the many things that sets Macintosh apart from all other computers is the use of resources. For new Macintosh
developers who are not familiar with the concept, a resource is a uniquely identifiable structure of bytes that represents
a specific thing such as an icon or a picture. To use resources, the programmer calls a toolbox routine to get access to a
specific resource type and number, such as retrieving ‘ICON’ number 128. An advantage of resources is that the
Macintosh’s built in Resource Manager takes care of storing resources in a resource file (likely as part of your
application) and retrieving them. Resources can also be used to create more complex things like menus or a dialog (a
window that is populated with user interface elements like buttons, scroll bars, fields, etc.)

Although Tools Plus lets you get away from resource-based programming to a great degree if you choose to, it also
facilitates resource-based programming by letting you bring resources to life with a single line of code, something the
Macintosh toolbox can’t do. If you want to exploit resources to their greatest potential, we recommend getting a
powerful resource editor such as Resorcerer from Mathemasthetics. While Apple’s ResEdit is free or almost free, it
lacks the basic ability to specify colors and styles in a dialog. It also lacks most of the features included in Resorcerer
that make it easier and safer to create, edit, organize, and maintain resources. Commercial developers and those who
want to get the most out of Macintosh resources will benefit from using Resorcerer.

For more information about Resorcerer, please contact its creators at:

Mathemesthetics, Inc. resorcerer@mathemaesthetics.com
PO Box 298 http://www.mathemaesthetics.com
Boulder, CO 80306-0298 Phone: 1-303-440-0707
USA Fax: 1-303-440-0504

46



1 Introduction

The List Manager, List Boxes, Tables and Beyond

Tools Plus automates list boxes and it has built-in work arounds for all known List Manager bugs. This lets you create
and interact with list boxes in a much simpler and more effective manner than using the toolbox’s List Manager
routines. Even so, Tools Plus does not alleviate the characteristics that are inherent to the Macintosh’s List Manager,
those being:

e Maximum limit of about 32,000 empty lines
Maximum limit of about 32,000 bytes of data in all cells combined
Uses a single font, style, and size for all lines throughout a list
Can display only text
Your application’s user cannot edit list box text directly (your application can replace the content of a cell,
though)
 All columns are the same width (Tools Plus supports only a single column)

All these limitations seemed appropriate in 1984 when Macintosh was first released, but they may be too restrictive for
your application. One solution is to use a third-party ‘LDEF’ which may get around some of the List Managers
inherent qualities. Tools Plus supports the use of third party ‘LDEF’s, but their programming tends to bring you a lot
closer to traditional toolbox coding when dealing with the list box, without providing a clean break form the List
Manager’s inherent limitations.

If you need list or table functionality that is beyond that which is supported by the List Manager, please investigate
StoneTable™ from StoneTablet Publishing. StoneTable provides comprehensive list and table features and services
ranging from a simple list with text and images, to hierarchical lists such as the one seen in the Finder’s “view by
name,” to near spreadsheet capabilities. It also integrates easily with Tools Plus, and it is in wide use in commercial
applications. We strongly recommend StoneTable for all your list and table needs.

For more information about StoneTable or to get a free demo, please contact its creators at:

stack@teleport.com
http://www.teleport.com/~stack
Phone/fax: 1-503-287-3424

Water’s Edge Software 47



Tools Plus

Tools Plus Features

The following is a partial list of Tools Plus features. Nearly all can be accomplished with a single Tools Plus routine.
Although some of these features may appear to be simple, their functional equivalent, when programmed in C or
Pascal without Tools Plus, often requires considerable programming effort and dozens (often hundreds) of lines of
code. Unlike object oriented class libraries that add thousands of lines of code to your application, Tools Plus reduces
the need for most of your user interface and event management code, often by as much as 80% to 95%.

The key advantages to every Tools Plus routine are:
* Virtually all features can be implemented with a single line of code
* They are consistent across all Systems and Macintosh models
* They are fully integrated with each other
» They adopt the “set and forget” principle of self-maintenance allowing you to easily create a user interface, then
forget about it. Your application responds to very specific events, such as: a Pop-up menu was selected in Window
5, Pop-Up Menu 3, Item 6.

Appearance Manager

All Appearance Manager windows and controls are supported
Help in making your application run with or without an Appearance Manager
Numerous Appearance Manager benefits available even when an Appearance Manager is not available

Windows

48

All standard window types are supported

Referenced by a window number instead of a pointer (pointers can be used if required)

Create windows dynamically in your application and/or use ‘“WIND,” ‘DLOG’ and ‘DITL’ resources
Full tool bar and floating palette services

Movable modal dialog is fully supported, and is also available on pre-System 7 Macs

Any window can be modal to prevent the use of menus or clicking outside the active window
Optionally move and resize windows in real time instead of dragging a dotted gray outline

Optional modal access to the Edit menu or any menu as specified by your application

All Tools Plus user interface elements (such as buttons, editing fields, etc.) created in a window are
automatically maintained... Tools Plus takes care of drawing them and making them work.

Window positioning options when a new window is opened:
Vv centered on main monitor
V tiled (down and right of frontmost standard window, title bar is visible)
v window must be at least partially visible (in case its co-ordinates are remembered by a document, and it is
opened on a Mac with a monitor that is smaller than the document’s creator)
V entire window must be visible

All user interface elements are correctly disabled/deselected when a window is deactivated and restored to their
original state when the window is activated

Windows with title bars are moved automatically when the use drags them (Tools Plus ensures that windows are
not dragged completely off the screen or underneath the tool bar)

Minimum/maximum size limits can also limit resizing to vertical or horizontal only
Windows with a “size box” are automatically sized when the user drags the box

Windows with a “zoom box” in their title bar automatically zoom between a standard size/position and a user-
controlled size/position

The window’s update region is protected to exclude Tools Plus’s user interface elements so your application can
refresh a window’s contents without concern about accidentally overwriting buttons, scroll bars, etc.

When a window needs to be refreshed, your application can redraw custom objects (such as a picture
background) before and/or after Tools Plus redraws its objects

Your application can reposition, resize, or hide/show a window and still have Tools Plus maintain the user
interface correctly



1 Introduction

Set/change backdrop color (defaults to white)

Various routines help your application keep track of windows: frontmost, current, active, frontmost floating
palette, frontmost standard window, most recently used, containing active editing field, and more.

Closing a window automatically releases the memory occupied by Tools Plus user interface elements (buttons,
scroll bars, etc.)

The Finder and all other applications can be hidden as is seen in many installer application

Globally substitute specific window procIDs to take advantage of system WDEFs if they are available (such as
floating palettes) or use custom WDEFs when these system resources are not available

Tool Bar

Optional tool bar is created below the menu bar on your main monitor

As easy to use as a regular window

Always remains the front window and is always active

Can contain any Tools Plus user interface element, including pop-up menus, editing fields and picture buttons
Adjustable height (width is fixed at main monitor’s width)

Automatically hidden when your application is suspended under MultiFinder (System 5 and 6), or System 7 or
higher. When your application is activated, the tool bar is displayed again.

Can optionally shift all your application’s windows downward as the tool bar opens. This prevents windows
from being partially obscured by the tool bar. If this option is used, windows are shifted back up when the tool
bar is closed.

If the tool bar’s size is changed by your application (to add or remove a data entry area, for example), all open
windows can optionally be shifted to accommodate the difference in tool bar size

Windows cannot be dragged beneath the tool bar

Floating Palettes

Floating palettes (often called “palettes” or “windoids”) are supported

As easy to use as a regular window

You can use third-party window definitions (WDEFs) or write your own to get a specific look. Tools Plus takes
care of making the window behave like a floating palette.

Always remain in front of standard windows (if any are open) and behind the tool bar (if there is one)

Can contain any Tools Plus user interface element, including pop-up menus, editing fields and picture buttons
Palettes are moved automatically when the user drags them (Tools Plus ensures that they are not dragged
completely off the screen or underneath the tool bar)

When the user clicks on an object (such as a picture button) in floating palette, that palette is quickly brought to
the front and refreshed before the click is processed. This results in very responsive and professional looking
palettes.

Automatically hidden when your application is suspended under MultiFinder (System 5 and 6), or System 7 or
higher. When your application is activated, the palettes are displayed again.

Two styles of palettes are included with Tools Plus: one with a title bar along the top of the palette (with

optional title), and a second style that has a drag bar along the left side of the palette. The second style is well
suited for horizontally oriented palettes that need to be as small as possible (the drag bar takes little space).

Dialogs/Alerts

Automates dialogs (‘DLOG’ and related resources) making them as easy to use as the rest of Tools Plus.

The dialog’s window and its user interface elements are immediately usable without the need for support code
or event management.

The Edit menu works automatically on the active field allowing complete editing with full undo/redo services.

Editing fields inherit all features found in Tools Plus fields including “single line” scrolling and progressive
scrolling.

Create working “non-standard” dialog items, such as picture buttons, list boxes, fields with scroll bars, 3D
panels, each with a single line of code.

Water’s Edge Software 49



Tools Plus

All user interface elements in a dialog (i.e., the window, buttons, scroll bars, list boxes, etc.) inherit the benefits
listed throughout this section.

You can apply font family, size, style and color information to static text, fields and controls by including an
‘ictb’ resource. Tools Plus uses those settings on all Macintosh models whereas the toolbox’s Dialog Manager
ignores them on older Macs and displays all text, fields and controls using Chicago 12pt.

Fixes a Dialog Manager bug so you can use shorter, non-redundant ‘ictb’ resources to save memory and disk
space.

Dramatically simplifies your application’s interaction with dialogs (simpler code, much less code).

Alerts are supported by standard C or Pascal statements, however they can be easily simulated by attractive
Dynamic Alerts.

Buttons

Buttons are referenced by a button number instead of a handle
All 3 types of Macintosh buttons are supported: push button, radio button and check box
Create buttons dynamically in your application and/or use ‘CNTL’ resources

Custom control definitions (CDEFs) can be used. Tools Plus makes them behave like a push button, check box
or radio button (it makes CDEFs work automatically).

Can adopt a universal color scheme or be individually colored including individual backgrounds
Set or get the font, size and style

Enable/disable

Select/deselect (check boxes and radio buttons only)

Hide/shown

Obscure (hide without affecting the window’s image)

Delete or kill (delete without removing image)

Move, resize, change co-ordinates or offset (change co-ordinates without altering image)
Optional automatic move/resize as window’s size changes

Default push button (a black outline is drawn around the button and it is automatically selected whenever the
user types Return or Enter)

Optional selection using a command key

Buttons are automatically disabled when their parent window is inactive and return to their normal state when
the window is reactivated.

Each button can have its own font, font size, and style
Optional double-click detection for radio buttons (can be interpreted to mean “select button and OK”)
“Flash” a push button to make it appear as though it was clicked

Globally substitute specific control procIDs to take advantage of system CDEFs if they are available (such as
the 3D buttons in Mac OS 8’s Appearance Manager) or use custom CDEFs when these system resources are not
available (such as SuperCDEFs)

Picture Buttons

50

Picture buttons are referenced by a button number instead of a handle

Any icon or PICT can be transformed into a button (they can also contain complex sets of images)
Enable/disable

Select/deselect

Hide/shown

Obscure (hide without affecting the window’s image)

Delete or kill (delete without removing image)

Move or offset (change co-ordinates without altering image)

Optional automatic move as window’s size changes

Optional “value” with a minimum/maximum range (like a scroll bar)



1 Introduction

Each button’s appearance and behavior is defined by selecting from a number of choices with literally
thousands of combinations

Picture buttons can be simple like click-sensitive icons, or they can be powerful and provide the appearance of
animation

Converts a simple black and white SICN icon a into richly featured 3D color picture button

Multiple stage picture buttons have a different appearance for each value in the button’s range, such as an
“on/off” button that has a value range from O to 1 and has the word “on” or “off” displayed.

Optional locking in “selected” position (to behave like a radio button)
Button’s value can change automatically as user interacts with it and/or under your application’s control

Button’s value can change in the following manner:
Vv constant speed
V accelerate at a slow, moderate, or rapid rate
V precise rate, such as 90° per second

Optional repeating events generated as long as the mouse button is held down

Optional polarization increases the value when clicked on one side and decrease when clicked on the other
Multiple disabling effects (or alternate image)

Multiple selection effects (or alternate image)

Picture buttons are automatically disabled when their parent window is inactive and return to their normal state
when the window is reactivated.

“Flash” a picture button to make it appear as though it was clicked

Scroll Bars

Scroll bars are referenced by a scroll bar number instead of a handle
Create scroll bars dynamically in your application and/or use ‘CNTL’ resources

Custom control definitions (CDEFs) can be used. Tools Plus makes them behave like a scroll bar (it makes
CDEFs work automatically).

Can adopt a universal color scheme or be individually colored

Set or get the font, size and style

Enable/disable

Hide/shown

Obscure (hide without affecting the window’s image)

Delete or kill (delete without removing image)

Move, resize, change co-ordinates or offset (change co-ordinates without altering image)
Optional automatic move/resize as window’s size changes

Change value, minimum/maximum limit

Minimum/maximum limits automatically adjusts if the value is set outside the range
Optional limiting prevents value from exceeding minimum/maximum limit
Optional throttling lets you control each scroll bar’s speed

Optional “live scrolling” lets you easily scroll objects in real time as the scroll bar’s thumb is dragged... just
process events as you normally do without the need for complex “action” routines

You can easily install an action routine that is repeatedly called while the scroll bar is tracked and get details
about the scroll bar calling the routine

Attach scroll bars to the window’s right and/or bottom edge to have them automatically repositioned and resized
when the window is resized

Scroll bars are automatically “framed” (empty rectangle) when their parent window is inactive and they return
to their normal state when the window is reactivated

Scroll bars can be disabled instead of being framed when their parent window is inactive and return to their
normal state when the window is reactivated

Globally substitute specific control procIDs to take advantage of system CDEFs if they are available (such as

Water’s Edge Software 51



Tools Plus

the sliders in Mac OS 8’s Appearance Manager) or use custom CDEFs when these system resources are not
available (such as SuperCDEFs)

Fields

52

Easily created with a single line of code

Editing fields are referenced by a field number instead of a handle

Each field can manipulate and store up to 32K of text

Optional vertical and/or horizontal scroll bars (scroll bars and text are always synchronized)

Optional “live scrolling” lets you scroll the field’s text in real time as the scroll bar’s thumb is dragged
Apply text and background colors

Set or get the font, size and style

Enable/disable a field with a variety of visual options

Disabling a field with no visual effects makes it a “read only” field that can’t be edited by the user... great for a
set of instructions in a scrolling display area

Copy only field (user can copy text from the field, but cannot change it)

Hide/shown

Obscure (hide without affecting the window’s image)

Delete or kill (delete without removing image)

Move, resize, change co-ordinates or offset (change co-ordinates without altering image)
Optional automatic move/resize as window’s size changes

Each field can have its own font, font size and style

Field height can be specified in pixels or lines

User edits a copy of the field’s text so your application can revert to the original text at any time
Get/set a field’s text

Get a field’s edited text (the text the user is editing and that has not been saved)

Paste text into a field under application control

Filters allow/disallow specified characters

Optional shifting to upper case or lower case characters as letters are typed

Optional length limiting allows the user to type only a certain number of characters (the field’s length)

Sophisticated selection and cursor control allows:
V shorten/extend a selection a single character at a time (shift-arrow)
V shorten/extend a selection a word at a time (shift-option-arrow)
v move cursor a word at a time (option-arrow)
V vertical cursor movement that remember the horizontal position (i.e., move up in a straight line)
V shift-click extends/shortens a selection
Vv double-click selects a word
V typed text is always in view
Vv view follows cursor

Get/set start and end of current selection range
Tab sensing with optional tab to next field or to previous field if shift-tab was typed

Progressive drag-selection works in conjunction with automatic scrolling making it easy to select additional
characters that are out of view -- the further you move the cursor out of the field, the quicker it scrolls

Text in single-line fields never disappears as it does with ordinary Macintosh fields -- it always scrolls reliably

The Edit menu automatically interacts with the active editing field. The Undo, Cut, Copy, Paste, Clear (and
optionally Select All) items are automatically enabled/disabled appropriately (see Menus). Selected text is
automatically copied to and from the clipboard when using the Edit Menu. All Edit menu items are functional
when they are created.

Automatic management of user interface complexities that arise when fields are included on standard windows,
floating palettes, and the tool bar



1 Introduction

Choose between memory efficiency for small fields and speed for larger fields
Advanced low-memory protection (continue without undo, not enough memory, low memory warnings, etc.)

Selected characters are automatically deselected when the field’s window is inactive and return to their normal
state when the window is reactivated

List Boxes

Easily created with a single line of code

List boxes are referenced by a list box number instead of a handle.

Each list box can have its own font, font size, and style

Custom list definitions (LDEFs) can be used. Tools Plus makes them work automatically.
Add, change, delete lines as required (referenced by line number)

Load a list box to capacity up to 30 times faster than using standard routines

Set or get the font, size and style

Set text and background colors

Select/deselect lines

Hide/shown

Obscure (hide without affecting the window’s image)

Delete or kill (delete without removing image)

Move, resize, change co-ordinates or offset (change co-ordinates without altering image)
Optional automatic move/resize as window’s size changes

Various methods are available for selecting lines in a list box, such as: one line only, multiple lines, select as
you drag the mouse, and many more

When you create a list box, the first selected line will always be in view (i.e. not scrolled out of view)

Your application can determine if a specific line, or any lines are selected in a list box

A sorted set of resource names (such as fonts or sounds) can be inserted into a list box with a single command
List box height can be specified in pixels or lines

List boxes are automatically disabled (the lines are deselected and the scroll bar is disabled) when their window
is inactive, and are enabled when the window is activated

Panels

Produce group boxes or panels to give your application a professional appearance

Easily created with a single line of code

Optional flat or 3D title with inset or raised text

Panels can be simple outlines or 3D (inset or raise)

Optional rounded corners

Each panel can have its own font, font size, and style

Set or get the font, size and style

Optionally deselect other buttons in the group when one is selected (ideal for radio buttons or CDEF groups)
Memory efficient color map is shared by all panels in your application (programmer defined)
Custom color map can optionally be adopted by panels as they are created

Automatic mapping to lower color depths and/or black and white (optional override)
Hide/shown

Obscure (hide without affecting the window’s image)

Delete or kill (delete without removing image)

Move, resize, change co-ordinates or offset (change co-ordinates without altering image)
Optional automatic move/resize as window’s size changes

Water’s Edge Software 53



Tools Plus

Menus

Easily created with a single command
Menus are referenced by a menu number instead of a handle
Create menus dynamically in your application and/or use ‘MENU’ and ‘MBAR’ resources

A single routine can create all you application’s pull down and hierarchical menus, including a working Apple
menu and fully functioning Edit menu

Hierarchical menus are just as easy to create and maintain as regular pull-down menus
Menu hierarchies are easily created by simply attaching a submenu to a menu item

Prevents hierarchy errors such as:
V cyclical hierarchies
Vv submenus attached to multiple parents
v Command keys invoking an item in an orphan submenu (i.e., submenu with no parent), and more

Prevents logical menu errors such as overwriting a submenu link with a command key
Get/set default colors for the application’s menus, for a specified menu, or a menu item

Menus can be easily added, changed, deleted, renamed, appended, enabled/disabled, restyled, prefaced with a
symbol or icon, etc.

Command key equivalents, icons, check marks, other special marks, and font styling are all supported

Create a functioning Apple menu with a single command to give your application access to desk accessories
(also includes the “About...” item that names your application)

Access to the Help menu and Applications menu (System 7 or later) is as easy as any other menu
Hide or show menu bar (automatically shows when application is suspended)

When using the Finder in System 5 or System 6, menus are automatically enabled/disabled appropriately when
a desk accessory is active. Under MultiFinder and System 7 or higher, the menu bar is automatically replaced
with the desk accessory’s menu bar when the DA is active.

The Edit menu’s Undo, Cut, Copy, Paste, and Clear (and optionally Select All) items automatically perform
editing functions on the active field and in desk accessories. These menu items are automatically
enabled/disabled appropriately.

The Edit menu’s Undo item performs Undo/Redo operations on the active editing field. It automatically changes
to “Undo Cut”, “Undo Copy”, “Undo Paste”, and “Undo Typing” as required. Selecting “Undo...” changes the
item to “Redo...” and automatically performs the correct action.

Pop-Up Menus

54

Easily created with a single line of code

Pop-up menus are referenced by a menu and item number instead of a handle

Create pop-up menu within your application and/or use ‘MENU’ resources

Choose between Tools Plus style, System’s CDEF, or 3D pop-up menu styles

Identical across all system versions thereby providing System 7 (and higher) features to prior systems

Optional pop-down menu has a fixed (unchanging) title inside the pop-up box, and the available items appear
beneath the control’s box

Can adopt a universal color scheme or be individually colored including individual backgrounds
Set or get the font, size and style

Hierarchical pop-up menus

Enable/disable

Hide/shown

Obscure (hide without affecting the window’s image)

Delete or kill (delete without removing image)

Move, resize, change co-ordinates or offset (change co-ordinates without altering image)
Optional automatic move/resize as window’s size changes

Supports “down arrow” suppression, multiple fonts, single item selection, and more



1 Introduction

When displaying a pop-up menu using a font other than the System Font (such as Geneva 9pt), Tools Plus’s
pop-up menus are unaffected by other applications that may use unorthodox programming techniques (such as a
famous word processor that resets other applications’ pop-up menu font size).

Optionally display the selected item’s icon in the pop-up menu’s box

Items in the menu can be added, changed, deleted, renamed, appended, enabled/disabled, restyled, prefaced with
a symbol or icon, etc.

Icons, check marks, other special marks, and font styling are all supported

Pop-up menus are automatically disabled when their parent window is inactive and return to their normal state
when the window is reactivated

Mouse

Single, double, and triple clicks, as well as dragging is automatically detected and reported

A cursor table can be used to detect if the mouse was clicked in specific areas (such as a picture or icon). This
feature effectively makes any object “click sensitive.”

Event Handling

Tools Plus keeps all automatic processes running smoothly and calls your application’s event handler routine if
something has occurred such as the user selecting a menu or clicking a button.

Tools Plus’s revolutionary Event Translator reports events in a highly informative, simple, concise, and ready-
to-use format instead of being cryptic and requiring message decoding. Example: the “Save” button was
selected in the “Add Customer” window (button 4 was selected in window 15), or “Menu Item 16 was selected
in Menu 4.” This is much simpler than decoding event messages, tracking controls, and using handles and
pointers.

Your application can filter, modify, process, discard, and even synthesize events before Tools Plus processes
them. It’s easy to write an event filter routine.

Most events are processed entirely by Tools Plus such as typing in an active editing field or selecting its text, or
using the Edit menu on a field, or running desk accessories. It is completely automatic and requires no coding at
all.

Tools Plus takes care of maintaining the user interface before it reports an event to your application. For
example, in a doRefresh event (refresh a window), all Tools Plus user interface elements (buttons, scroll bars,
editing fields, etc.) are redrawn automatically.

Many events can be ignored if your application doesn’t care about them, such as when the user drags or re-sizes
a window or if the text in a field is changed.

Events that are not processed by Tools Plus are reported to your application, which can either ignore them or
process them as required. This allows advanced programmers to implement their own special features.

Tools Plus includes special routine that keep event processing running even while your application is busy

Apple Events

9% < 9 <

Tools Plus automatically supports all four required Apple Events: “open application”, “open documents”, “print
documents”, and “quit application”.

Your can easily override the default Apple Event Handlers in Tools Plus by installing your own Apple Event
Handler routines.

Tools Plus also automatically handles a few esoteric Apple Events to account for changes in system font, small
system font, views font, and other thematic changes.

All other Apple Events are dispatched to the Apple Event Handler routines you install. You decide which Apple
Events your application responds to and how.

Timers

Generate timed events to time things such as animation, periodic updating of progress indicators, alarms, or just
about anything else.

A Timer can be set up with a frequency (i.e., 8 events per second, 200 events per hour, etc) or a period (i.e., 11
seconds between events, 1 day between events)

Water’s Edge Software 55



Tools Plus

» Events can be “1-shot” (execute once only)
* Optionally synchronize an event to another event (great for flashing text or a strobing picture button)
* Route a Timer event to the application’s event handler, a window’s event handler, or a Timer event handler.

* Includes a Timer index to tell your application where it should be, in case your processor is not quick enough to
generate events at the specified frequency.

Balloon Help
* Easily add Balloon Help to Tools Plus user interface elements and custom controls.

¢ Add Help to user interface elements in three ways:
Vv Using standard Macintosh Help resources in a dialog
V Use Help resources to dynamically assign Help to an object
v Dynamically set help for an object without using Help resources

» Help is associated with each Tools Plus user interface element, so if an element is moved, resized, hidden,
deleted or scrolled, its associated Help balloon is updated appropriately.

Opening/Printing Files at Application Startup

* For applications running on System 6 or older, and for 680x0 applications that are not Apple Event aware, Tools
Plus makes it easy to open or print documents at startup (i.e., if the user launches your application by double-
clicking its documents, or selecting documents and choosing the File menu’s Print item).

* Tools Plus routines let you simply step through a list of documents for opening or printing without having to
write and install Apple Event handler routine, or mess around with complex Apple Event routines.

Clipboard

¢ The clipboard is automatically maintained when using the Edit menu on an editing field (the clipboard contains
copied text)

* Your application does not need to directly interact with the clipboard because the Edit menu takes care of
moving text between your application and the clipboard and vice versa

* The Edit menu’s “Undo” operation restores the clipboard to its original state, so if you accidentally copy
something to the clipboard and undo the copying, the clipboard’s original contents are automatically restored

Cursors
* The shape of the cursor can be changed with a single command
* Color cursors are fully supported

* The cursor’s shape changes automatically depending on where it is on the screen (i.e., [-Beam inside a field,
different shape per cursor zone, an arrow outside the active window., etc.)

¢ A cursor table can be set up to automatically change the cursor’s shape depending on its position in a window,
so it could become a “plus” cursor when located over a grid of cells (like in a spreadsheet application) and an
arrow elsewhere.

* When the wrist watch cursor is displayed, Tools Plus discards all mouse clicks and typing except 8-. (operator
halting a lengthy process)

* Optionally, your application can permit the clicking of a push button when the wrist watch cursor is displayed.
This is useful if you have a Cancel button displayed on a window during a lengthy process.

e Multiple cursor animation sequences (like the Finder’s spinning wrist watch) are supported

* Your application is informed when the cursor moves into a new cursor zone in case you want to display a
message as the user points to something

Desk Accessories
* Access to desk accessories is made possible by creating the Apple menu with a single command
¢ The Edit menu’s Undo, Cut, Copy, Paste, and Clear items interact automatically with desk accessories
* Desk accessories are handled automatically by Tools Plus (you don’t have to program anything to use them)

56



1 Introduction

Dynamic Alerts

Dynamic Alerts are alerts that are automatically sized in relation to the alert’s contents -- they grow as big as
needed to always appear aesthetically pleasing, and buttons are sized to accommodate their text. It’s like having
hundreds of customized alert boxes available at your disposal without having to create any resources.

Dynamic Alerts are created with a single command and do not require the use of resources

Full control over the alert’s background color, text color and font settings for the message, and buttons’
procIDs, colors and text settings

You can use various combinations of Yes, No, OK, and Cancel buttons, or define your own combinations. A
default button can be optionally specified.

An icon can be optionally displayed and the alert can optionally beep when displayed
Buttons can be selected using command keys (i.e., a “Yes” button can be selected with 88-Y)
Dynamic Alerts, unlike Macintosh alerts, are unaffected by screen savers

Dynamic Alerts are always centered perfectly on the main monitor regardless of the monitor’s size or the
number of monitors used

Custom Windows and Controls

Third party WDEFs (window definitions) can be used for windows and CDEFs (control definitions) can be used
for buttons and scroll bars. Tools Plus makes them work automatically.

Custom CDEFs that do not relate to buttons or scroll bars and require specific application processing can also be
used. Tools Plus hands events pertaining to those controls directly to your application.

Extras

C/C++ programmers can use Pascal strings (the default), C and Pascal strings, or C strings exclusively as
parameters in Tools Plus routines.

Multiple language support (English, French, German, etc.)

Zoom lines, such as those displayed by the Finder when a document is opened, are available to make objects
appear to zoom out from the screen or zoom back down again.

All icon types (cicn, icl8, icl4, ics8, ics4, ics#, SICN, ICON, and ICN#) are drawn with a single command.
V selected/unselected
v enabled/disabled
Vv drawn correctly across multiple monitors

Indexed SICN drawing

Macintosh-standard thermometer is system independent (identical to the Finder’s)
Numerous color text drawing routines

Numerous picture drawing routines

‘STR#’ structure maintenance (create new structure, get, add, change and delete string)
Create and destroy off-screen BitMap or PixMap

System independent BitMap to region conversion

Does the Mac running your application have an Appearance Manager?

Is the Appearance Manager running? (i.e., not in “System 7 compatibility” mode)
Initialize a structure (set to zero)

Compare two structures for equality

System version

Tools Plus version

Monitors

Color, gray-scale and monochrome (black and white) monitors are supported, as are multiple-monitor setups
Specialized routines facilitate color-dependent drawing and inform your application of its environment
All Tools Plus objects are displayed correctly even when spanning multiple monitors

Water’s Edge Software 57



Tools Plus

* All objects support dynamic monitor resolution changes as made possible with today’s multi-scan monitors
* All objects support dynamic monitor setup changes as made possible with System 7.5 or later

Memory

* Memory fragmentation due to opening and closing windows is eliminated regardless of the number of windows
your application uses or has open at the same time

* Tools Plus is memory efficient requiring little of your application’s memory for its own overhead
* Tools Plus does not fragment memory

Systems

¢ Tools Plus can be compiled into applications intended for System 5 and System 6 (Finder and MultiFinder),
System 7 and higher, and Power Macintosh (in 68040 emulation and/or native mode).

Custom CDEFs

* Custom CDEFs (buttons and other controls) are available from third parties and Water’s Edge Software. Tools
Plus can make them as easy to implement and use as regular buttons and scroll bars.

* The Tools Plus Developer Kit includes SuperCDEFs, the world-class controls for discerning developers that
give your applications a professional look. They include:
V replacement for standard Apple buttons with a white center in check box and radio buttons
V check box with an additional “undefined” state
Vv check box with a programmer-defined icon in place of the “x” in the box
V variety of buttons including optional 3D bodies and/or 3D title (inset or raised text)
V thermometer with optional “busy state” (the moving barber pole effect as seen in the Finder)
V variety of tabs including optional 3D bodies and/or 3D title (inset or raised text)
V variety of sliders including optional 3D bodies and/or 3D text for the scale (inset or raised text)

58



2 Installing Tools Plus

2 Installing Tools Plus

Installing Tools Plus in CodeWarrior C (68K)

Tools Plus arrives a CD-ROM. To install Tools Plus on your hard disk, double-click the installer and select where you
want to save Tools Plus (you can move the files later). Tools Plus for CodeWarrior C/C++ is made up of the following
items:

ToolsPlus.Libl  Libraries containing Tools Plus routines for 680x0 applications
ToolsPlus.Lib2
ToolsPlus.Lib3
ToolsPlus.Lib4
ToolsPlus.Lib5
ToolsPlus.Lib6
ToolsPlus.Lib7

ToolsPlus.Lib Single 32-bit (large code model) library containing Tools Plus routines for 680x0
applications. This one library is equivalent to the seven numbered libraries.

ToolsPlus Plug-In.Lib
Library containing Tools Plus routines. This A4-relative 32-bit (large code model) library
is equivalent to the seven numbered libraries. You use it only when creating 680x0 plug-
ins and external code modules (i.e., not applications).

ToolsPlus.CW6&7.68K.Lib
Library containing additional routines required only when writing 680x0 applications
compiled with CodeWarrior 6 and 7.

ToolsPlus. CW6&7.68K.A4.Lib

Library containing additional routines required only when writing 680x0 plug-ins and
external code modules (i.e., not applications) compiled with CodeWarrior 6 and 7.

ToolsPlus.h Header file for Tools Plus (includes defines, structures, and routines’ prototypes)

ToolsPlus.c Source code for routines that must be compiled as part of your application. These routines
will be compiled according to your project’s compiler settings for 680x0 processor and/or
math co-processor optimization.

Palette WDEF Optional resource file containing the WDEF resource (window definition) for floating
palettes. Found in the “Optional Resources” folder.

Demos Folder containing a demo application and its source code

Read Me Important, late breaking news that may not be included in this manual

This User Manual is also part of the Tools Plus package. CodeWarrior is very flexible as to where it looks for files, so
you can put Tools Plus libraries and support files just about anywhere on your disk as long as you define an access
path to those files in your project’s preferences. A good idea is to create a folder named “Tools Plus (68K) C/C++”
(without the version number) in a convenient place on your hard disk. When you create a new project, set an access
path to this folder. Your projects will automatically use newer versions of Tools Plus as long as you place the new files
in this folder.

Drag the files containing the name “ToolsPlus” into your Tools Plus folder. You can also put the WDEF and all your
other resources supplied with Tools Plus in the same folder for convenience.

Water’s Edge Software 59



Tools Plus

Adding Tools Plus to a CodeWarrior C (68K) Project

Your Tools Plus installation contains a folder named “Starter Files.” Inside this folder you will find prepared “Tools
Plus ready” projects that are ready for you to use. You may also create your own projects. Projects using Tools Plus

typically contain the following files:

Seg # | CodeWarrior Pro CodeWarrior 11

1 Mac OS.lib Mac OS.lib
MSL C.68K (2i).Lib MSL C.68K(2i).Lib
PASCAL.68K.Lib «<=Note! | PASCAL.68K.Lib «<Note!

2 ToolsPlus.Lib1 ToolsPlus.Lib1

3 ToolsPlus.Lib2 ToolsPlus.Lib2

4 ToolsPlus.Lib3 ToolsPlus.Lib3

5 ToolsPlus.Lib4 ToolsPlus.Lib4

6 ToolsPlus.Lib5 ToolsPlus.Lib5

7 ToolsPlus.Lib6 ToolsPlus.Lib6

8 ToolsPlus.Lib7 ToolsPlus.Lib7
ToolsPlus.c ToolsPlus.c

9 (your source code) (your source code)

Seg # | CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6

1 Mac OS.lib Mac OS.lib Mac OS.lib
ANSI (2i) C.68K.Lib ANSI (2i) C.68K.Lib ANSI (2i) C.68K.Lib
PASCAL.68K.Lib <Note! | PASCAL.68K.Lib <Note! | P/RT.68K.lib <Note!
console.stubs.c

2 ToolsPlus.Lib1 ToolsPlus.Libl ToolsPlus.Lib1

3 ToolsPlus.Lib2 ToolsPlus.Lib2 ToolsPlus.Lib2

4 ToolsPlus.Lib3 ToolsPlus.Lib3 ToolsPlus.Lib3

5 ToolsPlus.Lib4 ToolsPlus.Lib4 ToolsPlus.Lib4

6 ToolsPlus.Lib5 ToolsPlus.Lib5 ToolsPlus.Lib5

7 ToolsPlus.Lib6 ToolsPlus.Lib6 ToolsPlus.Lib6

8 ToolsPlus.Lib7 ToolsPlus.Lib7 ToolsPlus.Lib7
ToolsPlus.c ToolsPlus.CW6&7.68K.Lib | ToolsPlus.CW6&7.68K.Lib

ToolsPlus.c ToolsPlus.c
9 (your source code) (your source code) (your source code)

Adding Tools Plus to a CodeWarrior C (68K) Plug-In

If you are writing a plug-in or an external code module, you need to use A4 libraries in both CodeWarrior and in Tools

Plus as indicated below:

Seg # | CodeWarrior Pro CodeWarrior 11
1 Mac OS.lib Mac OS.1ib
MSL C.68K (2i).A4. Lib MSL C.68K(2i).A4.Lib
PASCAL.A4.68K.Lib «<Note! | PASCAL.A4.68K.Lib <Note!
(your main source code) (your main source code)
2 ToolsPlus Plug-In.Lib ToolsPlus Plug-In.Lib
ToolsPlus.c ToolsPlus.c
3 (your additional source code) (your additional source code)
Seg # | CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6
1 Mac OS.lib Mac OS.lib (not supported)
ANSI (2i) C.A4.68K.Lib ANSI (2i) C.A4.68K.Lib
PASCAL.A4.68K.Lib <Note! | PASCAL.A4.68K.Lib <Note!
console.stubs.c (your main source code)
(your main source code)
2 ToolsPlus Plug-In.Lib ToolsPlus Plug-In.Lib
ToolsPlus.c ToolsPlus.CW6&7.68K.A4.Lib
ToolsPlus.c
3 (your additional source code) (your additional source code)

,@D Note: The Pascal library is a component of your CodeWarrior Pascal compiler. It is also required by C/C++
applications.

60



2 Installing Tools Plus

23> Warning: Before CodeWarrior 9, applications using Tools Plus must use 2-byte integers. Make sure your “4-byte
ints” option is turned off in your project’s preferences (processor options). If your application needs 4-byte
integers, redeclare integers to be longs throughout your code.

3> Warning: The segments containing the Tools Plus libraries and the ToolsPlus.c file will be constantly accessed while

your 68K application is running. To reduce memory fragmentation, flag these segments as “Preload” and
“Locked.” Do not unload the segments containing Tools Plus libraries. You can ensure that this doesn’t
happen accidentally by flagging them as not “Purgeable.”

If your 68K application will be integrated into a fat binary application (both 680x0 and PowerPC code
in one application), do not flag your 68K segments as “Preload.” When your application is running the
PowerPC-native code, the 68K segments (‘CODE’ resources) are completely ignored, so preloading them
just takes up memory. If you do preload them and your application is running PowerPC-native code,
InitToolsPlus releases these code resources and frees up the memory they used to consume.

Water’s Edge Software 61



Tools Plus

Installing Tools Plus in CodeWarrior Pascal (68K)

Tools Plus arrives a CD-ROM. To install Tools Plus on your hard disk, double-click the installer and select where you
want to save Tools Plus (you can move the files later). Tools Plus for CodeWarrior Pascal is made up of the following

items:

This User Manual is also part of the Tools Plus package. CodeWarrior is very flexible as to where it looks for files, so

ToolsPlus.Libl  Libraries containing Tools Plus routines for 680x0 applications
ToolsPlus.Lib2
ToolsPlus.Lib3
ToolsPlus.Lib4
ToolsPlus.Lib5
ToolsPlus.Lib6
ToolsPlus.Lib7

ToolsPlus.Lib Single 32-bit (large code model) library containing Tools Plus routines for 680x0
applications. This one library is equivalent to the seven numbered libraries.

ToolsPlus Plug-In.Lib
Library containing Tools Plus routines. This A4-relative 32-bit (large code model) library
is equivalent to the seven numbered libraries. You use it only when creating 680x0 plug-
ins and external code modules (i.e., not applications).

ToolsPlus.CW6&7.68K.Lib
Library containing additional routines required only when writing 680x0 applications
compiled with CodeWarrior 6 and 7.

ToolsPlus.CW6&7.68K.A4.Lib
Library containing additional routines required only when writing 680x0 plug-ins and
external code modules (i.e., not applications) compiled with CodeWarrior 6 and 7.

ToolsPlus.p Pascal interface file to Tools Plus routines (includes constants and types). This file also
includes source code for routines that must be compiled as part of your application. These
routines will be compiled according to your project’s compiler settings for 680x0
processor and/or math co-processor optimization.

Palette WDEF  Optional resource file containing the WDEF resource (window definition) for floating
palettes. Found in the “Optional Resources” folder.

Demos Folder containing a demo application and its source code
Read Me Important, late breaking news that may not be included in this manual

you can put Tools Plus libraries and support files just about anywhere on your disk as long as you define an access
path to those files in your project’s preferences. A good idea is to create a folder named “Tools Plus (68K) Pascal”
(without the version number) in a convenient place on your hard disk. When you create a new project, set an access

path to this folder. Your projects will automatically use newer versions of Tools Plus as long as you place the new files

in this folder.

Drag the files containing the name “ToolsPlus” into your Tools Plus folder. You can also put the WDEF and all your

other resources supplied with Tools Plus in the same folder for convenience.

33> Warning: Even if you are programming exclusively in Pascal, you may also need to install the CodeWarrior C/C++

62

compiler. If you are using CodeWarrior 8 or later and you are not using CodeWarrior’s standard I/O

libraries (SIOUX), then you must include the “console.stubs.c” file in your project. Our demo and tutorials

do this. The “console.stubs.c” file is part of your CodeWarrior C/C++ setup, and you will also need to

install CodeWarrior’s C/C++ compiler and linker because of this file. The same applies if you are writing

plug-ins in Pascal because one of the PowerPC “glue” files (PPCglue.c) is written in C and cannot be
translated into Pascal. These are Metrowerks’ requirements. They are not specific to Tools Plus.



Adding Tools Plus to a CodeWarrior Pascal (68K) Project

Your Tools Plus installation contains a folder named “Starter Files.” Inside this folder you will find prepared “Tools
Plus ready” projects that are ready for you to use. You may also create your own projects. Projects using Tools Plus
typically contain the following files:

Seg # | CodeWarrior Pro CodeWarrior 11

1 Mac OS.lib Mac OS.lib
MSL C.68K (2i).Lib MacIntf(UPI).68K.lib
PASCAL.68K.Lib MSL C.68K(2i).Lib

PASCAL.68K.Lib

2 ToolsPlus.Lib1 ToolsPlus.Lib1

3 ToolsPlus.Lib2 ToolsPlus.Lib2

4 ToolsPlus.Lib3 ToolsPlus.Lib3

5 ToolsPlus.Lib4 ToolsPlus.Lib4

6 ToolsPlus.Lib5 ToolsPlus.Lib5

7 ToolsPlus.Lib6 ToolsPlus.Lib6

8 ToolsPlus.Lib7 ToolsPlus.Lib7
ToolsPlus.p ToolsPlus.p

9 (your source code) (your source code)

Seg # | CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6

1 Mac OS.lib Mac OS.lib Pascal/Mac OS.lib
MacIntf(UPI).68K.lib MacIntf(UPI).68K.lib MacIntf(UPI).68K.lib
ANSI (2i) C.68K.Lib ANSI (2i) C.68K.Lib P/ANSI.68K.1ib
PASCAL.68K.Lib PASCAL.68K.Lib P/RT.68K.lib
console.stubs.c

2 ToolsPlus.Lib1 ToolsPlus.Libl ToolsPlus.Lib1

3 ToolsPlus.Lib2 ToolsPlus.Lib2 ToolsPlus.Lib2

4 ToolsPlus.Lib3 ToolsPlus.Lib3 ToolsPlus.Lib3

5 ToolsPlus.Lib4 ToolsPlus.Lib4 ToolsPlus.Lib4

6 ToolsPlus.Lib5 ToolsPlus.Lib5 ToolsPlus.Lib5

7 ToolsPlus.Lib6 ToolsPlus.Lib6 ToolsPlus.Lib6

8 ToolsPlus.Lib7 ToolsPlus.Lib7 ToolsPlus.Lib7
ToolsPlus.p ToolsPlus.CW6&7.68K.Lib | ToolsPlus.CW6&7.68K.Lib

ToolsPlus.p ToolsPlus.p
9 (your source code) (your source code) (your source code)

Adding Tools Plus to a CodeWarrior Pascal (68K) Plug-In

If you are writing a plug-in or an external code module, you need to use A4 libraries in both CodeWarrior and in Tools
Plus as indicated below:

Seg # | CodeWarrior Pro CodeWarrior 11

1 Mac OS.lib Mac OS.lib
MSL C.68K (2i).A4. Lib Maclntf(UPI).68K.lib
PASCAL.A4.68K.Lib MSL C.68K(2i).A4.Lib
PascalA4.p PASCAL.A4.68K.Lib
(your main source code) PascalA4.p

(your main source code)

2 ToolsPlus Plug-In.Lib ToolsPlus Plug-In.Lib
ToolsPlus.p ToolsPlus.p

3 (your additional source code) (your additional source code)

Seg # | CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6

1 Mac OS.lib Mac OS.lib (not supported)
Maclntf(UPI).68K.1ib Maclntf(UPI).68K.lib
ANSI (2i) C.A4.68K.Lib ANSI (2i) C.A4.68K.Lib
PASCAL.A4.68K.Lib PASCAL.A4.68K.Lib
PascalA4.p PascalA4.p
console.stubs.c (your main source code)
(your main source code)

2 ToolsPlus Plug-In.Lib ToolsPlus Plug-In.Lib
ToolsPlus.p ToolsPlus. CW6&7.68K.A4.Lib

ToolsPlus.p
3 (your additional source code) (your additional source code)

Water’s Edge Software

2 Installing Tools Plus

63



Tools Plus

33> Warning: The segments containing the Tools Plus libraries and the ToolsPlus.c file will be constantly accessed while

64

your 68K application is running. To reduce memory fragmentation, flag these segments as “Preload” and
“Locked.” Do not unload the segments containing Tools Plus libraries. You can ensure that this doesn’t
happen accidentally by flagging them as not “Purgeable.”

If your 68K application will be integrated into a fat binary application (both 680x0 and PowerPC code in
one application), do not flag your 68K segments as ‘“Preload.” When your application is running the
PowerPC-native code, the 68K segments (‘CODE’ resources) are completely ignored, so preloading them
just takes up memory. If you do preload them and your application is running PowerPC-native code,
InitToolsPlus releases these code resources and frees up the memory they used to consume.



2 Installing Tools Plus

Installing Tools Plus in CodeWarrior C (PPC)

Tools Plus arrives a CD-ROM.. To install Tools Plus on your hard disk, double-click the installer and select where you
want to save Tools Plus (you can move the files later). Tools Plus for CodeWarrior C/C++ is made up of the following
items:

ToolsPlus.Lib Library containing Tools Plus routines for PowerPC applications

ToolsPlus Plug-In.Lib
Library containing Tools Plus routines. You use it only when creating PowerPC plug-ins
and external code modules (i.e., not applications).

ToolsPlus.CW6&7.PPC.Lib
Library containing additional routines required only when writing PowerPC applications
compiled with CodeWarrior 6 and 7

ToolsPlus.h Header file for Tools Plus (includes defines, structures, and routines’ prototypes)

ToolsPlus.c Source code for routines that must be compiled as part of your application. These routines
are kept in a separate file only to provide consistency with Tools Plus for 680x0
processors.

Palette WDEF Optional resource file containing the WDEF resource (window definition) for floating
palettes. Found in the “Optional Resources” folder.

Demos Folder containing a demo application and its source code
Read Me Important, late breaking news that may not be included in this manual

This User Manual is also part of the Tools Plus package. CodeWarrior is very flexible as to where it looks for files, so
you can put Tools Plus libraries and support files just about anywhere on your disk as long as you define an access
path to those files in your project’s preferences. A good idea is to create a folder named “Tools Plus (PPC) C/C++”
(without the version number) in a convenient place on your hard disk. When you create a new project, set an access
path to this folder. Your projects will automatically use newer versions of Tools Plus as long as you place the new files
in this folder.

Drag the files containing the name “ToolsPlus” into your Tools Plus folder. You can also put the WDEF and all your
other resources supplied with Tools Plus in the same folder for convenience.

Water’s Edge Software 65



Tools Plus

Adding Tools Plus to a CodeWarrior C (PPC) Project

Your Tools Plus installation contains a folder named “Starter Files.” Inside this folder you will find prepared “Tools
Plus ready” projects that are ready for you to use. You may also create your own projects. Projects using Tools Plus
typically contain the following files:

Grp | CodeWarrior Pro CodeWarrior 11
1 MSL RuntimePPC.Lib MWCRuntime.Lib
InterfaceLib InterfaceLib
MSL C.PPC.Lib MSL C.PPC.Lib
PASCAL.PPC.lib «<Note! | PASCAL.PPC.lib <Note!
AppearanceLib <=Note! | AppearanceLib <=Note!
2 ToolsPlus.Lib ToolsPlus.Lib
ToolsPlus.c ToolsPlus.c
3 (your source code) (your source code)
Grp | CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6
1 MWCRuntime.Lib MWCRuntime.Lib MWCRuntime.Lib
InterfaceLib InterfaceLib Interfacelib
ANSI C.PPC.Lib ANSI C.PPC.Lib ANSI C.PPC.Lib
PASCAL.PPC.lib <Note! | PASCAL.PPC.lib <Note! | P/Rt.PPC.lib <Note!
AppearanceLib «<=Note! | AppearanceLib <Note! | AppearanceLib <Note!
console.stubs.c
2 ToolsPlus.Lib ToolsPlus.Lib ToolsPlus.Lib
ToolsPlus.c ToolsPlus.CW6&7.PPC.Lib | ToolsPlus.CW6&7.PPC.Lib
ToolsPlus.c ToolsPlus.c
3 (your source code) (your source code) (your source code)
Adding Tools Plus to a CodeWarrior C (PPC) Plug-In
Grp | CodeWarrior Pro CodeWarrior 11
1 InterfaceLib InterfaceLib
MSL C.PPC.Lib MSL C.PPC.Lib
PASCAL.PPC.lib «<Note! | PASCAL.PPC.lib <Note!
AppearanceLib <=Note! | AppearanceLib <=Note!
2 ToolsPlus Plug-In.Lib ToolsPlus Plug-In.Lib
ToolsPlus.c ToolsPlus.c
3 PPCglue.c PPCglue.c
(your source code) (your source code)
Grp | CodeWarrior 8,9, 10 CodeWarrior 7 CodeWarrior 6
1 InterfaceLib InterfaceLib (not supported)
ANSI C.PPC.Lib ANSI C.PPC.Lib
PASCAL.PPC.lib <Note! | PASCAL.PPC.lib <Note!
AppearanceLib <Note! | AppearanceLib <=Note!
console.stubs.c
2 ToolsPlus Plug-In.Lib ToolsPlus Plug-In.Lib
ToolsPlus.c ToolsPlus. CW6&7.PPC.Lib
ToolsPlus.c
3 PPCglue.c PPCglue.c
(your source code) (your source code)

,@D Note: This is a component of your CodeWarrior Pascal compiler. It is also required by C/C++ applications.

,@D Note: Make sure the AppearanceLib is set to “link weak” to allow your Appearance-savvy app to run on a Macintosh

66

without an Appearance Manager.




IS5

2 Installing Tools Plus

Installing Tools Plus in CodeWarrior Pascal (PPC)

Tools Plus arrives a CD-ROM. To install Tools Plus on your hard disk, double-click the installer and select where you
want to save Tools Plus (you can move the files later). Tools Plus for CodeWarrior Pascal is made up of the following
items:

ToolsPlus.Lib Library containing Tools Plus routines for PowerPC applications

ToolsPlus Plug-In.Lib
Library containing Tools Plus routines. You use it only when creating PowerPC plug-ins
and external code modules (i.e., not applications).

ToolsPlus.CW6&7.PPC.Lib
Library containing additional routines required only when writing PowerPC applications
compiled with CodeWarrior 6 and 7

ToolsPlus.p Pascal interface file to Tools Plus routines (includes constants and types). This file also
includes source code for routines that must be compiled as part of your application. These
routines are kept in a separate file only to provide consistency with Tools Plus for 680x0
processors.

Palette WDEF  Optional resource file containing the WDEF resource (window definition) for floating
palettes. Found in the “Optional Resources” folder.

Demos Folder containing a demo application and its source code
Read Me Important, late breaking news that may not be included in this manual

This User Manual is also part of the Tools Plus package. CodeWarrior is very flexible as to where it looks for files, so
you can put Tools Plus libraries and support files just about anywhere on your disk as long as you define an access
path to those files in your project’s preferences. A good idea is to create a folder named “Tools Plus (PPC) Pascal”
(without the version number) in a convenient place on your hard disk. When you create a new project, set an access
path to this folder. Your projects will automatically use newer versions of Tools Plus as long as you place the new files
in this folder.

Drag the files containing the name “ToolsPlus” into your Tools Plus folder. You can also put the WDEF and all your
other resources supplied with Tools Plus in the same folder for convenience.

Warning: Even if you are programming exclusively in Pascal, you may also need to install the CodeWarrior C/C++
compiler. If you are using CodeWarrior 8 or later and you are not using CodeWarrior’s standard I/O
libraries (SIOUX), then you must include the “console.stubs.c” file in your project. Our demo and tutorials
do this. The “console.stubs.c” file is part of your CodeWarrior C/C++ setup, and you will also need to
install CodeWarrior’s C/C++ compiler and linker because of this file. The same applies if you are writing
plug-ins in Pascal because one of the PowerPC “glue” files (PPCglue.c) is written in C and cannot be
translated into Pascal. These are Metrowerks’ requirements. They are not specific to Tools Plus.

Water’s Edge Software 67



Tools Plus

Adding Tools Plus to a CodeWarrior Pascal (PPC) Project

Your Tools Plus installation contains a folder named “Starter Files.” Inside this folder you will find prepared “Tools
Plus ready” projects that are ready for you to use. You may also create your own projects. Projects using Tools Plus

typically contain the following files:

Grp | CodeWarrior Pro CodeWarrior 11
1 MSL RuntimePPC.Lib MWCRuntime.Lib
InterfaceLib InterfaceLib
MSL C.PPC.Lib MacIntf(UPI).PPC.lib
PASCAL.PPC.lib MSL C.PPC.Lib
AppearanceLib <=Note! | PASCAL.PPC.lib
AppearanceLib <=Note!
2 ToolsPlus.Lib ToolsPlus.Lib
ToolsPlus.p ToolsPlus.p
3 (your source code) (your source code)
Grp | CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6
1 MWCRuntime.Lib MWCRuntime.Lib MWPRuntime.Lib
InterfaceLib InterfaceLib InterfaceLib
MacIntf(UPI).PPC.lib MacIntf(UPI).PPC.lib MacIntf(UPI).PPC.lib
ANSI C.PPC.Lib ANSI C.PPC.Lib P/ANSI.PPC.Lib
PASCAL.PPC.lib PASCAL.PPC.lib P/Rt.PPC.lib
AppearanceLib <=Note! | AppearanceLib <=Note! | AppearanceLib <=Note!
console.stubs.c
2 ToolsPlus.Lib ToolsPlus.Lib ToolsPlus.Lib
ToolsPlus.p ToolsPlus.CW6&7.PPC.Lib | ToolsPlus.CW6&7.PPC.Lib
ToolsPlus.p ToolsPlus.p
3 (your source code) (your source code) (your source code)
Adding Tools Plus to a CodeWarrior Pascal (PPC) Plug-In
Grp | CodeWarrior Pro CodeWarrior 11
1 InterfaceLib InterfaceLib
MSL C.PPC.Lib Maclntf(UPI).PPC.lib
PASCAL.PPC.lib MSL C.PPC.Lib
AppearanceLib <Note! | PASCAL.PPC.lib
AppearanceLib <=Note!
2 ToolsPlus Plug-In.Lib ToolsPlus Plug-In.Lib
ToolsPlus.p ToolsPlus.p
3 PPCglue.c PPCglue.c
(your source code) (your source code)
Grp | CodeWarrior 8,9, 10 CodeWarrior 7 CodeWarrior 6
1 InterfaceLib InterfaceLib (not supported)
MaclIntf(UPI).PPC.lib Maclntf(UPI).PPC.lib
ANSI C.PPC.Lib ANSI C.PPC.Lib
PASCAL.PPC.lib PASCAL.PPC.lib
console.stubs.c
2 ToolsPlus Plug-In.Lib ToolsPlus Plug-In.Lib
ToolsPlus.p ToolsPlus. CW6&7.PPC.Lib
ToolsPlus.p
3 PPCglue.c PPCglue.c
(your source code) (your source code)

,@D Note: Make sure the AppearanceLib is set to “link weak” to allow your Appearance-savvy app to run on a Macintosh

68

without an Appearance Manager.




IS

2 Installing Tools Plus

Installing Tools Plus in THINK C/C++ (68K) 5, 6 and 7

Tools Plus arrives on a CD-ROM. To install Tools Plus on your hard disk, double-click the installer and select where
you want to save Tools Plus (you can move the files later). Tools Plus for THINK C/C++ is made up of the following
items:

ToolsPlus.Libl  Libraries containing Tools Plus routines

through to
ToolsPlus.Lib7
ToolsPlus.h Header file for Tools Plus (includes defines, structures, and routines’ prototypes)
ToolsPlus.c Source code for routines that must be compiled as part of your application. These routines

will be compiled according to your project’s compiler settings for 680x0 processor and/or
math co-processor optimization.

Palette WDEF  Optional resource file containing the WDEF resource (window definition) for floating
palettes. Found in the “Optional Resources” folder.
Demos Folder containing a demo application and its source code
Read Me Important, late breaking news that may not be included in this manual
This User Manual is also part of the Tools Plus package. Drag the ToolsPlus.Libl through ToolsPlus.Lib7 libraries into
the Mac Libraries folder, or wherever you keep your other libraries. Drag ToolsPlus.h into the Mac #includes folder,
or wherever you keep your other header files. You can drag the ToolsPlus.c file into your Mac Libraries folder, even

though it is not a library. Keeping it with the ToolsPlus.Lib1 through ToolsPlus.Lib7 libraries will help to remind you
to include ToolsPlus.c in your project.

Adding Tools Plus to a THINK C (68K) Project

Your Tools Plus installation contains a folder named “Starter Files.” Inside this folder you will find prepared “Tools
Plus ready” projects that are ready for you to use. You may also create your own projects. Projects using Tools Plus
typically contain the following files:

Segment 1:  MacTraps
MacTraps2

Segment 2:  ANSI

Segment 3:  ToolsPlus.Libl
Segment 4:  ToolsPlus.Lib2
Segment 5:  ToolsPlus.Lib3
Segment 6:  ToolsPlus.Lib4
Segment 7:  ToolsPlus.Lib5
Segment 8:  ToolsPlus.Lib6

Segment 9:  ToolsPlus.c
ToolsPlus.Lib7

Segment 10: (your source code)

Warning: The segments containing the Tools Plus libraries and the ToolsPlus.c file will be constantly accessed while
your application is running. To reduce memory fragmentation, flag these segments as “Preload” and
“Locked.” Do not unload the segments containing Tools Plus libraries. You can ensure that this doesn’t
happen accidentally by flagging them as not ‘“Purgeable.”

Water’s Edge Software 69



Tools Plus

Installing Tools Plus in Symantec C/C++ (68K) 8.0.5 or later

Tools Plus arrives a CD-ROM. To install Tools Plus on your hard disk, double-click the installer and select where you
want to save Tools Plus (you can move the files later). Tools Plus for THINK C/C++ is made up of the following
items:

ToolsPlus.Libl.o Libraries containing Tools Plus routines

through to
ToolsPlus.Lib7.0
QDGlobals.a.o  Compatibility library for Symantec Project Manager’s (SPM) new MPW-style linker
ToolsPlus.h Header file for Tools Plus (includes defines, structures, and routines’ prototypes)
ToolsPlus.c Source code for routines that must be compiled as part of your application. These routines

will be compiled according to your project’s compiler settings for 680x0 processor and/or
math co-processor optimization.

Palette WDEF Optional resource file containing the WDEF resource (window definition) for floating
palettes. Found in the “Optional Resources” folder.

Demos Folder containing a demo application and its source code
Read Me Important, late breaking news that may not be included in this manual

This User Manual is also part of the Tools Plus package. Drag the ToolsPlus.Lib1.o through ToolsPlus.Lib7.0 and
ODGlobals.a.o libraries into the Standard Libraries folder, and ToolsPlus.h into the Macintosh Libraries folder, or
where ever you keep your other header files. You can drag the ToolsPlus.c file into your Standard Libraries folder,
even though it is not a library. Keeping it with the ToolsPlus.Lib1.o through ToolsPlus.Lib7.0 libraries will help to
remind you to include ToolsPlus.c in your project.

Adding Tools Plus to an SPM C/C++ (68K) Project

Your Tools Plus installation contains a folder named “Starter Files.” Inside this folder you will find prepared “Tools
Plus ready” projects that are ready for you to use. You may also create your own projects. SPM projects using Tools
Plus typically contain the following files. Note that grouping is purely for convenience and tidiness.

YourApp.c (your source code)
YourProjName.n.lo  (your project’s link order, created by SPM)

Libraries:  <68Kansi-small.o>
<Interface.o>
<Mathlib.o>
<MPW68KRuntime.o>

Tools Plus  QDGlobals.a.o
ToolsPlus.c
ToolsPlus.Lib1l.o
ToolsPlus.Lib2.0
ToolsPlus.Lib3.0
ToolsPlus.Lib4.0
ToolsPlus.Lib5.0
ToolsPlus.Lib6.0
ToolsPlus.Lib7.0

Starting with release 5 of Symantec C/C++ 8 (version 8.0.5), Symantec has departed from its traditional use of the
THINK linker in SPM. SPM now uses an MPW linker which has some inherent differences that prevent it from being
able to use standard Symantec ‘PROJ’ files (the standard format of Tools Plus libraries). The “.0” Tools Plus files have
been compiled specifically for SPM.

The QDGlobals.a.o library lets your application access QuickDraw globals in the traditional manner (i.e., thePort)
instead of using the newer universal method (i.e., qd.thePort). QDGlobals.a.o must be linked first. You can change the
link order of your project by compiling your application and letting SPM create a link order file (YourProjectName.lo)
for your project. Open the link order file and move QDGlobals.a.o such that it appears on the first line.

70



&

2 Installing Tools Plus

Installing Tools Plus in Symantec C/C++ (PPC) 8.6 or later

Tools Plus arrives a CD-ROM. To install Tools Plus on your hard disk, double-click the installer and select where you
want to save Tools Plus (you can move the files later). Tools Plus for Symantec C/C++ is made up of the following
items:

ToolsPlus.Lib Library containing Tools Plus routines for PowerPC applications

QDGlobals.c Gives your application access to QuickDraw globals

ToolsPlus.h Header file for Tools Plus (includes defines, structures, and routines’ prototypes)

ToolsPlus.c Source code for routines that must be compiled as part of your application. These routines
are kept in a separate file only to provide consistency with Tools Plus for 680x0
processors.

Palette WDEF Optional resource file containing the WDEF resource (window definition) for floating
palettes. Found in the “Optional Resources” folder.

Demos Folder containing a demo application and its source code
Read Me Important, late breaking news that may not be included in this manual

This User Manual is also part of the Tools Plus package. Symantec C++ is very flexible as to where it looks for files,
so you can put Tools Plus libraries and support files just about anywhere on your disk as long as you define an access
path to those files in your project’s preferences. A good idea is to create a folder named “Tools Plus (PPC) C/C++”
(without the version number) in a convenient place on your hard disk. When you create a new project, set an access
path to this folder. Your projects will automatically use newer versions of Tools Plus as long as you place the new files
in this folder.

Drag the files containing the name “ToolsPlus” into your Tools Plus folder. You can also put the WDEF and all your
other resources supplied with Tools Plus in the same folder for convenience.

Adding Tools Plus to an SPM C/C++ (PPC) Project

Your Tools Plus kit contains a folder named “Starter Files.” Inside this folder you will find prepared “Tools Plus
ready” projects that are ready for you to use. You may also create your own projects. SPM projects using Tools Plus
typically contain the following files. Note that grouping is purely for convenience and tidiness.
Glue: <PPCMW_Compatibility.o>
Runtime:  <InterfaceLib>
<MathLib>
<AppearanceLib>  <=Note!
<str.c>
Tools Plus  ToolsPlus.c
ToolsPlus.Lib
Main: YourApp.c (your source code)
QDGlobals.c

Starting with release 6 of Symantec C/C++ 8 (version 8.6), the Symantec Project Manager can make use of
CodeWarrior libraries. This new capability is what lets us bring Tools Plus libraries to users of the Symantec PowerPC
compiler. Make sure that you have installed the “PPC .lib Converter” in the “(Translators)” folder before you try to
compile any Tools Plus project. The PPCMW_Compatibility.o library provides the glue between Tools Plus libraries
and the routines found in Symantec’s libraries. There is no perceivable performance penalty for using this glue.

Note: Make sure the AppearanceLib is set to “link weak” to allow your Appearance-savvy app to run on a Macintosh
without an Appearance Manager.

Water’s Edge Software 71



Tools Plus

Installing Tools Plus in THINK Pascal (68K)

Tools Plus arrives a CD-ROM. To install Tools Plus on your hard disk, double-click the installer and select where you
want to save Tools Plus (you can move the files later). Tools Plus for THINK Pascal is made up of the following
items:
ToolsPlus.Libl  Libraries containing Tools Plus routines
through to
ToolsPlus.Lib7

ToolsPlus.p Pascal interface file to Tools Plus routines (includes constants and types). This file also
includes source code for routines that must be compiled as part of your application. These
routines will be compiled according to your project’s compiler settings for 680x0
processor and/or math co-processor optimization.

Palette WDEF Optional resource file containing the WDEF resource (window definition) for floating
palettes. Found in the “Optional Resources” folder.

Demos Folder containing a demo application and its source code
Read Me Important, late breaking news that may not be included in this manual

This User Manual is also part of the Tools Plus package. Drag the ToolsPlus.Lib1 through ToolsPlus.Lib7 libraries into
the Libraries folder, and ToolsPlus.p into the Interface folder, or where ever you keep your other libraries and
interfaces.

Adding Tools Plus to a THINK Pascal (68K) Project

To add Tools Plus to a THINK Pascal project, first open your project, then use the Project menu’s Add File command
to add the files ToolsPlus.LibI through ToolsPlus.Lib7 and ToolsPlus.p to your project. The following illustrations
explain the required placement of these files.

[ECJ=—= My Project.n ==——=PF]
Options  File (by build order) Size |&
Runtime. b iy Build Order
Interface lib o ) ] . . .
TonlePlus Lib1 0 Though libraries can be located anywhere in your build order, placing them
| TEE]?P]E?L}I:-Z a <« near the top (early in the compiling order) will organize your project a little
better.
| ToolzFlus Lib7 o .
| EEFEE ToolsFusp ol | — The ToolsPlus.p interface has to be compiled before your source code makes
EREE My Application o = reference to it. Placing it immediately below the libraries is a good, safe place.
i
£ ] [
E[1=——= My Project.m £
DOptions  File (hy segment) Size |
Runtirme.lib 0 [~
Interface lib ul ﬁ
Segment § 4 By Segment
ToolsFlus Lib1 0 <~ Drag each of the Tools Plus libraries into their own segment.
Lagmanf 2 4
ToolsPlus Lib2 n}
Lagaaast I 4
ToolsPlus Lib7 0 . . .
EIRFE] ToolsFlusp o < For convenience, drag the ToolsPlus.p interface file into the segment
Sagmant 5 4 containing the last Tools Plus library.
[CIMMIE] My Application u}
Lagmand 10 4 @
] EELS!

72



After Compiling

So far, you’ve told THINK Pascal what files to use and the
order in which they should be compiled. When you compile
your project the first time, THINK Pascal loads the
specified libraries and integrates them into your project file,
and it compiles source files (including ToolsPlus.p) and
integrates them in your project file. After your first compile,
you’ll notice that THINK Pascal automatically added a
number of new items to your project file:

«ToolsPlus.Lib1:1»

«ToolsPlus.Lib2:1»

{
«ToolsPlus.Lib7:1»
«%_MethTables»
«%_SelProcs»
«%_Profiler»

The «ToolsPlus.Lib1:1» through «ToolsPlus.Lib7:1» items
contain the object code from the Tools Plus libraries, while
«%_MethTables», «%_SelProcs» and «%_Profiler» items

are part of THINK Pascal’s overhead (consult your THINK
Pascal User Manual for details).

Drag «ToolsPlus.Lib1:1» into the same segment as
ToolsPlus.Lib1, «ToolsPlus.Lib2:1» into the same segment
as ToolsPlus.Lib2, and so on for all the libraries.

Drag «%_MethTables», «%_SelProcs» and «%_Profiler>
to any segment that won’t be unloaded while your
application is running, such as the one containing the
Runtime.Lib library.

2 Installing Tools Plus

S[1=—=—= My Project.n EE|
Options  File (by zegrent) Size |5
Funtirne . lib 18374 5
Interface lib 12212
«' B _MethTables = Z
« W _SelProcs = 0
« B _Profiler = 4460
Seqraent | I3652
ToolzPlus Lib1 )
<« ToolsPlus Lib1 o1 = 31310
Seqgrent 2 21314
ToolsPlus LibZ )
+« ToolsFlus Lib2 o1 = 31048
Segrnent I 1050
ToolsPlus LibY )
oMY R ToolsPlus.p (=]
<« ToolsPlus Lib7 1 = 644
Segrnent O 5520
MY R Soundp o
oMY R My Application 10022
Seqrent B 10026
v
= =

Even though the project window indicates that Segment 1 exceeds the 32K limit imposed on segments, the project will
compile and run. When you build your application, the smart linker will strip away unneeded code and significantly

reduce the size of this segment.

are found only in the full Runtime.Lib library, you can use the smaller uRuntime.Lib library instead.

your application is running. To reduce memory fragmentation, flag these segments as “Preload” and
“Locked.” Do not unload the segments containing Tools Plus libraries. You can ensure that this doesn’t
happen accidentally by flagging them as not “Purgeable.”

Water’s Edge Software

,@D Note: Tools Plus does not have a dependency on the Runtime.Lib library. Unless your application needs routines that

33> Warning: The segments containing the Tools Plus libraries and the ToolsPlus.p file will be constantly accessed while

73



Tools Plus

Compiling the Tools Plus demo

Compiling the CodeWarrior C (68K) Demo Application

The easiest way to compile the CodeWarrior C demo application included with Tools Plus is to have the following

files in the same folder:
Demo.u
Demo.sm.rsrc
Demo.c

ToolsPlus.Lib1
ToolsPlus.Lib2
ToolsPlus.Lib3
ToolsPlus.Lib4
ToolsPlus.Lib5
ToolsPlus.Lib6
ToolsPlus.Lib7
ToolsPlus. CW6&7.68K.Lib

ToolsPlus.h
ToolsPlus.c
PascalStrHandles.c

Double-click the Demo.u project file to launch CodeWarrior C/C++, then run your project.

If you are creating a new project (instead of using the one included as part of Tools Plus), you first need to install
Tools Plus in your project file as described earlier in this chapter. Copy the files “Demo.u”, “Demo.m.rsrc¢” and
“PascalStrHandles.c” to the folder containing your project. Add the following files to your new project:

Seg # | CodeWarrior Pro CodeWarrior 11

1 Mac OS.lib Mac OS.lib
MSL C.68K (2i).Lib MSL C.68K(2i).Lib
PASCAL.68K.Lib <Note! | PASCAL.68K.Lib <Note!

2 ToolsPlus.Lib1 ToolsPlus.Lib1

3 ToolsPlus.Lib2 ToolsPlus.Lib2

4 ToolsPlus.Lib3 ToolsPlus.Lib3

5 ToolsPlus.Lib4 ToolsPlus.Lib4

6 ToolsPlus.Lib5 ToolsPlus.Lib5

7 ToolsPlus.Lib6 ToolsPlus.Lib6

8 ToolsPlus.Lib7 ToolsPlus.Lib7
ToolsPlus.c ToolsPlus.c

9 Demo.m.rsrc Demo.r.rsrc
Demo.c Demo.c

Seg # | CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6

1 Mac OS.lib Mac OS.lib Mac OS.lib
ANSI (2i) C.68K.Lib ANSI (2i) C.68K.Lib ANSI (2i) C.68K.Lib
PASCAL.68K.Lib «<Note! | PASCAL.68K.Lib «<Note! | P/RT.68K.lib <Note!
console.stubs.c

2 ToolsPlus.Lib1 ToolsPlus.Lib1 ToolsPlus.Lib1

3 ToolsPlus.Lib2 ToolsPlus.Lib2 ToolsPlus.Lib2

4 ToolsPlus.Lib3 ToolsPlus.Lib3 ToolsPlus.Lib3

5 ToolsPlus.Lib4 ToolsPlus.Lib4 ToolsPlus.Lib4

6 ToolsPlus.Lib5 ToolsPlus.Lib5 ToolsPlus.Lib5

7 ToolsPlus.Lib6 ToolsPlus.Lib6 ToolsPlus.Lib6

8 ToolsPlus.Lib7 ToolsPlus.Lib7 ToolsPlus.Lib7
ToolsPlus.c ToolsPlus.CW6&7.68K.Lib | ToolsPlus.CW6&7.68K.Lib

ToolsPlus.c ToolsPlus.c

9 Demo.m.rsrc Demo.r.rsrc Demo.m.rsrc

Demo.c Demo.c Demo.c

You can now build your project and run your application.

74

,@D Note: This library is a component of your CodeWarrior Pascal compiler. It is also required by C/C++ applications.




2 Installing Tools Plus

Compiling the CodeWarrior Pascal (68K) Demo Application

The easiest way to compile the CodeWarrior Pascal demo application included with Tools Plus is to have the
following files in the same folder:
Demo.pn ToolsPlus.Lib1
Demo.m.rsrc ToolsPlus.Lib2
Demo.p ToolsPlus.Lib3
ToolsPlus.Lib4
ToolsPlus.Lib5
ToolsPlus.Lib6
ToolsPlus.Lib7
ToolsPlus. CW6&7.68K.Lib

ToolsPlus.p

Double-click the Demo.u project file to launch CodeWarrior Pascal, then run your project.

If you are creating a new project (instead of using the one included as part of Tools Plus), you first need to install
Tools Plus in your project file as described earlier in this chapter. Copy the files “Demo.u” and “Demo.sw.rsrc” to the
folder containing your project. Add the following files to your new project:

Seg # | CodeWarrior Pro CodeWarrior 11
1 Mac OS.lib Mac OS.lib
MSL C.68K (2i).Lib Maclntf(UPI).68K.lib
PASCAL.68K.Lib MSL C.68K(2i).Lib
PASCAL.68K.Lib
2 ToolsPlus.Lib1 ToolsPlus.Lib1
3 ToolsPlus.Lib2 ToolsPlus.Lib2
4 ToolsPlus.Lib3 ToolsPlus.Lib3
5 ToolsPlus.Lib4 ToolsPlus.Lib4
6 ToolsPlus.Lib5 ToolsPlus.Lib5
7 ToolsPlus.Lib6 ToolsPlus.Lib6
8 ToolsPlus.Lib7 ToolsPlus.Lib7
ToolsPlus.p ToolsPlus.p
9 Demo.r.rsrc Demo.r.rsrc
Demo.p Demo.p
Seg # | CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6
1 Mac 0OS.lib Mac OS.lib Pascal/Mac OS.lib
Maclntf(UPI).68K.lib MacIntf(UPI).68K.lib Maclntf(UPI).68K.lib
ANSI (2i) C.68K.Lib ANSI (2i) C.68K.Lib P/ANSI.68K.1ib
PASCAL.68K.Lib PASCAL.68K.Lib P/RT.68K.1ib
console.stubs.c
2 ToolsPlus.Lib1 ToolsPlus.Lib1l ToolsPlus.Lib1
3 ToolsPlus.Lib2 ToolsPlus.Lib2 ToolsPlus.Lib2
4 ToolsPlus.Lib3 ToolsPlus.Lib3 ToolsPlus.Lib3
5 ToolsPlus.Lib4 ToolsPlus.Lib4 ToolsPlus.Lib4
6 ToolsPlus.Lib5 ToolsPlus.Lib5 ToolsPlus.Lib5
7 ToolsPlus.Lib6 ToolsPlus.Lib6 ToolsPlus.Lib6
8 ToolsPlus.Lib7 ToolsPlus.Lib7 ToolsPlus.Lib7
ToolsPlus.p ToolsPlus.CW6&7.68K.Lib | ToolsPlus.CW6&7.68K.Lib
ToolsPlus.p ToolsPlus.p
9 Demo.r.rsrc Demo.m.rsre Demo.m.rsrc
Demo.p Demo.p Demo.p

You can now build your project and run your application.

Water’s Edge Software

75



Tools Plus

Compiling the CodeWarrior C (PPC) Demo Application

The easiest way to compile the CodeWarrior C demo application included with Tools Plus is to have the following
files in the same folder:

Demo.u ToolsPlus.Lib PascalStrHandles.c
Demo.r.rsrc ToolsPlus. CW6&7.PPC.Lib
Demo.c ToolsPlus.h

ToolsPlus.c
Double-click the Demo.u project file to launch CodeWarrior C/C++, then run your project.

If you are creating a new project (instead of using the one included as part of Tools Plus), you first need to install
Tools Plus in your project file as described earlier in this chapter. Copy the files “Demo.u”, “Demo.m.rsrc” and
“PascalStrHandles.c” to the folder containing your project. Add the following files to your new project:

Grp | CodeWarrior Pro CodeWarrior 11
1 MSL RuntimePPC.Lib MWCRuntime.Lib
InterfaceLib InterfaceLib
MSL C.PPC.Lib MSL C.PPC.Lib

PASCAL.PPC.lib <«<Note! | PASCAL.PPC.lib <«<Note!
AppearanceLib <=Note! | AppearanceLib <=Note!

2 ToolsPlus.Lib ToolsPlus.Lib
ToolsPlus.c ToolsPlus.c

3 Demo.m.rsrc Demo.r.rsrc
Demo.c Demo.c

Grp | CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6

1 MWCRuntime.Lib MWCRuntime.Lib MWCRuntime.Lib
InterfaceLib InterfaceLib Interfacelib
ANSI C.PPC.Lib ANSI C.PPC.Lib ANSI C.PPC.Lib
PASCAL.PPC.lib <Note! | PASCAL.PPC.lib <=Note! | P/Rt.PPC.lib <Note!

AppearanceLib <=Note! | AppearanceLib <Note! | AppearanceLib <=Note!
console.stubs.c

2 ToolsPlus.Lib ToolsPlus.Lib ToolsPlus.Lib
ToolsPlus.c ToolsPlus.CW6&7.PPC.Lib | ToolsPlus.CW6&7.PPC.Lib
ToolsPlus.c ToolsPlus.c
3 Demo.s.rsrc Demo.r.rsrc Demo.m.rsrc
Demo.c Demo.c Demo.c

,@D Note: This is a component of your CodeWarrior Pascal compiler. It is also required by C/C++ applications.

ﬁn Note: Make sure the AppearanceLib is set to “link weak” to allow your Appearance-savvy app to run on a Macintosh
without an Appearance Manager.

You can now build your project and run your application.

76



2 Installing Tools Plus

Compiling the CodeWarrior Pascal (PPC) Demo Application

The easiest way to compile the CodeWarrior Pascal demo application included with Tools Plus is to have the
following files in the same folder:

Demo.pn ToolsPlus.Lib
Demo.r.rsrc ToolsPlus.CW6&7.PPC.Lib
Demo.p ToolsPlus.p

Double-click the Demo.u project file to launch CodeWarrior Pascal, then run your project.

If you are creating a new project (instead of using the one included as part of Tools Plus), you first need to install
Tools Plus in your project file as described earlier in this chapter. Copy the files “Demo.w” and “Demo.m.rsrc” to the
folder containing your project. Add the following files to your new project:

Grp | CodeWarrior Pro CodeWarrior 11
1 MSL RuntimePPC.Lib MWCRuntime.Lib
InterfaceLib InterfaceLib
MSL C.PPC.Lib Maclntf(UPI).PPC.lib
PASCAL.PPC.lib MSL C.PPC.Lib

AppearanceLib <=Note! | PASCAL.PPC.lib
AppearanceLib <=Note!

2 ToolsPlus.Lib ToolsPlus.Lib
ToolsPlus.p ToolsPlus.p

3 Demo.r.rsrc Demo.s.rsrc
Demo.p Demo.p

Grp | CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6

1 MWCRuntime.Lib MWCRuntime.Lib MWPRuntime.Lib
InterfaceLib InterfaceLib InterfaceLib
Maclntf(UPI).PPC.lib Maclntf(UPI).PPC.lib Maclntf(UPI).PPC.lib
ANSI C.PPC.Lib ANSI C.PPC.Lib P/ANSI.PPC.Lib
PASCAL.PPC.lib PASCAL.PPC.lib P/Rt.PPC.lib

AppearanceLib <=Note! | AppearanceLib <=Note! | AppearanceLib <=Note!
console.stubs.c

2 ToolsPlus.Lib ToolsPlus.Lib ToolsPlus.Lib
ToolsPlus.p ToolsPlus.CW6&7.PPC.Lib | ToolsPlus.CW6&7.PPC.Lib
ToolsPlus.p ToolsPlus.p
3 Demo.m.rsre Demo.m.rsre Demo.m.rsre
Demo.p Demo.p Demo.p

,@D Note: Make sure the AppearanceLib is set to “link weak” to allow your Appearance-savvy app to run on a Macintosh

without an Appearance Manager.

You can now build your project and run your application.

Water’s Edge Software 77



Tools Plus

Errors when compiling the CodeWarrior demos (or applications):

At the time of this writing, Water’s Edge Software has made every effort to ensure that our demo application will
compile successfully the first time. Unfortunately, Apple (who produces the C/C++ headers and Pascal interfaces into
the Macintosh’s toolbox) and Metrowerks development environments are undergoing ongoing revisions. As a result,
some inconsistencies may arise between compiler versions. Fortunately, these differences are simple to resolve.

Access Paths

When using Tools Plus for CodeWarrior C/C++ (680x0 or PowerMac), a Pascal runtime library is required. You may
have to change the Access Path (in your project’s preferences) to locate the required file. This applies to the demo
application as well as the project in the “starter files” folder.

File Names

Metrowerks occasionally changes the names of their libraries. If your demo project (or starter project) can’t locate a
file, remove the problem file from your project then add the equivalent, correctly named file. An Access Path to the
correctly named file will be created automatically if it is required.

Link Errors and Warnings

There are several situations where your application may get link errors or warnings. In all cases, it is because of human
error in either the files you have added to your project, or the way you have set up your project.

Link error... 16-bit code reference to ‘RoutineName’ is out of range.
Make sure that your 680x0 project does not have a segment that exceeds 32K. Start by confirming that each Tools
Plus library is in its own segment, then recompile your project. If the problem persists, check your source code files
to make sure that no segment exceeds 32K, then recompile. As a last resort, check other libraries to make sure the
segments they are in do not exceed 32K. A simpler alternative is to compile your project using a “large” code model
(this is set in your project’s preferences) and use a single “large” Tools Plus library instead of multiple “small” Tools
Plus libraries. Your executable will be larger, but it makes compilation and memory management a little simpler.
Large (32-bit) libraries are available in the Tools Plus Developer Kit.

Link error... ‘RoutineName’ referenced from ‘CallingRoutine’ is undefined.
You have forgotten to include one or more libraries that are needed in your project. Check the instructions in this
chapter and add the necessary libraries to your project. If IdleControls is listed as one of the offending routines, then
you have intentionally or inadvertently specified that your application will be Appearance Manager-savvy. You can
rectify this by adding the AppearanceLib library to your PowerPC project if you want it to be Appearance Manager-
savvy, or change your application such that it does not use the Appearance Manager (details on how to do this are
provided in the “Designing Your Application” chapter).

Link warning... ignored ‘RoutineName’ (descriptor) in FileName, previously defined in SourceFileName
This happens if you include either a routine with the same name as one that has already been defined elsewhere, of if
you include multiple libraries that both contain the same routine name. If IdleControls appears as one of the
offending routines, then you have added the AppearanceLib library to your PowerPC project without telling Tools
Plus that your application is Appearance Manager-savvy. You can correct this problem by either removing the
AppearanceLib library from your project, or by informing Tools Plus that your application is Appearance Manager-
savvy (details on how to do this are provided in the “Designing Your Application” chapter).

78



2 Installing Tools Plus

Compiling the THINK C (68K) 5, 6 or 7 Demo Application

The easiest way to compile the THINK C (version 5, 6 or 7) demo application included with Tools Plus is to have the
following files in the same folder:

Demo.n ToolsPlus.Lib1 ToolsPlus.Lib5 ToolsPlus.h

Demo.m.rsrc ToolsPlus.Lib2 ToolsPlus.Lib6 ToolsPlus.c

Demo.c ToolsPlus.Lib3 ToolsPlus.Lib7 PascalStrHandles.c
ToolsPlus.Lib4

Double-click the Demo.x project file to launch THINK C, then run your project.

Your project file keeps track of each file’s location as you add it to your project, so you may want to create a new
project file after you have put all the Tools Plus libraries and related files in their permanent folders. Create a new
project named “Demo.xt” in the same folder as “Demo.rw.rsrc¢” and “PascalStrHandles.c”. Add the following files to
your new project:
Segment 1:  MacTraps
MacTraps?2
Segment 2:  ANSI
Segment 3:  ToolsPlus.Lib1
Segment 4:  ToolsPlus.Lib2
Segment 5:  ToolsPlus.Lib3
Segment 6:  ToolsPlus.Lib4
Segment 7:  ToolsPlus.Lib5
Segment 8:  ToolsPlus.Lib6
Segment 9:  ToolsPlus.Lib7
ToolsPlus.c
Segment 10: Demo.c

You can now build your project and run your application.

ﬁ]} Note: Make sure you allocate sufficient memory to the debugger if you are going to run the Tools Plus demo
application with the debugger on. The Tools Plus demo was written as one large source file, making it easier to
compile and study, but making it hungry for debugger memory. Allocate at least SOOK to the debugger. If you
don’t have enough memory, turn the debugger off (Project menu, deselect “Use Debugger”) when running the
demo.

Your applications will likely be written in a more intelligent fashion, abandoning one large source file in
favor of several smaller ones.

Errors when compiling the THINK C Demo:

Symantec C/C++ compilers have undergone a series of revisions and some inconsistencies have arisen between
compiler versions. Fortunately, these differences are simple to resolve. If your compiler gives you an error that states
“argument to function ‘x’ does not match prototype,” it indicates that Symantec has made a minor revision to that
function’s prototype (in the error message, ‘x’ will be replaced by the function’s name). To correct this error, inspect
the offending line in the source file, which is likely a line like:

PenPat (&gray);
and revise it to match the prototype in the related header file. In the example above, the correction is as simple as
changing the line to:

PenPat(gray); /* Remove ampersand (&) from the variable */

If you have problems getting the demo compiled, see the “Technical Support” chapter for information on how to
contact Water’s Edge Software for assistance.

Water’s Edge Software 79



Tools Plus

Compiling the SPM C/C++ (68K) 8 Demo Application

The easiest way to compile the SPM C/C++ (version 8.0.5 or later) demo application included with Tools Plus is to
have the following files in the same folder:

Demo.nt ToolsPlus.Libl.o ToolsPlus.Lib5.0 ToolsPlus.h
Demo.m.lo ToolsPlus.Lib2.0 ToolsPlus.Lib6.o ToolsPlus.c
Demo.r.rsrc ToolsPlus.Lib3.0 ToolsPlus.Lib7.0 PascalStrHandles.c
Demo.c ToolsPlus.Lib4.0 QDGlobals.a.o

Double-click the Demo.rw project file to launch SPM, then run your project.

Your project file keeps track of each file’s location as you add it to your project, so you may want to create a new
project file after you have put all the Tools Plus libraries and related files in their permanent folders. Create a new
project named “Demo.x” in the same folder as “Demo.rw.rsrc” and “PascalStrHandles.c”. Add the following files to
your new project:
Libraries:  <68Kansi-small.o>
<Interface.o>
<Mathlib.o>
<MPW68KRuntime.o>
Tools Plus: QDGlobals.a.o
ToolsPlus.c
ToolsPlus.Lib1l.o
ToolsPlus.Lib2.0
ToolsPlus.Lib3.0
ToolsPlus.Lib4.0
ToolsPlus.Lib5.0
ToolsPlus.Lib6.0
ToolsPlus.Lib7.0
Main: Demo.c

You can now build your project and run your application.

@) Note: Make sure you allocate sufficient memory to the debugger if you are going to run the Tools Plus demo
application with the debugger on. The Tools Plus demo was written as one large source file, making it easier to
compile and study, but making it hungry for debugger memory. Allocate at least SO0K to the debugger. If you
don’t have enough memory, turn the debugger off (Project menu, deselect “Use Debugger”) when running the
demo.

Your applications will likely be written in a more intelligent fashion, abandoning one large source file in
favor of several smaller ones.

After Compiling:

You will almost certainly get link errors the first time you compile the demo application because the “QDGlobals.a.0’
library must be linked first in a Tools Plus application.

)

SPM automatically creates a link order file named Demo.m.lo and adds it to your project. Open the Demo.z.1o file and
move QDGlobals.a.o such that it appears on the first line. Save the changes in the Demo.z.1o file, then build your
application again. This time the project will link as expected and build the demo application.

80



2 Installing Tools Plus

Compiling the SPM C/C++ (PPC) 8 Demo Application

The easiest way to compile the SPM C/C++ (version 8.6 or later) demo application included with Tools Plus is to have
the following files in the same folder:

Demo.n ToolsPlus.Lib ToolsPlus.h
Demo.rsrc QDGlobals.c ToolsPlus.c
Demo.c PascalStrHandles.c

Double-click the Demo.x project file to launch SPM, then run your project.

Your project file keeps track of each file’s location as you add it to your project, so you may want to create a new
project file after you have put all the Tools Plus libraries and related files in their permanent folders. Create a new
project named “Demo.xt” in the same folder as “Demo.s.rsrc” and “PascalStrHandles.c”. Add the following files to
your new project:
Glue: <PPCMW_Compatibility.o>
Runtime: <InterfaceLib>
<MathLib>
<AppearanceLib> <Note!
<str.c>
Tools Plus:  ToolsPlus.c
ToolsPlus.Lib
Main: Demo.c
QDGlobals.c
Demo.rsrc

@) Note: Make sure the AppearanceLib is set to “link weak” to allow your Appearance-savvy app to run on a Macintosh
without an Appearance Manager.

You can now build your project and run your application.

Water’s Edge Software 81



Tools Plus

Compiling the THINK Pascal (68K) Demo Application

The easiest way to compile the THINK Pascal demo application included with Tools Plus is to have the following files
in the same folder:

Demo.rnt ToolsPlus.Lib1 ToolsPlus.Lib4 ToolsPlus.Lib7
Demo.m.rsrc ToolsPlus.Lib2 ToolsPlus.Lib5 ToolsPlus.p
Demo.p ToolsPlus.Lib3 ToolsPlus.Lib6

Double-click the Demo.x project file to launch THINK Pascal, then run your project.

Your project file keeps track of each file’s location as you add it to your project, so you may want to create a new
project file after you have put all the Tools Plus libraries and related files in their permanent folders. Create a new
project named “Demo.x” in the same folder as “Demo.m.rsrc”. Add the following files to your new project:
Segment 1: Runtime.Lib
Interface.Lib
Segment 2: ToolsPlus.Libl
Segment 3: ToolsPlus.Lib2
Segment 4: ToolsPlus.Lib3
Segment 5: ToolsPlus.Lib4
Segment 6: ToolsPlus.Lib5
Segment 7: ToolsPlus.Lib6
Segment 8: ToolsPlus.Lib7
ToolsPlus.p
Segment 9: Sound.p
Demo.p

You can now build your project. After the initial compile, you will notice THINK Pascal created some additional
entries in your project file:

«ToolsPlus.Lib1:1»

«ToolsPlus.Lib2:1»

«ToolsPlus.Lib3:1»

«ToolsPlus.Lib4:1»

«ToolsPlus.Lib5:1»

«ToolsPlus.Lib6:1»

«ToolsPlus.Lib7:1»

«%_MethTables»

«%_SelProcs»

«%_Profiler»
The «ToolsPlus.Lib1:1» through «ToolsPlus.Lib7:1» items contain the object code from the Tools Plus libraries,
while «%_MethTables», «%_SelProcs» and «%_Profiler» items are part of THINK Pascal’s overhead (consult your
THINK Pascal User Manual for details).

Drag «ToolsPlus.Lib1:1» into the same segment as ToolsPlus.Lib1, «ToolsPlus.Lib2:1» into the same segment as
ToolsPlus.Lib2, and so on for all the Tools Plus libraries.

Drag «%_MethTables», «%_SelProcs» and «%_Profiler» to any segment that won’t be unloaded while your
application is running, such as the one containing the Runtime.Lib library.

Even though the project window indicates that Segment 1 exceeds the 32K limit imposed on segments, the project will
compile and run. When you build your application, the smart linker will strip away unneeded code and significantly
reduce the size of this segment.

82



3 Designing Your Application

3 Designing Your Application

Generally, applications that are written with Tools Plus follow the basic structure outlined below. It is also useful to
know this when you are writing plug-ins or external code modules which are detailed near the end of this chapter.

1. #include or uses statement: Your program must be made aware of Tools Plus...

If your C source code file refers to any Tools Plus routines, defines, structures, or type definitions, it must
have an “include” statement, such as the one below, at the beginning of the file.

#include "ToolsPlus.h"

Place ToolsPlus.h as the last file in your #include section (if you don’t care why, skip to the next
paragraph). The reason for this placement of ToolsPlus.h is that other headers may already exist or may be
subsequently created with routines whose formal parameters coincide with #defines in Tools Plus.
Another benefit is that Tools Plus makes your application more tolerant to changes made in Apple’s
interfaces. For example, Apple redefined inUpButton to kInUpButtonControlPart. ToolsPlus.h defines
inUpButton to the original Apple value, so your source code will continue to work with the original
inUpButton or with the newer kInUpButtonControlPart.

As an alternative to adding #include "ToolsPlus.h" to each of your source files, you can add the
#include statement to your project’s prefix thereby giving each source file access to the Tools Plus header.
“The C Header File” section later in this chapter provides details on how to do this.

If your Pascal source code file refers to any Tools Plus routines, constants, records, or types, it must have
a “uses” statement, such as the one below, at the beginning of the file. The uses statement may include
other items as well.

uses ToolsPlus

2. Global Variables: Declare a global variable of TPEventRecord type. A good name for this variable is Event,
since it’s used to get events from Tools Plus. If you want to keep your application’s global variable memory to a
minimum, you can use the TPEventPointer type, which is a pointer to a Tools Plus event record.

3. Initialization: Your application will start by initializing the various managers in the Macintosh’s toolbox, then
initializing Tools Plus. See the Initialization chapter for details.

4. Initial Conditions: Your application creates its initial conditions for operation. This includes displaying windows,
opening files, etc. These are the things your application has to do before responding to any events.

5. Main Event Handler: This is where your application responds to events. Events are generated as a result of the
user’s actions (typing, clicking, etc.) as well as system actions (refresh a window, inserting a disk, etc.). Typically,
after setting up the initial conditions as described above, your application won’t do anything unless it’s in direct
response to an event. You write an event handler routine that responds to events, and Tools Plus calls this routine
when it has an event. An example of a application’s main event handler routine is provided later in this chapter.
To start processing events, your application calls the ProcessEvents routine.

6. Quitting: After the user quits your application, certain house cleaning should be done, such as updating and
closing files. At the very least, the wrist watch cursor should be displayed to let the user know that the Macintosh
is busy while it returns to The Finder.

If you have written Macintosh applications before, then Tools Plus will be a simple transition. You can take an
identical approach to your original programming style except:
* You no longer need to call the toolbox’s GetNextEvent or WaitNextEvent routines to get an event.
* You no longer need an event loop. Instead, you just write an event handler routine that looks like one cycle of an
event loop inside. Tools Plus will call your routine when it has an event that needs to be processed.
* You use Tools Plus routines to create and maintain your user interface instead of most of the Macintosh toolbox’s
routines.

Water’s Edge Software 83



Tools Plus

High Level Structure of a Tools Plus Application

At a very high level, all applications that are written with Tools Plus will have a structure that is similar to the
following pseudo-code:

if InitToolsPlus(..) then If Tools Plus libraries were initialized...
if MyStartupCode then If your application’s startup code executed without errors. ..
ProcessEvents Process events until the user wants to quit. Tools Plus calls your event handlers.

While your application is processing events, at some point it will receive a request to quit, usually coming from the
user selecting the File menu’s Quit command, or by way of a “quit application” Apple Event. When such a request is
made, your application should call a routine that does the following type of work:

* Close unchanged documents

* For every changed document, ask the user if he wants to save changes before quitting (provide the options for
saving changes, not saving changes, and canceling the quitting process). If the user has not cancelled quitting...
Save preference files
Close remaining windows
Deallocate dynamic objects like handles, pointers and UPPs
Call the QuitToolsPlus routine. This instructs the ProcessEvents routine to stop processing events.
In applications (not plug-ins), you don’t have to close all windows and deallocate dynamic objects before your
application quits because MacOS does this automatically. It’s just a good housekeeping habit.

A Macintosh Event, in Brief

The following is a very brief synopsis of the Toolbox Event Manager, as described in Inside Macintosh. The Toolbox
Event Manager is the link between your application and its user. Whenever the user types a key on the keyboard or
numeric keypad, presses the mouse button, or inserts a disk in the disk drive, your application is made aware of this by
means of an event.

In addition to monitoring the user’s actions, the Toolbox Event Manager also reports other types of events that serve to
inform your application as to “what is happening.” Such an event is reported when a partially obscured window is
uncovered and its contents need to be redrawn.

The Toolbox Event Manager reports only “bare-bone” events. When a “mouse-down” event occurs, the Event
Manager reports the click’s location in the screen’s global co-ordinates, and the time of the click. It’s up to your
application to determine which window, and which object in the window was clicked. For those who want to pursue
this further, read about the Event Manager in Inside Macintosh.

Fortunately, Tools Plus events are easier to use, and are described later in this manual.

Macintosh Event Queue

As events are generated, they are placed in an event queue. When your application is ready to process them, the oldest
event is processed first. This journaling mechanism lets the Macintosh remember a series of rapidly occurring events
and store them until your application is ready to process them.

Events have a certain priority, meaning that some events will be reported before others regardless of when they
actually occurred. Their priority is as follows:

1. Activate/deactivate a window

2. Mouse-down/up, key down/up, disk insert, network driver, application-defined events (first in first out)
3. Auto-key (key pressed and held, causing it to repeat)

4. Update a window (refresh a window in front-to-back order)

The priority of events insures that illogical events are not reported. For example, the user may click twice in a
window’s “close away” box before your application gets around to processing the event. The first click will signal
your application to close the window. The second click will not be reported as a click in a non-existent (closed)
window. The click’s location will be analyzed after the window is closed, and reported accordingly.

84



3 Designing Your Application

33> Warning: The event queue can store a maximum of 20 events. If your application is so busy that it lets more than 20

events accumulate in the queue, the oldest events will be discarded to make room for the new ones. This
may have negative consequences for your application.

Key Up Events

Although events are detailed in Inside Macintosh, and later in this manual in the Event Management chapter, you
should be aware that key-up events are ignored by default. If your application needs to be informed when a key is
released, the following statement should appear in your application immediately following InitToolsPlus:

SetEventMask (EveryEvent) ;

This SetEventMask statement tells the Event Manager to report key-up events as well as all others to your application.
Reporting key-up events may cause problems in Finder (not MultiFinder) in System 5.x and 6.x since some desk
accessories may not expect key up events.

Warning: Your application shouldn’t set the event mask to prevent any events other than key-up events.

Tools Plus Events, and the Event Loop versus an Event Handler

Tools Plus events are a lot easier to use than the Macintosh’s toolbox Event Manager’s events. You don’t need to get
events, and you don’t need an event loop. Instead, you write a simple event handler routine that looks like one cycle of
an event loop, and Tools Plus calls this routine when it has an event that needs to be processed by your application.
The event reported to your event handler routine is already translated into something that is immediately usable. The
Event Management chapter details these events.

In a traditional application (below left), the programmer writes an “event loop” that gets an event, applies it to the
application, tests to see if the user has quit the application, then loops back to get another event. The task of applying
the event to the application becomes increasingly complex as the user interface’s complexity grows, and as the number
of windows increase. While the event loop approach worked well when Macintosh was introduced in 1984, at a time
when graphic user interfaces were simple, it has proved to be lacking in today’s state-of-the art applications.

Application
startup
Event %
Loo| T
P Getanevent (€ Application
startup
A\ 4
Apply event to Application
application Process Events > Event Handler
T Window #1
. Application Event Handler
Did ‘ shut down WINAow #2
user quit No. Event Handler
the app? n
Event Handler
Yes... Shared Window
Event Handler
Application
shut down
Traditional application Tools Plus application with
with an event loop event handler routines

Water’s Edge Software 85



Tools Plus

In Tools Plus, you create an event handler routine that receives Tools Plus events as they need to be processed. You
must create a default event handler, also called the application event handler because it receives all events that are not
handled by any specialized event handlers. You make Tools Plus aware of the default event handler with the
InitToolsPlus routine (see the Initialization chapter for details). You can optionally create an event handler for one or
more windows. Events that are specific to a window, such as clicking a button or refreshing the window, are sent to the
window’s event handler. Although creating an event handler routine and associating it with a window is highly
recommended, it is not essential. See the SetWindowEventHandler routine in the Event Management chapter for
details on how to assign an event handler routine to a window.

When you design an event handler routine for a window, keep in mind that you can use the same routine to handle
events in multiple windows of the same kind. For example, if you are creating a “Search...” dialog, one event handler
routine can be used for a dozen concurrently open search dialogs because they all look and behave the same way.

The Event Handler Routine

In a Tools Plus application, you write an event handler routine to respond to events. Like an event loop, your
application’s main event handler routine is the central hub of your application. A typical event handler has a structure
that is similar to the example below. Each window can have its own event handler routine to handle events that are
specific to that window. For now, don’t concern yourself with the contents of the “Event” record. All aspects of event
management are explained by the Event Management chapter of this manual.

pascal void MainEventHandler (Ptr CustomDataPtr)

{
switch (Event.What) /*Respond to each type of event.. */
case doActivate: /*User wants to activate the window.. */
MyActivateRoutine();
break;
case doRefresh: /*Window needs to be refreshed.. */
MyRefreshRoutine();
break;
case doGoAway: /*User clicked window's close box */
MyCloseRoutine();
break;
case doButton: /*User clicked a button.. */
switch (Event.Button.Num) /*Respond to specific type of button.. */
{
case kOKbutton: /*User clicked OK button.. */
myOKroutine(); /* */
break;
case kCancelButton: /*User clicked Cancel button */
myCancelRoutine(); /* */
break;

/*cases for other buttons*/

break;

case doMenu: /*User selected a menu.. */
MyMenuRoutine();
break;

case doNothing: /*No event available. If your app does any */
MyBackgroundRoutine(); /* background processing, execute one “cycle.” */
break;

/*cases for other events*/
default: /*Ignore events that are not listed in the cases */
break;

}

There are two big differences between an event handler routine as a traditional event loop: (1) a traditional event loop
is always testing for a condition that indicates that the user has quit your application, and (2) a polling routine such as
the toolbox’s WaitNextEvent or Tools Plus’s obsolete PollSystem routine, gets an event and returns with a value that
indicates if it got an event (true) or not (false). The following pseudo-code shows a traditional event loop:

86



3 Designing Your Application

while not done do Keep getting and processing events until the user quits
if WaitNextEvent (myEvent) then If you obtained an event...
ProcessTheEvent Process the event (a case for each event)
else Otherwise, if an event was not obtained...
CallBackgroundProcess Execute one cycle of the background process

In the example above, you can think of the ProcessTheEvent routine as an event handler that is called upon to process
an event (although Tools Plus events are much easier to work with than traditional toolbox events). As you can see,
your event handler routine simply responds to an event. One thing to note is that Tools Plus does not differentiate
between “having” an event and “not having” an event, like a polling routine does. In Tools Plus, your event handler
routine is called if any event is available, including a null event (i.e., when WaitNextEvent returns with a value of
false). The doNothing case in your application’s main event handler routine takes care of null events, and is equivalent
to “not having” an event.

When reviewing an example of event handler routines in this manual, keep in mind that this is only an example, and
not a Tools Plus prerequisite. You will probably write a main event handler that is more suitable to your own style of
programming and to your application’s unique requirements. Your application can also have an event handler for any
or all of its windows. See the Event Management chapter for details about event handler routines.

Recursion in the Event Handler Routine

Tools Plus’s use of an event handler routine instead of a traditional event loop lends itself to simpler and more
structured coding. It also introduces one potential hazard that does not exist in an event loop. In situations where your
event handler code takes a while to execute, you will hopefully decide to make your application a good citizen and
share the processor with other applications during this lengthy process. Tools Plus provides the
Process1EventWhileBusy routine to handle this by reading an event from the Macintosh’s Event Manager, processing
it internally, and then calling your event handler routine.

The issue that arises is that your application will call Process1 EventWhileBusy from within the event handler routine,
and Process1EventWhileBusy will likely call your event handler routine to process an event. It is important that you
write your event handler routine with awareness of this possibility, and make provisions accordingly. In the case where
your application calls the Process1 EventWhileBusy, ask yourself “what should this code do if my event handler gets
called while this code is executing?”” In many cases, your lengthy code will be running in response to a doNothing
(idle) event, so it’s a simple matter of calling Process1EventWhileBusy and telling it to ignore doNothing events, thus
preventing the calling code from being reexecuted. In more complex cases, you may need to set a flag that says “I’'m
running already, so don’t reexecute me.” You could accomplish this as follows:
* Create a global boolean named alreadyRunning, and set it to false
* Before you start executing the lengthy process, test to determine if it is already running, as shown in the following
pseudo-code:
if not alreadyRunning then
alreadyRunning = true;
repeat
do_something;
ProcesslEventWhileBusy(true);
until length task is done;
alreadyRunning = false;
end;

It is fairly easy to avoid problematic situations by exercising a little forethought. Another consideration to keep in
mind when calling Process 1 EventWhileBusy, is that the user can interact with the user interface by doing such things
as selecting a pull-down menu, activating another window, or clicking a button. Doing so will certainly resulting in
calling your event handler routine (which just called Process1EventWhileBusy). You can avoid this situation by
having your application display a wrist watch cursor, thereby preventing user interaction with other user interface
elements. Most developers will not want to use this inelegant option, opting instead to prevent recursion in a friendly
manner. For example, if a pull-down menu is used to start a lengthy process such as a sort, and your application calls
Process1EventWhileBusy during this process, an easy way to prevent recursion of that code is to disable the triggering
pull-down menu item until the sort is completed.

Water’s Edge Software 87



Tools Plus

System 5 and 6’s Finder/MultiFinder, and System 7 and higher

There are some subtle differences between applications that run under Finder (System 5 and 6) and MultiFinder
(System 5 and 6) and System 7 and higher. Fortunately, Tools Plus runs under Finder, MultiFinder, and System 7 and
higher with minimal consideration on your part. Please note that there is a distinction between Finder and MultiFinder
when reading this manual. There are entire chapters dedicated to the Finder and MultiFinder in other books, as well as
in THINK Reference. Here is an overview.

Finder

Prior to System 5, the Macintosh had only the Finder to present and maintain its desk top metaphor. Finder lets you run
only one application at a time, so your application has access to all the memory the Macintosh has available. Desk
accessories (DAs) share the same heap memory with your application, and their windows can be intermingled with
windows in your application.

When the user opens or activates a desk accessory, Tools Plus automatically modifies your menus to disable all menus
and menu items that don’t pertain to the desk accessory: only the File menu’s Quit item is enabled, as are the Edit
menu’s Undo, Cut, Copy, Paste and Clear items. When the desk accessory is closed or your application’s window is
activated, the menus are automatically restored to their normal settings.

If your application has a tool bar and/or floating palettes, Tools Plus automatically creates a “Desk Accessory Layer”
in which all desk accessory windows are kept together to prevent their intermingling with your application’s windows.
This is done to prevent the confusing condition that arises when the foremost window is a floating palette or tool bar
(belonging to your application), behind which is a desk accessory, followed by another window belonging to your
application. To the user, it may appear that the palette’s operations apply to the desk accessory.

Programming for the Finder is the simplest case, since you can consider your application to be always active and the
only application running.

MultiFinder

With the advent of System 5, MultiFinder made cooperative multitasking a reality on the Macintosh. Cooperative, or
“switched” multitasking as it is often called, lets several applications run simultaneously by cycling amongst all the
tasks. The term “cooperative” is used because each application must cooperate with all others by relinquishing control
to give the others some processing time.

Under MultiFinder, the user can launch and run several applications. MultiFinder itself is an application that is always
running, busily presenting and maintaining the desk top metaphor. When an application is launched, it is allocated a
finite amount of memory that is specified by its SIZE resource.

Only one application can be active (the frontmost window) at a time under MultiFinder, even though, potentially, you
may be able to see dozens of windows from multiple applications simultaneously. Therefore, the active application is
temporarily “suspended” when another application (or desk accessory) is activated. Please note that suspended
applications can also receive events and processing time. Some of the SIZE resource’s settings specify how your
application behaves when it is suspended or resumed.

Tools Plus takes care of task switching. This includes “minor” switches in which your application gets some
processing cycles then allows other applications to do the same, and “major” switches in which your application is
either activated or deactivated. The Event Management chapter covers this topic in detail.

Desk accessories are handled slightly differently under MultiFinder in that they don’t share memory with your
application. Instead, they inhabit the “DA layer.” The DA layer is like a single application in which all desk accessory
windows exist. Whenever the user clicks a desk accessory, the DA layer is activated. Tools Plus takes care of
interaction with desk accessories automatically. Whenever a desk accessory is activated, the menu bar is replaced with
the DA layer’s menu bar, and your application’s tool bar and floating palettes are hidden. Your application’s menu bar
is restored when your application is activated, and the tool bar and floating palettes are displayed.

88



3 Designing Your Application

System 7 and higher

Programming for System 7 and higher is identical to programming for MultiFinder. Each desk accessory, however,
behaves like a separate application. Tools Plus takes care of this automatically.

Warning: All MultiFinder and System 7 (and higher) compatible applications must have a SIZE resource. The
Completing Your Application chapter details the requirements of the SIZE resource. THINK Pascal users
must create their own SIZE resource whereas THINK C/C++ and CodeWarrior users only need to
correctly set the settings within their compiler, and it will add the SIZE resource to your application. It is
best to always include a SIZE resource in your application.

The C Header file (ToolsPlus.h)

When the Macintosh was originally created, Apple made a strong commitment to Pascal as the “language of choice”
for Macintosh programming. Therefore, the Macintosh’s toolbox was designed to work with Pascal calling
conventions and Pascal strings.

Fortunately, C allows you to access the Macintosh toolbox’s Pascal functions and procedures from C by declaring
prototypes as having Pascal calling conventions:

pascal void WindowTitle (short Window, Str255 Title);

Pascal Strings versus C Strings

The one thing you should pay particular attention to is Pascal strings. In Pascal, a string is a constant or variable that is
from 1 to 255 bytes in length, prefixed with an additional length byte (byte zero). Pascal strings, unlike C strings, are
not null terminated. The Str255 structure is available in C to accommodate Pascal-style length-prefixed strings. It is
defined in the Types.h header file as:

typedef unsigned char Str255[256];

When you populate a Pascal string, remember to prefix the string’s text with “\p” to indicate that it is a Pascal string.
The example below illustrates this:

WindowTitle (18, "\pCustomer Inquiry");

You can use the P2CStr and C2PStr routines (defined in the pascal.h header file) to convert Pascal strings to C strings,
and C strings to Pascal strings.

Using C and/or Pascal strings in Tools Plus parameters

By default, Tools Plus assumes that you will use only Pascal strings for parameters in Tools Plus routines. This is
consistent with the Macintosh toolbox. C/C++ programmers have the option of using Pascal strings only, C strings
only, or a mix of either as desired when calling Tools Plus routines. Furthermore, you can make the decision to use
Pascal and/or C strings on a per-project basis, or you can set it once and apply those settings to all your projects.

The ToolsPlus.h header and the ToolsPlus.c source file both recognize two #defines that describe how you want to use
C strings in parameters to Tools Plus routines:

TOOLSPLUS ALLOWS CSTRINGS When set to 1, Tools Plus routines that have a string parameter
optionally accept a C string in place of a Pascal string

TOOLSPLUS_USES_ONLY CSTRINGS When setto 1, Tools Plus routines that have a string parameter accept
only a C string (Pascal strings are not accepted)

Water’s Edge Software 89



Tools Plus

If you want to... Do the following...

Use Pascal strings only No changes required (this is the default)

in all Tools Plus projects

Use C and/or Pascal strings (1) In the ToolsPlus.h file, un-comment the following line:
in all Tools Plus projects #define TOOLSPLUS ALLOWS CSTRINGS 1

(2) When you want to use a C string as a parameter in a Tools
Plus routine, use the routine name in lower case letters
(e.g., use alertbox instead of AlertBox)

Use C strings only (1) In the ToolsPlus.h file, un-comment the following line:

in all Tools Plus projects #define TOOLSPLUS USES ONLY CSTRINGS 1

(2) Use Tools Plus routines as you normally do, except with C
strings in place of Pascal strings.

Use Pascal strings only No changes required

on a per-project basis

Use C and/or Pascal strings (1) Add the following line to your prefixes*:

on a per-project basis #define TOOLSPLUS ALLOWS CSTRINGS 1

(2) When you want to use a C string in a parameter in a Tools
Plus routine, use the routine name in lower case letters
(e.g., use alertbox instead of AlertBox)

Using C strings only (1) Add the following line to your prefixes*:

on a per-project basis #define TOOLSPLUS USES ONLY CSTRINGS 1

(2) Use Tools Plus routines as you normally do, except with C
strings in place of Pascal strings.

*Setting your prefixes

CodeWarrior uses a file to store prefixes (information that is processed at the beginning of each source file). You can
set the name of your project’s prefix file in your project’s Preferences under the Edit menu. The C/C++ Language
preferences panel defaults to a prefix file named “MacHeaders.h”. Create a prefix file in the same folder as your
project and enter its name in the C/C++ Language preferences panel. A good name would be “MyProject.prefix” or
something similar. Typically, your prefix file will contain the following two lines:

#include <MacHeaders.h>

#include "ToolsPlus.h" // Optional.. may be in your source file instead

If you want your CodeWarrior project to use C strings only as parameters in Tools Plus routines, insert a line just
before the #include "Tools Plus" that reads:

#define TOOLSPLUS USES ONLY CSTRINGS 1

Symantec C/C++ stores its prefixes as part of the project. The Edit menu’s Options lets you set your prefixes (a
THINK C or Symantec C++ sub-option may be available). Typically, your prefix file will contain the following two
lines:

#include <MacHeaders.h>

#include "ToolsPlus.h" // Optional.. may be in your source file instead

If you want your Symantec C/C++ project to use C strings only as parameters in Tools Plus routines, insert a line just
before the #include "Tools Plus" that reads:

#define TOOLSPLUS USES ONLY CSTRINGS 1

Remember, these prefix changes are required only if you want to specify the use of C and/or Pascal strings on a per-
project basis. If you want to use a specific setting for all your projects (such as C strings only), modify the required
single line in the ToolsPlus.h header file.

90



3 Designing Your Application

Appearance Manager

Applications written with Tools Plus will run under Mac OS 8 and its Appearance Manager. Tools Plus also provides
services that facilitate the development of applications that can run on Macs with the Appearance Manager or without,
in the Appearance Manager’s “System 7 compatibility” mode (a user interface that looks like System 7) or in its gray
scale theme taking advantage of Apple’s new windows and controls. In most cases, negligible effort is required to
accomplish this compatibility.

Multi-system compatibility with custom window & controls

Even though the Appearance Manager includes great looking windows, floating palettes, 3D buttons, tabs, sliders and
other controls, your application will likely need to use custom WDEFs (window definitions) and CDEFs (control
definitions) to get similar level of polish when your application runs on a Mac without the Appearance Manager. A
floating palette like the attractive Infinity Windoid (included in the Tools Plus Developer Kit) is the most commonly
used WDEF. CDEFs that are in the highest demand are 3D buttons, tabs, and sliders, like those found in SuperCDEFs
(also included in the Tools Plus Developer Kit).

When you create your application, assign your CDEFs and WDEFs resource IDs that do not conflict with Apple’s
standard resources. Assigning resource IDs of 128 or higher to your custom definitions is a good idea. Write your
entire application such that it uses the custom resources throughout. You accomplish this by using custom procIDs
instead of Apple’s standard procIDs wherever you want to use a custom window or button. ProcIDs are explained in
this manual in the chapters detailing windows, buttons and scroll bars. If you are creating your window layouts using
dialogs (‘DLOG’ resources), create controls (‘CNTL’ resources) in place of standard push buttons, radio buttons and
check boxes because controls let you specify a procID that is different from Apple’s standard procIDs.

When you have your application working with the custom WDEFs and CDEFs, modify your application’s
initialization routine shortly after using InitToolsPlus. Tools Plus’s UsingAppearanceManager routine lets your
application know if it is running with the benefit of the Appearance Manager. If it is, then Apple’s standard window
and control procIDs will be mapped to the Appearance Manager’s 3D windows and controls. The following sample
code shows how you can replace your custom window and control procIDs with Apple’s standard procIDs through
your application:
if UsingAppearanceManager then
begin
ReplaceWindowProcID(ordPaletteProc, 1985);
ReplaceWindowProcID(ordPaletteProc + 2, 1993);
ReplaceControlProcID(myCheckBoxProc, checkBoxProc);
ReplaceControlProcID(myRadioButProc, radioButProc);
end;

Using the Appearance Manager

Your application can take advantage of the extended set of user interface elements and services that are offered only in
the Appearance Manager. This manual does not detail the Appearance Manager, but it does explain how to prepare
your Tools Plus application to use the Appearance Manager, and later, how to make use of many of the new user
interface elements. For complete information about the Appearance Manager, please obtain an Appearance Manager
SDK (Software Developer Kit) from Apple, or refer to the most recent edition of Inside Macintosh.

Tools Plus 680x0 libraries automatically have access to the Appearance Manager if it exists on the Macintosh that is
running your application. This means that all Tools Plus routines that can take advantage of the Appearance Manager
will do so if one is available. All of Tools Plus’s PowerPC components are set up to default to the same behavior. In all
projects generating PowerPC code, you must add the AppearanceLib library into your project, and set the
AppearanceLib library to “import weak” (this lets your Appearance-savvy PowerPC application launch on a Mac that
doesn’t have an Appearance Manager). Your application can use Tools Plus’s HasAppearanceManager routine to
determine if the Appearance Manager is available. The files you need to support the Appearance Manager should be
included with your compiler. They are AppearanceLib (PowerPC stub), Appearance.h (C/C++ header) or
Appearance.p (Pascal interface). If these files were not shipped with your compiler, you can get them from Apple.

Water’s Edge Software 91



H

Tools Plus

If you don’t have the Appearance Manager files you need to compile your PowerPC application, make sure you do not
include the AppearanceLib library in your project. You will also need to remove (or comment out) one line of code in
your ToolsPlus.h header file or your ToolsPlus.p interface file, as indicated below:

#define USE_APPEARANCE MANAGER 0

{$SETC USE_APPEARANCE_ MANAGER := false}

Embedding Controls

The Appearance Manager introduces a concept of control embedding in which a control becomes a container for one
or more other controls. An example of this is a tab control which looks like a panel with multiple tabs across the top,
like a paper file folder. Each tab control will likely have one logical “layer” of controls corresponding to each tab at
the top of the control. To accomplish this, you create the tab control, then create a “user pane” control (which is
invisible) and imbed it into the tab control. The tab control now owns the user pane control. Next, create all the
controls for the one layer that corresponds to a single tab. Each of these controls falls upon the user pane control, and
are automatically embedded into the user pane. The user pane control now owns, say, two list boxes and three check
boxes. When you hide a user pane control, all its subcontrols are hidden automatically. This way, you can hide an
entire layer of controls with a single routine. Similarly, if you disable the tab control, all the controls contained therein
are automatically disabled. At the time of this writing, the following controls are containers that can own other
controls: tab control, group box control, placard control, window header control, and the user pane control. Apple may
create new controls later than can be container controls.

Tools Plus provides the following routines for embedding: SetAutoEmbed, EmbedButtonInButton,
EmbedButtonInScrollBar, EmbedScrollBarInButton, and EmbedScrollBarInScrollBar.

Note: For complete information on Appearance Manager concepts, the Appearance Manager’s features, and how to
best use the Appearance Manager’s new controls, please read the documentation pertaining to the Appearance
Manager. It is available from Apple or in the latest issue of Inside Macintosh. This manual does not duplicate
that material.

Dialogs and the Dialog Manager

When designing an application that uses Tools Plus libraries, avoid the toolbox’s Dialog Manager routines. You may
still use alerts, however. The Dialog Manager is effective at creating simple windows, but it quickly reaches its limits
when trying to implement the diversity or complexity of features available on most windows seen in today’s
commercial software. By comparison to Tools Plus, the Dialog Manager is also much more difficult and cumbersome
to use.

Tools Plus performs numerous tasks behind the scenes to ensure that all elements of your user interface work together
seamlessly, and when the Dialog Manager is introduced into the equation, the simplicity and elegance of Tools Plus
can be easily overshadowed by the Dialog Manager’s idiosyncrasies.

As arule, use Tools Plus windows instead of using the Dialog Manager’s modal or modeless dialogs. Tools Plus also
includes routines that let you use standard resources such as ‘DLOG’, ‘DITL’, ‘WIND’, ‘MENU"’ (etc.) in your
application. This gives you all the advantages of Tools Plus without inheriting any of the disadvantages of the
awkward and limiting Dialog Manager.

Power Macintosh Performance

Tools Plus libraries are available in native Power Macintosh format, meaning they have been compiled specifically to
take advantage of the enhanced performance offered by a PowerPC processor. You may notice, however, that parts of
your application do not experience any performance improvements, and in some cases, native Power Macintosh
applications may actually be slower than their 680x0 counterparts.

One of the reasons for this is that significant portions of the Power Macintosh’s System 7 toolbox (written by Apple)
are made up of 680x0 code, and are therefore emulated by the PowerPC processor. This phenomenon is similar to

92



3 Designing Your Application

running a standard Macintosh application on a Power Macintosh: it works, but it’s not quick. In early versions of
System 7, much of QuickDraw was being emulated on PowerPC’s resulting in unflattering graphics performance.

We urge you to write your applications using standard Macintosh toolbox calls in spite of the short-term performance
degradation. Doing so will help to ensure that your applications continue to run on newer Power Macintoshes, and on
new PowerPC processors that will be created in the future. In System 7.6, for example, the Resource Manager was
rewritten and became fully PowerPC native, and Mac OS 8 was rewritten to be entirely PowerPC native. This provided
additional performance without having to make any changes to your applications.

Writing your own work-arounds may result in an immediate performance improvement while sacrificing compatibility
with future Power Macintoshes, or not taking advantage of improvements that will be available as the Power Mac
toolbox matures.

Off-screen GrafPorts and GWorlds

If your application creates off-screen grafPorts or GWorlds, which is the case for printing and animation, you can
reduce many risks by making sure your grafPort is a valid window when using Tools Plus routines. This is very easy to
do with the following code:

1. Before you work on your off-screen grafPort, do the following (shown in C. Pascal coders exclude the
ampersand):
GetPort (&savedPort) ; /*Store current grafPort */
SetPort (myOffscreenPort); /*Make your off-screen port current */

Perform the necessary work on your off-screen grafPort.

3. When you are finished working on your off-screen grafPort, and before you resume using Tools Plus routines,
do the following:
SetPort (savedPort); /*Restore the original grafPort */

Writing Plug-Ins or External Code Modules

Some applications such as Adobe’s Photoshop support externally written code modules typically called “plug-ins.”
They let a developer create a “mini application” that augments the host application’s feature set, such as adding an
image processor or filter to a graphics application. Within this user manual, we use the term plug-in as a generic term
for an external code module. Tools Plus for CodeWarrior can be used to write plug-ins. Other Tools Plus libraries can
not.

The host application for which you are writing your plug-in determines how your plug-in is structured. Plug-ins are
typically structured in one of two ways:

» The host application surrenders control to the plug-in which does all its work including getting and processing
events. When the plug-in quits, control is returned to the host application. The plug-in is seen as the “master”
while it is running because it gets and distributes events. It may even give events to the host application for
processing such as when the host application’s windows need updating. We call this a “plug-in master” structure.

* The host application loads the plug-in then gives it commands such as “initialize” or “process this toolbox event.”
The plug-in does nothing other than respond to commands because the host application gets and distributes events.
We call this a “host master” structure.

Before you start writing your plug-in, you first need to obtain a “plug-in development kit” and/or documentation from
the host application’s author. The kit teaches you how to write plug-ins for that application and it will likely include
libraries containing routines to let your plug-in communicate with the host application. Hopefully, it will include
information about compiling your source code into a plug-in, and how to make the plug-in accessible to the host
application. After you become familiar and comfortable with this information, you can move on to using Tools Plus to
write your plug-in.

Water’s Edge Software 93



Tools Plus

A plug-in written with Tools Plus sees only its own windows and not those belonging to the host application. Think of
the plug-in as a stand-alone application and you will understand how Tools Plus is working. Plug-ins can open as
many modal windows as they want because the plug-in runs, for all practical purposes, as an application that is always
active. Plug-ins that have a “host master” structure can also open a modeless window providing that it is the plug-in’s
sole window, but this introduces additional complexities as detailed later.

Tools Plus Plug-In Libraries

The Tools Plus library used in plug-ins, namely “ToolsPlus Plug-In.Lib”, is functionally equivalent with the regular
Tools Plus libraries except in the following ways:

* The plug-in cannot initialize the Macintosh toolbox. This is a safeguard to prevent double initialization.
* The plug-in cannot allocate more master handle blocks (MoreMasters) because they can’t be deallocated later.

* The plug-in has indirect access to the host application’s pull-down menus. The Edit menu, for example, is always
referenced as menu number 2 (using the mEditMenu constant), regardless of the ‘MENU’ resource ID used by the
host application to create the Edit menu.

* The plug-in’s ability to alter the host application’s pull-down menus is limited (i.e., no adding or deleting).

680x0 Plug-Ins

The plug-in’s “main” routine should be as small as possible, as it will have to fit closely along with several
CodeWarrior libraries that were compiled using the small code model (16-bit) addressing. Compile your project with
the “multi-segment” option on. Newer CodeWarrior compilers offer an “extended resource” option that should be on.
Compile your project using the smart code model (mixed 16-bit and 32-bit), or large code model (32-bit). All these
options combined let you create a plug-in that exceeds the 32K code limit for single segment 16-bit code resources.

680x0 plug-ins, like ‘CODE’ resources, reference their globals by using the A4 register instead of the AS register that
is used by applications. To account for this, your plug-in needs to execute the following code immediately upon
entering its “main” routine:
C/C++ plug-ins:
long o0ldA4 = SetCurrentd4();
RememberA4 () ;
Pascal plug-ins (oldA4 is declared as a longint):
0ldA4 := SetCurrentA4;
RememberAd;

Just before your plug-in leaves its “main” routine, it must execute the following code:
SetAd (oldA4);

PowerPC Plug-Ins

A PowerPC plug-in is easier to create than a 680x0 plug-in because its project file does not need special CodeWarrior
libraries (although it does need to used a special “ToolsPlus Plug-In.Lib” library), and your code does not have to
interact with the A4 register. You also don’t need to be concerned with the size of your “main” routine or its placement
in proximity to CodeWarrior libraries.

Writing The Plug-In

Your plug-in should be written as a routine that will be called by the host application. The name of this main routine
and its parameter list are defined in the plug-in’s documentation (available from the host application’s author). Your
plug-in’s main routine can call other routines that are defined in your plug-in, Tools Plus, the Macintosh toolbox, or
even the host application providing you have the C/C++ headers and/or Pascal interfaces to those routines. Inside your
plug-in’s main routine, it will have one of two generic structures, a “plug-in master” or a “host master.”

94



3 Designing Your Application

Example of a “Plug-In Master” Structure
1. The host application calls your plug-in (host loses control to your module)

2. Your plug-in must initialize itself by doing the following:
* 680x0 plug-ins conduct A4 preparation
¢ Initialize Tools Plus using InitToolsPlus
¢ Initialize your plug-in’s variables
¢ Allocate your plug-in’s dynamic objects

3. Your plug-in opens a modal window, such as a dBoxProc or a movableBoxProc, and populates the window with
the required user-interface elements using Tools Plus routines. Do not create any menus or alter the host’s menus.

4. Your plug-in calls the ProcessEvents routine which starts Tools Plus’s cycle of getting events, applying them to
your plug-in, and calling your event handler routine to respond to events. In more complex cases, your plug-in can
inspect an event before Tools Plus processes it. This is done in an event filter routine which is detailed in the
Event Management chapter of this manual.

5. When the user quits your plug-in, your plug-in must deinitialize itself by doing the following:
* Deinitialize Tools Plus (DeinitToolsPlus). This closes any open windows and deallocates dynamic objects.
* Deallocate the plug-ins dynamic objects
* 680x0 plug-ins calls the toolbox’s SetA4 routine.

6. Your plug-in terminates and the host application regains control.

Example of a “Host Master” Structure

Your plug-in’s “main” routine needs a case for each command that can be invoked by the host application. Here are
some examples of commands that can be issued by the host application and how your plug-in would respond to them:

Initialize: Your plug-in initializes itself by doing the following...
¢ Initialize Tools Plus using InitToolsPlus
* Allocate your plug-in’s dynamic objects
* Initialize your plug-in’s global variables

Deinitialize (or quit): Your plug-in deinitializes itself by doing the following...
* Deallocate your plug-in’s dynamic objects
* Deinitialize Tools Plus using DeinitToolsPlus

Process an event: Your plug-in processes the supplied toolbox event (detailed in the Event Management chapter)...
ProcessToolboxEvent (&theEvent) ;

Deactivate modeless window: Your plug-in tells Tools Plus to become “suspended,” thereby deactivate the window by
doing the following...

* Define a variable of EventRecord type

* Set the “what” field to osEvt (15) and the “message” field to $01000000

* Call the same code you do in response to the “process an event” command (above)

Activate modeless window: Your plug-in tells Tools Plus to “resume,” thereby activate the window by doing the
following...

* Define a variable of EventRecord type

* Set the “what” field to osEvt (15) and the “message” field to $01000001

* Call the same code you do in response to the “process an event” command (above)

doManualEvent in a Plug-In

Most applications can ignore Tools Plus’s doManualEvent event, but chances are that your plug-in will need to
respond to them. Whenever Tools Plus detects an event in a foreign window, that being one that was not created with a
Tools Plus routine, it reports it to your plug-in as a doManualEvent event. Your host application’s windows fall into
this category. The most common occurrence of this is when your host application needs to have a window refreshed, in
which case the raw toolbox event record within Tools Plus’s event record will report an update event and a pointer to
the target window.

Water’s Edge Software 95



Tools Plus

Be certain that your plug-in responds appropriately to this situation by informing the host application that one of its
windows needs to be updated. If your plug-in does not do this, it will stop receiving doNothing events (null events)
while the Window Manager frantically reports the need to update the target window.

Note: Plug-in specifics vary from one host application to another. Water’s Edge Software can assist you with queries
and information about Tools Plus, but we don’t have expertise for all the possible host applications that support
plug-ins.

What to read next

A synopsis of each chapter can be found at the beginning of each section of this manual. Familiarize yourself with the
basic concepts in all the remaining sections before you start programming. You may then want to learn about the
intricacies of each Tools Plus routine.

Devote considerable attention to the chapter on Event Management. It explains task switching, and details each kind of
event that can be reported by Tools Plus, as well as how to respond to those events. You will be better equipped to
design your application when you know what to expect in your event handler routine.

The Special Routines section lists Macintosh Toolbox routines that require special attention, in that they should be
used with caution, or not at all. Using some of these routines will interfere with Tools Plus’s normal operations,
whereas other routines are obsolete by Tools Plus’s wealth of services and features.

The section on Completing Your Application is not news to Macintosh programming veterans. It is there for the
benefit of new developers to help them finish their application and make it a double-clickable program. The SIZE
resource and its required settings are detailed there.

96



4 Initialization

4 Initialization

All Macintosh applications begin with very similar code that is needed to initialize the Macintosh toolbox’s various
managers. This code must be executed at the beginning of your application before doing anything else. You can
optionally have Tools Plus do this for you in the InitToolsPlus routine.

InitGraf (&gd.thePort); /* Initialize Macintosh toolbox.. */
InitFonts(); /* (can be done by InitToolsPlus) */
InitWindows(); /* */
InitMenus(); /* */
TEInit(); /* */
InitDialogs(OL); /* */
SetApplLimit(value of A7 - stack size); /*Set stack size (details later) */

/*Initialize Tools Plus.. */

if (InitToolsPlus(&Event, &MyEventHandler, &MyEventFilter, 10, 5, initTE32KBuffer,
initUseColor)){

See the InitToolsPlus routine for details on initializing Tools Plus.

InitGraf (@qd.thePort); {Initialize Macintosh toolbox.. }
InitFonts; { (can be done by InitToolsPlus) }
InitWindows; { }
InitMenus; { }
TEInit; { }
InitDialogs(nil); { }
SetApplLimit(value of A7 - stack size); {Set stack size (details later). }

{Initialize Tools Plus.. }
if InitToolsPlus(@Event, @MyEventHandler, @MyEventFilter, 10, 5, initTE32KBuffer,

initUseColor) then

See the InitToolsPlus routine for details on initializing Tools Plus.

THINK Pascal performs all initialization automatically providing you leave the “Initialization” compiler
directive on (this is the default). All you need to do is initialize Tools Plus with InitToolsPlus at the
beginning of your application. THINK Pascal’s automatic initialization finishes off by doing the following
additional tasks:
MaxApplZone;
for i := 1 to 10 do
MoreMasters;

If you turn the Initialization directive off by adding {$I-} before your begin statement in your main
program, you will have to initialize the various toolbox managers yourself or let InitToolsPlus do it for
you.

@) Note: THINK Pascal users as well as older versions of Symantec’s C/C++ don’t use the new C/C++ Universal
Headers and Universal Pascal Interfaces (UPIs), so you will need to use thePort in place of gd.thePort
in the InitGraf routine.

Your application initializes Tools Plus libraries with the InitToolsPlus routine. Call InitToolsPlus as early as possible
since InitToolsPlus creates unrelocatable objects in memory (pointers), and doing so at the the start of your application
eliminates memory fragmentation. In 680x0 applications, InitToolsPlus also loads all the ‘CODE’ segments containing
Tools Plus libraries into memory where they remain as long as your application is running.

Water’s Edge Software 97



Tools Plus

Stack and heap

If you are already familiar with the stack and the heap in your application, you can skip this section and just review the
Set68KStackSize and ChangeStackSize routines at the end of this chapter. This section is a very condensed description
of the stack and heap. Most applications will not need to concern themselves with these details.

The total amount of memory that is available to your application is shared by objects your application creates and
controls, and by things that happen automatically when your application is running.

When your application is first launched, QuickDraw globals and

high memory 7 . . . . .
Application overhead (fixed) other fixed application overhead is allocated high in memory.
< Stack (variable) The?se are things that are fixed in sized and are automatically
N . maintained by the various toolbox managers.
__________________ .. < Heaplimit
t (maximum stack size) Your application’s stack is also automatically maintained, but it is
affected by things that are happening in your application. The stack
is a “last in first out” (LIFO) queue and contains temporary
information only like local variables and return addresses. When a
routine is called, the stack temporarily grows by a certain amount.
Heap . The stack is reduced by the same amount when the routine returns
(variable up to heap limit) .
control to the caller. Routines that have lots of local data (such as
Str255 local variables) and recursive routines consume more stack

_ space. The stack starts from high memory and grows downward.

Jow memory The heap contains your executable code, resources that are loaded
into memory, and other dynamically allocated objects. The heap is
Application’s total memory populated starting from low memory and grows upward as
required. You can think of this as your application’s memory.

Macintosh’s Memory Manager allows the heap to grow up to a specified limit that is set when your application is
launched. The heap limit is commonly referred to as the stack size because this limit not only defines the maximum
size to which the heap can grow, but it also defines the maximum size of the stack before a collision occurs between
the stack and the heap.

It is important that you define a large enough stack space because although the heap won’t grow beyond the heap limit,
the stack grows as required and may collide with the heap. If this happens, objects in your heap can become corrupted.
The Memory Manager has a collision sniffer that causes a system error 28 when the stack moves into application heap.
Unfortunately, the sniffer only checks the stack sixty times a second and can miss quick stack transgressions.

All Power Macintosh compilers and THINK Pascal let you set your stack size (and heap limit) from your development
environment. The 680x0 THINK C/C++ compilers and the 680x0 CodeWarrior compilers do not have this facility
built into the development environment, so you can use the Tools Plus routines Set68K StackSize or ChangeStackSize.

Although the Memory Manager allows the heap to grow upward to the heap limit, InitToolsPlus calls the toolbox’s
MaxApplZone routine thus forcing the heap to grow to its maximum size. This is a good practice because it makes the
most use of the available memory, reduces memory fragmentation, and reduces purging and subsequent reloading of
purgeable objects in the heap. This approach also makes stack collisions with the heap show up while your application
is still under development where you can remedy the problem.

Note: Most applications will do perfectly well with the default heap limit setting. If you suspect your application’s
stack is getting close to the limit during stand-alone execution, use the toolbox’s StackSpace routine during
development to determine the amount of unused space available to the stack, then increase the stack space if
required.

98



4 Initialization

Other application initializing activities

After your application has initialized the Macintosh toolbox (optionally done by InitToolsPlus), and it has initialized
Tools Plus (using the InitToolsPlus routine), it may need to carry out a number of other activities that are associated
with starting up an application, such as:

* Opening preferences and settings files

* Searching directories for optional files

* Creating temporary work files

* Allocating dynamic objects (using pointers and handles)

* “Personalizing” your application the first time it is run (the user must enter their name and a serial number)

e User name and password

Be careful to avoid calling any event processing routines during your application’s initialization code because doing so
may inadvertently process the “open application”, “open documents” or “print documents” Apple Events before your
application is ready to deal with them. The Tools Plus routines to avoid during your startup code are
Process1EventWhileBusy, ProcessToolboxEvent, AlertBox and AlertBox3. If you must call any of these routines,
you’ll need a global “application is ready to process events” flag that is set to true only when your application’s
initialization is complete, and your main event handler’s and window event handlers’ code is bypassed if the flag is not

set.

InitToolsPlus

Initialize Tools Plus.

pascal Boolean InitToolsPlus (Ptr Event, ProcPtr MyEventHandler,
ProcPtr MyEventFilter, short MoreHandles, short MaxWindows,
short TEBufferSize, long InitSpec);

function InitToolsPlus (Event: PTR; MyEventHandler ProcPtr;
MyEventFilter ProcPtr; MoreHandles: INTEGER; MaxWindows:
INTEGER; TEBufferSize: INTEGER; InitSpec: LONGINT): BOOLEAN;

This routine initializes variables and records that are required by Tools Plus. It must be called once at the beginning of
your program.

Event is the address of your global Tools Plus event record. Tools Plus populates this record with event information
whenever Tools Plus reports an event to your application. You should define a global Tools Plus event record (of
TPEventRecord type) for your application, then use this record throughout your application. In C/C++ applications, the
address of your event record is passed as &Event, assuming that the global variable is named “Event.” In Pascal it is
passed as @Event.

MyEventHandler is the address of your application’s main (default) event handler routine. Tools Plus calls this routine
to respond to Tools Plus events. In C/C++, simply enter your event handler routine name. In Pascal, preface your
routine name with “@” to pass the address. Internally, InitToolsPlus allocates and uses a UPP if required. The UPP is
deallocated when DeinitToolsPlus is called. Your event handler routine has the following C/C++ prototype or Pascal
interface:

pascal void MyEventHandler (Ptr CustomDataPtr)
{

}

procedure MyEventHandler (CustomDataPtr: Ptr);
begin
end;

Tools Plus always passes a nil custom data pointer. See the Event Management chapter for details on how to write
your event handler routine.

Water’s Edge Software 99



Tools Plus

MyEventFilter is the address of your application’s event filter routine. Use nil if your application does not have an
event filter routine. Tools Plus calls this routine to process a toolbox event before it is passed to Tools Plus for
processing. In C/C++, simply enter your event filter routine name. In Pascal, preface your routine name with “@” to
pass the address. Internally, InitToolsPlus allocates and uses a UPP if required. The UPP is deallocated when
DeinitToolsPlus is called. Your event filter routine has the following C/C++ prototype or Pascal interface:

pascal Boolean MyEventFilter (EventRecord *theEvent)
/* Inspect and possibly modify the toolbox event record */

return(l); /*Should Tools Plus process the event? */

function MyEventFilter (var theEvent: EventRecord): Boolean;
begin
{Inspect and possibly modify the toolbox event record}

MyEventFilter := true; {Should Tools Plus process the event? }
end;

See the Event Management chapter for details on how to write your event filter routine.

MoreHandles specifies the number of additional “Handle Blocks” that are created during initialization. THINK C, and
CodeWarrior compilers don’t automatically create any handle blocks, while THINK Pascal automatically creates 11
blocks, each containing 64 handles and consuming 512 bytes per block. The number of additional blocks created
during Tools Plus initialization is specified by MoreHandles, which can have a value between 0 and 128. In THINK
Pascal, the default number of blocks is usually enough, so you will specify 0. In THINK C and CodeWarrior
compilers, a dozen blocks is usually enough.

MaxWindows declares the maximum number of windows that may be simultaneously open in your application. This
number should be kept to a realistic minimum, since a small amount of memory (less than 300 bytes x MaxWindows)
is consumed, regardless if a window is ever opened or not. InitToolsPlus allocates one window record for each
window specified by MaxWindows, plus one additional window that is used exclusively by Tools Plus. This
preallocation of window records is done in order to eliminate memory fragmentation. It is a small price to pay, in
terms of memory consumption, to prevent memory fragmentation, and it carries no negative side effects.

Although Tools Plus supports up to 250 windows, Mac OS slows down progressively as more windows are opened.
The realistic limit, due to Mac OS performance and to the user’s adverse experience in managing too many windows,
is somewhere around thirty open windows. If you allow a limit of 50 windows, the user will perceive this to be an
“unlimited” number of windows.

TEBufferSize specifies the size of text editing buffers (maintained by Tools Plus) used for cutting, copying, pasting,
and storing copies of text for the Undo/Redo feature. Use a value of 255 to 32767, which represents the largest field
you will have in your application. When you reduce this figure, you can conserve as much as 128K of your
application’s memory, but you limit the size of text that is copied or pasted. For example, if you set TEBufferSize to
255, only the first 255 characters of the clipboard are pasted into your application’s fields. Conversely, you can select
several hundred characters of text typed into your application’s field, and when you select the Edit menu’s Copy
command, only the first 255 characters are copied to the clipboard. The constants initTEStr255Buffer and
initTE32KBuffer are provided for your convenience. If you are unsure what value to give, use initTE32KBuffer and
allocate plenty of memory to your application.

InitSpec specifies various Tools Plus initialization options. The value for this 4-byte long integer can be specified by
adding a set of constants to obtain the desired result.

Optionally choose only one of the following Color QuickDraw options...

initUseColor Use Color QuickDraw if it is available on the Macintosh running your
application. If your application is running on a Macintosh SE or higher with a
color or gray-scale monitor, Tools Plus will take advantage of the available
colors or shades of gray. Tools Plus will still run perfectly if Color QuickDraw
is unavailable. Tools Plus uses Color QuickDraw by default, so you can omit
this option.

100



4 Initialization

initIgnoreColor Ignore Color QuickDraw. All drawing is done in black and white. This option
saves memory and simulates your application running on a Macintosh without
Color QuickDraw. Note that Tools Plus does not patch the system, and in some
cases the system may draw some objects, like highlights in list boxes and
editing fields, using color.

Optionally choose only one of the following TextEdit scrap options...

initUseTEScrap Tools Plus creates and maintains a local TextEdit! scrap. This is more costly in
terms of memory (often 32K or more), and is necessary only if your application
has editing fields created by anything other than Tools Plus. At initialization,
Tools Plus copies the desk scrap? to the TextEdit scrap.

initIgnoreTEScrap Tools Plus does not create a local TextEdit scrap. Instead, it works directly with
the desk scrap. This option can save you about 32K of application memory,
providing you use only Tools Plus fields or no editing fields at all.

Optionally choose only one of the following desk scrap options...

initDontUnloadDeskScrap Do not unload the desk scrap to disk when initializing Tools Plus. If this option
is excluded, InitToolsPlus first determines if the amount of free memory is
dangerously low (which can happen if a particularly large object was copied to
The Clipboard by another application). If memory is low (around 90K or less at
startup), the desk scrap is copied to disk thereby freeing up that memory in your
application.

initUnloadDeskScrap Always unload the desk scrap to disk when initializing Tools Plus, even if there
is ample memory. This option makes your application more memory
conservative. Before your application quits, remember to load the scrap back
using LoadScrap.

Optionally choose any of the following options...

initFasterWinDrag When the user clicks on an inactive window’s title bar to both activate it and
drag it to a new position, Tools Plus normally activates the window, refreshes it
if required, then lets the user drag it. Add this option if you need faster
performance, and windows will refresh after the user finishes dragging them.

initMacToolbox The InitToolsPlus routine initializes the Macintosh’s toolbox before it does

anything else. Toolbox initialization is performed by calling the following
routines as described at the beginning of this chapter:

InitGraf(@gd.thePort);

InitFonts;

InitWindows;

InitMenus;

TEInit;

InitDialogs(nil);
If you use this option, make sure that you do not initialize the toolbox in your
own code. THINK Pascal initializes the toolbox automatically by default (you
can turn automatic initialization off by adding {$I-} just before the begin
statement in your main program).

initInheritHelp If a user interface element does not have the required Balloon Help message,
Tools Plus should search the parent object for the Help message. The default is
to exclude this option so that if a Help message is missing for an object, no
Help message is displayed. See the Balloon Help chapter’s “Help Inheritance”
section for details.

initReleaseResources When this option is used, Tools Plus calls ReleaseResource for any purgeable
and unlocked resources that it uses, such as icons and pictures. This keeps

1" The TextEdit scrap is a local copy of the desk scrap. It contains only text data, ignoring images and other kinds of data. Text scrap is necessary
only if your application uses editing fields that are not created by Tools Plus.

2 Desk (or System) scrap is equivalent to The Clipboard in that it is used to transfer text, images, or other kinds of data between applications and
desk accessories.

Water’s Edge Software 101



Tools Plus

memory as free as possible but may result in reduced performance, especially
when large resources are used in conjunction with slow media like floppies or
CD-ROMs.

By default, Tools Plus does not purge resources from memory. This results
in better performance because the first time a resource is accessed, it is loaded
from disk into memory and it stays there until there is a memory shortage. In
that case, when a new resource is loaded from disk, one or more old resources
are purged from memory and will be automatically loaded from disk the next
time they are accessed. The only negative impact to the default behavior is that
more master pointers (see InitToolsPlus) are required to permanently reference
all accessed resources.

initAutoSaveFieldString Automatically save the user-edited text in an active editing field before it is
deactivated. This option makes for much simpler coding, but it does not give
your application the opportunity to validate fields’ contents on a field-by-field
basis. Instead, your application can edit the fields’ contents in a batch when the
user clicks the OK button to process the entire window.

initAutoFocusChanges Automatically let the user tab to the next/previous active editing field, and
automatically process the user’s click to an inactive (but enabled) editing field.
The same applies to other user interface elements that accept the keyboard
focus. This option makes for much simpler coding, but it does not give your
application the opportunity to validate fields’ contents on a field-by-field basis.
When this option is used, the initAutoSaveFieldString option is automatically
used too to ensure that user-edited text in active editing fields is saved and
therefore not inadvertently lost.

initAppearanceManagerSavvy

This option works only if the Appearance Manager is available, otherwise it is
ignored. When you use this option, Tools Plus automatically substitutes
standard user interface elements for their equivalent elements in the
Appearance Manager. This lets you design your application for Macs that don’t
have an Appearance Manager, and have the same application make use of the
Appearance Manager’s 3D user interface elements if they are available. The
controls that are affected by this option are:

» standard push buttons (pushButProc)

e check boxes (checkBoxProc)

¢ radio buttons (radioButProc)

« scroll bars (scrollBarProc).
All variants for these controls are also converted to the Appearance Manager’s
controls. The windows that are affected by this option are:

* standard document window (noGrowDocProc) with or without zoom box

* growable document window (documentProc) with or without zoom box

* standard modal dialog window (dBoxProc)

* plain dialog window (plainDBox)

» alternate, or shadowed dialog window (altDBoxProc)

* movable modal dialog window (movableBoxProc)

* dynamic alerts assume an appropriate Appearance Manager theme
The menu bar and all menus, including the lists in pop-up menus, all use the
Appearance Manager’s 3D menu definition. List boxes use the Appearance
Manager’s 3D scroll bars.

This option must be used if you want your list boxes, fields and pop-up
menus to take advantage of the Appearance Manager’s new controls.

initPureAppearanceManager
This option removes a number of inconsistencies between non-Appearance-
Savvy and Appearance-Savvy applications, specifically:
* Custom colors are not applied to pull-down menus because the
Appearance Manager’s theme takes care of all coloring
* Custom colors are not applied to pop-up menus because the Appearance

102



4 Initialization

Manager’s theme takes care of all coloring
» Custom colors are not applied to any controls because the Appearance
Manager’s theme takes care of all coloring
* On dialogs, ‘icon items are translated into non-selectable icon controls
that dim on an inactive window.
* On dialogs, ‘picture’ items are translated into non-selectable picture
controls that dim on an inactive window.
If the initPure AppearanceManager option is used, it automatically turns on the
initAppearanceManagerSavvy option.

initAllwindowsHaveBackgroundTheme
This option works only if the Appearance Manager is available, otherwise it is
ignored. When this option is used all windows you create using Tools Plus
routines are assigned an appropriate background theme. Alternatively, you can
assign background themes to individual windows.

Optionally choose only one of the following Live Window dragging and resizing options...

initLiveWindowDrag *Drag and resize windows in real time. By default (when this option is not
used), a dotted outline tracks the window while the mouse button is down, then,
when the user releases the mouse button, the window is moved or resized. This
option looks best on faster Macintoshes like G3s.

initLiveWindowDrag040 “Drag and resize windows in real time if your application is running on a
Macintosh with an *040 processor of faster. By default (when this option is not
used), a dotted outline tracks the window while the mouse button is down, then,
when the user releases the mouse button, the window is moved or resized. This
option looks best on faster Macintoshes like G3s.

initLiveWindowDragPPC “Drag and resize windows in real time if your application is running on a
Macintosh with a PowerPC processor of faster. By default (when this option is
not used), a dotted outline tracks the window while the mouse button is down,
then, when the user releases the mouse button, the window is moved or resized.
This option looks best on faster Macintoshes like G3s.

*See the SetLiveWindowDragging routine in the Windows chapter to turn live window dragging on or off under
your application’s control.

InitToolsPlus returns a value of frue if initialization was successful, otherwise false is returned.

There are a number of other Tools Plus routines that can help your application ascertain its runtime environment, such
as SystemVersion (what is the system version on the Mac that is running your application), HasAppearanceManager
(is an Appearance Manager available), and HasAppearanceManagerRoutines (is an Appearance Manager available and
does your application have access to its routines). You may want to take a few moments to peruse the Miscellaneous
Routines chapter to see what is available.

ﬁ{) Note: The initAppearanceManagerSavvy option may interfere with some visual aspects of your development
environment while you are programming with an Appearance Manager running, and with System Wide
Platinum Appearance turned off. This does not occur in the final application. In THINK Pascal, for example,
standard Mac OS controls, windows and menus will sometimes or partially take on the Appearance Manager’s
theme. Make sure that your application calls DeinitToolsPlus before quitting to help eliminate this. Keep in
mind that this anomaly does not occur in the final double-clickable application.

3> Warning: By default, THINK Pascal automatically initialized the Macintosh toolbox and allocates 11 master handle
blocks as detailed at the beginning of this chapter. Do not include the initMacToolbox option in the
InitToolsPlus routine unless you have instructed THINK Pascal not to automatically initialize the toolbox
by including {$I-} just before the begin statement in your main program. Initializing the toolbox twice
will certainly cause errors and crashes.

Water’s Edge Software 103



Tools Plus

Initialization Failure

InitToolsPlus will fail initialization for only two possible reasons: [1] a severe memory shortage exists, under which
Tools Plus cannot allocate sufficient memory for the additional handles or for its own structures, or [2] your
application is trying to run on a Macintosh with ROMs older than version 117. Those are the old 64k ROMs found in
the Macintosh 128K, Macintosh 512K, and Lisa (Macintosh XL). This will not occur in the Macintosh 512KE
(enhanced), or higher. Tools Plus will display an appropriate alert if the wrong ROMs are used.

If initialization fails, do not attempt to use any Tools Plus routines.

Other Initialization

InitToolsPlus also performs other initializing tasks that your application would normally have to do:
* All events are automatically flushed (cleared) from the event queue, such as keystrokes which may have
been typed from The Finder.

* The “random number seed” is initialized to ensure that your application does not generate an identical
pseudo-random numeric sequence each time it runs.

* MaxApplZone is called to expand the application’s heap zone to its limit.

The Cursor

The cursor is displayed as a wrist-watch when your application is launched by The Finder, and will remain as such
until it is changed by your application. Note, however, that Tools Plus behaves as though a normal cursor is displayed
in that it does not filter out clicks and typing (such as when your application sets the cursor to a wrist-watch).

CONST {Color QuickDraw...
initUseColor = $00000000; {Use Color QuickDraw if available
initIgnoreColor = $00000001; {Don't use Color QuickDraw

{TextEdit Scrap..

initUseTEScrap = $00000002; {Use TextEdit scrap
initIgnoreTEScrap = $00000000; {Don't use TextEdit scrap
initDontUnloadDeskScrap = $00000004; {Don't unload desk scrap
initUnloadDeskScrap = $00000008; {Unload desk scrap to disk
initFasterWinDrag = $00000020; {When activating a window, drag before

{ refreshing for faster performance.
$01000000; {Inherit Help messages from parent object
$02000000; {Release resources when done
$08000000; {Adhere to 'pure' Appearance Manager

{ principles (no color controls or menus)

initInheritHelp
initReleaseResources
initPureAppearanceManager

initAutoSaveFieldString = $00000080; {Automatically save edited text when a
{ field is deactivated.

initAutoFocusChanges = $00000400; {Automatically tab or click to the new
{ keyboard focus.

initAppearanceManagerSavvy = $20000000; {Convert standard ProcIDs to Appearance

{ Manager's procIDs.
initAllwindowsHaveBackgroundTheme = $10000000; {Fill Appearance-savvy windows with
{ background theme.

initMacToolbox = $80000000; {Initialize Mac toolbox (InitGraf etc.)

initLiveWindowDrag = $00002000; {Drag/resize windows in real time..

initLiveWindowDrag040 = $00001000; { .only if running on an 040 or better

initLiveWindowDragPPC = $00000800; { ..only if running on a PowerMac
{TextEdit and Undo/Redo buffer size:

initTEStr255Buffer = 255; {255 characters

initTE32KBuffer = 32767; {32K characters (maximum)

R o I e ol

104



H

H

4 Initialization

DeinitToolsPlus

Deinitialize Tools Plus.
pascal void DeinitToolsPlus (void);
procedure DeinitToolsPlus;

Under rare circumstances, you may want to “deinitialize” Tools Plus, that being to deallocate objects that were
dynamically allocated in your application’s heap when Tools Plus was initialized. An example of when you would use
DeinitToolsPlus is if you are writing a plug-in using Tools Plus. The normal sequence of operations is as follows:

1 The host application (i.e., Photoshop) calls a plug-in that is written with Tools Plus.

2 As the plug-in is loaded, it consumes some stack space for its global variables including Tools Plus’s
globals that consume about 2K.

3 The plug-in calls InitToolsPlus which dynamically allocates some structures that are used globally
throughout Tools Plus.

The plug-in opens a modal window and creates its user interface.
The plug-in processes events until the user dismisses the dialog.
The user dismisses the plug-in’s dialog.

The plug-in closes the window.

The plug-in calls DeinitToolsPlus to deallocate Tools Plus’s dynamically allocated structures and leave the
application’s heap in the same condition it was found before InitToolsPlus was called.

[c <IN B o) NNV JEEN

The next time Photoshop calls the plug-in, the same series of steps are executed.

DeinitToolsPlus starts off by disposing of any color cursor information you may be using. It then closes all Tools Plus
windows, thereby deleting all the objects in the windows and reclaiming their memory. The window records that were
created by InitToolsPlus are then deallocated. Next, all cursor tables are deleted along with their zones, then finally the
remaining Tools Plus dynamic objects are deallocated.

Pull-down menus and hierarchical menus are not deleted by DeinitToolsPlus because in all likelihood, they were
created by the host application that calls your plug-in. Use the Tools Plus routines RemoveMenus or RemoveAllMenus
if you want to delete menus and reclaim their memory.

Applications that use DeinitToolsPlus will likely pass a value of zero (0) in the MoreHandles parameter when calling
InitToolsPlus. This is because the MoreHandles parameter specifies the number of master pointer blocks that are
allocated by InitToolsPlus. There is no way to deallocate these master pointer blocks, so it’s best not to create a new
set each time that InitToolsPlus is called.

Normally, you never have to call DeinitToolsPlus because when an application quits, it destroys all the objects that
existed in the application’s heap, and Tools Plus’s dynamically allocated objects are automatically destroyed along
with your application.

Set68KStackSize

Set the maximum stack size in a 680x0 application.
pascal void Set68KStackSize (long Bytes);
procedure Set68KStackSize (Bytes: LONGINT);

Power Macintosh compilers and THINK Pascal let you specify your application’s stack size within your development
environment. The remaining compilers default to a (usually) safe limit. You can use Set68KStackSize to define the
stack’s maximum size and thereby prevent the heap from growing beyond that point. This routine does not do anything
when compiled into a native Power Macintosh application because all Power Macintosh compilers let you define this
setting from within your development environment.

Water’s Edge Software 105



H

Tools Plus

Bytes indicates the maximum size of your application’s stack in bytes.

Use Set68KStackSize at the end of your toolbox initialization, likely instead of the toolbox’s more complex
SetApplLimit routine. Set68KStackSize must be executed before InitToolsPlus. You don’t need to call MaxApplZone
because it is called by InitToolsPlus. Most applications will not need to use this routine.

ChangeStackSize

Change the maximum stack size in an application.
pascal void ChangeStackSize (long Bytes);
procedure ChangeStackSize (Bytes: LONGINT);

This routine increases or decreases the stack’s maximum limit by the indicated number of Bytes. Positive numbers
increase the stack’s maximum size while negative numbers decrease it. Your application can use ChangeStackSize if
you know that your application will temporarily need to increase the stack’s size, likely due to calling a recursive
function or a function with lots of local data. Most applications will not need to use this routine.

Warning: There is no guarantee that you will be successful in increasing the stack size. The heap may be very full or
it may contain locked or unrelocatable objects that prevent it from being reduced in size, and thereby
preventing the safe advance of the stack. Call the toolbox’s StackSpace immediately after calling
ChangeStackSize to determine how much memory is available for the stack to grow.

SetParamRangeErrProc

Set the parameter range error action routine.
pascal void SetParamRangeErrProc (ProcPtr userRoutine);
procedure SetParamRangeErrProc (userRoutine: ProcPtr);

By default, when you call a Tools Plus routine with a parameter that is out of range, such as attempting to open
window number 11 after you have initialized Tools Plus to allow a maximum of only 10 windows, Tools Plus delivers
an alert that states “Error: Parameter passed to a Tools Plus routine is not within the legal range of values.” To
facilitate debugging, you can install your own action routine that will be called instead of displaying the parameter
range alert. If you have a stop point in this routine, you can step out of the routine line by line and eventually return to
the offended Tools Plus routine.

UserRoutine is the address of an action proc that is called by Tools Plus instead of displaying the parameter range
alert.

If you decide to use this routine, do so shortly after initializing Tools Plus to eliminate memory fragmentation. Tools
Plus takes care of allocating and deallocating UPPs as required in PowerPC applications and plug-ins. This is how you
set the parameter error action routine in C/C++:

SetParamRangeErrProc (myActionProc);
In Pascal, a similar statement is used except the “@” symbol indicates the address of a routine:

SetParamRangeErrProc (@myActionProc) ;

106



4 Initialization

The parameter error action routine is written as a Pascal procedure that has no parameters. Here is an example of how
your routine should be written:

pascal void myParamErrHandlerProc (void)
{
// Your code goes here

}

procedure myParamErrHandlerProc;
begin
{Your code goes here}
end;

Water’s Edge Software 107



Tools Plus

108



5 Windows

5 Windows

Windows opened by Tools Plus are identical to those opened by conventional Macintosh toolbox routines, except that
they and the objects on them inherit the benefit of being automatically maintained by Tools Plus. Some additional
features can also be found in Tools Plus windows that aren’t available in ordinary Macintosh windows.

Before you can use a window, you must first open it with the WindowOpen routine. Each window is referenced by a
unique window number. This number is specified when the window is opened, and refers to the specific window until
that window is closed. After a window is opened, your application can create objects in it such as buttons, lists, scroll
bars, editing fields, etc. These items are detailed later in this manual. Windows and the user interface elements in them
can be created dynamically within your application, or in the traditional manner by using resource templates (detailed
later).

Your application can also have a tool bar located just below the menu bar. It is created with the ToolBarOpen routine.
From a programming perspective, a tool bar is treated just like any other window.

At any time, your application can obtain information about a window’s location, size, and status with the
WindowStatus routine.

Routines that should be used infrequently include WindowMove which lets your application reposition a window,
WindowSize which lets your application resize a window, and WindowDisplay which is used to hide and show
(unhide) a window. In all cases, Tools Plus correctly maintains your application’s user interface to accommodate the
changes brought about by these routines.

You can use Tools Plus’s windows instead of creating alerts and dialogs with ResEdit. Tools Plus provides the
functionality that real alerts and dialogs can, plus it provides additional benefits such as letting you easily incorporate
pop-up menus, list boxes, and alternate fonts. Tools Plus also provides routines to let you create your interface using
resources if you prefer. See the section on Dynamic Alerts for details on Tools Plus alerts.

When a window is no longer required, it is closed by the WindowClose routine, which releases the memory used by
the window’s buttons (including radio buttons and check boxes), picture buttons, scroll bars, editing fields, pop-up
menus, list boxes, and custom controls.

Note: Much of the Macintosh’s power lies in QuickDraw, the part of the toolbox that allows Macintosh programmers
to perform highly complex graphic operations quickly and easily. There is an entire chapter in Inside
Macintosh dedicated to QuickDraw that is compulsory reading for all Macintosh programmers. The chapter on
the Font Manager explains how to display text on a window.

Resource-Based Programming

Tools Plus lets you define user interface elements both in your application’s source code (dynamically), and by using
resources like the toolbox’s Dialog Manager (resource-based). The clear advantage that Tools Plus provides over the
Dialog Manager is that it greatly simplifies resource-based programming. While creating user interface elements
dynamically is sometimes a preferred method of programming, resource-based programming has some inherent
advantages too:

» The user interface can be designed visually using an inexpensive resource editor such as Apple’s ResEdit

* The user interface definition can be separated from your application’s source code, thus allowing you to make
changes to the interface without having to recompile your application

* It facilitates localization

* You can apply custom colors to windows and controls without writing any code
* You can accomplish more using less source code

¢ It can save memory

Water’s Edge Software 109



Tools Plus

Tools Plus routines completely replace the need to use the toolbox’s Dialog Manager because they let you use resource
templates to create windows, dialogs (windows with user interface elements), menus, and other GUI objects. Once
these elements are created, Tools Plus automatically makes them work. This lets you avoid the Dialog Manager’s
numerous complexities and short-comings that are typically encountered when trying to make your application’s user
interface work and behave like a Macintosh should.

While Tools Plus’s WindowOpen routine opens a window using parameters supplied by your application’s code,
LoadWindow opens a window using a ‘WIND’ resource that specifies the window’s type, co-ordinates, title, and
positioning options. Similarly, the LoadDialog routine opens a window using a ‘DLOG’ (dialog) resource, then

populates the window with user interface elements that are defined in a related ‘DITL’ (dialog item list) resource.

In many cases, you will be able to open a completely functioning dialog with a single call to the LoadDialog routine.
For situations where you want to prepare a window in some way before populating it with the dialog’s items, the
LoadDialogList routine loads a ‘DITL’ (dialog item list) resource, attaches it to an already open window, and creates
the user interface elements defined in the dialog item list.

The GetDialogltemRect routine reads a dialog’s item list and retrieves an item’s display rectangle. This is most often
utilized in dialog “user items” that provide co-ordinates for list boxes, pop-up menus and other user interface elements
that are not automatically created by LoadDialog. Your application uses GetDialogltemRect to retrieve a dialog item’s
display rectangle, then it uses that rectangle to create the appropriate GUI element. SetDialogltemRect changes the
item’s display rectangle.

GetDialogFontInfo and SetDialogFontInfo retrieve and set the font, font size and font style used in a dialog window.
By default, a dialog displays its text using Chicago 12pt. When you change these settings, new dialogs adopt these font
settings and display their static text and editing fields using these settings.

Tools Plus completely circumvents the Dialog Manager when you use resources to create your application’s user
interface. Instead, it uses its own processes to create and maintain the user interface elements defined by resources.
Using Tools Plus instead of the Dialog Manager’s routines gives you the following advantages:

* You can still use resources to design and create your user interface, just like the Dialog Manager.

¢ All system versions and Macintosh models can take advantage of the latest resource structures. The Dialog
Manager offers some features only on Macs running Color QuickDraw, and yet others only on Macs running
System 7.

¢ It’s easy to create complex and attractive dialogs.

* Your dialogs have all the advantages of windows and interface elements that are created with Tools Plus routines.

¢ All elements in a dialog work automatically as soon as they are created.

 It’s much easier for your application to interact with Tools Plus's user interface elements than to use complex and
awkward Dialog Manager routines.

* Tools Plus reports mouse-down “hits” in dialog items if those items don’t automatically work when Tools Plus
creates them. For example, if you define a user item to create your own custom object, Tools Plus's doClick event
will tell you when a mouse-down event occurs in that user item. Other user interface elements, like buttons, list
boxes and pop-up menus, work automatically just like they do in a standard Tools Plus window.

Designing Dialogs

It is almost certain that your existing resources will work perfectly with Tools Plus, and that you will be able to create
new dialog-related resources using the same process you have in the past. Here are some tips to ensure that the process
goes smoothly. See the LoadDialog routine for more details.

1 You’ll need a powerful resource editor such as Resorcerer to exploit dialogs to their fullest potential.

2 If you want to draw text over a background object like a picture, have the picture as a lower numbered dialog
item so it draws first. Set the text to draw in srcOr mode and don’t set a background color for the control.

3 Static text items can be drawn using srcCopy (text over solid background) or srcOr mode (text over existing
objects), also known as drawing with a transparent background. You can edit static text items using Tools Plus's
“field” routines providing the static text item uses the srcCopy text transfer mode (the default).

4 You can use “short” format ‘ictb’ resources to save memory and disk space. Tools Plus corrects a Dialog
Manager bug that requires all dialog items to have a separate color table entry. In Tools Plus, items that use
identical color and style settings can share the same entry in an ‘ictb’ structure.

110



5 Windows

5 If you need to change a dialog window’s font or color settings, it’s a good idea to call GetDialogFontInfo before
you make the changes, and call SetDialogFontInfo after the changes are done. This insures that dialog items
using the default color and/or text settings will be drawn correctly instead of using the most recent settings.

6 Be careful not to use resource IDs that coincide with those in the System file or your development environment.

7 1In Tools Plus, the Appearance Manager’s controls are supported as controls (‘CNTL’ resources) in a dialog
(‘DLOG’ resource), just like all other controls. See this manual’s chapters on Buttons and Scroll Bars for more
information on how to implement specific controls that are part of the Appearance Manager.

8 You can design your dialogs using standard push buttons, check boxes, and radio buttons, and have those
controls remapped to their equivalent Appearance Manager controls by using the ReplaceControlProcID routine.
This can be done for you automatically when you initialize your application using the InitToolsPlus routine.

9 Controls that are created using any of the dialog related routines (AppendDialogList, LoadDialog,
LoadDialogList, LoadSpecDialog, and LoadSpecDialogBehind) are AutoEmbedded if the Appearance
Manager’s routines are available to your application.

Window Types

Various “types” of windows (including a tool bar and palettes) can be created, some of which have title bars and some
which resemble alert or dialog boxes. Details are provided in the WindowOpen and ToolBarOpen routines.

SETine=| ETite = = litle =
[@]
EEREEEE =

Title Bar, Close box, and Zoom box

close zoom
box box

{ |
[ECIE Title =07

=]

1

size
box

Water’s Edge Software

Any window that contains a title bar can have a “close box.” Also, a document window
type can be resized by the user by either clicking on the “zoom box” or dragging the “size
box.” The close box, when clicked by the user, instructs your application to close the
window.

A window containing a zoom box has two different states: [1] the standard state, and

[2] the user state. The user can change the window’s size and/or location, thereby
defining the user state. When the zoom box is clicked, the window automatically
“zooms” back to the standard state (which can be defined by your application). Clicking
the zoom box again reverts to the user state. (Floating palettes can’t have a zoom box).

111



Tools Plus

Your application can define the minimum and maximum size of a window with SetWindowSizeLimits. It can also
define the size and position the window assumes when the zoom box is clicked by using the SetWindowZoom routine.
GetWindowZoom is used to retrieve the window’s current size and location, as well as the size and location that is
assumed when the zoom box is clicked.

Any window with a title bar can be re-positioned by dragging it with the mouse. An inactive window can be dragged
without being activated by holding the 8 key down during the drag. A window’s title can be changed by the
WindowTitle routine.

Size Box

A size box is a square located in the bottom right corner of a document window. The user can change a window’s size
by dragging the size box. By default, the window can be sized horizontally to any width from a minimum 120 pixels to
the full width of the screen. Vertically, the window can be sized to any height from a minimum of 68 pixels to the full
height of the screen (excluding the height of the menu bar). When the window is opened, the default sizing limits for
the window are automatically adjusted to the window’s size. For example, the minimum size will never be larger than
the window’s dimensions, and the maximum size will never be smaller than the window’s dimensions. These sizing
limits can be changed by the SetWindowSizeLimits routine.

Color Backdrops and Background Themes

Each window has a backdrop color that is used when a part of the window is revealed and requires refreshing. The
backdrop color is also used to fill an object’s region when an object is deleted. By default, the window’s backdrop is
white. You can set the backdrop color for new windows using the BackdropColor routine. As new windows are
opened, they adopt the specified backdrop color. The NoBackdropColor routine resets the color for new windows to
the default white.

Color backdrops are particularly useful in tool bars and floating palettes because, as these specialized windows are
opened, the user won’t see a flash of white while the window is being populated, thus creating an illusion of greater
speed.

You can also use the Appearance Manager to draw its background in all or selected windows. An option in the
InitToolsPlus routine lets you apply an Appearance Manager background (which is different depending on the window
type) to all windows. Alternatively, each Tools Plus routine that opens a window lets you optionally apply the
Appearance Manager background to that window. You can also apply a background that is usually associated with a
different type of window by using the SetBackgroundTheme routine or the SetNextWindowBackgroundTheme
routine. You cannot change the backdrop color after you assign a background theme to a window.

Maximum Number of Open Windows

The maximum number of windows that can be opened simultaneously is specified in the InitToolsPlus routine. See the
InitToolsPlus routine (Initialization chapter) for details about specifying the maximum number of windows your
application even needs to have open.

112



5 Windows

Tool Bar and Floating Palettes

Your application can incorporate floating palettes that are always active and “float” above your application’s standard
windows. It is best to have floating palettes look different from standard windows to provide the user with a visual cue
as to its behavior. This is done by using a special window definition (WDEF) resource that you include in your
application. The WDEF makes the window look different while Tools Plus takes care of making any window behave
like a floating palette.

From a programming perspective, the tool bar and floating palettes are just another kind of window. The tool bar is
created with the ToolBarOpen routine, whereas floating palettes are opened with the WindowOpen routine (just like
ordinary windows). Tools Plus takes care of making them behave properly by ensuring that they are always active and
that they stay in front of standard windows.

The tool bar and all open floating palettes in your application are active as long as your application is active. When it is
suspended under MultiFinder or System 7 or higher, the tool bar and floating palettes are automatically hidden. The
user can make use of the controls located in the tool bar and floating palettes at any time. The actions invoked by those
controls usually apply to the frontmost window that is not a tool bar or floating palette. Your application can determine
the frontmost floating palette with the FirstPaletteNumber routine.

When your application creates a tool bar, it is always created just below the menu bar across the entire width of the
main monitor. If the user changes the main monitor’s size or resolution, the Tools Plus automatically resizes the tool
bar to the width of the main monitor.

Even though Tools Plus makes it easy to add a tool bar and floating palettes to your application, you should have an
awareness of what Tools Plus does to make them work. This information is detailed in this chapter.

Standard Windows

In Tools Plus, a standard window is any window in your application that is not a tool bar or floating palette. If your
application does not use a tool bar or floating palettes, then all your windows are standard windows. Your application
can determine the frontmost standard window by using the FirstStdWindowNumber routine.

Active Window

The active window is the window that is acted upon whenever the user types, gives commands, or does whatever is
appropriate within the application being used. Almost invariably, this is your application’s frontmost window when
your application is active (i.e., when it is not suspended under MultiFinder or System 7 or higher). Note that the active
window may be a desk accessory when running Finder under System 5 or 6. Since desk accessories are handled
automatically by Tools Plus, you only need to be concerned about your own windows.

In Macintosh toolbox terms, the active window is represented by the global WindowPtr constant FrontWindow.
Although this information is explained in detail in Inside Macintosh, the basic rule is only one window is active, and
it’s the frontmost one. Your application can activate a window by using ActivateWindow, and it can determine the
active window’s number by using the ActiveWindowNumber routine.

The use of a tool bar or floating palettes introduces additional considerations because your application can now have
multiple active windows (explained in the Window Layers model later in this chapter). The frontmost “standard”
window (not a tool bar or floating palette) still remains the only active standard window. Additionally, the tool bar and
all floating palettes are also active.

Activating the toolbar has no effect on the frontmost standard window or any of the floating palettes. Activating a
floating palette simply brings it to the front of other floating palettes, without deactivating any windows. Activating an
inactive standard window deactivates the frontmost standard window, and brings the newly activated standard window
to the front of the standard windows.

Tools Plus automatically maintains the relationship between standard windows, the tool bar, and floating palette, and
makes sure windows are activated and deactivated appropriately.

Water’s Edge Software 113



Tools Plus

Work Window

With the introduction of the tool bar and floating palettes, your application can simultaneously have multiple active
windows (the tool bar, all open floating palettes, and the frontmost standard window). This brings up the question: in
which window is the user working at the moment? The concept of a work window is established solely to answer that
question. Tools Plus automatically keeps track of the window that has most recently been the target of user activity.

Your application has only one work window, which can be determined by using the WorkWindowNumber routine. A
window gains the “work window” status under any of the following conditions:

e the user clicks in a window, or any object in a window
* a window is opened as modal (because the next action must take place within that window)

 a standard window is opened (and therefore activated), and the previous work window was an active standard
window
¢ the work window is closed or hidden, in which case the following window becomes the work window:
frontmost standard window (if any are open), or
frontmost floating palette (if any are open), or
the tool bar (if it is open)
* a window is activated
Your application can treat a work window like an active window, in that it is an eligible target for the user’s activity. If
your application does not use a tool bar or floating palettes, the work window is the same as the active window, and
you only need to concern yourself with the concepts of an active window and a current window.

Current Window

The current window is the target of actions that occur within your application such as creating buttons or editing
fields. Usually, the current window is the same as the active window, however there are times when it is desirable to
affect a window without activating it. An example of this is when a window needs to be refreshed. This occurs when a
window is obscured by another object on the screen. When the window is no longer obscured, the newly revealed
section must be re-drawn or “refreshed.”

The CurrentWindow routine can be used to make any of your application’s windows the “current” window. When
work on the window is completed, it’s good form to make the active window (or work window in the case where a tool
bar and/or floating palettes are used) current. This is done with the CurrentWindowReset routine. Your application can
also determine the current window’s number by using CurrentWindowNumber. In Macintosh toolbox terms, the
current window’s WindowPtr is represented by the global variable thePort, which is the current grafPort, and can be
determined with the GetPort routine.

Editing Field Window

The Editing Field Window is the one window in your application containing the active editing field (the field either
has a flashing insertion point, or its selected text is highlighted). Tools Plus automatically keeps track of which
window contains your application’s active editing field.

If your application does not use a tool bar or floating palettes, this window will likely be the active window (if it has an
editing field). If your application uses a tool bar and/or floating palettes, potentially any active window (tool bar, any
floating palette, or the active standard window) can contain the active editing field. See the Editing Fields chapter for
details on editing fields and the Editing Field Window.

114



5 Windows

Modal Windows

When a window is modal, clicking the mouse outside the window results in a beep. This means that all interaction is
restricted to the modal window until that window is closed. Pull-down menus can’t be selected, nor can their 38-key
equivalents. Modal windows are always opened in front of all other windows (including the tool bar and floating
palettes).

When using MultiFinder or System 7 or higher, modal windows behave differently: they can be modal for the current
application, or for all applications. The standard dialog box (of dBoxProc type) keeps you in the current application by
preventing you from switching to the Finder or other applications, or by launching a new application. All other modal
windows, however, allow you to switch to the Finder or other applications (by clicking on one of their objects), and to
launch a new application (by double-clicking it or one of its files). They do not, however, let you select menu items or
click other windows within the same application. This is consistent with System 7°s movable modal dialog that is
displayed while copying a file.

Your application’s tool bar cannot be modal, nor can any of the floating palettes.

Window Layers

Normally, the Macintosh’s Window Manager maintains your application’s windows in such a way that the frontmost
window is active when your application is active. When your application is suspended (under MultiFinder or

System 7), all windows are inactive. Tools Plus preserves the Window Manager’s handling of windows (providing
your application does not have a tool bar or floating palettes). When a tool bar or floating palette is introduced in your
application, Tools Plus automatically ensures that all windows behave as described in the model below.

In System 5 and 6’s Finder, only one application can be running at a time. Additionally, desk accessories can be
running, and their windows can intermingle with your application’s windows. If your application has a tool bar and/or
floating palettes, Tools Plus automatically creates a “Desk Accessory Layer” in which all desk accessory windows are
kept together to prevent their intermingling with your application’s windows. This is done to prevent the confusing
condition that arises when the frontmost window is a floating palette or tool bar (belonging to your application),
behind which is a desk accessory, followed by another window belonging to your application. To the user, it may
(erroneously) appear that the palette’s operations apply to the desk accessory.

The following model describes how Tools Plus maintains the order of windows:

Front
(nearest to user)

Modal Windows * Modal windows open at the front of this layer

* Multiple modal windows can be open simultaneously

* Frontmost modal window is only accessible window overriding all others
Tool Bar » Always active (only one tool bar can be open)

* Inaccessible if a modal window is open

» Automatically hidden when your application is suspended

Floating Palettes * Floating palettes open at the front of this layer

* Always active

* Multiple floating palettes can be open simultaneously

* Inaccessible if a modal window is open

* Automatically hidden when your application is suspended

Standard Windows * Standard (modeless, non-tool bar non-floating palette) windows open at the front
of this layer

* Only the frontmost window in this layer is active

* Multiple standard windows can be open simultaneously

* When running under System 5 or 6’s Finder, desk accessory windows may
appear in this layer, providing a tool bar or floating palette is not open

* Inaccessible if a modal window is open

Window Layer Model

Water’s Edge Software 115



Tools Plus

Global and Local Co-ordinates

There are two co-ordinate systems that are used when creating Tools Plus user interface elements: global and local.
Global co-ordinates are relative to the main monitor where the upper left corner is point 0,0. Local co-ordinates are
relative to the current window where the window’s upper left corner is point 0,0. The co-ordinate numbers increase
when moving right or down, and decrease when moving left or up.

The Macintosh toolbox has a global variable called screenBits.bounds that is a rectangle defining the boundary of the
Macintosh’s main monitor in global co-ordinates. You may want to use this variable to help you define a window’s
maximum size, and zooming co-ordinates.

Details regarding global and local co-ordinates and screenBits.bounds can be found in Inside Macintosh.

Objects in Windows

Tools Plus automatically maintains the relationships between windows, user interface elements you place on those
windows, and the rest of the Macintosh environment. Simply put, Tools Plus makes your user interface work. The user
interface elements that are directly maintained by Tools Plus are:

* windows (modal and modeless), tool bar, floating palettes and dynamic alerts

* standard Macintosh buttons

* custom CDEFs that behave like a push button, check box or radio button

* scroll bars

* custom CDEFs that behave like scroll bars

* picture buttons

* list boxes

* editing fields

* pop-up menus

* cursor and cursor zones
Additionally, Tools Plus provides routines that facilitate drawing in windows, such as various picture and text drawing
routines. User interface elements placed in windows can automatically move and/or resize as their window’s size
changes (see AutoMoveSize for details).

The ‘dftb’ Resource - Font and Color Settings

The ‘dftb’ (dialog font table) resource was first introduced with the Appearance Manager in Mac OS 8, but Tools Plus
supports it on all systems with or without the Appearance Manager. The ‘dftb’ contains one record for each user
interface element in your dialog item list (‘DITL’ resource). Each record can set font and color information for any
user interface element. In Tools Plus, the ‘dctb’ resource works with or without an ‘ictb’ resource. If you have both
resources in a dialog, Tools Plus merges the setting in both the ‘dctb’ resource and the ‘ictb’ resource and applies them
to the dialog’s elements. In situations where both resources set an item (i.e., the ‘ictb’ resource indicates that Geneva 9
should be used while the ‘dftb’ resource indicates Monaco 10), individual settings in the ‘dftb’ resource override
equivalent settings in the ‘ictb’ resource.

The format of the ‘dftb’ resource contains one or more records, each of which corresponds to a single item in your
dialog item list. Each record in the ‘dftb’ resource has one of two formats: (1) a “skip” command indicating that there
are not settings (and no data) for a specific user interface element, and (2) a record that contains all the possible
settings for any user interface element. If your resource editor can not automatically create and maintain the ‘dftb’
resource and to keep it synchronized with your ‘DITL’ resource, Tools Plus includes a resource template for the ‘dftb’
resource. See the “Optional Resources” folder for the ‘dftb’ resources and copy it into your resource editor application.
The ‘dftb’ resource’s data is as follows:

116



5 Windows

Byte | Length
Offset | (Bytes)

Bit
Num

Description

0 2

Version (always 0)

2 2

Font Styles: Number of records in this resource (should be one record for each item in
the related ‘DITL’ resource)

The follow

items represent a single variable length record for a single item in the ‘DITL’ resource...

4 2

Entry Type: 0 = no data available (skip), 1 = data available
Fields following this record exist only when Entry Type =1.

6 2

15-10

(reserved)

9

Use font name: Set to 1 if item’s font is set using a font name instead of a font
number.

Add font size: Set to 1 if item’s font size is calculated using the window’s font size
plus a specified point value.

(reserved)

Use justification: Set to 1 if item’s text justification is set (any editing field only)

Use mode: Set to 1 if item’s text transfer mode is set (static text items only)

LAY RN |

Use background color: Set to 1 if item’s background color is set (edit text items,
static text items, editing fields, static text field, and some controls)

Use foreground color: Set to 1 if item’s foreground color is set (edit text items, static
text items, editing fields, static text field, and some controls)

Use size: Set to 1 if item’s font size if set to an exact value, such as 10pt.

Use face: Set to 1 if item’s font style is set

S |—= N

Use font: Set to 1 if item’s font is set using a font number

Font number: Font number set for item

Font size: Font size in points set for item. If “Add Font Size” bit is set, this value
indicates the number of points that are added to the window’s font size to determine
item’s font size.

12 2

i
3

(reserved)

Extended: Set to 1 if item’s font’s style includes the “extended” attribute

Condensed: Set to 1 if item’s font’s style includes the “condensed” attribute

Shadow: Set to 1 if item’s font’s style includes the “shadow” attribute

Outline: Set to 1 if item’s font’s style includes the “outline” attribute

Underline: Set to 1 if item’s font’s style includes the “underline” attribute

Italic: Set to 1 if item’s font’s style includes the “italic” attribute

O|= N |W[ N

Bold: Set to 1 if item’s font’s style includes the “bold” attribute

14 2

Text mode: Item’s text transfer mode (static text items only)
srcCopy = ( (static text item is implemented as a static text field)
srcOr =1
srcXor =2
srcBic =3
notSrcCopy =4
notSrcOr =5
notSrcXor =6
notSrcBic =7

16 2

Justification: Item’s text justification (editing fields only)
teJustLeft =0
teJustCenter =1
teJustRight =-1

18 6

Foreground color: Item’s foreground color (edit text items, static text items, editing
fields, static text field, and some controls)

24 6

Background color: Item’s background color (edit text items, static text items, editing
fields, static text field, and some controls)

30 1-256

Font name: Font name used to set item’s font. This Pascal string is truncated to the
number of valid characters plus a length byte. The record length varies because of this
field.

Water’s Edge Software

117




Tools Plus

Substituting Window ProclDs

Certain system resources may or may not be available to your application depending on the system version of the
Macintosh that is running your application. A perfect example of this is the “utility window,” normally called a
floating palette, which is part of the Appearance Manager in Mac OS 8 or later, and the unattractive floating palette
which most developers choose to avoid that is available in System 7.5 or later. With Tools Plus, you can design and
write your application to use a custom window definition (WDEF resource) for a floating palette. Then at the
beginning of your application it can determine the Mac’s capabilities, specifically if the Appearance Manager is
running to make the “utility window” available to your application. If this is the case, your application can easily
substitute the use of the custom floating palette WDEF with the Appearance Manager’s utility window throughout
your application.

Two routines in the “Miscellaneous Routines” chapter of this manual help facilitate determining the capabilities of the
Macintosh that is running your application: HasAppearanceManager and UsingAppearanceManager. You can also use
the toolbox’s Gestalt routines to determine whether other features are available or not. Tools Plus's
ReplaceWindowProcID routine is used to replace a specific window procID with another procID throughout your
application, thereby substituting the use of one type of window with another.

Live Window Dragging and Resizing

The default Mac OS behavior for dragging and resizing windows displays a dotted outline that tracks the window’s
eventual position or size for as long as the user holds the mouse button down. When the user releases the mouse
button, the window snaps to its new position or size. This convention was originally adopted solely because of the
limited processing capabilities of early Macintosh computers. Since mid 1998, Apple’s entry-level computers have
been more than capable of overcoming these limitations.

Tools Plus optionally lets the user move and resize windows in real time. With this option turned on, the change in the
window’s location or size is seen immediately and continuously as the user drags a window’s title bar or resizes the
window by dragging the grow box. This option looks best on faster Macintoshes, like those equipped with a G3
processor or better, because the target window and those behind it may need to be refreshed frequently and rapidly.
Faster Macintoshes, those equipped with a G3 processor or better, will provide fluid motion like that experienced on
Windows NT workstations.

The InitToolsPlus routine has options to turn on real time window dragging and resizing unconditionally, or only if a
specific processor is used. For greater flexibility, the SetLiveWindowDragging routine lets your application turn this
feature on or off under its own conditions.

Special Considerations

In Mac OS 8.5 and later, certain themes may crash your system if you open a window that is too small, or too far off
screen for the theme’s liking. If opening a window crashes your system or application, try making the window larger,
and it you are creating the window off screen, change its co-ordinates so that they are not as far off the screen. The
same applies for resizing or repositioning a window.

Handling Windows

Much of the control exercised over windows is performed by your application. By default, your application responds
to window events in its main event handler routine. You can optionally have a separate event handler routine for each
window. Tools Plus constantly inquires about any requests the system may have. Some of these requests must be acted
upon, such as refreshing a window. Other requests may be interpreted by your application, such as the user clicking in
a window’s close box, or clicking in another window. These facets are all detailed in the Event Management chapter.
Tools Plus automatically handles such chores as sizing, dragging, and zooming windows.

When working with windows, it is important to remember that many Tools Plus routines (such as creating buttons and
editing fields) apply to the current window.

118



5 Windows

The Macintosh toolbox’s FrontWindow routine becomes less useful now that the frontmost window can be a tool bar
or any of the floating palettes (instead of the frontmost standard window). Fortunately, Tools Plus provides routines to
determine the frontmost floating palette, and frontmost standard window.

If your application is drawing in color, or if it needs to know about the details of a monitor such as the number of
colors displayed or its size, see the Color Drawing & Multiple Monitors chapter later in this manual.

WindowOpen

Open a new window and make it the active and current window.

pascal void WindowOpen (short Window, short left, short top, short right,
short bottom, const Str255 Title, long Spec, Boolean goAwayFlag,
Boolean modalFlagq);

procedure WindowOpen (Window, left, top, right, bottom: INTEGER;
Title: STRING; Spec: LONGINT; goAwayFlag, modalFlag: BOOLEAN);

Windows are opened as per the Window Layer model described earlier in this chapter. To summarize:

* a modal window opens in front of all other windows, and it is the sole active window

* a floating palette opens in front of the floating palette layer, and it is active

* a standard window opens in front of the standard window layer, and it is active if a modal window is not open.
The window adopts a backdrop color as set by the BackdropColor routine (default is white). The window’s
background color (as obtained by GetBackRGB) is initially set to the backdrop color when the window is opened.

Window specifies the window number that is opened. Once a window is opened, it is referenced by this window
number. If a window using the same window number is already open, it is closed, then a new window is opened as
specified by the parameters in the WindowOpen routine, thereby re-using the window number. The newly opened
window becomes “active” (frontmost and highlighted as such) and “current” (action pertaining to graphics, text,
buttons, scroll bars, etc. occurs in this window). Tools Plus allows up to 250 windows to be open simultaneously,
however, you may choose to reduce this limit when using InitToolsPlus to initialize Tools Plus.

Left, top, right, and bottom define a rectangle in global co-ordinates that specifies the window’s size and location.
These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-hand corner
(right,bottom). Some useful things to remember about sizing your window are:
* The co-ordinates you specify define the usable area. The window’s title bar, outline and shadow are drawn
outside these co-ordinates.
e If a document window has a right and/or bottom scroll bar (documentProc type), 15 pixels of the usable
area are used up by the width of the scroll bar.
* Windows with a title bar use an additional 19 pixels above the window’s top co-ordinate to draw the title
bar.
* The menu bar takes up 20 pixels, so no window should have a top co-ordinate which is less than 20.
If the tool bar is open, and it was created with the tbOffsetNewWindows option, this window’s co-ordinates are shifted
downwards by an amount that is equal to the tool bar’s height.

Title is the window’s title. Note that some windows do not have a title. In this case, the title parameter may be passed
as a null string (*’).

Spec specifies a window’s appearance and behavior. It is a combination of a window procID plus various Tools Plus
options detailed later in this section.

The goAwayFlag indicates if a “close box” is available in the window’s title bar. Close boxes are only drawn in the
documentProc, noGrowDocProc, rDocProc, paletteProc, altPaletteProc, and ordPaletteProc windows. The two
constants that can be used for this flag are GoAway and NoGoAway.

The modalFlag indicates if the window is “modal” or not. When a modal window is open, clicking outside the window
results in a beep. This means that all interaction is restricted to the modal window until that window is closed. The two
constants that can be used for this flag are Modal and NotModal. Floating palettes cannot be modal.

Water’s Edge Software 119



Tools Plus

Appearance and Behavior Specification

Spec specifies a window’s appearance and behavior. It is a combination of a window proclD plus various Tools Plus
options. The value for this 4-byte long integer can be specified by adding a set of constants to obtain the desired result.
For example, a document window with a zoom box would have a spec of documentProc + ZoomBox. The constants
defining the available options are as follows:

Choose only one of the following proclIDs...
documentProc Standard Apple document window with a grow box. Used for windows  [EETitle ==

that need to be resized by the user.
2]
noGrowDocProc Standard Apple document window without a grow box. Used for ECE Title ==
windows that are either fixed size or resized under the application’s
control.
rDocProc Standard Apple “desk accessory” window.
movableBoxProc  Standard Apple “movable modal dialog” window available on System = Title =

7 or later. When running on System 6 or older, a noGrowDocProc
window is used instead but it exhibits movable modal behavior.

dBoxProc Standard Apple modal dialog. Before System 7, this window physically
prevents access to anything outside the window. In System 7 and later
you can optionally have access to menus.

plainDBox Standard Apple plain dialog. Usually used for splash screens. If made
modal, it still allows the user to switch to another application.

altDBoxProc Standard Apple drop-shadow dialog. If made modal, it still allows the
user to switch to another application.

paletteProc Tools Plus floating palette with drag bar across the top. You must
include the Tools Plus floating palette WDEF (or equivalent) in your
application, and the resource ID must be 2000.

ordPaletteProc  Window that looks like a floating palette but behaves like a standard
window. Seldom used. You must include the Tools Plus floating palette

WDEEF (or equivalent) in your application, and the resource ID must be
2000.

altPaletteProc  Tools Plus floating palette with drag bar across the left side. You must
include the Tools Plus floating palette WDEF (or equivalent) in your
application, and the resource ID must be 2000.

(your own proclD) You can use your own WDEF or those created by third parties to create standard

+ wPalette windows that look different from Apple’s, or to create floating palettes. See the note on
custom WDEFs later in this section for calculation of the procID. Add the wPalette
constant to your procID if you want your window to behave like a floating palette.

120



5 Windows

Optionally choose only one of the following auto-position options...

wCenter

wTile

wNoOffScreen

wAllOnScreen

Center the window on the main monitor. Useful for alerts and progress indicators like a
thermometer.

Tile the window in relation to the frontmost standard window. If no
standard windows are open, the window opens in the top-left corner on
the main monitor. This option is usually detrimental when opening a
floating palette or modal window.

Ensures that the window is at least partially visible when it is opened thereby allowing
the user to drag it to an optimum position. If your application opens windows based on a
stored location (likely kept in a preferences file or in the document), the window might be
completely off the screen if the document is opened on a Mac with a monitor smaller than
the document’s creator. This option alleviates that problem. If you add this option to a
window without a title bar (dBoxProc, plainDBox or altDBoxProc), it is positioned
entirely on the screen because the user can’t drag it to a better position.

1

Co-ordinates
specified by your
program

#% File Edit Diews Options

HiiNew Bindvw

Window’s co-ordinates altered by

adding wNoOffScreen to the ProcID. g
The user can now see the title bar and

drag the window to a better position.

Tools Plus does the necessary calculations to make sure the entire window is visible. If
the window is too large to fit on the screen, it is positioned such that the window’s bottom
and/or right side may extend beyond the screen’s edges (the top left-hand corner will be
visible). This is a variation of the wNoOffScreen option above. If you add this option to a
window without a title bar (dBoxProc, plainDBox or altDBoxProc), it is positioned
entirely on the screen because the user can’t drag it to a better position.

% File Edit lDiews Options

ECE New Window

S0 New Window

1 1

Co-ordinates
specified by your
program

Window’s co-ordinates altered by adding
wAIllOnScreen to the ProcID. The entire
window is now visible.

Optionally choose only one of the following menu access options...

wAllowEditMenu

wAllowMenus

Water’s Edge Software

Allow a modal window to access the Edit menu. By default, when a modal window is
opened, pull-down menus are automatically disabled and the user is prevented from
accessing them (they hear a beep when they click on the menu bar). This option
temporarily disables all menus except for Edit. In the Edit menu, the Undo, Cut, Copy,
Paste and Clear items are enabled and disabled automatically as per the active editing
field on the modal window. When the modal window is closed, the pull-down menus are
restored to their original settings as set by your application. This option has no effect on
modeless windows. If you are writing a plug-in, use this option only if the host’s Edit
menu follows the standards defined in the Menus chapter of this user manual.

Allow a modal window to access all menus. By default, when a modal window is opened,
pull-down menus are automatically disabled and the user is prevented from accessing
them (they hear a beep when they click on the menu bar). This option gives the user
access to all pull-down menus as specified by your application (Tools Plus does not
automatically enable or disable the menus). This option has no effect on modeless
windows. It is safest not to use this option if you are writing a plug-in.

121



Tools Plus

Note: In applications running under System 5 or System 6, the dBoxProc window is truly
modal, and effectively prevents the user from accessing pull-down menus
regardless of the menu accessing options described above.

Optionally choose any of the following options...

wDimEditMenu Disable the Edit menu’s standard editing items (Undo, Cut, Copy, Paste, Clear and Select
All) as the window is opened. This is useful when opening a window that has no editing
fields, or one that has fields but none are active by default. If you are writing a plug-in,
use this option only if the host’s Edit menu follows the standards defined in the Menus
chapter of this user manual.

ZoomBox Include a “zoom box” in either the documentProc or noGrowDocProc type windows.
Floating palettes cannot have a zoom box.

wRefresh Generate a doRefresh event as the window is opened. DoRefresh events are not discarded
if you open numerous windows before getting your next event. By default, windows do
not generate doRefresh events as they are opened.

wManualUpdate You prefer to manually use the BeginUpdate and EndUpdate routines when this window
needs to be refreshed. By default, Tools Plus automatically restricts drawing to only the
part of the window that needs refreshing when your application gets a doPreRefresh of
doRefresh event. See the doPreRefresh and doRefresh events for details.

wUnprotectedRefresh
By default, user interface elements are protected (cannot be overwritten) when your
application draws to a window in response to a doRefresh event. This option turns off the
protection to allow your application to draw anywhere on the window.

wNoZoomLines Suppress “zoom lines” when the user clicks a window’s zoom box and zooms between a
standard state and a user state. Use this option if you need the fastest possible speed for
making a transition between the standard state and the user state.

wBackgroundTheme
Include the Appearance Manager’s background theme in this window. You cannot set the
window’s content color when a background theme is used. Alternatively, you can use the
SetBackgroundTheme routine which lets you set a brush that may not normally be
associated with a specific type of window. This option is ignored if the Appearance
Manager is not available.

wHidden Open the window as “hidden” (i.e., it is accessible to your application but invisible to the
user).

Floating Palette, Custom WDEFs and Appearance Manager

If your application uses floating palettes or custom windows, you need to include a special window definition (WDEF
resource) in your application’s resource fork. Tools Plus provides the required WDEF for floating palettes, and you
can find it in the “Palette WDEF” file in the “Optional Resources” folder on the Tools Plus disk. Add this WDEF
resource to your project’s resource file before you compile your application.

You can write your own WDEF or you can use third-party WDEFs. As per Macintosh standards, a window’s proclD is
comprised from the following formula: WDEF resource ID x 16 + variant code. When you add the wPalette constant
to the window’s procID, Tools Plus makes the window behave like a floating palette. Appearance Manager

If your application is running on a Macintosh that has an Appearance Manager, then it automatically has access to a
number of additional window types (WDEFs). Consult your Appearance Manager SDK (Software Developer Kit) for
details. It is easiest to program your application using standard windows, then as your application starts up it can check
to see if the Appearance Manager is available. If the Appearance Manager is available, use the ReplaceWindowProcID
routine to replace standard window procIDs with those in the Appearance Manager. You can do this automatically in
the InitToolsPlus routine.

122



5 Windows

ﬁ{) Note: When using third party WDEFs (like the Infinity Windoid), make sure you carefully read the documentation
that accompanies the WDEF. Your WDEF will likely have variant codes that differ from those expected by the
Tools Plus, so you will likely not be able to use the Tools Plus constants ordPaletteProc, paletteProc or

CONST

altPaletteProc.

documentProc
dBoxProc
plainDBox
altDBoxProc
noGrowDocProc
movableBoxProc
rDocProc

’
2
’
’
2

U WNEFE O
~e ~e o~

16;

kWindowDocumentProc
kWindowGrowDocumentProc
kWindowVertZoomDocumentProc
kWindowVertZoomGrowDocumentProc
kWindowHorizZoomDocumentProc
kWindowHorizZoomGrowDocumentProc
kWindowFullZoomDocumentProc
kWindowFullZoomGrowDocumentProc

kWwindowPlainDialogProc
kWwindowShadowDialogProc
kWwindowModalDialogProc
kWwindowMovableModalDialogProc
kWindowAlertProc
kwWindowMovableAlertProc

kWindowFloatProc
kWindowFloatGrowProc
kWwindowFloatVertZoomProc
kWindowFloatVertZoomGrowProc
kWindowFloatHorizZoomProc
kWindowFloatHorizZoomGrowProc
kWindowFloatFullZoomProc
kWindowFloatFullZoomGrowProc

kWindowFloatSideProcID
kWwindowFloatSideGrowProcID
kWindowFloatSideVertZoomProcID

kWindowFloatSideVertZoomGrowProcID

kWwindowFloatSideHorizZoomProcID

kWindowFloatSideHorizZoomGrowProcID

kWindowFloatSideFullZoomProcID

kWwindowFloatSideFullZoomGrowProcID

ZoomBox = 8;

wCenter = $00010000;

wTile = $00020000;
wRefresh = $00040000;
wNoOffScreen = $00080000;
wAllOnScreen = $00100000;
wNoZoomLines = $01000000;
wHidden = $02000000;
wBackgroundTheme = $04000000;
wPalette = $80000000;
ordPaletteProc = 32000;
paletteProc = 32000 + wPalette;
altPaletteProc = 32002 + wPalette;
wAllowEditMenu = $40000000;
wAllowMenus = $20000000;
wDimEditMenu = $10000000;

GoAway = true;

NoGoAway = false;

Modal = true;

NotModal = false;

Water’s Edge Software

1024;
1025;
1026;
1027;
1028;
1029;
1030;
1031;

1040;
1041;
1042;
1043;
1044;
1045;

1057;
1059;
1061;
1063;
1065;
1067;
1069;
1071;

1073;
1075;
1077;
1079;
1081;
1083;
1085;
1087;

{Window definition IDs (ProcIDs):

{Standard document window with size box

{Alert box or modal dialog box
{Plain box (usually modal)

{Plain box with shadow (usually modal)

{Document window without size box
{Movable dialog

{Round corner window (desk accessories)
{ProcIDs for Appearance Manager's windows..

floating windows..

floating windows..

L on R Raron Rarn T Rarn Ran Lo T e e Rare Rarn Ran Kan Rarte Ko T e Rare Rare Rarn Ran Do S aon Rate Rate Rorn Xaon Rarn Rae)

{Add to the procID for these features:

{Zoom box
{Auto-centering, or..
{Auto-tiling

{Generate a refresh event right away
{Prevent from being off-screen (auto move)
{Entire window must be on screen (auto move)
{Suppress "zoom lines" when zooming

{Window is opened hidden

{Use Appearance Manager's background theme

{Window behaves like palette
{Alternate (custom) procIDs:

{window that looks like a floating palette
{Tools Plus's Floating Palette window
{Tools Plus's palette with drag bar on left

{Add to modal window procID for:
{Allow access to Edit menu only
{Allow access to all menus
{Disable Edit menu's items

{"Close box availability" indicators:

{Create "close" box
{Do not create "close" box
{"Modal window" indicators:

{Window is modal
{Window is modeless

ProcIDs for Appearance Manager's dialogs..

ProcIDs for Appearance Manager's top-title

ProcIDs for Appearance Manager's side-title

SRR SRR ST T e S e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e P e e e e e e e e e e e e e e e

123



Tools Plus

33> Warning: When you open a window, make sure that the co-ordinates are such that at least part of the window’s title

bar is visible to let the user reposition the window. Alternatively, add either of the wNoOffScreen or
wAIlOnScreen constants to the window’s spec parameter. If you are using a tool bar, make sure you open
your window lower to ensure that its title bar is not hidden by the tool bar, or let the ToolBarOpen routine
do this for you automatically.

,@D Note: Although it is programatically possible, you should not open or close windows when a modal window is active.

The only exception to this is the use of another modal window.

Programming Tips:

1

Open a window with the wRefresh constant added to the window’s spec parameter, then populate it with
Tools Plus objects (buttons, list boxes, etc.). This produces a doRefresh event, which in turn calls upon your
window updating routine to draw the remaining lines and text. The advantage to this is that all of Tools Plus's
objects are protected (and therefore can’t be overwritten) when your window drawing routine does its work.

If your application follows the first tip (above), your window refreshing routine can paint the window with a
color or pattern, then draw text and/or lines on top.

You can make a window appear to open faster by creating a hidden window, creating the necessary Tools
Plus objects, then displaying the window. When the window is displayed, a doPreRefresh event is generated
giving your application an opportunity to draw a background then Tools Plus draws its objects. Lastly, a
doRefresh event is generated letting your application perform any drawing after Tools Plus has drawn its
objects. This process takes longer to complete than just opening a window and populating it, but from a user’s
perspective, they experience a momentary pause then the window quickly materializes as opposed to being
drawn piece by piece more slowly. Remember, it takes longer to create an object than to redraw it.

If your application stores a window’s co-ordinates (in a document or a preferences file), be aware that
someone may try to open the document on a Mac with a monitor that is smaller than the one used by the
document’s creator. By adding either the wNoOffScreen or wAllOnScreen constant to the window’s spec
parameter, the window opens where the user can see it. Your application can then respond to a
doMoveWindow (window was moved) event by storing the window’s new location. If the user does not move
the window, your application retains the window’s original co-ordinates. Later, when the document is opened
on the creator’s Mac (with a larger monitor), the window is in its original position.

Although the Tools Plus WDEF is quite memory efficient, you may want to use the “Infinity Windoid”
instead (it’s a third party floating palette WDEF included with Tools Plus disks). The Infinity Windoid
supports color to give you commercial quality palettes.

Also see: ToolBarOpen, WindowOpenRect, LoadWindow and BackdropColor.

WindowOpenRect

Open a new window and make it the “active” and “current” window.

pascal void WindowOpenRect (short Window, const Rect *Bounds,

const Str255 Title, long Spec, Boolean goAwayFlag,
Boolean modalFlag);

procedure WindowOpenRect (Window: INTEGER; Bounds: RECT; Title: STRING;

Spec: LONGINT; goAwayFlag, modalFlag: BOOLEAN);

WindowOpenRect is identical to the WindowOpen routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

124



H

5 Windows

WindowOpenRectBehind

Open a new window behind another window.

pascal void WindowOpenRectBehind (short Window, const Rect *Bounds,
const Str255 Title, long Spec, Boolean goAwayFlag,
Boolean modalFlag, short BehindWindow);

procedure WindowOpenRectBehind (Window: INTEGER; Bounds: RECT; Title: STRING;
Spec: LONGINT; goAwayFlag, modalFlag: BOOLEAN;
BehindWindow: INTEGER);

WindowOpenRectBehind is identical to the WindowOpenRect routine, except that it places the new window behind a
specified window, or at the back of a window layer.

BehindWindow specifies the number of an open and visible Tools Plus window behind which the new window is
created. This window must be in the same window layer as the new window, meaning that a floating palette can only
open behind another floating palette, and a standard window can only open behind another standard window. A value
of -1 opens the new window at the front of its layer. This produces the same result as using WindowOpenRect. A value
of 0 opens the new window at the back of its layer to make it the rear-most floating palette or standard window.

If the window specified by BehindWindow is not a floating palette or a standard modeless window, or if the window is
hidden or closed, WindowOpenRectBehind creates the new window at the front of its layer as though you had used
WindowOpenRect.

LoadWindow

Open a window using a ‘WIND’ resource.
pascal void LoadWindow (short Window, short ResID);
procedure LoadWindow (Window, ResID: INTEGER);

LoadWindow opens a window by calling the NewWindow routine and supplying it with values from a “WIND’
resource, commonly called a window template. This is a good way to create a window that requires a custom color
table.

Window specifies the window number that is opened (1 to 250, or the limit you specified in InitToolsPlus). Once a
window is opened, it is referenced by this window number. If a window using the same window number is already
open, it is closed, then a new window is opened as specified by the parameters in the “WIND’ resource, thereby re-
using the window number.

ResID is the “WIND’ resource ID number that is used to create the window. If the window has a ‘wctb’ color table
resource, it must use the same ID number. Any resource ID number can be used, but numbers 128 or higher are safest
as stated in Inside Macintosh.

Since System 7, the Window Manager has had very specific needs for window color tables, and Inside Macintosh
warns you against creating your own. Tools Plus protects you from color table inconsistencies by creating a window
color table that matches the default color table, then updating or appending that table with entries you supply in the
‘wctb’ resource. This lets you supply a custom WDEF with an expanded color table, and it also ensures that you don’t
accidentally damage the window color table as required by Mac OS.

When creating windows using ‘WIND’ resources, flag your “WIND’ and ‘wctb’ resources as purgeable to save
memory. Tools Plus makes a copy of their data.

Water’s Edge Software 125



H

Tools Plus

Auto Position Options

The ‘WIND’ resource can contain an optional 2-byte window positioning field. In ResEdit, you can access this field by
selecting the required “WIND’ resource, then using the Resource menu’s “Open Using Template...” command.
Choose a “WIND’ template and you will see the “Auto Position” field. You specify how you want to position the
window by entering a specific value in the “WIND’ resource’s “Auto Position” field, detailed below. There are several
terms used in the description of auto positioning options, and they are defined as follows:

center Centered both vertically and horizontally relative to either a screen or another window. If the
window being centered relative to another window is wider than the window that preceded it, it
is pinned to the relative window’s left edge.

stagger This is similar to Tools Plus's tiling. Each staggered window is offset by 10 pixels horizontally
and vertically.

alert position Centered horizontally and placed in the “alert position” vertically, that is with one fifth of the
window or screen above the new window and the rest below.

parent window The front most, standard window. You can determine the parent window using the
FirstStdWindowNumber routine.

Use one of the following values in the “WIND’ resource’s “Auto Position” field to specify how the window is
positioned:

$0000  Use co-ordinates specified in the “WIND’ resource
$280A  Center on main screen

$300A  Place in alert position on main screen

$380A  Stagger on main screen

$A80A  Center on parent window

$BO0A  Place in alert position on parent window

$B80A  Stagger relative to parent window

$680A  Center on parent window’s screen

$700A  Place in alert position on part window’s screen
$780A  Stagger on parent window’s screen

Also see: WindowOpen, LoadSpecWindow and LoadDialog.

LoadSpecWindow

Open a window using a ‘“WIND’ resource.
pascal void LoadSpecWindow (short Window, long Spec, short ResID);
procedure LoadSpecWindow (Window: INTEGER; Spec: LONGINT; ResID: INTEGER);

LoadSpecWindow is identical to the LoadWindow routine, except that it requires the additional Spec parameter to give
you control over all the appearance and behavior options offered by Tools Plus. See the WindowOpen routine for
details about the Spec parameter.

126



H

5 Windows

LoadSpecWindowBehind

Open a window using a “WIND’ resource behind another window.

pascal void LoadSpecWindowBehind (short Window, long Spec, short ResID,
short BehindWindow);

procedure LoadSpecWindowBehind (Window: INTEGER; Spec: LONGINT;
ResID, BehindWindow: INTEGER);

LoadSpecWindowBehind is identical to the LoadSpecWindow routine, except that it places the new window behind a
specified window, or at the back of a window layer.

BehindWindow specifies the number of an open and visible Tools Plus window behind which the new window is
created. This window must be in the same window layer as the new window, meaning that a floating palette can only
open behind another floating palette, and a standard window can only open behind another standard window. A value
of -1 opens the new window at the front of its layer. This produces the same result as using LoadSpecWindow. A value
of 0 opens the new window at the back of its layer to make it the rear-most floating palette or standard window.

If the window specified by BehindWindow is not a floating palette or a standard modeless window, or if the window is
hidden or closed, LoadSpecWindowBehind creates the new window at the front of its layer as though you had used
LoadSpecWindow.

LoadDialog

Open a dialog (window with user interface elements) using a ‘DLOG’ resource.
pascal void LoadDialog (short Window, short ResID);
procedure LoadDialog (Window, ResID: INTEGER);

LoadDialog opens a window by calling the NewWindow routine using the parameters supplied by a ‘DLOG’ resource,
commonly called a dialog template. The window is populated with user interface items as specified by a related
‘DITL’ (dialog item list) resource.

Window specifies the window number that is opened (1 to 250, or the limit you specify in InitToolsPlus). Once a
window is opened, it is referenced by this window number. If a window using the same window number is already
open, it is closed, then a new window is opened as specified by the parameters in the ‘DLOG’ resource, thereby re-
using the window number.

ResID is the ‘DLOG’ resource ID number that is used to create the window. If the dialog has a ‘dctb’ color table
resource, it must use the same ID number. Any resource ID number can be used, but numbers 128 or higher are safest
as stated in Inside Macintosh.

Since System 7, the Window Manager has had very specific needs for window color tables, and Inside Macintosh
warns you against creating your own. Tools Plus protects you from color table inconsistencies by creating a window
color table that matches the default color table, then updating or appending that table with entries you supply in the
‘dctb’ resource. This lets you supply a custom WDEF with an expanded color table, and it also ensures that you don’t
accidentally damage the window color table as required by Mac OS.

When creating windows using ‘DLOG’ and/or ‘DITL’ resources, the following tips will help you make the most of
programming with resources:

¢ The dialog can be automatically position just like a ‘WIND’ resource. See LoadWindow for details on how to add
auto-positioning options to your ‘DLOG’ resource.

¢ Flag your ‘DLOG’, ‘DITL’ and ‘dctb’ resources as purgeable to save memory. Tools Plus makes a copy of their
data.

Water’s Edge Software 127



Tools Plus

* Item numbers are assigned sequentially for dialog items starting at one (1). Tools Plus user interface elements share
the same numbers. The following is an example of how your dialog’s items are translated to Tools Plus user
interface elements:

Item # | ‘DITL’ Item Tools Plus Item
1 Static Text (srcCopy) Field #1 (static)
2 Static Text (other than srcCopy)

3 Field Field #3
4 Field Field #4
5 Check Box Button #5
6 Radio Button Button #6
7 Radio Button Button #7
8 Push Button Button #8
9 User Item

10 Field Field #10

e If item number 1 is a push button, it becomes the default button and a default frame is drawn around it.

* When a ‘DITL’ resource (dialog item list) uses ‘CNTL’ resources (control templates), Tools Plus makes some
assumptions about how to translate the information that is supplied by the ‘CNTL’ resource into a Tools Plus user
interface element. Complete details on how to populate the ‘CNTL’ resource can be found in this user manual in
the chapters that cover Buttons, Scroll Bars, Editing Fields, List Boxes and Pop-Up Menus.

Note that in the table below, the rightmost column describes how the control is implemented in Tools Plus. If you
see “Button: Tabs”, this means that the control is implemented as a “button” in Tools Plus, that is, you use button
related routines to access the control, and Tools Plus reports events related to this control as a doButton event. The
control actually appears as the Appearance Manager’s “Tab Control.” Similarly, controls that are implemented in
Tools Plus as “scroll bars” may actually be sliders or other “scroll bar like”” controls.

CDEF ID ProclIDs Control is Implemented in Tools Plus as a...

0 Oto 15 Button

1 16 to 31 Scroll Bar

2 32to 47 Button: Bevel Button (If “value” parameter is zero. Available only in
Appearance Manager).

Pop-Up Menu using a Bevel Button body (If “value” parameter specifies a

non-zero menu resource ID. Available only in Appearance Manager).

3 48 to 63 Scroll Bar: Slider (available only in Appearance Manager)

4 64 to 79 Button: Disclosure Triangles (available only in Appearance Manager)

5 80 to 95 Scroll Bar: Progress Indicator (available only in Appearance Manager)

6 96, 98-111 | Button: Little Arrows (available only in Appearance Manager)
Used for stepping through values.

97 Scroll Bar: Little Arrows (available only in Appearance Manager)

Used for stepping through values when clicked, and scrolling through
values when held.

7 112 to 127 | Button: Chasing Arrows (available only in Appearance Manager)

8 128 to 143 | Button: Tabs (available only in Appearance Manager 1.0.1 or later)

9 144 to 159 | Button: Visual Separator (available only in Appearance Manager)

10 160 to 175 | Button: Group Box (available only in Appearance Manager)

11 176 to 191 Button: Image Well (available only in Appearance Manager)

12 192 to 207 | Button: Pop-Up Arrows (available only in Appearance Manager)

13 208 to 223 | Button: (reserved by Apple for future consideration)

14 224 to 239 | Button: Placard (available only in Appearance Manager)

15 240 to 255 | Button: Clock Control (available only in Appearance Manager)

16 256 to 271 Button: User Pane (available only in Appearance Manager)

17 272 to 287 | Editing field (available only in Appearance Manager)

128



5 Windows

CDEF ID ProclIDs Control is Implemented in Tools Plus as a...
18 288 to 303 | Button: Static Text (if SetDialogCNTLStaticTextSpec is set to -1)
(available only in Appearance Manager)
Static Text field (if SetDialogCNTLStaticTextSpec is not set to -1)
(available only in Appearance Manager)
19 304 to 319 | Button: Picture Button (available only in Appearance Manager)
20 320 to 335 | Button: Icon Control (available only in Appearance Manager)
21 336 to 351 | Button: Window Header (available only in Appearance Manager 1.0.2 or
later)
22 352to 367 | List Box (remember to include an ‘Ides’ resource in your application if you
want to create an Appearance Manager list box control)
23 368 to 383 | Button: 3D Button (available only in Appearance Manager)
24 384 t0 399 | Scroll Bar: 3D Scroll Bar (available only in Appearance Manager)
25 to 62 400 to 1007 | Button: (reserved by Apple for future consideration)
63 1008 to 1023 | Pop-Up Menu (if SetDialogCNTLPopUpSpec is not set to -1)
Button: Pop-up menu (if SetDialogCNTLPopUpSpec is set to -1)
64-127 1024 to 2047 | Button: (reserved by Apple for future consideration)
128-1023 | 2048 to 16383 | Button (third party button CDEF IDs should be in this range)
1024- 16384 to Scroll Bar (if control does not have a title). Third party scroll bar or slider
2047 32767 CDEF IDs should be in this range.
Button (if control has a title)

See the following routines later in this chapter for options on translating ‘CNTL’ resources to Tools Plus user

interface elements: SetDialogCNTLEditTextSpec, SetDialogCNTLStaticTextSpec, SetDialogCNTLListBoxSpec,

and SetDialogCNTLPopUpSpec.
See the following routines later in this chapter for options on translating Edit Text items to Tools Plus editing

fields, and for translating Static Text items to Tools Plus static fields: SetDialogEditTextSpec and
SetDialogStaticTextSpec.

* When a dialog is opened, its font, font size and style settings are set to the values specified by the
SetDialogFontInfo routine. By default, the font is Chicago 12pt.

» Edit Text items are translated into editing fields using the window’s current font settings as defined by the
SetDialogFontInfo routine. Tools Plus creates fields using the NewDialogField routine, and they remember their
font settings even when the window’s font settings are changed. These fields are very similar to plain Dialog
Manager fields. The attributes that are automatically assigned to each field are as follows (see the NewField routine
for details). You can override these settings using the SetDialogEditTextSpec routine.

A text handle is automatically allocated to store the field’s text.

The field’s text is left aligned.

No text filter is applied to the field.

Use Appearance Manager’s Edit Text control if available. Dim field when it is disabled or on

an inactive window.

Use window’s font settings.

A box is drawn around the field and line breaks are allowed unless the field is one line high.

The field’s string is stored as a C string to allow up to 32767 characters.

handle = nil
left aligned
not filtered
teSystemBody

teUseWFont
teBoxCR
teCstring

teTabSelectAll

teBuffered

¢ Static text items that use an unspecified text transfer mode, or any modes other than srcCopy (source copy), are

Select all text in field when user tabs into the field.

The field is buffered with its own TextEdit record to increase performance when dealing with
large volumes of text.

drawn by Tools Plus when the window is populated and when the window needs to be refreshed. These items are
inaccessible to your application.

* If you want to alter static text items programatically and your dialog has an ‘ictb’ resource or ‘dctb’ resource, the
static text item must use the srcCopy (source copy) text transfer mode. When this is done, Tools Plus creates the
static text item as a static text field thereby letting you use Tools Plus's field routines to easily manipulate the static
text item. This also gives the static text field the ability to dim when it is on an inactive window. The attributes that

are automatically assigned to the static text field are as follows (see the NewField routine for details). You can

override these settings using the SetDialogStaticTextSpec routine.

Water’s Edge Software

129



Tools Plus

handle = nil A text handle is automatically allocated to store the field’s text

left aligned The field’s text is left aligned

not filtered No text filter is applied to the field

teSystemBody Use Appearance Manager’s Edit Text control if available. Dim field when it is disabled or on
an inactive window.

teStaticText Create a static text field.

teUseWFont  Use window’s font settings.

teAllowCR Allow line breaks in the text.

teBackdrop Use window’s backdrop color for text background.

* Icons are displayed using the Drawlcon routine. The advantage this provides is that the perfect icon is displayed
regardless of the monitor’s settings (‘cicn’, ‘icl8’, ‘icl4’, etc.), and a mask is used if available. Although ResEdit
only displays ‘ICON’ icons when you are designing your dialog, Tools Plus displays any icon when your dialog is
displayed, including ‘cicn’, and large and small color and black and white icons. Note that ResEdit has a bug where
it changes your resource ID number for an icon in the dialog’s item list if an ‘ICON’ resource does not exist with
that ID, and if the item order is renumbered. If you initialize Tools Plus with the initPure AppearanceManager
option, icons are translated into non-selectable icon controls that dim on inactive windows.

* Pictures are displayed using the DrawPict routine. The picture is scaled to the item’s display rectangle. If you need
more sophisticated picture drawing such as using multiple pictures depending on monitor settings, clipping an
image or using the picture’s rectangle, define the picture in your dialog as a user item and draw the picture using
the DrawPict routine when the dialog is created and when it needs to be refreshed. If you initialize Tools Plus with
the initPure AppearanceManager option, pictures are translated into non-selectable picture controls that dim on
inactive windows.

* If you need to create a user interface element that is not a standard item in a dialog item list, such as a list box, pop-
up menu or a panel, define the item’s co-ordinates in the dialog item list as a user item. After you create the dialog,
use the GetDialogltemRect routine to obtain the display rectangle for that item, then create the element using a
Tools Plus routine such as NewListBoxRect.

Also see: LoadWindow and LoadSpecDialog.

LoadSpecDialog

Open a dialog (window with user interface elements) using a ‘DLOG’ resource.
pascal void LoadSpecDialog (short Window, long Spec, short ResID);
procedure LoadSpecDialog (Window: INTEGER; Spec: LONGINT; ResID: INTEGER);

LoadSpecDialog is identical to the LoadDialog routine, except that it requires the additional Spec parameter to give
you control over all the appearance and behavior options offered by Tools Plus. See the NewWindow routine for
details about the Spec parameter.

130



H

H

5 Windows

LoadSpecDialogBehind

Open a dialog using a ‘DLOG’ resource behind another window.

pascal void LoadSpecDialogBehind (short Window, long Spec, short ResID,
short BehindWindow);

procedure LoadSpecDialogBehind (Window: INTEGER; Spec: LONGINT;
ResID, BehindWindow: INTEGER);

LoadSpecDialogBehind is identical to the LoadSpecDialog routine, except that it places the new window behind a
specified window, or at the back of a window layer.

BehindWindow specifies the number of an open and visible Tools Plus window behind which the new window is
created. This window must be in the same window layer as the new window, meaning that a floating palette can only
open behind another floating palette, and a standard window can only open behind another standard window. A value
of -1 opens the new window at the front of its layer. This produces the same result as using LoadSpecDialog. A value
of 0 opens the new window at the back of its layer to make it the rear-most floating palette or standard window.

If the window specified by BehindWindow is not a floating palette or a standard modeless window, or if the window is
hidden or closed, LoadSpecDialogBehind creates the new window at the front of its layer as though you had used
LoadSpecDialog.

LoadDialogList

Attach a dialog item list (‘DITL’ resource) to an open window.
pascal void LoadDialogList (short Window, short ResID);
procedure LoadDialogList (Window: INTEGER; ResID: INTEGER);

LoadDialogList reads a ‘DITL’ (dialog item list) resource, attaches it to an open window, then populates the window
with the items in the list. You use this routine if you want to open a window and prepare it in some way before
populating it with the user interface elements defined in a dialog item list.

Window specifies the window number that will have the item list attached. If the specified window is not open,
LoadDialogList does nothing. If the window already has an item list attached, the old list and the items in it are deleted
before the new one is attached. If the window is not open, LoadDialogList does nothing.

ResID is the ‘DITL’ (dialog item list) resource ID number that is used to create the dialog’s items. If the ‘DITL’
resource does not exist, LoadDialogList does nothing. Flag your ‘DITL’ resource as purgeable since Tools Plus makes
a copy of its data.

Also see: LoadDialog and AppendDialogList.

AppendDialogList
Append a dialog item list (‘DITL’ resource) to a dialog.

pascal void AppendDialogList (short Window, short ResID);
procedure AppendDialogList (Window: INTEGER; ResID: INTEGER);

AppendDialogList is similar to LoadDialogList in that it reads a ‘DITL’ (dialog item list) resource, and attaches it to
the current window. Unlike the LoadDialogList routine, this routine appends the new items to the end of an existing
dialog list in the current window instead of deleting it like LoadDialogList.

Water’s Edge Software 131



H

H

H

Tools Plus

Window specifies the window number that will have the item list appended. If the specified window is not open,
AppendDialogList does nothing. If the window already has an item list, the new list is appended to the end of the
existing list. If the window is not open, AppendDialogList does nothing.

ResID is the ‘DITL’ (dialog item list) resource ID number that is used to create the new dialog items. If the ‘DITL’
resource does not exist, LoadDialogList does nothing. Note that the item numbers will not be the same as those you
see in ResEdit because they are being added to the end of an existing item list. The item number of the first item in the
new ‘DITL’ list is the current number of items plus one. Flag your ‘DITL’ resource as purgeable since Tools Plus
makes a copy of its data.

Also see: LoadDialog and LoadDialogList.

SetDialogEditTextSpec

Set appearance and behavior specifications for editing fields that are created by dialogs as Edit Text items.
pascal void SetDialogEditTextSpec (long Spec);
procedure SetDialogEditTextSpec (Spec: LONGINT);

Spec is the appearance and behavior specification that is used to create an editing field from an Edit Text item in a
dialog. A list of possible values can be found in the NewField description.

When a window is opened, it takes a copy of the Spec parameter and uses it for all edit text items created in that
window. This excluded editing fields that are created by ‘CNTL’ resources.

SetDialogStaticTextSpec

Set appearance and behavior specifications for static text fields that are created by dialogs as Static Text items.
pascal void SetDialogStaticTextSpec (long Spec);
procedure SetDialogStaticTextSpec (Spec: LONGINT);

Spec is the appearance and behavior specification that is used to create a static text field from a Static Text item in a
dialog. A list of possible values can be found in the NewField description.

When a window is opened, it takes a copy of the Spec parameter and uses it for all static text items created in that
window. This excluded static text fields that are created by ‘CNTL’ resources.

SetDialogCNTLEditTextSpec

Set the appearance and behavior specifications for editing fields that are created in dialogs using ‘CNTL’ resources.
pascal void SetDialogCNTLEditTextSpec (long Spec);
procedure SetDialogCNTLEditTextSpec (Spec: LONGINT);

Spec is the appearance and behavior specification that is used to create an editing field from a ‘CNTL’ resource in a
dialog. See the Fields chapter for details about creating editing fields using ‘CNTL’ resources. A list of possible values
can be found in the NewField description.

When a window is opened, it takes a copy of the Spec parameter and uses it for all editing fields created in that
window from ‘CNTL’ resources. The Spec value can be overridden for a single item by its ‘CNTL’ resource.

132



H

H

5 Windows

SetDialogCNTLStaticTextSpec

Set the appearance and behavior specifications for static text fields that are created in dialogs using ‘CNTL’ resources.
pascal void SetDialogCNTLStaticTextSpec (long Spec);
procedure SetDialogCNTLStaticTextSpec (Spec: LONGINT);

Spec is the appearance and behavior specification that is used to create a static text field from a ‘CNTL’ resource in a
dialog. See the Fields chapter for details about creating static text fields using ‘CNTL’ resources. A list of possible
values can be found in the NewField description. A value of -1 indicates that ‘CNTL’ resources referencing CDEF ID
18 (the static text control) are implemented as “buttons” instead of static text fields when the Appearance Manager is
available. This may offer greater control to the programmer, but with less ease of use.

When a window is opened, it takes a copy of the Spec parameter and uses it for all static text items created in that
window from ‘CNTL’ resources. The Spec value can be overridden for a single static text item by its ‘CNTL’ resource.

SetDialogCNTLListBoxSpec

Set the appearance and behavior specifications for list boxes that are created in dialogs using ‘CNTL’ resources.
pascal void SetDialogCNTLListBoxSpec (long Spec);
procedure SetDialogCNTLListBoxSpec (Spec: LONGINT);

Spec is the appearance and behavior specification that is used to create a list box from a ‘CNTL’ resource in a dialog.
See the List Boxes chapter for details about creating list boxes using ‘CNTL’ resources. A list of possible values can
be found in the NewListBox description.

When a window is opened, it takes a copy of the Spec parameter and uses it for all list boxes created in that window
from ‘CNTL’ resources. The Spec value can be overridden for a single list box by its ‘CNTL’ resource.

SetDialogCNTLPopUpSpec

Set the appearance and behavior specifications for pop-up menus that are created in dialogs using ‘CNTL’ resources.
pascal void SetDialogCNTLPopUpSpec (long Spec);
procedure SetDialogCNTLPopUpSpec (Spec: LONGINT);

Spec is the appearance and behavior specification that is used to create a pop-up menu from a ‘CNTL’ resource in a
dialog. See the Pop-Up Menus chapter for details about creating pop-up menus using ‘CNTL’ resources. A list of
possible values can be found in the NewPopUp description. A value of -1 indicates that ‘CNTL’ resources referencing
CDEF ID 63 (the pop-up menu) are implemented as “buttons” instead of pop-up menus. This offers greater control to
the programmer, but considerably less ease of use.

When a window is opened, it takes a copy of the Spec parameter and uses it for all pop-up menus created in that
window from ‘CNTL’ resources. The Spec value can be overridden for a single pop-up menu by its ‘CNTL’ resource.

Water’s Edge Software 133



Tools Plus

ToolBarOpen

Open a tool bar and make it the “current” window.
pascal void ToolBarOpen (short Window, short Height, long Spec);
procedure ToolBarOpen (Window: INTEGER; Height: INTEGER; Spec: LONGINT);

ToolBarOpen is used to open your application’s tool bar beneath the menu bar on your main monitor. Your application
can have only one tool bar.

Window specifies the tool bar’s window number (just like an ordinary window). Once the tool bar is opened, it is
referenced by this window number. If a window using the same window number is already open, it is closed, then a
new tool bar is opened as specified by the parameters in the ToolBarOpen routine, thereby re-using the window
number. The newly opened tool bar is always “active,” and it becomes “current” (action pertaining to graphics, text,
buttons, scroll bars, etc. occurs in this window). Tools Plus allows up to 250 windows to be open simultaneously,
however, you may choose to reduce this limit when using InitToolsPlus to initialize Tools Plus. If a tool bar is open
and you try to open another toolbar using a different window number, ToolBarOpen does nothing.

Height specifies the tool bar’s height. A 1-pixel window frame is drawn just below the tool bar. The tool bar’s height
can be up to 70 pixels, but application’s typically have tool bars that seldom exceed 30 pixels.

The tool bar’s Spec influences the behavior of other windows in your application. Two constants are available to assist
in the implementation of a tool bar, either or both of which can be used to specify a tool bar spec parameter. If you
decide not to use either of the available options, specify a Spec of 0.

tbShiftWindows Shift all open windows downward by an amount that is equal to the menu bar’s
height to prevent windows from being obscured by the tool bar. When the tool bar is
closed, the windows are shifted up by the identical amount.

tbOffsetNewWindows If new windows are opened while the tool bar is open, offset their co-ordinates
downward by an amount that is equal to the menu bar’s height to prevent windows
from being obscured by the tool bar. This option lets you use a standard set of
window locations and have them automatically offset depending on whether the tool
bar is open or not.

Tool bars are typically colored a medium gray on color or gray-scale monitors, so you may want to declare a global
variable of type RGBColor (appropriately named ToolBarGray) that has the red, green and blue components set to
52,428. You can set a tool bar window’s backdrop color to ToolBarGray.

Tool bar inside a window

If you want to include a tool bar inside a window, do the following steps when the window is first opened and in
response to a doPreRefresh event:
procedure DrawToolBar;

var
ToolBarRect: rect; {Tool bar's rectangle inside a window }
ToolBarColor: RGBColor; {Tool bar's color }
begin
SetRect (ToolBarRect, -1, -1, 10000, 40); {Tool bar is 40 pixels high. Left, top and }
{ right side are out of view (no border seen) }
SetRGB(ToolBarColor, 52428, 52428, 52428); {Set tool bar's color (best as a global var) }
PenColorNormal; {Pen: 1x1, black on white }
SetBackRGB(ToolBarColor); {If Color QuickDraw used, set background to the }
{ tool bar's color. Maps to white on a }
{ monochrome monitor. }
EraseRect (ToolBarRect); {Erase tool bar using background color }
FrameRect (ToolBarRect); {Frame tool bar using foreground color (black) }
end;
CONST {Tool Bar options: }
tbShiftWindows =$01; {Shift windows down when tool bar opens }
tbOffsetNewWindows =$02; {Offset future windows when they open }

134



H

5 Windows

GetFreeWindowNum

Get the first unused window number.
pascal short GetFreeWindowNum (void);
function GetFreeWindowNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own window
number, GetFreeWindowNum returns the first unused (free) window number. Using this routine, you can assign an
unused window number to a variable, then use that variable throughout your application without concern for the true
window number.

If the maximum number of windows has already been opened (no new ones can be created), GetFreeWindowNum
returns a value of zero (0).

BackdropColor

Set the backdrop color for new windows as they are opened.
pascal void BackdropColor (const RGBColor *Color);
procedure BackdropColor (Color: RGBColor);

By default, windows adopt a white backdrop when they are opened, however, each window can have its own unique
backdrop color. When you use the BackdropColor routine, new windows will adopt the specified backdrop color as
they are opened.

Color is the color that is adopted as a backdrop by windows that are opened after using this routine.

If you want to reset this color to the default white, you can use the NoBackdropColor routine.
Also see: SetBackdropColor and NoBackdropColor.

Programming Tips:
1 Use pale, neutral colors for the best looking windows. A light gray is often the best.

2 A tool bar or floating palette appears to come up faster if you give it a backdrop that is medium gray, which is
typically the color of its buttons.

NoBackdropColor

Reset the backdrop color to white for new windows as they are opened.
pascal void NoBackdropColor (void);
procedure NoBackdropColor;

By default, windows adopt a white backdrop when they are opened, however, each window can have its own unique

backdrop color as set by the BackdropColor routine. NoBackdropColor causes new windows to adopt the default white

backdrop as they are opened. This is the equivalent to using BackdropColor(White).

Also see: BackdropColor.

Water’s Edge Software 135



H

Tools Plus

SetBackdropColor

Set the backdrop color for an open window.
pascal void SetBackdropColor (short Window, const RGBColor *Color);
procedure SetBackdropColor (Window: INTEGER; Color: RGBColor);

This routine is similar to the BackdropColor routine in that it sets a window’s backdrop color, however
SetBackdropColor can be used to change a window’s backdrop color at any time. The window’s content is erased with
the new backdrop color and the window is invalidated to force all objects to be refreshed on the new backdrop.

Window specifies the window number that is affected. If the specified window is not open or if Color QuickDraw is
not used, SetBackdropColor does nothing.

Color is the window’s new backdrop color.

Also see: BackdropColor.

SetBackgroundTheme

Set the background theme for an open window.

pascal void SetBackgroundTheme (short Window, short ActiveBrush,
short InactiveBrush);

procedure SetBackgroundTheme (Window, ActiveBrush, InactiveBrush: INTEGER);

This routine should be used to set a window’s background brush (the color or pattern of the theme that is being used by
the Appearance Manager) to a brush that is different from the window’s default brush. Such is the case in a document
window because the Appearance Manager fills the window with white and you may want to use a brush that is
normally associated with a modeless dialog. Do not change brushes after a window is open and displayed (not hidden)
because this may look confusing to the user, and an unsightly flash may be seen as the window changes brushes. You
can easily set a window to use its default brush when the window opens by adding the appropriate option in the spec
parameter of the routine that opens the window. SetBackgroundTheme does nothing if the Appearance Manager is not
available.

Once a theme is applied to a window’s background, you cannot remove it nor set the window’s backdrop color. You
can only change to another background brush using the SetBackgroundTheme routine.

Window specifies the window number that is affected. If the specified window is not open or if the Appearance
Manager is not available, SetBackgroundTheme does nothing.

ActiveBrush is the background brush that is used when the window is active. If an invalid brush is specified,
SetBackgroundTheme does nothing.

InactiveBrush is the background brush that is used when the window is inactive. If an invalid brush is specified,
SetBackgroundTheme does nothing.

Also see: SetNextWindowBackgroundTheme

CONST {Appearance Manager's brushes:
kThemeActiveDialogBackgroundBrush
kThemeInactiveDialogBackgroundBrush
kThemeActiveAlertBackgroundBrush
kThemeInactiveAlertBackgroundBrush
kThemeActiveModelessDialogBackgroundBrush
kThemeInactiveModelessDialogBackgroundBrush
kThemeActiveUtilityWindowBackgroundBrush
kThemeInactiveUtilityWindowBackgroundBrush
kThemeListViewSortColumnBackgroundBrush

L L | | 1 O T 1
LoOoOJoOUTdWN -
Ne e N Ne Ne Ne Ne e ~e
A e e A A A A
B e e o e e e e el

136



H

5 Windows

kThemeListViewBackgroundBrush = 10; H{ }
kThemeIconLabelBackgroundBrush = 11; | }
kThemeListViewSeparatorBrush = 12; { }
kThemeChasingArrowsBrush = 13; { }
kThemeDragHiliteBrush = 14; { }
kThemeDocumentWindowBackgroundBrush = 15; { }
kThemeFinderWindowBackgroundBrush = 16; { }

SetNextWindowBackgroundTheme

Set the background theme for the next window that is opened.

pascal void SetNextWindowBackgroundTheme (short ActiveBrush,
short InactiveBrush);

procedure SetNextWindowBackgroundTheme (ActiveBrush, InactiveBrush: INTEGER);

This routine is similar to the SetBackgroundTheme, except that it sets the background theme only for the next window
that is opened. Use this routine just before you open a window if you want to create a window that has a non-standard
background theme. A good example of this is if you want to create a non-growing document window
(noGrowDocProc), but you want it to have a medium gray backdrop in Apple’s Platinum theme, or an equivalent tone
in other themes. The kThemeActiveModelessDialogBackgroundBrush (brush number 5) has this characteristic, so you
would call SetNextWindowBackgroundTheme(5,5) just before you open the new window.

Also see: SetBackgroundTheme

WindowClose

Close an open window, tool bar or floating palette.
pascal void WindowClose (short Window);
procedure WindowClose (Window: INTEGER);

The WindowClose routine closes a window that was opened by WindowOpen, or a tool bar that was opened with
ToolBarOpen. If a standard window is being closed, the window immediately behind the newly closed window (if one
exists) becomes active and current.

Window specifies the window number that is closed. If the specified window is not open, WindowClose does nothing.

When a window is closed, it automatically deletes the user interface elements on that window and in doing so, releases
the memory consumed by them. Specifically, those elements are buttons, picture buttons, pop-up menus, scroll bars,
editing fields, list boxes, panels and custom controls. Fields that have automatically allocated a string handle deallocate
that handle as they are deleted when the window is closed. Cursor tables are not deleted because they can be shared by
multiple windows. Field filters are also not deleted since any filter can be used by numerous fields spread across
multiple windows.

If the affected window contains an active editing field, that field is automatically deactivated before the window is
closed. The impact to your application is that you must save the field’s edited text (with the SaveFieldString routine)
before closing the window. If you want to validate the field’s edited text before saving it, see the GetEditString
routine.

When working with windows that are opened and closed frequently, you can take advantage of the WindowDisplay
routine which hides and displays a window. This is particularly useful when used on a tool bar or a floating palette
because a hidden window remembers the settings of all the objects on the window (picture buttons, check boxes and
radio buttons, editing fields, etc.) as well as the window’s location. When the window is displayed again, it is identical
in position and appearance as when it was hidden.

Water’s Edge Software 137



H

H

Tools Plus

WindowSize

Change a window’s size or a tool bar’s height.

pascal void WindowSize (short Window, short Width, short Height,
Boolean Update);

procedure WindowSize (Window, Width, Height: INTEGER; Update: BOOLEAN);

The WindowSize routine is used to change a window’s width and/or height without changing its position on the
screen. In most situations, windows that need resizing are best accommodated by the documentProc procID which
provides a grow box in the bottom right corner of the window, and optionally a zoom box in the title bar. Some
applications, however, need a window that presents an “expanded” view. An example of this is the Macintosh’s Alarm
Clock desk accessory which expands to let the user change the time, calendar and alarm timer. Your application should
change a window’s size only in response to some action taken by the user. This routine does not resize windows that
are collapsed with System 7’s WindowShade or in Mac OS 8 due to an OS bug that redraws the window structure
improperly.

Window specifies the window number that is resized. If the specified window is not open, WindowSize does nothing.

Width and Height specify the window’s new dimensions in pixels. These dimensions relate to those specified by the
WindowOpen routine, that is, they represent the content region or usable area of the window (the window’s frame,
shadow, and title bar are all created outside of these co-ordinates). The tool bar’s width cannot be changed, and its
height cannot exceed 70 pixels. All other windows’ new dimensions are automatically adjusted to keep them within
the window’s size limits which are set with SetWindowSizeLimits. If you specify zero (0) for either of these
dimensions, it specifies that the dimension (height or width) should not be changed (i.e., WindowSize(1, 80, 0, true)
changes window 1’s width to 80 pixels and leaves the height unchanged).

Update specifies if the newly exposed area is added to the window’s update region (thereby producing a doRefresh
event). If you specify frue, the newly exposed area is added to the window’s update region. If you specify false, your
application will handle the newly exposed area.

WindowMove

Move a window to another location on the screen.

pascal void WindowMove (short Window, short hGlobal, short vGlobal,
long Spec);

procedure WindowMove (Window: INTEGER; hGlobal: INTEGER; vGlobal: INTEGER;
Spec: LONGINT);

WindowMove repositions a window on the screen without changing its size. Do not use WindowMove in place of
having the user move a window to a new location by dragging the title bar. Windows should only be moved in
response to a user’s action, such as selecting an “Arrange Windows” menu item that arranges all open windows in a
specified manner (grid or tile, for example).

Window specifies the window number that is moved. If the specified window is not open, WindowMove does nothing.

HGlobal and vGlobal specify the window’s new location in global co-ordinates. These dimensions relate to the top left
corner specified by the WindowOpen routine, that is, they represent the top left corner of the content region or usable
area of the window (the window’s frame, shadow, and title bar are all created outside of these co-ordinates). The tool
bar cannot be moved.

138



H

5 Windows

Spec specifies optional behavior that can take place while moving the window. The value for this 4-byte long integer
can be specified by adding a set of constants to obtain the desired result. The options are:

wAnimateMove Show “zoom lines” that move from the window’s original position to the window’s
new position (see the ZoomLines routine for details).

wOffsetForToolBar Offset the specified vertical co-ordinate downward by the tool bar’s height (if a tool
bar is open).

CONST {Window moving options: }
wAnimateMove = $01; {Animate with Zoom Lines }
wOffsetForToolBar = $02; {Offset co-ords by tool bar's height }

WindowDisplay

Hide or show a window, floating palette, or tool bar.
pascal void WindowDisplay (short Window, Boolean Show);
procedure WindowDisplay (Window: INTEGER; Show: BOOLEAN) ;

From a user’s perspective, a window that is “hidden” by your application is actually being closed. If a standard
window is hidden, the standard window behind it is activated. When a window is displayed (unhidden), it appears as
though the window was opened, in that it appears at the front of its layer and becomes “active” and “current.” Your
application should hide and show windows in response to a user’s action, such as selecting a “Hide Tool Bar” menu
item. Tools Plus automatically hides the tool bar and all floating palettes when your application is suspended under
MultiFinder or System 7 or higher, and displays them when your application is activated.

Window specifies the window number that is hidden or shown.

Show indicates if the window is being hidden or displayed. The two constants that can be used for this flag are wShow
and wHide.

When working with windows that are opened and closed frequently, you can take advantage of WindowDisplay
instead of closing the window and opening it and having to recreate its contents. This is particularly useful when used
on a tool bar or a floating palette because a hidden window remembers the settings of all the objects on the window
(picture buttons, check boxes and radio buttons, editing fields, etc.) as well as the window’s location. When the
window is displayed again, it is identical in position and appearance as when it was hidden.

When a window is hidden, it does not release any memory consumed by its associated user interface elements such as
buttons (including radio buttons and check boxes), picture buttons, pop-up menus, scroll bars, editing fields, list boxes,
and custom controls. If a window is being hidden and it contains an active editing field, that field is automatically
deactivated before the window is hidden. The impact to your application is that you must save the field’s edited text
(with the SaveFieldString routine) before hiding the window. If you want to validate the field’s edited text before
saving it, see the GetEditString routine.

CONST {Window displaying options: }
wShow = true; {Display (unhide) }
wHide = false; {Hide window }

Programming Tips:
1 Before you hide a window, realize that the user thinks the window is being closed (even though it may only

be temporary). Don’t leave the window in an “unsettled” state when your are hiding it. Make sure that all
editing fields are validated and processed.

Water’s Edge Software 139



H

Tools Plus

WindowDisplayBehind

Hide or show a window, floating palette, or tool bar. When showing a window, show it behind another window.

pascal void WindowDisplayBehind (short Window, Boolean Show,
short BehindWindow);

procedure WindowDisplayBehind (Window: INTEGER; Show: BOOLEAN;
BehindWindow: INTEGER);

WindowDisplayBehind is identical to the WindowDisplay routine, except when showing a window, this routine shows
it behind a specified window, or at the back of a window layer.

BehindWindow specifies the number of an open and visible Tools Plus window behind which the new window is
shown. This parameter is ignored when hiding a window. The BehindWindow must be in the same window layer as
the window that is being displayed, meaning that a floating palette can only display behind another floating palette,
and a standard window can only display behind another standard window. A value of -1 displays the window at the
front of its layer. This produces the same result as using WindowDisplay. A value of 0 displays the window at the back
of its layer to make it the rear-most floating palette or standard window.

If the window specified by BehindWindow is not a floating palette or a standard modeless window, or if the window is
hidden or closed, WindowDisplayBehind displays the window at the front of its layer as though you had used
WindowDisplay.

ActivateWindow

Activate a window.
pascal void ActivateWindow (short Window);
procedure ActivateWindow (Window: INTEGER);

Window specifies the window number that is activated. The specified window is brought forward and becomes
“active” and “current.” This window is also considered to be the “work” window. If the window is hidden or not open,
ActivateWindow does nothing. You cannot activate a modal window.

If the tool bar is activated, it simply becomes the current window (because the tool bar is always active). If a floating
palette is activated, it is brought to the front of the floating palette layer without deactivating any windows. When a
standard window is activated, it is brought to the front of the standard window layer, and the previously active standard
window is deactivated.

A window is normally activated only in response to a doChgWindow event that is reported to your event handler
routine. Another possible use of ActivateWindow is if your application has a “Window” menu that lets the user
activate a window from a menu. Don’t mysteriously activate an inactive window.

ClearFocus

Remove the keyboard focus from a window.
pascal void ClearFocus (short Window);
procedure ClearFocus (Window: INTEGER);

Window specifies the window number whose keyboard focus is being removed. If the window is hidden or not open,
ClearFocus does nothing. If the keyboard focus is an editing field, the field is automatically deactivated.

140



H

&

5 Windows

CurrentWindow

Make a window the current window without activating it.
pascal void CurrentWindow (short Window);
procedure CurrentWindow (Window: INTEGER);

Subsequent window related operations such as drawing, and creating fields, buttons, scroll bars, etc., occur in the
specified window without making it the “active” window. This routine is used to redirect your application’s actions to
a window other than the active one.

Window specifies the window number in which subsequent window related operations occur. If the specified window
is not open, CurrentWindow does nothing.

The CurrentWindowReset routine resets window operations back to the “active” window making the active window
current too. You should get into the habit of leaving the active window current. It makes debugging much simpler.

CurrentWindowReset

Reset the “current” window to be the same as the “active” window.
pascal void CurrentWindowReset (void);
procedure CurrentWindowReset;

Subsequent window related operations such as drawing, and creating fields, buttons, scroll bars, etc., occur in the
“active” window. This routine nullifies the effect of the CurrentWindow routine making the “active” window current
also. If your application uses a tool bar and/or floating palettes, then the work window becomes current.

WindowTitle

Change a window’s title.
pascal void WindowTitle (short Window, const Str255 Title);
procedure WindowTitle (Window: INTEGER; Title: STRING);

The WindowTitle routine changes the title for an open window, regardless if it is active or not. You can only see the
change on windows that have a title bar (documentProc, noGrowDocProc, rDocProc, paletteProc and ordPaletteProc).
You won’t see any change on windows that do not display titles (dBoxProc, plainDBox, altDBoxProc, altPaletteProc,
and the tool bar).

Window specifies the window number in which the title is to be changed. The specified window does not have to be
the “active” window, however, the window must be opened to display the title. Hidden windows display the new title
once they become visible. If the window is not open, WindowTitle does nothing.

Title contains the window’s new title.

Note: When printing to a LaserWriter or any other printer that supports Print Monitor (or other spoolers), a temporary
spool file is created. The Print Manager uses the active window’s name to name the spool file (the file’s name
appears in the Print Monitor’s queue to indicate the documents that are waiting to be printed). Before you do
any printing, use WindowTitle to set the active window’s title to the name you want your spool file to be. This
applies even if you are using a modal dialog (which may not have a title bar) while printing.

Water’s Edge Software 141



H

H

Tools Plus

SetWindowSizeLimits
Set a window’s size limits that determine the minimum and maximum size allowable when using the “size box” or
“zoom box.”

pascal void SetWindowSizeLimits (short minHoriz, short minvVert,
short maxHoriz, short maxVert);

procedure SetWindowSizeLimits (minHoriz, minVert, maxHoriz,
maxVert: INTEGER);

MinHoriz specifies the minimum width (in pixels) the window may attain when being sized.
MinVert specifies the minimum height (in pixels) the window may attain when being sized.
MaxHoriz specifies the maximum width (in pixels) the window may attain when being sized.
MaxVert specifies the maximum height (in pixels) the window may attain when being sized.

SetWindowSizeLimits affects only the current window. If the current window is not a Tools Plus window,
SetWindowSizeLimits does nothing. The minimum and maximum limits imposed on a window are automatically
adjusted (if necessary) to ensure that the window’s current size does not exceed the adjusted limits. For example, if the
minHoriz limit is set to 100 pixels and the window is currently 90 pixels wide (10 pixels smaller than the specified
minimum width), minHoriz is adjusted to 90 pixels. The same applies if the maximum limit is exceeded by the
window’s current dimensions.

By setting these limits, it is possible to allow a window to be sized horizontally or vertically only.

SetWindowZoom

Set a window’s standard co-ordinates and user co-ordinates that are in effect when the window’s “zoom box” is
clicked.

pascal void SetWindowZoom (const Rect *userRect, const Rect *stdRect);
procedure SetWindowZoom (userRect, stdRect: RECT);

A window containing a zoom box has two different states: [1] the standard state, and [2] the user state. The user can
change the window’s size and/or location, thereby defining the user state. When the zoom box is clicked, the window
“zooms” back to the standard state (which, by default, is the window’s co-ordinates when it was first opened). Clicking
the zoom box again reverts to the user state.

Sometimes it is desirable to have the standard state and/or user state something other than the window’s initial co-
ordinates. SetWindowZoom sets either or both of these. The window’s current co-ordinates become the user state. It is
good form to call SetWindowZoom immediately after opening a window.

UserRect defines a rectangle in global co-ordinates that determines the window’s user co-ordinates. If the current
window is not a Tools Plus window, if the current window has no zoom box, or if an empty rectangle is specified, the
user co-ordinates are not set.

StdRect defines a rectangle in global co-ordinates that determines the window’s standard co-ordinates. If the current
window is not a Tools Plus window, if the current window has no zoom box, or if an empty rectangle is specified, the
standard co-ordinates are not set.

If the tool bar is open, and it was created with the tbOffsetNewWindows option, this window’s co-ordinates for
userRect and stdRect are shifted downwards by an amount that is equal to the tool bar’s height.

Warning: When you set the user and standard co-ordinates, make sure that they are such that at least part of the
window’s title bar is visible to allow the window to be dragging back into view (don’t zoom to an “off-
screen” window). Ideally, the zoom box should always be visible.

142



H

5 Windows

GetWindowZoom

Get a window’s standard state and user state for zooming.
pascal void GetWindowZoom (Rect *userRect, Rect *stdRect);
procedure GetWindowZoom (var userRect, stdRect: RECT);

A window containing a zoom box has two different states: [1] the standard state, and [2] the user state. The user can
change the window’s size and/or location, thereby defining the user state. When the zoom box is clicked, the window
“zooms” back to the standard state (which, by default, is the window’s co-ordinates when it was first opened). Clicking
the zoom box again reverts to the user state.

UserRect defines the window’s user state in the screen’s global co-ordinates.
StdRect defines the window’s standard state in the screen’s global co-ordinates.

If the tool bar is open, and it was created with the tbOffsetNewWindows option, this window’s userRect and stdRect
are shifted upwards by an amount that is equal to the tool bar’s height (i.e., they are shifted up as though there was no
tool bar).

GetWindowZoom gets the values for the current window. If the current window is not a Tools Plus window, or if the
current window has no zoom box, the userRect and stdRect rectangles are undefined. This routine is useful if you want
to save both states as part of the document. When the document is opened, a window could be created using the
userRect co-ordinates, and the user and standard state can be set by using the SetWindowZoom routine.

SetDialogltemRect

Set a dialog item’s display rectangle.
pascal void SetDialogItemRect (short Item, const Rect *ItemRect);
procedure SetDialogItemRect (Item: INTEGER; ItemRect: RECT);

SetDialogltemRect sets the display rectangle for a dialog item in the current window. The current window must be a
“dialog,” that is, a window that has been opened using LoadDialog or LoadSpecDialog. You can also populate a
window with a dialog item list by using the LoadDialogList routine. See the LoadDialog routine for details about
creating a dialog and its elements.

Item specifies the item number whose display rectangle is being changed. This number relates to the item numbers you
see displayed while editing a ‘DLOG’ (dialog) resource or ‘DITL’ (dialog item list) resource in ResEdit.

ItemRect is the specified item’s new display rectangle. If the current window does not have a dialog list, or if the item
you specify does not exist in the item list, SetDialogltemRect does nothing.

This routine is useful only for changing the co-ordinates of static text items, icons, or pictures in a dialog, usually to
“hide” them by moving their co-ordinates out of the visible part of the window. The change is visible next time the
dialog is refreshed because the item is drawn at its new co-ordinates. SetDialogltemRect changes the item’s co-
ordinates and does nothing else, so you may want to erase the item at its old co-ordinates using the toolbox’s
EraseRect routine, and invalidate the area using the toolbox’s InvalRect routine to force other objects within the area to
be redrawn. After the item’s co-ordinates are changed, use InvalRect at the new co-ordinates to force the item to be
redrawn in its new position.

Tools Plus provides routines that let you move and/or resize any user interface element.

Water’s Edge Software 143



Tools Plus

GetDialogltemRect

Get a dialog item’s display rectangle.
pascal void GetDialogItemRect (short Item, Rect *ItemRect);
procedure GetDialogItemRect (Item: INTEGER; var ItemRect: RECT);

GetDialogltemRect obtains the display rectangle for a dialog item in the current window. The current window must be
a “dialog,” that is a window that has been opened using LoadDialog or LoadSpecDialog. You can also populate a
window with a dialog item list by using the LoadDialogList routine. See the LoadDialog routine for details about
creating a dialog and its elements.

Item specifies the item number whose display rectangle is being retrieved. This number relates to the item numbers
you see displayed while editing a ‘DLOG’ (dialog) resource or ‘DITL’ (dialog item list) resource in ResEdit.

ItemRect is the specified item’s display rectangle. ItemRect returns as an empty rectangle (with all co-ordinates set to
zero) if the current window was not created by Tools Plus, if the current window does not have a dialog list, or if the
item you specify does not exist in the item list.

SetDialogFontinfo

Set the font settings for new dialogs as they are created.
pascal void SetDialogFontInfo (short theFont, short theSize, Style theStyle);
procedure SetDialogFontInfo (theFont, theSize: INTEGER; theStyle: STYLE);

When new dialogs are created, by default they use the system’s font (Chicago 12pt plain). SetDialogFontInfo lets you
specify new default font settings that are adopted by dialogs as they are opened. GetDialogFontInfo lets you retrieve
these settings.

TheFont specifies the font that is used by new dialogs. The default is Chicago, which is represented by the systemFont
constant.

TheSize specifies the font’s size. The default is 0, which represents the default font size used by the system font, or
12pt in this case.

TheStyle specifies the style(s) in which the font is displayed. Special character constants defined by the Font Manager
are bold, italic, underline and shadow. C programmers use the font manager’s constants to specify a composite style,
such as SetDialogFontInfo(geneva, 9, bold + outline) for bold and outlined, or SetDialogFontInfo(geneva, 9, 0) for
plain text. Pascal programmers use the font manager’s constants to specify a set, such as SetDialogFontInfo(geneva, 9,
[bold, outline]) for bold and outlined, or SetDialogFontInfo(geneva, 9, [ ]) for plain text.

GetDialogFontinfo

Get the font settings used by new dialogs as they are created.

pascal void GetDialogFontInfo (short *theFont, short *theSize,
Style *theStyle);

procedure GetDialogFontInfo (var theFont: INTEGER; var theSize: INTEGER;
var theStyle: STYLE);

When new dialogs are created, by default they use the system’s font (Chicago 12pt plain). GetDialogFontInfo lets you
obtain the default font settings that are adopted by dialogs as they are opened.

144



H

TheFont specifies the font that is used by new dialogs.

TheSize specifies the font’s size.

5 Windows

TheStyle specifies the style(s) in which the font is displayed. Special character constants defined by the Font Manager
are bold, italic, underline and shadow. C programmers use the font manager’s constants to specify a composite style,

such as “bold + outline” for bold and outlined, or “0” for plain text. Pascal programmers use the font manager’s

constants to specify a set, such as [bold, outline] for bold and outlined, [ ] for plain text.

WindowStatus

Get a window’s status information.

pascal void WindowStatus (short Window, TPWindowStatus *Status);

procedure WindowStatus (Window:

The WindowsStatus routine returns the status of any Tools Plus window, whether it is open or closed, displayed or

hidden.

Window is the window number of a Tools Plus window. Window must be less than or equal to MaxWindows as

INTEGER; var Status: TPWindowStatus);

defined by InitToolsPlus. If it is not, the Status record is initialized to “false” and O values. MaxWindows defines the
maximum number of Tools Plus windows that may be open at any time.

The Status record contains information about the Tools Plus window indicated by the Window value. The record is

defined as such:

struct TPWindowStatus {
short Kind;

Boolean Open; /*Is
Boolean Visible; /*1s
Boolean Active; /*1s
Boolean Collapsed; /*Is
Boolean Front; /*Is
Boolean Current; /*1s
Boolean WorkWindow; /*Is

Boolean EditFieldwindow;
short ActiveField;

Rect StrucRect;

Rect ContRect;

/*Window

the
the
the
the
the
the
the

kind: Tool Bar, Palette, or Standard
window open?

window visible (not hidden)?

window active?

window collapsed (by WindowShade)
frontmost Tools Plus window?

current window?

work window?

/*Does the window have app's active field?
/*Window's active field number

/*Structure rect (global). Incl border & title bar
/*Content rect (global). Working area only.

kind: Tool Bar, Palette, or Standard
window open?

window visible (not hidden)?

window active?

window collapsed (by WindowShade)
frontmost Tools Plus window?

current window?

}i
typedef struct TPWindowStatus TPWindowStatus;
TPWindowStatus = record {

Kind: integer; {Window
Open: boolean; {Is the
Visible: boolean; {Is the
Active: boolean; {Is the
Collapsed: boolean; {Is the
Front: boolean; {Is the
Current: boolean; {Is the
WorkWindow: boolean; {Is the

work window?

EditFieldWindow: boolean; {Does the window have the app's active field?

ActiveField: integer;
rect; {Structure rect (global).
{Content rect (global). Working area only.

StrucRect:

ContRect: rect;

end;

{Window's active field number
Includes border & title bar

Kind indicates the kind of window being referenced. The various kinds of windows are:

wNoKind =0
wToolBarKind =1
wFloatingKind =2
wStandardKind =3

Window is not open
Tool Bar

Floating palette
Standard window

Open indicates if the referenced window is open.

Water’s Edge Software

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

e e i i e e an an adn e e e ol

145



Tools Plus

Visible indicates if the referenced window is visible or not. The term “visible” refers to being programatically
unhidden. It does not mean “obscured by other windows or objects.”

Active indicates if the referenced window is active. A Tools Plus window will not be active under any of the following
conditions:

e the window is not open

¢ the referenced window is a standard window, but not the frontmost standard window

* the active window is a desk accessory (System 5/6’s Finder only)

Collapsed indicates if the referenced window has been collapsed such that only its title bar is visible. Collapsing a
window is available as a control panel called “Window Shade” in System 7, and as part of Mac OS 8. A collapsed
window is visible to the user as a title bar only, even though the objects in the window still exist and are completely
functional. For example, typing the Enter key will invoke the default button in an active collapsed window. A
collapsed window cannot be resized using the WindowSize routine due to a bug in System software that does not
redraw the window correctly.

Front indicates if the referenced window is the frontmost window in your application. If your application is not using a
tool bar or floating palettes, the frontmost window is active unless:

¢ a desk accessory is active

« another application or the Finder is active (under MultiFinder or System 7 or higher)

Current indicates if the referenced window is the current window. If your application does not use a tool bar or
floating palettes, current and active will be the same unless you used the CurrentWindow routine to change the current
window number.

WorkWindow indicates if the referenced window is the work window. This is the same as active if your application
does not use a tool bar or floating palettes.

EditFieldWindow indicates if the referenced window contains your application’s active editing field (see the Editing
Fields chapter for details).

ActiveField specifies the active editing field number for the referenced window. For standard windows, this field
becomes active when the window is active. For the tool bar and floating palettes, this field is active while the
application is active.

StrucRect is the window’s structure rectangle in global co-ordinates. This includes the window’s frame, shadow, and
title bar.

ContRect is the window’s content rectangle in global co-ordinates. This is the window’s usable area excluding the
window’s frame, shadow, and title bar.

CONST {Kinds of windows: }
wNoKind = 0; {Not open }
wToolBarKind = 1; {Tool Bar }
wFloatingKind = 2; {Floating Palette }
wStandardKind = 3; {Standard Window }

RefreshToolsPlusinWindow

Refresh Tools Plus user interface elements in a window.
pascal void RefreshToolsPlusInWindow (short Window);
procedure RefreshToolsPlusInWindow (Window: INTEGER);

Window specifies the affected window number.

This routine refreshes Tools Plus user interface elements within the specified window’s update region. Your
application will typically never need to use this routine because it is automatically executed if it’s required when your
event handler routine is told to refresh a window. You may decide to use this routine in the following example:

* Display an alert indicating an error

146



H

5 Windows

» User dismisses the alert but your application must do some processing before it leaves the event handler
routine.

e If your application draws anything in the window, draw those items from within a BeginUpdate/EndUpdate
block.

When RefreshToolsPlusinWindow returns control to your application, the window’s update region excludes the areas
occupied by Tools Plus's user interface elements. This lets your application do additional drawing inside a
BeginUpdate/EndUpdate block without worrying about overwriting any Tools Plus items. The interior of a panel is not
affected in this way to permit your application to draw inside the panel if required.

RefreshDrawinginWindow

Refresh elements that are drawn by your application in a window.
pascal void RefreshDrawingInWindow (short Window);
procedure RefreshDrawingInWindow (Window: INTEGER);

Window specifies the affected window number.

This routine refreshes the application-drawn elements in a window by issuing a doPreRefresh event followed by a
doRefresh event to a window’s event handler. Your application will likely call RefreshDrawingInWindow if it creates
the window’s interface elements dynamically . A typical sequence is as follows:

* Open window

¢ Create user interface elements such as buttons, sliders, list boxes, etc.

 Call RefreshDrawingInWindow

GetWindowInOrder

Determine the Nth window from the front.
pascal short GetWindowInOrder (short Position);
function GetWindowInOrder (Position: INTEGER): INTEGER;

The GetWindowInOrder routine can be used to determine the front to back order of Tools Plus windows. This is useful
if you ever want to place a new window behind a specific window.

Position specifies the relative front-to-back position of the window you want to query. For example, 1 indicates the
frontmost window, 2 indicates the second window from the font. In all cases, windows belonging to other applications
or processes and desk accessories are ignored, as are hidden or closed windows. Only open and non-hidden windows
that were opened with Tools Plus routines are counted, even if their co-ordinates are off-screen and they cannot be
seen by the user. The relative position includes a tool bar, floating palettes and modal windows too.

The routine’s value returns with a Tools Plus window number. If the specified position is less than one, or if it exceeds
the total number of windows that are currently open in your application, GetWindowInOrder returns with a value of
zero.

Water’s Edge Software 147



H

H

H

Tools Plus

ActiveWindowNumber

Get the window number of the active window (or work window number if a tool bar and/or floating palettes are used).
pascal short ActiveWindowNumber (void);

function ActiveWindowNumber: INTEGER;

This routine returns the window number of the active window when your application is the active application. If your
application does not have a tool bar or floating palettes, this is the frontmost window. When a tool bar and/or floating
palettes are used, ActiveWindowNumber returns the work window number. A value of zero (0) is returned if any of
the following conditions occurs:

* no windows are open

* the active window is a desk accessory

* another application or the Finder is active (under MultiFinder or System 7 or higher)

Note that ActiveWindowNumber returns the same value regardless if your application is active or not. You can
use the combination of ActiveWindowNumber and ApplicationSuspended to determine if the user sees this
window as active or not.

Also see: CurrentWindowNumber, FirstWindowNumber, FirstStdWindowNumber, FirstPaletteNumber and
WorkWindowNumber.

CurrentWindowNumber

Get the window number of the current window.
pascal short CurrentWindowNumber (void);
function CurrentWindowNumber: INTEGER;

This routine returns the window number of the current window. If your application does not have a tool bar or floating
palettes, this window is the same as the active window unless you used the CurrentWindow routine to change the
current window. A value of zero (0) is returned if any of the following conditions occurs:

* no windows are open

e the current window is a desk accessory

* another application or the Finder is current (under MultiFinder or System 7 or higher)

Also see: ActiveWindowNumber and FirstWindowNumber.

FirstWindowNumber

Get the window number of your application’s frontmost window.
pascal short FirstWindowNumber (void);
function FirstWindowNumber: INTEGER;

This routine is typically used to determine the frontmost window in order to close it or apply some equally universal
operation to that window. If your application does not have a tool bar or floating palettes, this is your application’s
frontmost window. If your application has a tool bar or floating palettes, FirstWindowNumber returns the number of
the window that satisfies any of the following conditions (in ascending order of priority):

¢ the frontmost modal window (it is a standard window)

* the frontmost floating palette (if one is open and visible)

¢ the frontmost modeless standard window (if one is open and visible)

148



H

H

H

5 Windows

FirstWindowNumber always ignores the tool bar.

A value of zero (0) is returned if no windows are open. Note that the frontmost window in your application will not be
the active window under any of the following conditions:

» adesk accessory is active

* another application or the Finder is active (under MultiFinder or System 7 or higher)

Also see: CurrentWindowNumber, FirstWindowNumber, FirstStdWindowNumber, FirstPaletteNumber and
WorkWindowNumber.

ToolBarNumber

Get the window number of your application’s tool bar.
pascal short ToolBarNumber (void);
function ToolBarNumber: INTEGER;

This routine returns the window number of your application’s tool bar. If your application does not have a tool bar, or
if the tool bar has been hidden, ToolBarNumber returns a value of zero (0). You can use this routine in place of a
global variable to determine if an event pertains to the tool bar.

FirstPaletteNumber

Get the window number of your application’s frontmost floating palette.
pascal short FirstPaletteNumber (void);
function FirstPaletteNumber: INTEGER;

This routine returns the window number of your application’s frontmost visible floating palette. If your application
does not have floating palettes, or if they are all hidden, FirstPaletteNumber returns a value of zero (0).

FirstStdWindowNumber

Get the window number of your application’s frontmost standard window.
pascal short FirstStdWindowNumber (void);
function FirstStdWindowNumber: INTEGER;

This routine returns the window number of your application’s frontmost visible standard window. If your application
does not have standard windows, or if they are all hidden, FirstStdWindowNumber returns a value of zero (0). Note
that this window may be modal.

Water’s Edge Software 149



H

H

Tools Plus

WorkWindowNumber

Get the window number of your application’s work window.
pascal short WorkWindowNumber (void);
function WorkWindowNumber: INTEGER;

This routine returns the window number of your application’s work window. Your application has only one such
window which gains its “work window” status under any of the following conditions:

* the user clicks in a window, or any object in a window
* a window is opened as modal (because the next action must take place within that window)

¢ astandard window is opened (and therefore activated), and the previous work window was an active standard
window
¢ the work window is closed or hidden, in which case the following will become the work window:
frontmost standard window (if any are open), or
frontmost floating palette (if any are open), or
the tool bar (if it is open)
* a window is activated

Your application can treat a work window like an active window, in that it is an eligible target for the user’s activity. If
your application does not use a tool bar or floating palettes, the work window is the same as the active window.

EditFidWindowNumber

Get the window number of the window containing your application’s active editing field.
pascal short EditFldWindowNumber (void);

function EditFldWindowNumber: INTEGER;

This routine returns the window number of the window containing the active editing field in your application. If your
application does not have a tool bar or floating palettes, this window will either be the active window (frontmost), or it
will be zero (0) when there is no active field. When a tool bar and/or floating palettes are used, this window can
potentially be any of the active windows (tool bar, any floating palette, or the active standard window). See the Editing
Fields chapter for details.

FocusWindowNumber

Get the window number of the window containing your application’s keyboard focus.
pascal short FocusWindowNumber (void);
function FocusWindowNumber: INTEGER;

This routine returns the window number of the window containing the your application’s keyboard focus. If your
application does not have a tool bar or floating palettes, this window will either be the active window (frontmost), or it
will be zero (0) when there is no control bearing the keyboard focus. When a tool bar and/or floating palettes are used,
this window can potentially be any of the active windows (tool bar, any floating palette, or the active standard
window). See the Editing Fields chapter for details.

150



H

H

5 Windows

WindowlsOpen

Determine if a window is open.
pascal Boolean WindowIsOpen (short Window);
function WindowIsOpen (Window: INTEGER): BOOLEAN;

Window is the window number of a Tools Plus window. Window must be less than or equal to MaxWindows as
defined by InitToolsPlus.

The routine’s value returns true if the window is open, and false if the window is not open. Note that an open window
may have been hidden by your application, and therefore not be visible.

WindowlsVisible

Determine if a window is visible (not hidden).
pascal Boolean WindowIsVisible (short Window);
function WindowIsVisible (Window: INTEGER): BOOLEAN;

Window is the window number of a Tools Plus window. Window must be less than or equal to MaxWindows as
defined by InitToolsPlus.

The routine’s value returns #rue if the window is open and visible, and false if the window is not open or not visible.
The term “visible” refers to being programatically unhidden. It does not mean “obscured by other windows or objects.

Lt}

WindowlsActive

Determine if a window is active.
pascal Boolean WindowIsActive (short Window);
function WindowIsActive (Window: INTEGER): BOOLEAN;
Window is the window number of a Tools Plus window. Window must be less than or equal to MaxWindows as

defined by InitToolsPlus.

The routine’s value returns true if the window is open (not hidden) and active. Only the frontmost standard (not a tool
bar or floating palette) window is active, and only when your application is active. The tool bar and floating palettes
are always active when they are open and not hidden. The only exception to this is when a modal window is open, in
which case the tool bar and floating palettes are temporarily inactive until the modal window is closed.

Water’s Edge Software 151



H

Tools Plus

WindowKind

Determine a window’s type.
pascal short WindowKind (short Window);
function WindowKind (Window: INTEGER): INTEGER;

Window is the window number of a Tools Plus window. Window must be less than or equal to MaxWindows as
defined by InitToolsPlus. The window may be hidden.

The routine returns with a value that corresponds to the type of window being referenced. The four constants that can
be used to evaluate a window’s type are wNoKind (window is not open), wToolBarKind, wFloatingKind, and
wStandardKind.

CONST {Kinds of windows: }
wNoKind = 0; {Not open }
wToolBarKind = 1; {Tool Bar }
wFloatingKind = 2; {Floating Palette }
wStandardKind = 3; {Standard Window }

GetFocusinfo

Determine the object with the keyboard focus in a window.
pascal void GetFocusInfo (short Window, short *ObjectNum, short *ObjectKind);

procedure GetFocusInfo (Window: INTEGER; var ObjectNum: INTEGER;
var ObjectKind: INTEGER);

Window is the window number of a Tools Plus window. Window must be less than or equal to MaxWindows as
defined by InitToolsPlus. The window may be hidden.

ObjectNum returns with the number of the object that has the keyboard focus in the specified window, such as editing
field number 22 or button number 5. If the specified window is not open or if it does not have an object with the
keyboard focus, ObjectNum returns with a value of zero (0).

ObjectKind returns with a value that tell your application the kind of object that has the keyboard focus. If the
specified window is not open or if it does not have an object with the keyboard focus, ObjectKind returns with a value
of zero (0). The five constants that can be used to evaluate the kind of keyboard focus object are listed below.

CONST {Kinds of objects with keyboard focus: }
kNoFocusKind = 0; {No object with keyboard focus }
kButtonFocusKind = 1; {Button (or item implemented as button) }
kScrollBarFocusKind = 2; {Scroll bar (or item implemented as scroll bar) }
kListBoxFocusKind = 3; {List box }
kFieldFocusKind = 4; {Editing field }

152



H

H

5 Windows

WindowPointer

Get the pointer to a Tools Plus window.
pascal WindowPtr WindowPointer (short Window);
function WindowPointer (Window: INTEGER): WindowPtr;

This routine returns a window pointer to a standard toolbox WindowRecord that is used by a Tools Plus window,
regardless if that window is open or not.

Window is the window number of a Tools Plus window. Window must be less than or equal to MaxWindows as
defined by InitToolsPlus. If it is not, nil is returned.

AutoMoveSize

Automatically move and/or resize subsequently created objects as their window’s size changes.

pascal void AutoMoveSize (Boolean left Boolean top, Boolean right,
Boolean bottom);

procedure AutoMoveSize (left, top, right, bottom: BOOLEAN);

AutoMoveSize sets four global parameters that can optionally be adopted by objects as they are created. The four
parameters indicate if a subsequently created object’s left, top, right and/or bottom are automatically adjusted when
their parent window’s size changes. These settings optionally apply to objects created on any window.

left Does the object’s left side track the window’s right edge?
top Does the object’s top track the window’s bottom edge?
right Does the object’s right side track the window’s right edge?
bottom  Does the object’s bottom track the window’s bottom edge?

As each object is created, an optional constant (like the button’s bAutoMoveSize) is added to the object’s spec to make
it assume AutoMoveSize’s settings. For example, AutoMoveSize lets you specify that the right and bottom edge of
subsequently created objects are automatically resized without having to do so for each object.

If you prefer, you can specify the automatic resizing setting for an individual object instead of doing so for a group of
subsequently created objects. For example, AutoMoveSizeButton lets you set these parameters for a specific button.
Equivalent routines are available for all user interface elements that appear on windows.

Warning: Make sure that you resize objects in a way that makes sense. Don’t allow a window to shrink down to a
size where objects become unusable or disappear altogether.

FinderDisplay

Hide or show the Finder and other applications.
pascal void FinderDisplay (Boolean Show);
procedure FinderDisplay (Show: BOOLEAN) ;

Some applications, typically installers, hide the Finder (desk top) and other applications while they are doing their
work. This effect shows the user an empty desk top, one that is void of all items including disk drives while the active
application is doing its work. FinderDisplay performs this function but in doing so, provides only the desired visual
effect. It does not prompt the user to quit other applications that may be running nor does it instruct those applications
to quit. As a fail-safe precaution, the Finder and other applications are redisplayed when your application is suspended.

Water’s Edge Software 153



H

H

Tools Plus

They return to their state set by your application when your application is activated.
Show indicates if the Finder and other applications are being hidden or displayed. The two constants that can be used
for this flag are on and off.

Warning: Some development environments may act up if you try stepping through your program while the Finder
and other applications are hidden.

SetLiveWindowDragging

Turn the live window dragging/resizing option on or off.
pascal void SetLiveWindowDragging (Boolean LiveDrag);
procedure SetLiveWindowDragging (LiveDrag: BOOLEAN);

This routine lets your application globally enable or disable the live window dragging/resizing option. The
InitToolsPlus routine can optionally enable this feature unconditionally, or when your application is running on a
specific processor. For additional flexibility, your application can turn this feature on or off using this routine based on
its own criteria. You may consider letting your application’s user set this option in a Preferences dialog.

LiveDrag specifies if the option is turned on or off. The constants on and off can be used for this purpose.

ReplaceWindowProcID

Replace a window type throughout the application. The use of one proclD is replaced with another.

pascal void ReplaceWindowProcID (short OriginalProcID,
short ReplacementProcID);

procedure ReplaceWindowProcID (OriginalProcID, ReplacementProcID: INTEGER);

This routine lets your application globally replace the use of one procID with another. The replacement takes effect in
windows that are opened after this routine is used.

OriginalProclD is the proclD that is specified in your application’s source code and in various resources such as
‘DLOG’ and ‘WIND.’

ReplacementProclD is the proclD that replaces OriginalProcID when the window is opened. When a window is
opened in which the procID has a value that matches OriginalProcID, the proclD is replaced with the value specified
by ReplacementProcID.

As an example, you can program your application to make use of the “utility window” (floating palette) that is
available when Mac OS 8’s Appearance Manager is running. Early in your application following InitToolsPlus, your
application can determine if the Appearance Manager is running by using the UsingAppearanceManager routine. If it
is not, then your application can call ReplaceWindowProcID to replace the utility window’s procID with a procID for
a custom floating palette WDEF, such as the Infinity Windoid. This allows you to use the system’s standard floating
palette if it is available, otherwise you can use a custom floating palette.

ReplaceWindowProcID can be used to specify numerous window procID substitutions for your application. Tools Plus
accumulates all the substitutions in a dynamic list and uses that list whenever a window is opened. You can remove an
entry from the list by specifying a ReplacementProcID with the same value as OriginalProcID.

154



5 Windows

The Infinity Windoid

Tools Plus includes an efficient, versatile floating palette with the Tools Plus disk (in the “Optional Resources” folder).
We also include a highly refined third-party floating palette window definition from Infinity Systems. The Infinity
Windoid (WDEF) features a color drag bar and zoom box options, just like other commercial applications.

Water’s Edge Software is merely furnishing a third-party add-on for your benefit (at no cost), and we are in no way
related to Infinity Systems. We can say, however, that Infinity has come up with a great looking palette WDEF! So
good, that we feel it compliments Tools Plus.

Please read the related documentation for full details on warranty, copyright, and support questions. To contact the
creators of the Infinity Windoid, please send all enquiries to:

Troy Gaul

Infinity Systems
19850 Portal Plaza
Cupertino, CA 95014
USA

America Online: TGaul
Internet: TGaul@aol.com

Water’s Edge Software 155



Tools Plus

156



6 Buttons

6 Buttons

Tools Plus supports the use of buttons on any Tools Plus window. Buttons are created on the current window by the
NewButton routine. Each button is referenced by a unique button number, which can be from 1 to 511. This number is
specified when the button is created, and refers to the specific button until that button is deleted. Note that the button
number is related to its associated window. This means that two different windows can each have a button numbered
“1” without interfering with each other. Whenever a button is clicked by the user, Tools Plus calls your event handler
routine and reports the button number as well as its window number. You can also create a button from a ‘CNTL’
resource by using the LoadButton routine.

Buttons can be moved to a new location with MoveButton and have their width and/or height changed with
SizeButton. MoveSizeButton combines both tasks by letting you specify new co-ordinates for the button.

When a button is no longer required, it is deleted by the DeleteButton routine, which releases the memory used by that
button. This is done automatically if a window is closed. Buttons can be renamed by using the ButtonTitle routine, and
hidden or displayed with the ButtonDisplay routine.

Tools Plus also supports the use of custom CDEFs as buttons, as well as the extended set of controls that are part of the
Appearance Manager which first appeared in Mac OS 8. Many of these controls are implemented as buttons and are
detailed in this section. See the chapter on Scroll Bars for details on the remaining Appearance Manager controls.

Button Types

All three standard Macintosh button types are supported by Tools Plus. The push-button is always used to “do
something now,” such as confirming or canceling a process. Check boxes and radio buttons are variations on a similar
theme: they can be either selected or deselected by clicking on them. The check box contains an “x” when checked,
whereas the radio button contains a dot. The difference between these two buttons is that radio buttons are logically
grouped by your application such that only one button is selected within the group. When the user selects a radio
button, your application de-selects the other buttons in the group. Radio buttons can be automatically deselected by
being placed in a panel.

Push Button [] Check Box ¢ Radio Button

You can also use custom control (CDEF) resources in your application and Tools Plus will make them behave like a
push-button, check box or radio button. Other controls that are available only in the Appearance Manager are details
later in this section.

Button States

All three button types can be either enabled or disabled by using the EnableButton routine. When a button is disabled,
it becomes dim and cannot be selected by the user. Check boxes and radio buttons can be either selected or de-selected
by using the SelectButton routine.

When a window is inactive, all the associated buttons are automatically disabled and cannot be selected. When the
window is activated, the buttons are automatically returned to their normal state as set by your application.

Push Buiion (] ©hack iinu ) Bmdin Buiion
disabled disabled disabled
Push Button [] Check Box " Radio Button
enabled & checked (no change) enabled & checked enabled & checked

Water’s Edge Software 157



Tools Plus

Button Titles

A button’s title can be changed by the ButtonTitle routine, however this should be done judiciously since this can be
confusing to the user. A button’s title is centered in a push button, and left aligned in a check box or radio button.

Fonts

All buttons default to using the Chicago 12pt font. When a button is created, it can optionally adopt and remember the
window’s current font, size and style settings (as set by the TextFont, TextSize, and TextFace routines) by including
the bUseWFont option. The window’s settings can then be changed without affecting the button. Unlike regular
buttons, Tools Plus buttons can each have a different font. You can use the GetButtonFontSettings and
SetButtonFontSettings routines to get and set the button’s font, size and style settings.

Colors

By default, new buttons have a black frame and text, and a background that matches their parent window’s backdrop
color (which is white by default). Optionally, each button can adopt unique color settings as it is created. The colors
for the various button parts are defined by the ButtonColors routine, and are optionally adopted by buttons as they are
created. Buttons’ colors can be changed afterwards using the SetButtonColors routine. Conversely, the
GetButtonColors routine retrieves a button’s color settings.

When designing applications, always design them in black and white then apply color (if required) to add value to your
application. Don’t add color just because you can. In the case of color buttons, test your color selection thoroughly on
a monitor set to 8, 4, and 2-bit color and gray scale, and black and white to ensure that your colors and window
backdrop color map to usable colors. Note that some controls ignore color settings.

Default Button

One push button on each window can be designated to be the “default” button by the SetDefaultButton routine. This
routine draws an outline around the button as shown below. If the Return or Enter key is pressed, Tools Plus responds
as if the default button had been clicked. The button’s default status can be cleared by the NoDefaultButton routine. A
default button cannot be created on a tool bar or floating palette.

Default

When the user is working in an editing field, only the Enter key invokes the default push button. This is done to avoid
confusion between fields that can and cannot accept the Return key as a carriage return in the field.

Selecting Buttons and Command Keys

Normally, a button is selected when the user clicks on it. You can optionally make a button selectable by using a
command key. When you add bCmdKey to the button’s spec, the button can be selected by typing the command key in
conjunction with the first character of the button’s title. Additionally, 8-. (command-period) and the Escape key select
a button whose title is “Cancel” (or a language-dependent equivalent).

Substituting Button ProcIDs

Certain system resources may or may not be available to your application depending on the system version of the
Macintosh that is running your application. A good example of this is the 3D buttons that are part of the Appearance
Manager in Mac OS 8 or later. With Tools Plus, you can design and write your application to use a custom button
definition (CDEF resource) to provide 3D buttons in your application, such as those in SuperCDEFs. Then at the

158



6 Buttons

beginning of your application it can determine the Mac’s capabilities, specifically if the Appearance Manager is
running to make the system’s 3D buttons available to your application. If this is the case, your application can easily
substitute the use of the custom 3D button CDEF with the Appearance Manager’s 3D button throughout your
application.

Two routines in the Miscellaneous Routines chapter of this manual help facilitate determining the capabilities of the
Macintosh that is running your application: HasAppearanceManager and UsingAppearanceManager. You can also use
the toolbox’s Gestalt routines to determine whether other features are available or not. Tools Plus’s
ReplaceControlProcID is used to replace a specific button procID with another procID throughout your application,
thereby substituting the use of one type of button with another.

Handling Buttons

Your application specifies if check boxes or radio buttons are selected or not. It also specifies if a button is enabled or
disabled. When a window in inactive, Tools Plus disables all buttons on that window. When the window is activated
again, all the buttons regain their correct status as specified by your application.

Tools Plus constantly inquires about any events that have occurred, including clicking on buttons. If a button is
selected (i.e., the user presses the mouse button down and releases it within the button’s region), Tools Plus reports it
by calling your event handler routine. This also applies if the user presses the Enter or Return key when a window has
a default button. In the case of check boxes or radio buttons, your application must then select or de-select the button
appropriately.

If you place radio buttons in a panel, you can optionally have them behave as a radio button group so that when a
button is selected, the other buttons in the group are automatically deselected. Otherwise Tools Plus doesn’t know how
your buttons are grouped and your application must select/deselect related buttons appropriately.

Warning: If you have obtained a handle to a button, do not change any of the fields in the button’s record.

Appearance Manager Controls

The Appearance Manager, first introduced in mid 1997 with Mac OS 8, gives your application a number of 3D
controls in addition to the ordinary push button, check box, radio button, and scroll bar that were originally supplied by
Apple when Macintosh debuted in 1984. All the new Appearance Manager controls are implemented as CDEFs, but
unlike third party CDEF resources that must be installed in your application when it is built, the Appearance
Manager’s controls are available to your application without having to install them. They are available from the
system, just like regular system controls, if the Macintosh running your application has an Appearance Manager.

Your application can access the Appearance Manager’s 3D push buttons, check boxes, radio buttons and scroll bars
without any special programming. In fact, you can replace the standard controls throughout your application with the
equivalent Appearance Manager controls as a default behavior when you initialize Tools Plus libraries with the
InitToolsPlus routine. However, if you want to make use of other Appearance Manager controls and features, you need
to make your application “Appearance Manager aware.” 680x0 applications are automatically Appearance Manager
aware. To make your PowerPC application Appearance Manager aware, see the Designing Your Application chapter
of this manual for details in the “Using the Appearance Manager” section.

Many of the Appearance Manager’s controls are considerably more complex than the standard controls, and
understandably so because they offer considerably more features. Many controls place special significance on their
initial values when they are created, specifically the control’s minimum limit, maximum limit and current value (these
items equate to the contrlMin, contrIMax and contrlValue fields of the Control Manager’s ControlRecord record).
Constants for these controls and all their options appear in the Appearance.h (C/C++ header) and Appearance.p (Pascal
interface) files, as well as in Controls.h and Controls.p files.

See the chapters on Scroll Bars, Editing Fields, List Boxes and Pop-Up Menus in this user manual for additional
Appearance Manager controls.

Note: For complete information on Appearance Manager concepts, the Appearance Manager’s features, and how to
best use the Appearance Manager’s new controls, please read the documentation pertaining to the Appearance

Water’s Edge Software 159



Tools Plus

Manager. It is available from Apple or in the latest issue of Inside Macintosh. This manual does not duplicate
that material.

Push Button (CDEF 23)

This push button works identically to a standard pushButProc push button. Enabled

CONST Eject
kControlPushButtonProc = 368; {Push button ProcID } :
kControlPushButLeftIconProc = 374; {Push-button with left-side icon } Pressed
kControlPushButRightIconProc = 375; {Push-button with right-side icon }

When either of the icon push buttons are created, the control’s maximum limit is used to Ei New

specify the ‘cicn’ resource ID that is drawn in the push button. With Icon

Check Box (CDEF 23) [

This check box works similarly to a standard checkBoxProc check box, except that it also has a Off

“mixed” mode in addition to being selected or unselected. IE IE

CONST On
kControlCheckBoxProc = 369; {Check box ProcID }
kControlCheckBoxMixedValue = 2; {Button's value for "mixed" mode } E |E|

Mixed

Radio Button (CDEF 23) .:} .::.

This radio button works similarly to a standard radioButProc radio button, except that it also Off

has a “mixed” mode in addition to being selected or unselected. !:I @

CONST On
kControlRadioButtonProc = 370; {Radio button ProcID }
kControlCheckBoxMixedValue = 2; {Button's value for "mixed" mode } IE} {E:l

Mixed

Bevel Button (CDEF 2)

The bevel button is the most versatile control offered by the Appearance Manager. It allows

you to specify the button’s appearance, its content (picture, icon, etc.), and its behavior (push LA @

button, toggle, or sticky). See the Pop-Up Menus chapter for information about implementing

the bevel button control as a pop-up menu.

All these capabilities are invoked by correctly setting the control’s variant code, minimum EE

limit, maximum limit, and value. :‘
Parameter Parameter’s value is used for... Small, Medium and

. . . s Large Bevel Buttons
Variant Code Bit 3 = Use window’s font

Bit 2 = Pop-up arrow’s direction

Bits 0-1 = Bevel size I_
Min Limit High byte = Behavior
Low byte = Type of content On
Value Always 0 (zero)
Max Limit ~ Resource ID for resource-based content types =
If you use an icon suite, remember to include a mask icon (ICN# or ics#). Off

160



6 Buttons

CONST
{Bevel Button ProcIDs: }
kControlBevelButtonSmallBevelProc = 32; {Small bevel }
kControlBevelButtonNormalBevelProc = 33; {Standard size bevel }
kControlBevelButtonLargeBevelProc = 34; {Large bevel }
{Behaviors (in min. limit): }
kControlBehaviorPushbutton = $0000; {Push button }
kControlBehaviorToggles = $0100; {Click on/off }
kControlBehaviorSticky = $0200; {Instant on }
kControlBehaviorOffsetContents = $8000; {Contents offset 1 pixel down }
{ and right when clicked. }
{Content (in min. limit): }
kControlContentTextOnly = 0; {Button contains only text }
kControlContentIconSuiteRes = 1; {Image us an icon suite }
kControlContentCIconRes = 2; {Image is a 'cicn' icon }
kControlContentPictRes = 3; {Image is a 'PICT' }
kControlContentIconRef = 132; {Image is an 'ICON' }
Tabs (CDEF 8)
A tab control is a single control that has a number of parts (the tabs) that can be individually S o A
selected by the user. From a user’s perspective, each tab part is used in a similar way to a radio
button in a group: click one choice to select it and to deselect the others. The titles and icons for Tab Control

each of the tab parts can be set in two ways: by setting the control’s title, or if you are creating
the tab control using a ‘CNTL’ resource, by including a ‘tab#’ resource with the same resource
ID as the ‘CNTL’ resource.

The title you provide for the control is broken into separate parts for each tab by using a
vertical bar (the “I” key, or shift-\) between parts. If one or more numbers precede the title, then
that number is used to specify the ‘cicn’ icon resource that appears in that tab part. The
following example shows you a sample title for a tab control:

601Disks|602Folders|Files|605

In this example, four tab parts are created as follows:
#1 ‘cicn’ icon ID 601, title = “Disks”
#2 ‘cicn’ icon ID 602, title = “Folders”
#3 no icon, title = “Files”
#4 ‘cicn’ icon ID 605, no title

If you are creating a tab control using a ‘CNTL’ resource, you may find it easier to create a
‘tab#’ resource with the same ID as the ‘CNTL’ resource. The ‘tab#’ resource specifies the
number of tab parts, each icon ID (0 = no icon) and title. If your resource editor does not
support ‘tab#’ resources, check the “Optional Resources” folder in Tools Plus for a folder
named “Optional Resource Templates”. There, you will find a file named “Appearance
Manager Templates” that contains the “TMPL’ resource that is needed to create a ‘tab#’
resource. Just copy this “TMPL’ resource into your resource editor application to give it the
ability to create ‘tab#’ resources.

Note: You need Appearance Manager 1.0.1 or later to create tab controls in Tools Plus.
Earlier versions have a bug that does not create the tab parts.

CONST
{Tab ProcIDs: }
kControlTabLargeProc = 128; {Tab control with large tabs }
kControlTabSmallProc = 129; {Tab control with small tabs }

Water’s Edge Software 161



Tools Plus

Disclosure Triangles (CDEF 4)
Disclosure triangles work like check boxes: they can be off (related details are hidden, triangle

points right or optionally to the left), or on (related details are displayed, triangle points down). off

You are responsible for coding the logic to hide and display the details relating to the triangle

control, as this does not happen automatically. Disclosure triangles should always be created in =

a 12 x 12 pixel square. On

CONST

{Tab ProcIDs: }

kControlTriangleProc = 64; {Triangle faces right }
kControlTriangleLeftFacingProc = 65; {Triangle faces left }
kControlTriangleAutoToggleProc = 66; {Faces right, auto-toggle}
kControlTriangleLeftFacingAutoToggleProc = 67; {Faces left, auto-toggle }

Clock (CDEF 15)

The clock control is used to display the time (and optionally the date) in a consistent manner,

and to let the user set the time (and optionally the date). When created, this control defaults to 11:30 AM

displaying the current time (and optionally the date) as indicated by the Macintosh’s internal
clock. The clock control can be automatically updated once per minute or per second so that it
always shows the current time. See the Appearance Manager’s documentation for setting the
time for this control and retrieving the setting.

The clock control updates automatically each time your event handler routine finishes
executing. If you need to update the clock more frequently, see the Process 1 EventWhileBusy
routine for details. When you create a clock control, it is best if you create it exactly 22 pixels
high and use the system font.

CONST

{Clock ProcIDs: }
kControlClockTimeProc = 240; {Standard HH:MM time }
kControlClockTimeSecondsProc = 241; {Time with seconds (HH:MM:SS) }
kControlClockDateProc = 242; ({Date clock }
kControlClockMonthYearProc = 243; {Date clock with month and year }

{Value settings for behavior: }
kControlClockNoFlags = 0; {User can change the time }
kControlClockIsDisplayOnly = 1; {User cannot change the time }
kControlClockIsLive = 2; {Auto-updated clock (combine this }

}

{ with kControlClockIsDisplayOnly.

Display-only clock

11:3unm@

Interactive clock

Group Box (CDEF 10)

The group box control offers some of the visual cues that are found in Tools Plus’s panels.
Even though this control is not nearly as versatile as a Tools Plus Panel, you may decide to use
it anyway because it presents a look that is consistent with the Appearance Manager. The user
cannot interact with a group box control (clicking on it does not generate an event).

The Appearance Manager offers two additional services with the group box control:
* Setting the control’s value to zero (0) deselects all radio buttons
* The control’s value indicates the most recently selected radio button

CONST
{Primary Group Box
{ ProcIDs:
160; {With text title
161; {With check box title
162; {With pop-up menu title

kControlGroupBoxTextTitleProc
kControlGroupBoxCheckBoxProc
kControlGroupBoxPopupButtonProc

{Secondary Group Box

{ ProcIDs:
164; {With text title
165; {With check box title
166; {With pop-up menu title

kControlGroupBoxSecondaryTextTitleProc
kControlGroupBoxSecondaryCheckBoxProc
kControlGroupBoxSecondaryPopupButtonProc

e S

_Pinpoint a purr at_
@ 60 yards
( 80 yards

Primary titled group box

b4 selection 1
@ 60 yards
() 80 yards

Q

roup with check box

units: (Math <]
@ 60 yards
() 80 yards

Group with pop-up menu

__Pinpoint a purr at _
@ 60 yards
( 80 yards

Secondary Group Box

162



6 Buttons

Chasing Arrows (CDEF 7)

Chasing Arrows are used to indicate that a window, which is accessible to the user, is being
updated by some process. This is seen in Mac OS 8’s Finder when you open a folder that is set
to icon view and that folder contains a lot of files -- while the Finder busies itself displaying the
icons, the user sees the Chasing Arrows and can still interact with the window.

The Chasing Arrows control animates automatically each time your event handler routine
finishes executing. If you need to animate the control more frequently, see the
Process1EventWhileBusy routine for details. To stop animation, simply hide or delete this
control. The user cannot interact with this control. Chasing Arrows should always be created in
a 16 x 16 pixel square.

CONST
kControlChasingArrowsProc = 112; {Chasing Arrows ProcID }

¥

Chasing Arrows

Little Arrows (CDEF 6)

Little Arrows are used to increase or decreased a value, as seen in the Clock control. In Tools
Plus, this control can be implemented either as a button to allow the user to step through a
series of values one at a time with each click, or as a scroll bar to allow the user to also hold the
up arrow or down arrow to continuously increase or decrease a value while the button is held
down.

If you are using a ‘CNTL’ resource to create this control, add 1 to the procID to tell Tools Plus
that you want to implement the Little Arrows control as a scroll bar, otherwise it is
implemented as a button. Little Arrows should always be created in a rectangle that is 13 pixels
wide by 23 pixels high.

CONST
kControlLittleArrowsProc = 96; {Little Arrows ProcID }

5B 8 E

Little Arrows

Static Text (CDEF 18)

The Static Text control can be implemented as a non-selectable button or as a special kind of
field called a static text field (see the Editing Fields chapter). You can use static text controls in
place of standard static text items in dialogs. The advantage this provides is that the text looks
disabled on an inactive window (it is dimmed) and you can easily manipulate the text as you
would any other control, such as hiding and showing the control. The user cannot interact with
this control.

CONST
kControlStaticTextProc = 288; {Static Text ProcID }

Static Text
Enabled

Disabled

Placard (CDEF 14)

The placard is designed to be a frame or “context” for displaying small items, such as a page
number to the left of a document’s horizontal scroll bar. Avoid using a placard for a large
background area, such as an area within a tab control that is used to hold several radio buttons.
Using a placard in this manner may cause unsightly flickering because when the placard is
refreshed, it overwrites the image of all embedded controls, then it refreshes those controls. The
user cannot interact with this control.

CONST
kControlPlacardProc = 224; {Placard ProcID }

L]

Placard

Water’s Edge Software

163



Tools Plus

Visual Separator (CDEF 9)
The Visual Separator control is a dividing line between objects or groups of elements. Make

sure you make this control 3 pixels wide. The user cannot interact with this control. Visual Separator
CONST
kControlSeparatorLineProc = 144; {Visual Separator ProcID }

Image Well (CDEF 11)

An image well is a display-only area where an image is shown. It provides an attractive
recessed border and a consistent background for displaying pictures or icons. The control’s
Minimum Limit and Value fields are used to specify what is displayed in the control. The user
cannot interact with this control.

Parameter Parameter’s value is used for...

Min Limit  Type of content Image Well showing an

Icon Suite
Value Resource ID for resource-based content types
If you use an icon suite, remember to include a mask icon (ICN# or ics#).
CONST
kControlImageWellProc = 176; {Image Well ProcID }

{Content (in min. limit): }
kControlContentTextOnly = 0; {Button contains only text }
kControlContentIconSuiteRes = 1; {Image us an icon suite }
kControlContentCIconRes = 2; {Image is a 'cicn' icon }
kControlContentPictRes = 3; {Image is a 'PICT' }
kControlContentIconRef = 132; {Image is an 'ICON' }

Pop-Up Arrow (CDEF 12)

These minor controls are used typically in custom pop-up menus or in menu lists to indicate L

that more information can be shown. The user cannot interact with this control. L N

Pop-up Arrows

CONST
kControlPopupArrowEastProc = 192; {Pop-up Arrow ProcIDs: }
kControlPopupArrowWestProc = 193; { }
kControlPopupArrowNorthProc = 194; { }
kControlPopupArrowSouthProc = 195; { }
kControlPopupArrowSmallEastProc = 196; { }
kControlPopupArrowSmallWestProc = 197; { }
kControlPopupArrowSmallNorthProc = 198; { }
kControlPopupArrowSmallSouthProc = 199; { }

Picture Control (CDEF 19)

The Picture Control uses a ‘PICT’ resource to present the user with a click-sensing image. This §P-12 Librarian

control darkens the image when it is being tracked by the user, and dims the image when the Picture Control

control is disabled. Set the control’s Value parameter to the ‘PICT’ resource ID that you want
to display.

Warning: Flag the ‘PICT’ resource as preloaded, locked, and not purgeable to avoid an

Appearance Manager bug.
CONST
{Picture Control ProcIDs: }
kControlPictureProc = 304; {Standard, tracking picture control }
kControlPictureNoTrackProc = 305; {Instant-Event, non-tracking control }

164



6 Buttons

Icon Control (CDEF 20)

The Icon Control uses a ‘cicn’ resource or an icon suite to present the user with a click-sensing
image. This control darkens the image when it is being tracked by the user, and dims the image
when the control is disabled. Set the control’s Value parameter to the ‘cicn’ resource ID or to
the icon suite ID that you want to display.

If you use an icon suite, remember to include a mask icon (ICN# or ics#).

CONST
{Icon Control ProcIDs: }
kControlIconProc = 320; {Use a 'cicn', track control }
kControlIconNoTrackProc = 321; {Instant-Event, non-tracking control }
kControlIconSuiteProc = 322; {Use an icon suite, track control }

kControlIconSuiteNoTrackProc 323; {Instant-Event, non-tracking control }

Icon Control

Window Header (CDEF 21)

The window header control is similar to the placard control, except that it is used as a header
area for a window. This control would typically contain column titles and perhaps a chasing
arrows control. The user cannot interact with this control.

Note: You need Appearance Manager 1.0.2 or later to use window header controls in Tools
Plus. Earlier versions have a bug that causes static text items placed on this control to
display a pseudo random pattern instead of text.

CONST

{Window Header ProcIDs: }
336; {Normal header
337; {List variant, no bottom line }

kControlWindowHeaderProc
kControlWindowListViewHeaderProc

[ ]

Window Header

User Pane (CDEF 16)

The User Pane control can be used in two very different ways. With knowledge of the
Appearance Manager, you can write code that draws components of a custom pane in a style of
your choosing to produce an interface element that is similar to a placard or to a window header
control.

This control also provides a use in its naturally invisible state: you can create a user pane, then
create a number of user interface elements on that pane and auto-embed them to the pane. This
gives you the ability to hide or show all the user interface elements that belong to that pane just
by hiding or showing the user pane control. This is a useful technique in hiding and showing
“layers” of controls that are associated with a single tab part in a tab control. The user cannot
interact directly with the user pane control.

CONST
kControlUserPaneProc = 256; {User Pane ProcID }

User Pane
(invisible)

Water’s Edge Software

165



Tools Plus

Appearance Manager and Keyboard Focus

Before the Appearance Manager’s arrival, the only user interface element that could process keystrokes was an editing
field. With the Appearance Manager present, a variety of user interface elements can process keystrokes, such as
editing fields, list boxes and the clock control. Keystrokes are directed at only one user interface element at a time (and
possibly at no element at all). When a user interface element processes keystrokes in such a way, it is said to have the
“keyboard focus.” Only one user interface element can have the keyboard focus at a time, and it is visually indicated
with a highlighted “band” around the object. Tools Plus takes care of the focus highlight, and of applying keystrokes to
the element that has the keyboard focus.

The process of moving the keyboard focus between objects, either by tabbing or clicking, is identical to that of
navigating between editing fields. For details, see the “Clicking and Tabbing” section in the Editing Fields chapter.

NewButton

Create a new button.

pascal void NewButton (short Button, short left, short top, short right,
short bottom, const Str255 Title, long Spec,
Boolean EnabledFlag, Boolean SelectedFlag);

procedure NewButton (Button, left, top, right, bottom: INTEGER;
Title: STRING; Spec: LONGINT;
EnabledFlag, SelectedFlag: BOOLEAN);

Button specifies the button number (from 1 to 511) that is created in the current window. Once a button is created, it is
referenced by this button number. If a button has been previously created in the current window using the same
number, it is replaced with a new button as specified by the parameters in the NewButton routine. If the current
window doesn’t belong to your application, or if no windows are open, NewButton does nothing.

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the button’s size and location in the
window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-hand
corner (right,bottom). See the chart below regarding the minimum height for buttons. These measurements are based
on using the system font (Chicago 12pt) for the button’s text.

Minimum Height Standard
With Descenders ~ No Descenders Height
Push Buttons 18 13 20
Radio/Check Box Buttons 14 12 16

The Title parameter is the button’s title. Each button should have a unique title. Button titles can have multiple lines,
each line being separated by the ASCII character code $0D (carriage return). It is your responsibility to ensure that the
rectangle defining the button’s co-ordinates is sufficient to contain the button’s title.

Spec specifies a button’s appearance and behavior. It is a combination of a button procID plus various Tools Plus
options detailed later in this section.

EnabledFlag indicates if the newly created button is enabled or not. All three button types can be either enabled or
disabled. When a button is disabled, it becomes dim and cannot be selected by the user. All buttons automatically
become disabled when the window containing them is inactive. When the window is activated, the buttons assume
their state as set by the NewButton routine and subsequent calls to the EnableButton routine. The two constants that
can be used for this flag are enabled and disabled.

SelectedFlag indicates if the newly created button is selected or not. Only check boxes and radio buttons can be
selected (this setting has no effect on push buttons). The two constants that can be used for this flag are selected and
notSelected.

166



The following are examples of disabled and checked buttons:

Posh Bulisn [] obeci fins

pushButProc checkBoxProc
(disabled) (disabled, notSelected)
Push Button (<] Check Box
pushButProc checkBoxProc
(enabled) (enabled, selected)

Appearance and Behavior Specification

6 Buttons

O Badin Balinn

radioButProc
(disabled, notSelected)

/@) Radio Button

radioButProc
(enabled, selected)

Spec specifies a button’s appearance and behavior. It is a combination of a button procID (low 16 bits) plus various
Tools Plus options (high 16 bits). The value for this 4-byte long integer can be specified by adding a set of constants to
obtain the desired result. For example, a push-button using the window’s current font would have a spec of
pushButProc + bUseWFont. The constants defining the available options are as follows:

Choose only one of the following proclDs (or use a custom CDEF’s proclID)...

Push Button

[<] Check Box

pushButProc Standard Apple push button. Used to “do something now.”

checkBoxProc Standard Apple check box. Used for “yes/no” types of
selections.

radioButProc

Standard Apple radio button. Used to select one of several (@ Radio Button
options in a group where all options must be visible. This

differs from the use of a pop-up menu where the only time all

options need to be visible is when the user is making a

selection, then only the selected item is displayed.

Also see the section on Appearance Manager Controls earlier in this chapter for additional procIDs.

Optionally choose any of the following options...

bUseWFont

bColorButton

bDefault

bCmdKey

bAutoMoveSize

bHidden

Water’s Edge Software

Display the button using the window’s current font, size and style settings (as set by
the TextFont, TextSize, and TextFace routines). The button stores this information
for future reference. By default, all buttons are drawn using the system font
(Chicago, 12 pt).

Adopt the color settings as defined by the ButtonColors routine. By default, buttons
have black text and frame, and a background that matches their parent window’s
backdrop color (which is white by default). Note that some controls ignore color
settings, particularly those in the Appearance Manager.

Make this button the window’s default button. Can only be applied
to one push button on a standard window. Pressing the “Return” or

“Enter” key selects this button.

Allow the button to be selected by a command key (38-first letter). If the button’s
title is “Cancel” (or a language-dependent equivalent), 88-. (command-period) and
the Escape key can be used to select the button.

Automatically move and/or resize the button when the window’s size changes. The
AutoMoveSize routine lets you specify which sides are altered. You can use the
AutoMoveSizeButton routine as an alternative to setting this option.

Create a hidden button. This kind of button is accessible to your application but not
to the user. A default button loses its default status if you hide it.

167



Tools Plus

Optionally choose only one of the following options if you are using non-standard custom CDEFs...

If you want to use a custom CDEF whose variant codes do not match up with those defined by Apple, you
won’t be able to use the pushButProc, checkBoxProc, radioButProc or bUseWFont constants because their
values may map to completely different functions in the CDEF. Use the following options to inform Tools Plus
of the CDEFs properties.

bCDEFPushButton The CDEF is treated like a push button by Tools Plus. It can be the default for the
window and its value always remains 1.

bCDEFRadioButton The CDEF is treated like a radio button by Tools Plus. Its value can be O or 1
(unselected or selected). It can also be automatically deselected when placed in a
panel as a radio button group.

bCDEFCheckBox The CDEF is treated like a check box by Tools Plus. It can have any value.

Custom Control Definitions (CDEFs)

Your application can use custom control definitions (CDEFs) on a per-button basis. Tools Plus can make your custom
button behave like a push button, radio button, or check box. When using a custom CDEF, you will need to include a
special control definition (CDEF) resource in your application’s resource fork. Tools Plus includes custom CDEFs in
the “Optional Resources” folder.

You can write your own CDEFs or use those created by a third-party. A CDEF’s procID is calculated as follows:
CDEF’s resource ID x 16 + variant code. As previously noted, if you are using a CDEF whose variant codes are
different from those defined by Apple (pushButProc, checkBoxProc or radioButProc plus the optional bUseWFont),
you can tell Tools Plus about the CDEF’s properties by using the constants bCDEFPushButton, bCDEFRadioButton or
bCDEFCheckBox. This lets you use the low 4 bits (variant code) as required by your CDEF.

Your CDEF’s resource ID can be in the range of 2 to 2047. If you use 0 you will replace the use of Apple’s standard
buttons with your CDEF throughout your application. ID 1 is reserved by Apple’s scroll bar and ID 63 is used by the
pop-up menu CDEF in System 7 or higher. It is best to use resource IDs 128 or higher for your custom CDEFs.

Note: When using third party CDEFs, make sure you carefully read the documentation that accompanies the CDEF.
Your CDEF may not be able to make use of all the variant codes that are available to Apple’s controls.

If your button is on a manually drawn background (other than a window’s backdrop) such as a picture, that
background must be refreshed in response to a doPreRefresh event. Tools Plus removes your button’s rectangle
from the update region when it generates the doRefresh event, thereby protecting it from being overwritten.

Note: Tools Plus makes no attempt to control the placement of buttons or to protect them once they have been
created. It is your responsibility to ensure that buttons are of sufficient size to contain their title, and that their
placement within the window is reasonable and does not conflict with other objects. Furthermore, you should
not allow your application’s text and drawing processes to interfere with buttons, or with the “default button”
frame. Windows with a “size box” should not allow buttons to be obscured or hidden by making the window
too small.

Also see: SetAutoEmbed, NewButtonRect, NewDialogButton, ButtonColors and ReplaceControlProcID.

CONST {Button appearance/behavior specifications: }
pushButProc = 0; {Push button }
checkBoxProc = 1; {Check box }
radioButProc = 2; {Radio button }
bUseWFont = $00000008; {Use window's font settings }
bDefault = $00010000; {Default push button (1 only per window) }
bCmdKey = $00020000; {Button is selectable via command key }
bColorButton = $00080000; {Color button }
bHidden = $00100000; {Create hidden button }
bAutoMoveSize = $00200000; {Auto-resize as window's size changes }

{Button states: }
enabled = true; {Enable button }
disabled = false; {Disable button }
selected = true; {Select (check) button }
notSelected = false; {Deselect (un-check) button }

168



6 Buttons

{For custom (non-standard) CDEFs only: }
bCDEFPushButton = $80000000; {Control is a push button }
bCDEFRadioButton = $40000000; {Control is a radio button }
bCDEFCheckBox = $20000000; {Control is a check box }

NewButtonRect

Create a new button.

pascal void NewButtonRect (short Button, const Rect *Bounds,
const Str255 Title, long Spec, Boolean EnabledFlag,
Boolean SelectedFlagq);

procedure NewButtonRect (Button: INTEGER; Bounds: RECT; Title: STRING;
Spec: LONGINT; EnabledFlag, SelectedFlag: BOOLEAN);

NewButtonRect is identical to the NewButton routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

NewButtonControl

Create a new button.

pascal void NewButtonControl (short Button, short left, short top,
short right, short bottom, const Str255 Title, long Spec,
Boolean EnabledFlag, short ControlMinLimit, short Controlvalue,
short ControlMaxLimit);

procedure NewButtonControl (Button, left, top, right, bottom: INTEGER;
Title: STRING; Spec: LONGINT; EnabledFlag: BOOLEAN;
ControlMinLimit, ControlValue, ControlMaxLimit: INTEGER);

NewButtonControl is identical to the NewButton routine, except that it allows you to specify the control’s minimum
limit, value, and maximum limit. You will only need to use this routine if you are using a custom CDEF with special
requirements that necessitate setting these items to specific values.

NewButtonControlRect

Create a new button.

pascal void NewButtonControlRect (short Button, const Rect *Bounds,
const Str255 Title, long Spec, Boolean EnabledFlag,
short ControlMinLimit, short ControlValue, short ControlMaxLimit);

(Pascal) procedure NewButtonControlRect (Button: INTEGER; Bounds: RECT;
Title: STRING; Spec: LONGINT; EnabledFlag: BOOLEAN;
ControlMinLimit, ControlValue, ControlMaxLimit: INTEGER);

NewButtonControlRect is identical to the NewButtonControl routine, except that it accepts the Bounds rectangle in
place of the individual left, top, right and bottom co-ordinates. You will only need to use this routine if you are using a
custom CDEF with special requirements that necessitate setting these items to specific values.

Water’s Edge Software 169



H

Tools Plus

NewDialogButton
Create a new button in a dialog using a dialog item’s co-ordinates.

pascal void NewDialogButton (short Button, const Str255 Title, long Spec,
Boolean EnabledFlag, Boolean SelectedFlag);

procedure NewDialogButton (Button: INTEGER; Title: STRING; Spec: LONGINT;
EnabledFlag, SelectedFlag: BOOLEAN);

NewDialogButton is identical to the NewButton routine, except that the button is created in a dialog (a window opened
with the LoadDialog routine, or one that had a dialog list attached with the LoadDialogList routine). The button’s co-
ordinates are obtained from the dialog item whose number matches the button number.

NewDialogButtonControl

Create a new button in a dialog using a dialog item’s co-ordinates.

pascal void NewDialogButtonControl (short Button, const Str255 Title,
long Spec, Boolean EnabledFlag,
short ControlMinLimit, short ControlvValue, short ControlMaxLimit);

procedure NewDialogButtonControl (Button: INTEGER; Title: STRING;
Spec: LONGINT; EnabledFlag: BOOLEAN;
ControlMinLimit, ControlValue, ControlMaxLimit: INTEGER);

NewDialogButtonControl is identical to the NewDialogButton routine, except that it allows you to specify the
control’s minimum limit, value, and maximum limit. You will only need to use this routine if you are using a custom
CDEF with special requirements that necessitate setting these items to specific values.

LoadButton

Create a new button using a ‘CNTL’ resource.
pascal void LoadButton (short Button, short ResID);
procedure LoadButton (Button, ResID: INTEGER);

LoadButton creates a button by calling the NewButton routine and supplying it with values from a ‘CNTL’ resource,
commonly called a control template. This is a good way to create a button or button-like control that requires a color
table with more elements than those supported by the SetButtonColors routines. Note that some controls ignore color
settings.

Button specifies the button number (from 1 to 511) that is created in the current window. Once a button is created, it is
referenced by this button number. If a button has been previously created in the current window using the same
number, it is replaced with a new button as specified by the parameters in the ‘CNTL’ resource. If the current window
doesn’t belong to your application, or if no windows are open, LoadButton does nothing.

ResID is the ‘CNTL’ resource ID number that is used to create the button. If the button has a ‘cctb’ color table
resource, it must use the same ID number. Any resource ID number can be used, but numbers 128 or higher are safest
as stated in Inside Macintosh.

170



H

H

6 Buttons

When creating buttons using ‘CNTL’ resources, please note the following:
* Flag your ‘CNTL’ and ‘cctb’ resources as purgeable to save memory. Tools Plus makes a copy of their data.

¢ The RefCon field in the ‘CNTL’ resource is ignored since Tools Plus uses the control’s RefCon field to store its
own data.

Also see: NewButton and LoadSpecButton.

LoadSpecButton

Create a new button using a ‘CNTL’ resource.
pascal void LoadSpecButton (short Button, long Spec, short ResID);
procedure LoadSpecButton (Button: INTEGER; Spec: LONGINT; ResID: INTEGER);

LoadSpecButton is identical to the LoadButton routine, except that it requires the additional Spec parameter to give
you control over all the appearance and behavior options offered by Tools Plus. See the NewButton routine for details
about the Spec parameter.

SetAutoEmbed

Automatically embed new controls (Appearance Manager only).
pascal void SetAutoEmbed (Boolean Embed);
procedure SetAutoEmbed (Embed: BOOLEAN) ;

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. By default, when you create a
control dynamically using a Tools Plus routine, that control is also embedded.

Embed indicates if subsequently created controls are automatically embedded, those controls being buttons and scroll
bars, controls that are implemented as buttons and scroll bars (such as the Appearance Manager’s Tab control or
Progress Indicator control), Edit Text controls, Static Text controls, List Box controls, and Pop-Up Menu controls.
This affects only controls that are dynamically created using Tools Plus routines. When Embed is set to true, each new
control you create automatically calls the Appearance Manager’s AutoEmbedControl routine.

You can safely call SetAutoEmbed even if the Appearance Manager is not available.
Also see: EmbedButtonInButton, EmbedButtonInScrollBar, EmbedFieldInButton, EmbedFieldInScrollBar,

EmbedListBoxInButton, EmbedListBoxInScrollBar, EmbedScrollBarInButton, EmbedScrollBarInScrollBar,
EmbedPopUpInButton, and EmbedPopUpInScrollBar.

Water’s Edge Software 171



H

Tools Plus

EmbedButtoninButton

Embed a button into a button or into the window’s root control (Appearance Manager only).
pascal void EmbedButtonInButton (short Button, short ContainerButton);
procedure EmbedButtonInButton (Button, ContainerButton: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedButtonInButton lets you
manually embed a button into a button, or into the window’s root control. Note that the term “button” does not literally
mean a button control. It means any control that is implemented as a button in Tools Plus. The most likely candidate is
a Group Box control. If the Appearance Manager is not available, EmbedButtonInButton does nothing.

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the button does not exist in the current window,
EmbedButtonInButton does nothing.

ContainerButton specifies the button number (from 1 to 511) into which Butfon is embedded. This control must exist
in the current window, and it must be a “container” type control such as the Appearance Manager’s Group Box. The
button must fit entirely within the container control or EmbedButtonInButton does nothing. If a value of O is provided
for a container button, Button is embedded into the window’s root control.

Also see: EmbedButtonInScrollBar and SetAutoEmbed.

EmbedButtoninScrollBar

Embed a button into a scroll bar or into the window’s root control (Appearance Manager only).
pascal void EmbedButtonInScrollBar (short Button, short ContainerScrollBar);
procedure EmbedButtonInScrollBar (Button, ContainerScrollBar: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedButtonInScrollBar lets you
manually embed a button into a scroll bar, or into the window’s root control. Note that the term “button” does not
literally mean a button control. It means any control that is implemented as a button in Tools Plus. The most likely
candidate is a Group Box control. The same applies for the term “scroll bar.” If the Appearance Manager is not
available, EmbedButtonInScrollBar does nothing.

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the button does not exist in the current window,
EmbedButtonInScrollBar does nothing.

ContainerScrollBar specifies the scroll bar number (from 1 to 511) into which Button is embedded. This control must
exist in the current window, and it must be a “container” type control. The button must fit entirely within the container
control or EmbedButtonInScrollBar does nothing. If a value of 0 is provided for a container scroll bar, Button is
embedded into the window’s root control.

Also see: EmbedButtonInButton and SetAutoEmbed.

172



H

H

6 Buttons

GetFreeButtonNum

Get the first unused button number.
pascal short GetFreeButtonNum (void);

function GetFreeButtonNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own button
number, GetFreeButtonNum returns the first unused (free) button number. Using this routine, you can assign an
unused button number to a variable, then use that variable throughout your application without concern for the true
button number.

GetFreeButtonNum returns the first free button number on the current window. If the current window doesn’t belong
to your application, if no windows are open, or if the maximum number of buttons has already been created on the
current window (no new ones can be created), GetFreeButtonNum returns a value of zero (0).

ButtonColors
Set the colors for new buttons as they are created.

pascal void ButtonColors (const RGBColor *Frame, const RGBColor *Body,
const RGBColor *Text, const RGBColor *Back);

procedure ButtonColors (Frame, Body, Text, Back: RGBColor);

When new buttons are created, by default they have a black outline and text, and they adopt their parent window’s
backdrop as a background color. When you use the ButtonColors routine, new buttons adopt the colors specified in
this routine (providing that the button is created with the bColorButton option in the button’s spec). This is the most
efficient way to color multiple buttons using the same colors. Note that some controls ignore color settings,
particularly those in the Appearance Manager.

Frame is the button’s frame color (seen in push buttons, check box’s box, radio button’s circle, and possibly custom
CDEFs).

Body is the button’s body color (seen in push buttons only, and possibly custom CDEFs).
Text is the button’s text color (seen in all buttons, and usually in custom CDEFs).

Back is the button’s background color (seen in check boxes and radio buttons, and possibly custom CDEFs).

Also see: NoButtonColors and SetButtonColors.

NoButtonColors

Reset the colors for new buttons to the default.
pascal void NoButtonColors (void);
procedure NoButtonColors;

When new buttons are created, by default they have a black outline and text, and they adopt their parent window’s
backdrop as a background color. When you use the ButtonColors routine, new buttons adopt the colors specified by
that routine (providing that the button is created with the bColorButton option in the button’s spec).

Water’s Edge Software 173



Tools Plus

This routine resets the settings of the ButtonColors routine to the default values (black frame and text, white body and
background). It is seldom required since you can create default buttons by simply excluding the bColorButton constant

from the button’s spec parameter.

Also see: ButtonColors.

DeleteButton

Delete a button.

pascal void DeleteButton (short Button);

procedure DeleteButton (Button: INTEGER);
Button specifies the button number (from 1 to 511) that is deleted from the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the button does not exist in the current window,
DeleteButton does nothing. Use KillButton if you want to delete the button without removing its image from the
window.
KillButton
Delete a button without affecting its image on the window.

pascal void KillButton (short Button);

procedure KillButton (Button: INTEGER);
KillButton is identical to DeleteButton except that it does not remove the button’s image from the window. This
routine is useful for scrolling buttons in an area within a window (i.e., not the entire window). ScrollRect is used to
scroll the images in the affected area. OffsetButton repositions the button’s co-ordinates without affecting its image
(since ScrollRect has already moved it). KillButton then deletes the buttons that are scrolled out of view without
affecting their image (ScrollRect has already scrolled them out of view).
ButtonDisplay
Hide or show a button.

pascal void ButtonDisplay (short Button, Boolean Show);

procedure ButtonDisplay (Button: INTEGER; Show: BOOLEAN);

ButtonDisplay hides or shows a button on the current window. The result is seen immediately. Use discretion with this

routine since buttons should be enabled and disabled to indicate if they are accessible by the user.

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the button does not exist in the current window,
ButtonDisplay does nothing.

Show indicates if the button is being hidden or displayed. The two constants that can be used for this flag are on and
off. A default button loses its default status if you hide it.

174



H

H

6 Buttons

ButtonlsVisible

Determine if a button is visible.

pascal Boolean ButtonIsVisible (short Button);

function ButtonIsVisible (Button: INTEGER): BOOLEAN;
ButtonlsVisible reports if a button (or a control that is implemented as a button) is visible on the current window, or if
it is hidden.

Button specifies the button number (from 1 to 511) that is queried in the current window.

This routine’s value returns true if the button is visible, and false if the button is hidden. If the current window doesn’t
belong to your application, or if no windows are open, or if the button does not exist in the current window,
ButtonlIsVisible returns false. This routine takes control embedding into account, so it will return false if the target
button is embedded and its container control is hidden.

ObscureButton

Hide a button without removing its image from the window.
pascal void ObscureButton (short Button);
procedure ObscureButton (Button: INTEGER);

ObscureButton hides a button on the current window without removing its image from the window. This routine is
useful for scrolling buttons in an area within a window (i.e., not the entire window). ScrollRect is used to scroll the
images in the affected area. OffsetButton repositions the button’s co-ordinates without affecting its image (since
ScrollRect has already moved it). ObscureButton then hides the buttons that are scrolled out of view without affecting
their image (ScrollRect has already scrolled them out of view).

Button specifies the button number (from 1 to 511) that is hidden in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the button does not exist in the current window,
ObscureButton does nothing.

ActivateButton

Activate a button to give it the keyboard focus.
pascal void ActivateButton (short Button, short PartCode);
procedure ActivateButton (Button, PartCode: INTEGER);

Button specifies the button number (from 1 to 511) that acquires the keyboard focus in the current window.
ActivateButton does nothing under any of these conditions: the current window doesn’t belong to your application, no
windows are open, the button does not exist in the current window, the button is disabled or hidden, the button cannot
accept the keyboard focus, or the Appearance Manager is not available to your application.

PartCode is the control’s part number that is being activated. The part number is available either in the Appearance
Manager documentation, or from the author of the custom control you are using.

Activating a button allows the user to interact with the button by typing on the keyboard. On an active window, the
button acquires the keyboard focus making it the item that automatically processes keystrokes. Visually, this is
indicated by having the text highlighted or with a flashing caret. Additionally, the button is encompassed with a
highlighting keyboard focus band to indicate that it has the focus. Using ActivateButton in an active window removes

Water’s Edge Software 175



H

H

Tools Plus

the keyboard focus from any other object that may have the focus within the same window or any other active window
such as a tool bar or floating palette. This action may deactivate an active editing field.

If the button being activated is in an active window that allows access to pull-down menus, the Edit menu’s “Undo”
item is changed to “Can’t Undo” and is disabled. The “Cut”, “Copy”, “Paste”, “Clear” and “Select All” items are also
disabled.

Your application can activate virtually any editing field or Appearance Manager control that accepts the keyboard
focus. This flexibility can lead to a confusing user interface by allowing the keyboard focus to jump between active
windows. A good rule to observe is to activate a single item only on a standard window (not a tool bar or a floating
palette) when the window first opens. This sets up the default keyboard focus item for that window. At all other times,
activate a button only in response to a user’s actions.

Also see: HaveTablInFocus, TabToFocus, the doClickToFocus event, and ClickToFocus for other activating services.

GetButtonRect

Get a button’s co-ordinates.
pascal void GetButtonRect (short Button, Rect *Bounds);
procedure GetButtonRect (Button: INTEGER; var Bounds: RECT);

Button specifies the button number (from 1 to 511) that is queried in the current window.

Bounds returns the button’s bounding rectangle specified in the window’s local co-ordinates. These co-ordinates match
those used to create the button. If the current window doesn’t belong to your application, or if no windows are open, or
if the button does not exist in the current window, Bounds returns with all co-ordinates set to zero (0).

EnableButton

Enable or disable a button.
pascal void EnableButton (short Button, Boolean EnabledFlag);
procedure EnableButton (Button: INTEGER; EnabledFlag: BOOLEAN);

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the button does not exist in the current window,
EnableButton does nothing.

The EnabledFlag indicates if the button is enabled or not. All three button types can be either enabled or disabled.
When a button is disabled, it becomes dim and cannot be selected by the user. All buttons automatically become
disabled when the window containing them is inactive. When the window is activated, the buttons assume their state as
set by the NewButton routine, and subsequent calls to the EnableButton routine. The two constants that can be used for
this flag are enabled and disabled.

CONST {Button state }
enabled = true; {button is enabled }
disabled = false; {button is disabled }

See the NewButton routine for additional information pertaining to the button’s enabling, disabling, and selection (i.e.,
checked or not).

176



H

H

H

6 Buttons

ButtonlsEnabled

Determine if a button is enabled or disabled.
pascal Boolean ButtonIsEnabled (short Button);
function ButtonIsEnabled (Button: INTEGER): BOOLEAN;

Button specifies the button number (from 1 to 511) that is queried in the current window.

The routine’s value returns frue if the button is enabled, and false if the button is disabled. If the current window
doesn’t belong to your application, or if no windows are open, or if the button does not exist in the current window,
ButtonIsEnabled returns false. ButtonIsEnabled returns the button’s enabled state as it is currently displayed, so if the
button’s window is inactive and has temporarily disabled the button, ButtonIsEnabled returns false.

SelectButton

Select or deselect (check or un-check) a button.
pascal void SelectButton (short Button, Boolean SelectedFlag);
procedure SelectButton (Button: INTEGER; SelectedFlag: BOOLEAN);

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the button does not exist in the current window,
SelectButton does nothing.

The SelectedFlag indicates if the button is selected (checked) or not. Only check boxes and radio buttons can be
selected. This setting has no effect on push buttons. The two constants that can be used for this flag are selected and
notSelected. If you are using a custom CDEF and you need to set the button to a specific value, use the SetButtonVal
routine.

CONST {Button state }
selected = true; {button is selected (checked) }
notSelected = false; {button is not selected (not checked) }

See the NewButton routine for additional information pertaining to the button’s enabling, disabling, and selection (i.e.,
checked or not).

ButtonlsSelected

Determine if a button is selected (i.e., checked.)
pascal Boolean ButtonIsSelected (short Button);
function ButtonIsSelected (Button: INTEGER): BOOLEAN;

Button specifies the button number (from 1 to 511) that is queried in the current window.

The routine’s value returns frue if the button is selected (checked), and false if the button is not selected. If the current
window doesn’t belong to your application, or if no windows are open, or if the button does not exist in the current
window, ButtonIsSelected returns false.

See the NewButton routine for additional information pertaining to the button’s enabling, disabling, and selection (i.e.,
checked or not).

Water’s Edge Software 177



H

H

Tools Plus

GetButtonMin

Get a button’s minimum value limit. This routine may be required for buttons that use a custom CDEF. Otherwise you
will never need to use it.

pascal short GetButtonMin (short Button);
function GetButtonMin (Button: INTEGER): INTEGER;

Button specifies the affected button number (from 1 to 511) in the current window.

GetButtonMin returns a button’s minimum value limit. If the current window doesn’t belong to your application, or if
no windows are open, or if the button does not exist in the current window, GetButtonMin returns a value of zero (0).

SetButtonMin
Set a button’s minimum value limit. This routine may be required for buttons that use a custom CDEF. Otherwise you
will never need to use it.

pascal void SetButtonMin (short Button, short minimum);

procedure SetButtonMin (Button, minimum: INTEGER);

Button specifies the affected button number (from 1 to 511) in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the button does not exist in the current window,
SetButtonMin does nothing.

Minimum specifies the button’s new minimum value limit. The button’s current value and maximum limit are
automatically adjusted (if necessary) to be consistent with the new minimum limit.

GetButtonMax

Get a button’s maximum value limit. This routine may be required for buttons that use a custom CDEF. Otherwise you
will never need to use it.

pascal short GetButtonMax (short Button);
function GetButtonMax (Button: INTEGER): INTEGER;

Button specifies the affected button number (from 1 to 511) in the current window.

GetButtonMax returns a button’s maximum value limit. If the current window doesn’t belong to your application, or if
no windows are open, or if the button does not exist in the current window, GetButtonMax returns a value of zero (0).

178



H

H

6 Buttons

SetButtonMax
Set a button’s maximum value limit. This routine may be required for buttons that use a custom CDEF. Otherwise you
will never need to use it.

pascal void SetButtonMax (short Button, short maximum);

procedure SetButtonMax (Button, maximum: INTEGER);

Button specifies the affected button number (from 1 to 511) in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the button does not exist in the current window,
SetButtonMax does nothing.

Maximum specifies the button’s new maximum value limit. The button’s current value and minimum limit are
automatically adjusted (if necessary) to be consistent with the new maximum limit.

GetButtonVal

Get a button’s current value. This routine may be required for buttons that use a custom CDEF. Otherwise you will
never need to use it.

pascal short GetButtonVal (short Button);
function GetButtonVal (Button: INTEGER): INTEGER;

Button specifies the affected button number (from 1 to 511) in the current window.

GetButtonVal returns a button’s current value. If the current window doesn’t belong to your application, or if no
windows are open, or if the button does not exist in the current window, GetButtonVal returns a value of zero (0).

SetButtonVal
Set a button’s current value. This routine may be required for buttons that use a custom CDEF. Otherwise you will
never need to use it.

pascal void SetButtonVal (short Button, short value);

procedure SetButtonVal (Button, Value: INTEGER);

Button specifies the affected button number (from 1 to 511) in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the button does not exist in the current window,
SetButtonVal does nothing.

Value specifies the button’s new current value. The value must fall within the limits defined by GetButtonMin and
GetButtonMax or SetButtonVal does nothing.

Water’s Edge Software 179



H

H

H

Tools Plus

ButtonTitle
Change a button’s title.

pascal void ButtonTitle (short Button, const Str255 Title);
procedure ButtonTitle (Button: INTEGER; Title: STRING);

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the button does not exist in the current window,
ButtonTitle does nothing.

The Title parameter is the button’s title. Each button should have a unique title. Button titles can have multiple lines,
each line being separated by the ASCII character code $0D (carriage return). Note that a button’s size does not change
automatically to accommodate larger or smaller titles.

FlashButton
Flash a button as though it was clicked by the user.

pascal void FlashButton (short Button);
procedure FlashButton (Button: INTEGER);

Button specifies the button number (from 1 to 511) that is affected in the active window. If the active window doesn’t
belong to your application, or if no windows are open, FlashButton does nothing.

FlashButton can be used in some specific instances. Advanced programmers may decide to display a modal window
when the Macintosh is busy with a lengthy process. If a button (such as “Cancel”) on this window is equivalent to
typing 8-., your application should flash the button when a 3-. is reported to your event handler routine. This makes
the user feel that the key triggered the button. Another example is double-clicking in a list box; this action can be
interpreted as “select line and OK” in which case the OK button should be flashed. This also occurs if your application
interprets double-clicking a radio button as “select button and OK.”

MoveButton

Move a button to a new location on the window.
pascal void MoveButton (short Button, short toHoriz, short toVert);
procedure MoveButton (Button, toHoriz, toVert: INTEGER);

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if Button specifies a button that does not exist,
MoveButton does nothing. The change is seen immediately providing that the button is not hidden. The button’s width
and height are not changed.

ToHoriz is the new horizontal co-ordinate at which the left side of the button appears.
ToVert is the new vertical co-ordinate at which the top of the button appears.

Also see: SizeButton and MoveSizeButton.

180



H

H

H

6 Buttons

OffsetButton

Change a button’s co-ordinates without affecting its image on the window.
pascal void OffsetButton (short Button, short distHoriz, short distVert);
procedure OffsetButton (Button, distHoriz, distVert: INTEGER);

When you scroll an area that contains buttons, first use ScrollRect to scroll the pixel image containing the affected
objects in the window. OffsetButton is used to offset a button’s co-ordinates without altering its image (since
ScrollRect has already done so). At this point, the button’s co-ordinates match the scrolled image of the button.
ObscureButton or KillButton can be used to hide or delete buttons that are scrolled out of view.

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if Button specifies a button that does not exist,
OffsetButton does nothing.

DistHoriz and distVert specify the horizontal and vertical amount by which the button’s co-ordinates are offset.
Positive numbers are right and down. The button’s co-ordinates are updated but no change is seen.

SizeButton

Change a button’s size.
pascal void SizeButton (short Button, short width, short height);
procedure SizeButton (Button, width, height: INTEGER);

SizeButton changes a button’s width and/or height without altering the button’s top or left co-ordinate. The change is
seen immediately providing that the button is not hidden.

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if Button specifies a button that does not exist,
SizeButton does nothing.

Width and height specify the button’s new width and height in pixels. If either parameter is less than 1, SizeButton
does nothing.

Also see: MoveButton and MoveSizeButton.

MoveSizeButton

Change a button’s co-ordinates.

pascal void MoveSizeButton (short Button,
short left, short top, short right, short bottom);

procedure MoveSizeButton (Button, left, top, right, bottom: INTEGER);

MoveSizeButton changes any of the button’s four co-ordinates. The change is seen immediately providing that the
button is not hidden. This routine combines the functions of MoveButton and SizeButton.

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if Button specifies a button that does not exist,
MoveSizeButton does nothing.

Water’s Edge Software 181



H

IS5

Tools Plus

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the button’s size and location in the
window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-hand
corner (right,bottom). If these parameters specify an empty rectangle, MoveSizeButton does nothing.

Also see: GetButtonRect.

MoveSizeButtonRect

Change a button’s co-ordinates.
pascal void MoveSizeButtonRect (short Button, const Rect *Bounds);
procedure MoveSizeButtonRect (Button: INTEGER; Bounds: RECT);

MoveSizeButtonRect is identical to the MoveSizeButton routine, except that it accepts the Bounds rectangle in place
of the individual left, top, right and bottom co-ordinates.

AutoMoveSizeButton

Specify how a button is automatically moved and/or resized as its window’s size is changed.

pascal void AutoMoveSizeButton (short Button,
Boolean left, Boolean top, Boolean right, Boolean bottom);

procedure AutoMoveSizeButton (Button: INTEGER;
left, top, right, bottom: BOOLEAN);

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if Button specifies a button that does not exist,
AutoMoveSizeButton does nothing.

The left, top, right and bottom parameters specify if that side of the button is automatically adjusted when the
window’s size changes. These setting are applied to the button and are used the next time the window’s size changes:

left Does the button’s left side track the window’s right edge?
top Does the button’s top track the window’s bottom edge?
right Does the button’s right side track the window’s right edge?
bottom  Does the button’s bottom track the window’s bottom edge?

You can think of each false value as locking that side of the button to a fixed co-ordinate regardless of the window’s
size (this is the default). Each true value establishes a fixed distance between that side of the button and the window’s
edge. For example, setting only left and right to true makes the button move horizontally as the window widens and
narrows, but the button does not move vertically when the window’s height changes.

If you are setting these values identically for a group of objects, use AutoMoveSize to define the settings then add the
appropriate xAutoMoveSize constant (such as bAutoMoveSize for buttons) to the objects’ spec as they are created.
The objects will adopt the settings specified by the AutoMoveSize routine.

Warning: Make sure that you resize objects in a way that makes sense. Don’t allow a window to shrink down to a
size where objects become unusable or disappear altogether.

182



H

H

6 Buttons

SetButtonFontSettings

Set a button’s font, size and style settings.

pascal void SetButtonFontSettings (short Button,
short theFont, short theSize, Style theStyle);

procedure SetButtonFontSettings (Button: INTEGER;
theFont: INTEGER; theSize: INTEGER; theStyle: Style);

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if the button does not exist, SetButtonFontSettings does
nothing. Otherwise, the change is seen immediately.

TheFont specifies the button’s new font. The default is Chicago, which is represented by the systemFont constant.

TheSize specifies the font’s size. The default is 0, which represents the default font size used by the system font, or
12pt in this case.

TheStyle specifies the button’s new style. Special character constants defined by the Font Manager are bold, italic,
underline and shadow. C programmers use the Font Manager’s constants to specify a composite style, such as
SetButtonFontSettings(1, geneva, 9, bold + outline) for bold and outlined, or SetButtonFontSettings(1, geneva, 9, 0)
for plain text. Pascal programmers use the Font Manager’s constants to specify a style set, such as
SetButtonFontSettings(1, geneva, 9, [bold, outline]) for bold and outlined, or SetButtonFontSettings(1, geneva, 9, [ ])
for plain text.

A button’s font settings are set when a button is created, so this routine is not normally used by many applications.

Note: This routine works on Appearance Manager savvy controls (ones that were written to take advantage of the
Appearance Manager’s extended features) that accept the “set font” command. This routine also works on
classic controls (those that were not written to take advantage of the Appearance Manager, including Apple’s
controls in System 6 and System 7, and SuperCDEFs) as well as third party controls that observe two rules:

1. The high bit of the variant code (8) indicates that the control uses the window’s font.

2. All parameters that are used to create the control, specifically the control’s rectangle, title, visible state,

initial value, minimum limit, maximum limit, and reference constant, all have no special significance.

You may experience issues with third-party CDEFs that place special significance on the initial settings that
are used to create the control. For example, you may experience issues if you use a third-party icon-button
CDEEF that initially uses the “current value” setting to determine which icon it should display, then it later
changes the control’s “current value” setting to reflect if the button is selected or not. Your only solutions are:
(1) create the control with the high bit of the variant code set on (+8 or bUseWFont), or (2) use another CDEF
that does not place special significance on initial settings when the control is created, or (3) do not use the
SetButtonFontSettings routine on that control.

GetButtonFontSettings

Get a button’s font, size and style settings.

pascal void GetButtonFontSettings (short Button,
short *theFont, short *theSize, Style *theStyle);

procedure GetButtonFontSettings (Button: INTEGER;
var theFont: INTEGER; var theSize: INTEGER; var theStyle: Style);

Button specifies the button number (from 1 to 511) in the current window whose font settings are being retrieved. If
the current window doesn’t belong to your application, if no windows are open, or if Button specifies a button that
does not exist, GetButtonFontSettings returns default values.

Water’s Edge Software 183



H

H

Tools Plus

TheFont is the button’s font number. The default is O which is represented by the systemFont constant.

TheSize is the font’s size. The default is 0, which represents the default font size used by the system font, or 12pt in
this case.

TheStyle is the field’s font style. The default is plain text, which is represented by 0 in C and [ ] in Pascal.

SetButtonColors

Set a button’s colors.

pascal void SetButtonColors (short Button, const RGBColor *Frame,
const RGBColor *Body, const RGBColor *Text, const RGBColor *Back);

procedure SetButtonColors (Button: INTEGER;
Frame, Body, Text, Back: RGBColor);

Button specifies the button number (from 1 to 511) in the current window whose colors are being set. If the current
window doesn’t belong to your application, or if no windows are open, SetButtonColors does nothing. Also, if Button
specifies a button that does not exist, SetButtonColors does nothing. The change is seen immediately, regardless if the
button was originally created with the bColorButton option or not. Note that some controls ignore color settings,
particularly those in the Appearance Manager.

Frame is the button’s frame color (seen in push buttons, check box’s box, radio button’s circle, and possibly custom
CDEFs).

Body is the button’s body color (seen in push buttons only, and possibly custom CDEFs).
Text is the button’s text color (seen in all buttons, and usually in custom CDEFs).

Back is the button’s background color (seen in check boxes and radio buttons, and possibly custom CDEFs).

Also see: ButtonColors and GetButtonColors.

GetButtonColors
Get a button’s colors.

pascal void GetButtonColors (short Button, RGBColor *Frame, RGBColor *Body,
RGBColor *Text, RGBColor *Back);

procedure GetButtonColors (Button: integer; var Frame: RGBColor;
var Body: RGBColor; var Text: RGBColor; var Back: RGBColor);

Button specifies the button number (from 1 to 511) in the current window whose colors are being retrieved. If the
current window doesn’t belong to your application, or if no windows are open, or if Button specifies a button that does
not exist, GetButtonColors returns default color values.

Frame is the button’s frame color (seen in push buttons, check box’s box, radio button’s circle, and possibly custom
CDEFs).

Body is the button’s body color (seen in push buttons only, and possibly custom CDEFs).
Text is the button’s text color (seen in all buttons, and usually in custom CDEFs).

Back is the button’s background color (seen in check boxes and radio buttons, and possibly custom CDEFs).

Also see: ButtonColors and SetButtonColors.

184



H

H

H

IS5

6 Buttons

SetDefaultButton

Set a button to be a window’s “default” button.
pascal void SetDefaultButton (short Button);
procedure SetDefaultButton (Button: INTEGER);

Button specifies the button number (from 1 to 511) that will become the new default button in the current window. If
the current window doesn’t belong to your application, or if no windows are open, SetDefaultButton does nothing.
Also, if Button specifies a button that is not a push button, or a button that does not exist, SetDefaultButton does
nothing. A default button cannot be set on a tool bar or floating palette.

The default button is automatically selected if the user presses the “Return” key or “Enter” key. A black outline is
automatically drawn around the default button when the window is active. If another default button already exists in
the current window, it loses its “default” status. Note that only 1 button can be the default in each window.

NoDefaultButton

Remove “default button” status for a window.
pascal void NoDefaultButton (void);
procedure NoDefaultButton;

This routine removes the “default button” status from the current window (i.e., a specific button will not be
automatically selected when the user presses the “Return” key or “Enter” key). The black outline that is automatically
drawn around the default button is removed. Buttons themselves, however, are not altered. If the current window
doesn’t belong to your application, or if no windows are open, NoDefaultButton does nothing.

GetButtonHandle

Get a handle to a button’s control record.
pascal ControlHandle GetButtonHandle (short Button);
function GetButtonHandle (Button: INTEGER): ControlHandle;

This routine returns a standard ControlHandle to a button that was created by a Tools Plus routine. You should never
need to use this routine. It is provided for advanced programmers who may have specialized needs. Always use Tools
Plus routines to create and manipulate buttons.

Button specifies the button number (from 1 to 511) in the current window whose handle is being retrieved. If the
current window doesn’t belong to your application, or if no windows are open, or if Button specifies a button that does
not exist, GetButtonHandle returns nil.

Warning: If you need to lock the handle or change its attributes, do so temporarily then restore the original settings
before using any Tools Plus routines. If you alter this handle or any data that is made accessible by this
handle, you do so at your own risk. The only exception is the control’s reference constant (contrIRfCon
field) which can safely be set using the toolbox’s SetControlReference routine, and retrieved using the
toolbox GetControlReference routine.

Water’s Edge Software 185



Tools Plus

ReplaceControlProcID

Replace a button type throughout the application. The use of one proclD is replaced with another.

pascal void ReplaceControlProcID (short OriginalProcID,
short ReplacementProcID);

procedure ReplaceControlProcID (OriginalProcID, ReplacementProcID: INTEGER);

This routine lets your application globally replace the use of one procID with another. The replacement takes effect in
controls that are created after this routine is used.

OriginalProclD is the proclD that is specified in your application’s source code and in various resources such as
dialogs, ‘DITL’ and ‘CNTL".

ReplacementProclD is the proclD that replaces OriginalProcID when the button (or any other control type) is created.
When a button is created in which the procID has a value that matches OriginalProcID, the proclD is replaced with the
value specified by ReplacementProcID.

As an example, you can program your application to use a custom 3D button CDEF for buttons, such as those found in
SuperCDEFs. Early in your application following InitToolsPlus, your application can determine if the Appearance
Manager is running by using the UsingAppearanceManager routine. If it is, then your application can call
ReplaceControlProcID to replace the custom buttons’ procIDs with standard Apple procIDs. This allows you to use the
system’s standard 3D buttons when they are available, otherwise you can use custom 3D buttons.

ReplaceControlProcID can be used to specify numerous button and scroll bar procID substitutions for your
application. Tools Plus accumulates all the substitutions in a dynamic list and uses that list whenever a button or scroll
bar is created. You can remove an entry from the list by specifying a ReplacementProcID with the same value as
OriginalProcID.

186



7 Picture Buttons

7 Picture Buttons

Tools Plus supports the use of picture buttons on any Tools Plus window. Picture buttons allow an icon (of any type)
or picture (PICT resource) to be used as a button. Picture buttons also allow the use of multiple images (icons or
PICTs) to produce buttons whose appearance changes depending on whether the button is selected, disabled, or if its
value changes. (Please note that within this chapter, the term button is used to refer to a picture button unless otherwise
stated.)

The designing of attractive buttons is simplified with the use of Tools Plus’s 3D picture buttons, which let you design a
black and white (1-bit) image, then Tools Plus takes care of transforming it into an elevated 3D color button, much like
the kind seen in the tool bars of many commercial software packages. When selected, these buttons appear to be
pushed into the window with appropriate shading and highlighting.

Picture buttons are created on the current window by the NewPictButton routine. Each picture button is referenced by
a unique picture button number, which can be from 1 to 511. This number is specified when the picture button is
created, and refers to the specific picture button until that button is deleted. Note that the button’s number is related to
its associated window. This means that two different windows can each have a picture button numbered “1” without
interfering with each other. Whenever a picture button is clicked by the user, Tools Plus calls your event handler
routine and reports the picture button number as well as its window number.

The support of color and multiple monitors is automatic, so Tools Plus’s picture buttons will always be drawn using
the most appropriate image, even if the button straddles the boundary of multiple monitors.

Picture buttons can be moved to a new location with MovePictButton. When a picture button is no longer required, it
is deleted by the DeletePictButton routine, which releases the memory used by that button. This is done automatically
if a window is closed. Picture buttons can be hidden or displayed with the PictButtonDisplay routine.

Button Types

Various types of picture buttons can be created, incorporating different behavioral characteristics and appearances. In
the simplest implementation, a picture button can be used merely as a “click-sensitive” icon that reports an event when
it is selected by the user. Picture buttons can also be used to functionally replace the standard push buttons, check
boxes, or radio button groups. More importantly, picture buttons are more than a cosmetic user interface enhancement;
in many cases they provide a stronger metaphor for tasks at hand (such as a “power on/power off” switch). The

following are just a few examples of the types of picture buttons that can be created:
-

0 [oene | |E@| @ [F]
FOLIER FOLIER

Click-Sensitive Push Button Multistage Button Radio Button Set Polarized Analog
Icon (Click on, click off) (Exclusive Selection) Button Simulation

Button Behavior

When you create a picture button, you must specify its behavioral characteristics. These characteristics define how the
button operates when it is clicked by the user, as well as other properties the button has. Although the behavior
specification is detailed by the NewPictButton routine, some of the choices you have are as follows:

* Does the button report an event when the mouse is first pressed down in the button, or does it wait for the mouse
button to be released?

* Does the button lock in the “selected” position?
* Does the button produce repeated events when it is held down?
* How quickly does the button’s value change?

Water’s Edge Software 187



Tools Plus

* Is the button polarized? (One side increases its value, the other decreases)
e Are PICTs used, or icons?
Please see the NewPictButton routine for details describing all the behavioral options at your disposal.

Selection Effects

An enabled button can be selected by the user by clicking on the button. Your application can also select or deselect
any button by using the SelectPictButton routine. By default, Tools Plus darkens the button’s image to make it appear
selected, but you can override this effect individually for each button. Instead of darkening the image, you can provide
an alternate image of the selected button. This is particularly effective if you are trying to produce the illusion of three
dimensional controls. A complete description of selection effects is provided within the NewPictButton
documentation.

Tools Plus’s 3D picture buttons require only a single black and white icon to produce all the necessary three
dimensional effects in color. They also provide you with several selection effects, all of which include the button being

pushed into the window when it is selected.
Default Effect 3D Picture Buttons Alternate “Selected” Image
(Darken) (Automatic “selected” image) (You create the button’s “selected” image)

Disabling Effects

All picture buttons can be enabled or disabled by using the EnablePictButton routine. When a button is disabled, it
cannot be selected by the user. By default, Tools Plus overlays the image with a black color using a light gray pattern
(25%) to make the button appear disabled (as does the Finder), but you can override this effect individually for each
button. See the DefaultlconLook routine for details on setting disabled images’ default appearance. Instead of applying
the default disabling effect, you can provide an alternate image of the disabled button. This option provides you with
the ultimate control over a button’s appearance. A complete description of disabling effects is provided within the
NewPictButton documentation.

Tools Plus’s 3D picture buttons require only a single black and white icon to produce all the necessary three
dimensional effects in color. When disabled, these buttons are automatically dimmed and “embossed” to provide a
functional and attractive depiction of a disabled button.

. - OFF
FOLIER

Default Effect 3D Picture Buttons Alternate “Disabled” Image
(Black overlay using light gray screen) (Automatic “disabled” image) (You create the button’s “disabled” image)

Button’s Value and Stages

Each picture button has an associated value, and range defined by an upper and lower limit of that range (a minimum
value and maximum value). Buttons that are only concerned with being selected or disabled do not have to set or
report button values. Other buttons, such as a picture button that controls the rotation of an object through 360°, need a
current value that will fall within the button’s value range. Your application can obtain the button’s value at any time,
or in response to an event.

Each button that has a range of values, even simple on/off buttons that have a small range (off = 0 and on = 1), can
optionally be defined as multistage picture buttons. A multistage button has a different image for each stage. For
example, a “Cutting Tool” button may have three stages, each of which has a different image for the different kinds of
cutting tools available:

188



7 Picture Buttons

» Stage 1: Scissors image

» Stage 2: Knife image

¢ Stage 3: Ax image
In a multistage button, there is a “stage” for each value in the button’s range. Within each stage, the button potentially
has four states: enabled/deselected, enabled/selected, disabled/deselected, and disabled/selected.

Multistage buttons should be used with discretion, since the buttons’ values are serial and the user cannot skip directly
to a value. You can imagine the difficulty that a user would experience if they were forced to step through a dozen
stages. Generally, three to five stages are the practical limits for a user interface. If you need more stages, consider
using a more appropriate control, like a pop-up menu.

Single stage picture buttons can have any value that lies within their upper and lower limit. Multistage buttons use the
button’s value to determine the current stage, therefore their value must also lie within their upper and lower limit.

Handling Picture Buttons

Your application specifies if picture buttons are selected or deselected, and if they are enabled or disabled. When a
window in inactive, Tools Plus disables all of its picture buttons. When the window is activated again, all the buttons
regain their correct status as specified by your application.

Tools Plus constantly inquires about any events that have occurred, including clicking on picture buttons. If a button is
selected (i.e., the user presses the mouse button down and releases it within the button’s region), Tools Plus reports it
by calling your event handler routine. If the button is configured to report an “instant” event, your application will be
informed as soon as the mouse-down occurs in the picture button. Picture buttons that are configured to produce
repeating events will produce events while the picture button is held down and the cursor is in the button.

When working with picture buttons that function like radio buttons, you can place these buttons in a panel and
optionally have them behave as a radio button group so that when a picture button is selected, the other buttons in the
group are automatically deselected. Otherwise Tools Plus doesn’t know how your picture buttons are grouped and your
application must select/deselect related buttons appropriately.

NewPictButton

Create a new picture button.

pascal void NewPictButton (short Button, short left, short top,
short BaseID, long Spec,
Boolean EnabledFlag, Boolean SelectedFlag,
short minimum, short value, short maximum);

procedure NewPictButton (Button, left, top, BaseID: INTEGER;
Spec: LONGINT; EnabledFlag, SelectedFlag: BOOLEAN;
minimum, value, maximum: INTEGER);

Button specifies the picture button number (from 1 to 511) that is created in the current window. Once a picture button
is created, it is referenced by this picture button number. If a picture button has been previously created in the current
window using the same number, it is replaced with a new picture button as specified by the parameters in the
NewPictButton routine. If the current window doesn’t belong to your application, or if no windows are open,
NewPictButton does nothing.

Left and top define the top left-hand corner of the picture button in window’s local co-ordinates. The button’s images
define the size of the button.

BaselD specifies the base resource ID number of the icon (any type) or PICT used by the picture button. All other
image resources used by this button will be numbered higher than this one. See “Resource IDs” later in this section for
a detailed description of image resource numbering.

Water’s Edge Software 189



Tools Plus

Spec is the picture button’s behavior and appearance specification. It is used by the button to determine its behavioral
characteristics, and how it looks when selected or deselected, enabled or disabled, and when the button’s value is
changed. See “Behavior and Appearance Specification” later in this section for a detailed description of how the value
for this item is determined.

The EnabledFlag indicates if the newly created picture button is enabled or not. When a picture button is disabled, it
cannot be selected by the user. All picture buttons automatically become disabled when the window containing them is
inactive. When the window is activated, the picture buttons assume their state as set by the NewPictButton routine and
subsequent calls to the EnablePictButton routine. The two constants that can be used for this flag are enabled and
disabled.

The SelectedFlag indicates if the newly created picture button is selected or not. The two constants that can be used for
this flag are selected and notSelected.

Minimum declares the picture button’s minimum value limit. In multistage buttons, the first stage starts at this
minimum limit. Use zero (0) if your button’s value does not change.

Value defines the picture button’s current value. The current value must be greater than or equal to the minimum limit,
and less than or equal to the maximum limit. Use zero (0) if your button’s value does not change.

Maximum declares the picture button’s maximum value limit. The maximum limit must be greater than the minimum
limit. In multistage buttons, use this upper limit to define the total number of available stages (i.e., Maximum =
Minimum + Total Stages - 1). Use zero (0) if your button’s value does not change.

Note: Tools Plus makes no attempt to control the placement of picture buttons or to protect them once they have been
created. It is your responsibility to ensure that picture buttons are placed within the window as to not conflict
with other objects. Furthermore, you should not allow your application’s text and drawing processes to
interfere with picture buttons. Windows with a “size box” should not allow picture buttons to be obscured or
hidden by making the window too small.

Warning: If you are using a ‘cicn’ (variable size color) icon that may be displayed on a Macintosh that doesn’t have
Color QuickDraw, make sure the icon’s size is set to at least 9 pixels wide (although the actual image can
be smaller). A bug in the Macintosh’s ROMs causes a crash when CopyBits tries to work on a BitMap that
is 8 pixels wide or less. Tools Plus circumvents this bug by not displaying the ‘cicn’.

Resource IDs

Picture buttons can use PICTs or icons of any kind for a button’s image. Multiple buttons can also share the same
resources. When you are designing images for your buttons, make sure you adhere to the resource numbering schemes
detailed in this section. The numbering system is based on “stages” with each stage having a block of resource IDs.
The relative resource ID in each stage (i.e., the third resource in each stage) performs the same routine, the only
difference being the stage number (which correlates to the button’s value). For example, the first image in each stage is
the button’s image as an enabled, deselected button. The first image in stage 1 is for an enabled, deselected button with
the button’s minimum value. The first image in stage 2 is for an enabled, deselected button with the button’s minimum
value + 1.

Picture buttons can also incorporate a mask, which is useful if the button uses images that are not rectangular, or if it
uses a set of images that vary in size. If a mask is provided, the button’s image is limited to the mask’s region, as will
the user’s mouse clicks. See the DrawlIcon routine for a detailed description of how a mask works.

Icon Resource IDs

If you are going to use icons for picture button images, you must first have an understanding of an icon family. An icon
family is a set of icons (of any type) that share the same resource ID number. From a picture button’s point of view, all
the images in an icon family are all the same image with the only difference being the suitability of a particular icon
for the target monitor’s settings.

Tools Plus’s picture buttons will always select the best possible image for the button, depending on the monitor’s
settings. This is true even if the button straddles multiple monitors. See the DrawlIcon routine for a detailed description
of each icon, and the sequence in which they are accessed by Tools Plus.

190



7 Picture Buttons

The following chart describes the icon resource numbering sequence that must be followed when creating images for
picture buttons:

Icon ID Selected | Enabled
Stage #1 Base ID N Y
(min. limit) | Base ID + 1 Y Y
Base ID + 2 N N
Base ID + 3 Y N
Stage #2 Base ID + 4 N Y

Note: Multistage 3D buttons using the SICN resource require
only 1 resource for all possible combinations and stages

When you are creating icons for your picture button, be aware that you do not have to create an icon for each possible
combination of being selected/deselected and enabled/disabled. If your button uses an alternate image as a selection
effect, you will need to create an image for the selected button (Base ID + 1). If your button uses an alternate image as
a disabling effect, you will have to create an image for the disabled button (Base ID + 2). And if your button uses an
alternate image for both selecting and disabling, you will have to create an image for the selected, disabled button
(Base ID + 3). If you are creating a multistage button, you will have to create similar images for each stage (note that
your button can have a range of values and still be a single stage button).

In the table above, the “Stage” represents multiple stages in a multi-stage button. Each stage corresponds to a single
button value. For example, the first stage (Stage #1) represents the button’s minimum limit. The second stage
represents the button’s minimum limit plus one. Using this pattern, if we have an icon Base ID of 128, then the
selected and enabled icon for Stage #1 has a resource ID of 129 (Base ID of 128 +1), and the same button for Stage #2
has a resource ID of 133 (Base ID of 128 + 5).

3D SICN Buttons

A unique feature is available in Tools Plus’s picture buttons that allows you to create 3D color buttons by simply
designing a black and white icon. This is accomplished by using an SICN resource. A single SICN resource is capable
of storing multiple icon images, and is therefore particularly well suited for multistage buttons.

If you are using an SICN resource to create a 3D button, you only need to create one resource for the button. Tools
Plus formulates all the necessary selected and disabled images. If the button has multiple stages, create one icon within
the that SICN resource for each stage.

Note: To avoid icon and picture conflicts while you are developing your application, avoid resource numbers that are
used by your development environment (THINK C or THINK Pascal). THINK C and THINK Pascal
sometimes supply their own resources in place of those in your resource file whenever resources numbers
coincide. You can create and edit resources with a resource editor such as Apple’s ResEdit. Remember to use
ID numbers 128 or higher. The rest are reserved numbers.

PICT Resource IDs

The numbering scheme used for PICTs is similar to the one used for icons, except that it is not possible to create
several PICTs (to account for different monitor settings) with the same resource ID number. Therefore, a button’s
PICTs are numbered in such a way as to preserve the trend established by the icon’s numbering scheme, and to
account for multiple PICTs that are required for different screen depths.

Tools Plus’s picture buttons will always select the best possible PICT image for the button, depending on the monitor’s
settings. This is true even if the button straddles multiple monitors.

The following chart describes the PICT resource numbering sequence that must be followed when creating images for
picture buttons:

Water’s Edge Software 191



Tools Plus

Scr Depth PICT ID Selected | Enabled

Stage #1 B&W Base ID N Y
(min. limit) 4-bit Base ID + 1
8-bit Base ID + 2
Mask BaseID + 3
B&W Base ID + 4 Y Y
4-bit Base ID + 5
8-bit Base ID + 6
Mask Base ID + 7
B&W Base ID + 8 N N
4-bit Base ID + 9

8-bit Base ID + 10
Mask Base ID + 11
B&W Base ID + 12 Y N
4-bit Base ID + 13

8-bit Base ID + 14
Mask Base ID + 15
Stage #2 B&W Base ID + 16 N Y

Note that in the table above, the pixel depth of your picture does not need to match that of the screen depth in the
second column. You can, for example, use 16-bit, 24-bit, or even 32-bit pictures for your picture buttons.

When you are creating PICTs for your button, be aware that you do not have to create a PICT for each possible
combination of being selected/deselected and enabled/disabled, or color. If your button uses an alternate image as a
selection effect, you will need to create an image for the selected button (Base ID + 4 through 7). If your button uses
an alternate image as a disabling effect, you will have to create an image for the disabled button (Base ID + 8 through
11). And if your button uses an alternate image for both selecting and disabling, you will have to create an image for
the selected, disabled button (Base ID + 12 through 15). If you are creating a multistage button, you will have to create
similar images for each stage (note that your button can have a range of values and still be a single stage button).

Always create a PICT for the black and white image. Depending on your requirements, you may choose not to have
color PICTs for 4-bit or 8-bit monitor settings.

The mask is optional in all cases, but is recommended in cases when the button is irregularly shaped, or if all the
PICTs used by a button are not the same size. Tools Plus also recognizes that in many cases, masks will be identical
between stages, and possibly between selected/deselected and enabled/disabled buttons. A picture button will try to
find a mask that corresponds to its current selection and enabled state. If the appropriate mask can’t be found (because
the correctly number PICT resource does not exist), it will try to use substitute masks based on the following rules:

e If the button is disabled, try to find the equivalent “enabled” mask in the same stage

* If the button is selected, try to find the equivalent “deselected” mask in the same stage

If a multistage button is not at its minimum stage...

* If the button is disabled, try to find the equivalent “enabled” mask in the minimum stage

* If the button is selected, try to find the equivalent “deselected” mask in the minimum stage

Behavior and Appearance Specification

Spec specifies the picture button’s appearance and behavior characteristics. It is used by the button to determine its
behavioral characteristics, and how it looks when selected or deselected, enabled or disabled, and when the button’s
value is changed. The value for this 4-byte long integer can be specified either by adding a set of constants to obtain
the desired result, or using a specially defined variant record, as illustrated below:

Optionally choose any of the following options...

picbutMultiStage The button has a different image for each value in a range of values (i.e., 0
through 3). Note that even with this option turned off, you can still use an
alternate image for a selected button and/or a disabled button.

192



7 Picture Buttons

picbutAutoMoveSize Automatically move and size the picture button when the window’s size
changes. The AutoMoveSize routine lets you specify which sides are
altered. You can use the AutoMoveSizePictButton routine as an alternative
to setting this option.

picbutHidden Create a hidden button. This kind of button is accessible to your
application but not to the user.

Optionally choose only one of the following “image type” options...

picbutUsePICTS Use PICTs instead of icons for the button’s image(s). By default, a suite of
icons is used for the button’s image. Note that PICTs and icons use
different resource numbering schemes. See the relevant details earlier in
this chapter.

picbutGray4uses8 If your 8-bit PICTs look good on 4-bit gray scale monitors, turn this option
on to allow them to be used in such a way. By default, a 4-bit PICT is
required when a monitor is set to 4-bits. This option can only be used in
conjunction with the picbutUsePICTS (use PICT resources) option.

picbutBigSICN3D If you are using an SICN icon to produce a 3D button, n:% I
you can create a slightly larger button (24 x 22 pixels)
with more pronounced shading. By default, a 3D SICN Big SICN 3D
icon produces a slightly smaller button (24 x 20 pixels). E

Standard SICN 3D
Optionally choose only one of the following tracking options...

picbutInstantEvent Report a picture button event as soon as the mouse-down occurs in the
button. By default, the picture button generates an event when the mouse
button is released.
This option is best utilized with “click sensitive” icons, such as the ones
seen in the Chooser. Instant events are automatically turned on when you
turn on the picbutRepeatEvents (repeating events) option.

picbutTrackWithHilite Draw a tracking highlight (a bold outline around the button, similar to the
one used by the toolbox’s radio buttons) when the mouse button is down
and the cursor is inside the button.

Optionally choose only one of the following mouse-down options...

picbutLockSelected When the user selects the button, lock it in the selected state thereby
preventing the user from deselecting it. This option is usually used to
produce the functionality of radio buttons, where a button can be turned on
by clicking on it, but the user has to click another button to turn this one
off.

picbutSwitchSelected When the user clicks the button, reverse the “selection” state (i.e., if
currently selected, switch to deselected; if currently deselected, switch to
selected). This option produces a simple click-on/click-off type of button
using a single stage.

picbutRepeatEvents Repeated doPictButton events are generated as long as the mouse button is
down and the cursor is in the button. These events can optionally
increment/decrement the button’s value at a specified rate. This option is
useful for a button that controls object movement or situations where the
button’s value may change by more than one stage.

Water’s Edge Software 193



Tools Plus

Optionally choose any of the following value changing options...

picbutAutovalueChg

picbutvalueWrap

Automatically increment/decrement the button’s value when it is selected
by the user. By default, your application must change the button’s value as
required. Automatic value changing is only useful if your button has a
range of values through which is can progress.

When the button’s value reaches either the high or low limit, start at the
opposite end of the range. By default, the button’s value stops changing
when it reaches the minimum or maximum limit. This option can only be
used in conjunction with the picbutAutoValueChg (automatic value
change) option.

Optionally choose only one of the following “rate of value change” options if the picbutAutoValueChg
option is on...

picbutScalelinear

picbutScaleSlowAccel
picbutScaleMedAccel
picbutScaleFastAccel

After an initial pause, the button’s value increments/decrements at a fixed
rate. This is the default speed for automatic value changes and does not
need to be explicitly stated.

Same as above, but the rate slowly accelerates.
Same as above, but the rate accelerates at a moderate rate.

Same as above, but the rate accelerates rapidly.

Choose only one of the following “button splitting” options if required...

picbutLeftRightSplit

picbutTopBottomSplit

Clicking on the left half of the button decrements the button’s value, while
clicking on the right half increments it. By default, clicking anywhere on
the button increments the value. Note that if the picbutAutoValueChg
(automatic value change) option is off, the button’s value is not
automatically changed: an event is generated telling your application to
change the value.

Same as above except that clicking on the bottom half of the button
decrements the button’s value, while clicking on the top half increments it.

Choose only one of the following “selection effects” options...

194

picbutSelectDarken
picbutSelectDarkenSICN3D

picbutSelectLightenSICN3D

picbutSelectPushedSICN3D

picbutSelectAltImage

Darken the button’s image when it is selected.

Darken and “push in” a 3D button when it is selected. An SICN resource is
used for the button’s image. Tools Plus converts the SICN to a 3D color
button and formulates all the necessary selected and disabled images.

Lighten and “push in” a 3D button when it is selected. An SICN resource is
used for the button’s image. Tools Plus converts the SICN to a 3D color
button and formulates all the necessary selected and disabled images.

“Push in” a 3D button when it is selected, but don’t darken or lighten the
button. An SICN resource is used for the button’s image. Tools Plus
converts the SICN to a 3D color button and formulates all the necessary
selected and disabled images. This option is suitable for momentary push
buttons (like the Macintosh’s standard push button), because they provide
minimal visual feedback that the button is selected.

Use an alternate image when the button is selected. A selected image is
required for each stage if the picbutMultiStage (multiple stage) option is
on.



7 Picture Buttons

Choose only one of the following “disabling effects” options.
If a disabling effect is not specified, the global default is used as defined by the DefaultlconLook routine...

picbutDimUsingBlackLite When the button is disabled, E

overlay the image with a
black color using a “light

gray” (25%) pattern. Enabled Disabled  Disabled
(not selected) (selected) (not selected)
picbutDimUsingWhiteLite When the button is disabled,
overlay the image with a IQ_F
white color using a “light ] !
gray” (25%) pattern. Enabled Disabled  Disabled
(not selected) (selected) (not selected)
picbutDimUsingWhite When the button is disabled,
overlay the image with a IQ_F
white color using a “medium
gray” (50%) pattern. Enabled Disabled  Disabled
(not selected) (selected) (not selected)
picbutDimLeaveBorder When the button is disabled, p—
do not apply the disabling IQ_P RN
effect to the image’s border. IR 5 B | ¥
This option can be used in Enabled Disabled  Disabled
conjunction with any of the border preserved
disabling effects listed above.
picbutDimAltImage Use an alternate image when the button is disabled. If the button is

multistage, a selected image will likely be required for each stage. You
may have to create a disabled image for both the selected and deselected
state if the button can be seen in such a way.

picbutDimNoChange The button appears unchanged when it is disabled. The user is beeped if
they click on a disabled button.

So, if you want to create a large SICN 3D picture button that locks into the selected state, lightens when selected, and
is disabled by overlaying the image using a white color with a 50% gray pattern, you should use the combined
constants picbutLockSelected + picbutBigSICN3D + picbutSelectLightenSICN3D + picbutDimUsingWhite.
Alternatively, a C structure and a Pascal variant record are available to help you define the spec parameter in a more
intuitive way, as follows:

Water’s Edge Software 195



Tools Plus

union TPPictButtonSpec {

}.
t§pedef union TPPictButtonSpec TPPictButtonSpec;

str

} B
lon

uct{

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
its;

g Num;

short
short
short
short
short
short
short
short
short
short
short
short
short
short

short
short
short
short
short
short
short
short

short
short
short
short
short
short
short
short
short

InstantEvent: 1;
TrackWithHilite: 1;
LockSelected: 1;
SwitchSelected: 1;
RepeatEvents: 1;
AutoValueChg: 1;
AutoValueScaling: 3;
ValueWrap: 1;
LeftRightSplit: 1;
TopBottomSplit: 1;
MultiStage: 1;
BigSICN3D: 1;
UsePICTS: 1;
Gray4use8: 1;

SelectDarken: 1;
SelectDarkenSICN3D: 1;
SelectLightenSICN3D: 1;
SelectPushedSICN3D: 1;
bitl2: 1;

bitll: 1;
SelectAltImage: 1;
Hidden: 1;

DimUsingBlackLite: 1
1

~e ~e

DimUsingWhiteLite:
DimUsingWhite: 1;
bit5: 1;
bitd: 1;
DimLeaveBorde 1;

r:
DimAltImage: 1;
DimNoChange: 1;
AutoMoveSize: 1;

TPPictButtonSpec = packed record

As an example, lets create a picture button that repeats events, uses an alternate image when selected, and looks the

case integer of
0:

)
1

)
end

InstantEvent: boolean;
TrackWithHilite: boolean;
LockSelected: boolean;
SwitchSelected: boolean;
RepeatEvents:
AutoValueChg: boolean;
AutovValueScaling: 0..3;
ValueWrap: boolean;
LeftRightSplit: boolean;
TopBottomSplit: boolean;
MultiStage: boolean;
BigSICN3D: boolean;

UsePICTS:
Gray4use8:

SelectDarken:
SelectDarkenSICN3D: boolean;
SelectLightenSICN3D: boolean;
SelectPushedSICN3D: boolean;
bitl2, bitll: boolean;
SelectAltImage: boolean;
boolean;

Hidden:

boolean;

boolean;
boolean;

boolean;

DimUsingBlackLite: boolean;
DimUsingWhiteLite: boolean;
DimUsingWhite: boolean;
bit5, bit4: boolean;
DimLeaveBorder: boolean;
DimAltImage: boolean;
DimNoChange:
AutoMoveSize:

P

Num: longint;

~e ~e

boolean;

boolean;

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

/*Picture Button's appearance and

*

behavior specs in 2 formats..
Parsed into components:
Report event on mouse-down
Track w/highlight (like radio button)
Lock if selected (mouse can't deselect)
Switch 'select' state if clicked
Repeat event when button is held
Automatically change button's value
Rate of change for button's value
Button's range of values 'wrap' around
Left side reduces value, right increase
Top increases value, bottom reduces
Button has multiple stages
Create a larger SICN 3D button
Use PICTs instead of icons
Use 8-bit color pict on 4-bit gray
scale monitor.
Selection Effects..
Darken image
Darken (+push in) a 3D SICN icon
Lighten (+push in) 3D SICN icon
Same color (+push) 3D SICN icon
(reserved bit)
(reserved bit)
Use an alternate image
Create a hidden button
Disabling Effects..
Overlay Black color, Lt Gray pat
Overlay White color, Lt Gray pat
Overlay White color, Gray pat.
(reserved bit)
(reserved bit)
Leave border when effect applied
Use an alternate image
Button looks same when disabled
Auto-resize as window's size changes

Long equivalent

Picture Button's appearance and behavior

specifications in 2 formats..

Parsed into components:

Report event on mouse-down

Track w/highlight, like a radio button
Lock if selected (mouse can't deselect)
Switch 'selected' state if clicked
Repeat event when button is held down
Automatically change button's value
Rate of change for button's value
Button's range of values 'wrap' around
Left side reduces value, right increases
Top increases value, bottom reduces
Button has multiple stages

Create a larger SICN 3D button

Use PICTs instead of icons

Use 8-bit color pict on 4-bit gray monitor

Selection Effects..

Darken image

Darken (and push in) a 3D SICN icon

Lighten (and push in) a 3D SICN icon

Same color (and push in) a 3D SICN icon
(reserved bits)

Use an alternate image

Create a hidden button
Disabling Effects..

Overlay Black color using Lt Gray pat.

Overlay White color using Lt Gray pat.

Overlay White color using Gray pat.
(reserved bits)

Leave border when applying effect

Use an alternate image

Button looks the same when disabled

Auto-resize as window's size changes

Longint equivalent:

Specification longint

same when disabled. The following code sample illustrates how this is done:

196

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

o o A o e S e A e A ey o A ey A e e Ay Ay e ey iy e e A I e A ey e e o e



7 Picture Buttons

procedure DoItNow;

var

Spec: TPPictButtonSpec; {Define the variable used for the Spec }
begin

Spec.Num := 0; {Initialize all the bits to zero values }

Spec.RepeatEvents := true; {Button will produce repeating events }

Spec.SelectAltImage := true; {Alternate image is used when button is selected }

Spec.DimNoChange := true; {Button looks the same when disabled }

{Create the picture button using the long integer }

{ part of the Spec.. }

NewPictButton(l, 441, 5, PlusIcon, Spec.Num, enabled, notSelected, 0, 0, 0); { }

You can use whatever you like best as the Spec, a single constant, several constants added together, a variable, or the
long integer component of a structure or variant record.

Rate of Repeating Events

Picture buttons have the ability to produce repeating events when they are held down. Four predefined rates are
available to control the speed at which a picture button’s value changes:

* Linear: The button’s value changes when the button is selected. After a brief pause, the value continues to change
at a slow and consistent rate.

* Slow Acceleration: The button’s value changes when the button is selected. After a brief pause, the value
continues to change at a rate that slowly accelerates.

* Medium Acceleration: The button’s value changes when the button is selected. After a brief pause, the value
continues to change at a moderately accelerating rate.

* Fast Acceleration: The button’s value changes when the button is selected. After a brief pause, the value continues
to change at a rate that rapidly accelerates.

There is yet another way to control a button’s speed, and that is by using the SetPictButtonSpeed routine which lets
you specify an exact rate (change in value per second). When you use SetPictButtonSpeed, the specified rate takes

effect immediately when the user presses the picture button. Unlike the four standard Tools Plus acceleration rates,
there is no pause between the time when the user selects the picture button and when the repeating events begin.

Note: Your event handler routine may receive doNothing events (no event) between repeating doPictButton events.

Picture Buttons on Color Backgrounds

If you are creating a picture button on a color surface, set the window’s background color (by using SetBackRGB) to
the color on which the picture button is being created, then create the button. After the button is created, you may
change the window’s foreground and background colors at any time without affecting picture buttons.

Each picture button remembers the color on which it is created, and uses this color when any erasing is performed by
the picture button. This is required if you are using multiple images with masks that are not identical, because the
picture button must erase the difference in space between the larger and smaller image.

CONST {Pict Button Behavior and Appearance Specs: }
picbutInstantEvent = $80000000; { Report event on mouse-down }
picbutTrackwithHilite = $40000000; { Track w/highlight, like radio button }
picbutLockSelected = $20000000; ¢ Lock if selected (mouse can't deselect) }
picbutSwitchSelected = $10000000; { Switch 'selected' state if clicked }
picbutRepeatEvents = $08000000; ¢ Repeat event when button is held down }
picbutAutovalueChg = $04000000; ¢ Automatically change button's value }
picbutScaleLinear = $00000000; { Rate of automatic value change.. }
picbutScaleSlowAccel = $01000000; { Linear, Slow Acceleration, }
picbutScaleMedAccel = $02000000; ¢ Medium Acceleration, and }
picbutScaleFastAccel = $03000000; ¢ Fast Acceleration. }
picbutLinear = 0; { Linear (use in structure) }
picbutSlowAccel =1; { Slow (use in structure) }
picbutMedAccel = 2; { Medium (use in structure) }
picbutFastAccel = 3; { Fast (use in structure) }
picbutvalueWrap = $00800000; ¢ Button's range of values 'wrap' around }
picbutLeftRightSplit = $00400000; { Left side reduces value, right increases}
picbutTopBottomSplit = $00200000; { Top increases value, bottom reduces }
picbutMultiStage = $00100000; ¢ Button has multiple stages }
picbutBigSICN3D = $00080000; { Create a larger SICN 3D button }

Water’s Edge Software 197



H

Tools Plus

picbutUsePICTS = $00040000; { Use PICTs instead of icons
picbutGray4use8 = $00020000; { Use 8-bit color pict on 4-bit gray mon.
picbutHidden = $00000200; { Create hidden picture button
picbutAutoMoveSize = $00000001; { Auto-resize as window's size changes

{ Selection Effects..
picbutSelectDarken = $00010000; { Darken image
picbutSelectDarkenSICN3D = $00008000; { Darken (and push in) a 3D SICN icon
picbutSelectLightenSICN3D = $00004000; { Lighten (and push in) a 3D SICN icon
picbutSelectPushedSICN3D = $00002000; { Same color (and push in) a 3D SICN icon
picbutSelectAltImage = $00000400; { Use an alternate image

{ Disabling Effects..
picbutDimUsingBlackLite = $00000100; { Overlay Black color using Lt Gray pat.
picbutDimUsingWhiteLite = $00000080; { Overlay White color using Lt Gray pat.
picbutDimUsingWhite = $00000040; { Overlay White color using Gray pat.
picbutDimLeaveBorder = $00000008; { Leave border when applying effect
picbutDimAltImage = $00000004; { Use an alternate image
picbutDimNoChange = $00000002; { Button looks the same when disabled

B e e e e e e i e e aon an adn adn e e ol

NewDialogPictButton

Create a new picture button in a dialog using a dialog item’s co-ordinates.

pascal void NewDialogPictButton (short Button, short BaseID, long Spec,
Boolean EnabledFlag, Boolean SelectedFlag,
short minimum, short value, short maximum);

procedure NewDialogPictButton (Button, BaseID: INTEGER; Spec: LONGINT;
EnabledFlag, SelectedFlag: BOOLEAN;
minimum, value, maximum: INTEGER);

NewDialogPictButton is identical to the NewButton routine, except that the button is created in a dialog (a window
opened with the LoadDialog routine, or one that had a dialog list attached with the LoadDialogList routine). The
button’s co-ordinates are obtained from the dialog item whose number matches the button number.

GetFreePictButtonNum

Get the first unused picture button number.
pascal short GetFreePictButtonNum (void);

function GetFreePictButtonNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own picture
button number, GetFreePictButtonNum returns the first unused (free) picture button number. Using this routine, you
can assign an unused picture button number to a variable, then use that variable throughout your application without
concern for the true picture button number.

GetFreePictButtonNum returns the first free picture button number on the current window. If the current window
doesn’t belong to your application, if no windows are open, or if the maximum number of picture buttons has already
been created on the current window (no new ones can be created), GetFreePictButtonNum returns a value of zero (0).

198



H

H

7 Picture Buttons

DeletePictButton

Delete a picture button.
pascal void DeletePictButton (short Button);
procedure DeletePictButton (Button: INTEGER);

Button specifies the picture button number (from 1 to 511) that is deleted from the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, DeletePictButton does nothing. Use KillPictButton if you want to delete the picture button without
removing its image from the window.

KillPictButton

Delete a picture button without affecting its image on the window.
pascal void KillPictButton (short Button);
procedure KillPictButton (Button: INTEGER);

KillPictButton is identical to DeletePictButton except that it does not remove the picture button’s image from the
window. This routine is useful for scrolling picture buttons in an area within a window (i.e., not the entire window).
ScrollRect is used to scroll the images in the affected area. OffsetPictButton repositions the picture button’s co-
ordinates without affecting its image (since ScrollRect has already moved it). KillPictButton then deletes the picture
buttons that are scrolled out of view without affecting their image (ScrollRect has already scrolled them out of view).

PictButtonDisplay

Hide or show a picture button.
pascal void PictButtonDisplay (short Button, Boolean Show);
procedure PictButtonDisplay (Button: INTEGER; Show: BOOLEAN) ;

PictButtonDisplay hides or shows a picture button on the current window. The result is seen immediately. Use
discretion with this routine since picture buttons should be enabled and disabled to indicate if they are accessible by
the user.

Button specifies the picture button number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, PictButtonDisplay does nothing.

Show indicates if the picture button is being hidden or displayed. The two constants that can be used for this flag are on
and off.

Water’s Edge Software 199



H

Tools Plus

PictButtonlsVisible

Determine if a picture button is visible.
pascal Boolean PictButtonIsVisible (short Button);
function PictButtonIsVisible (Button: INTEGER): BOOLEAN;

PictButtonIsVisible reports if a picture button is visible on the current window, or if it is hidden.
Button specifies the picture button number (from 1 to 511) that is queried in the current window.

This routine’s value returns frue if the picture button is visible, and false if the button is hidden. If the current window
doesn’t belong to your application, or if no windows are open, or if the picture button does not exist in the current
window, PictButtonIsVisible returns false.

ObscurePictButton

Hide a picture button without removing its image from the window.
pascal void ObscurePictButton (short Button);
procedure ObscurePictButton (Button: INTEGER);

ObscurePictButton hides a picture button on the current window without removing its image from the window. This
routine is useful for scrolling buttons in an area within a window (i.e., not the entire window). ScrollRect is used to
scroll the images in the affected area. OffsetPictButton repositions the button’s co-ordinates without affecting its
image (since ScrollRect has already moved it). ObscurePictButton then hides the buttons that are scrolled out of view
without affecting their image (ScrollRect has already scrolled them out of view).

Button specifies the picture button number (from 1 to 511) that is hidden in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the picture button does not exist in the current
window, ObscurePictButton does nothing.

GetPictButtonRect

Get a picture button’s co-ordinates.
pascal void GetPictButtonRect (short Button, Rect *Bounds);
procedure GetPictButtonRect (Button: INTEGER; var Bounds: RECT);

Button specifies the picture button number (from 1 to 511) that is queried in the current window.

Bounds returns the picture button’s bounding rectangle specified in the window’s local co-ordinates. These co-
ordinates match those used to create the picture button. If the current window doesn’t belong to your application, or if
no windows are open, or if the picture button does not exist in the current window, Bounds returns with all co-
ordinates set to zero (0). The left and top co-ordinates of Bounds are identical to those specified when creating a
picture button. The bottom and right co-ordinates are determined each time the picture button is displayed using the
button’s current image co-ordinates.

200



H

H

H

7 Picture Buttons

EnablePictButton

Enable or disable a picture button.
pascal void EnablePictButton (short Button, Boolean EnabledFlag);
procedure EnablePictButton (Button: INTEGER; EnabledFlag: BOOLEAN) ;

Button specifies the picture button number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, EnablePictButton does nothing.

The EnabledFlag indicates if the picture button is enabled or not. All three picture button types can be either enabled
or disabled. When a picture button is disabled, it becomes dim and cannot be selected by the user. All picture buttons
automatically become disabled when the window containing them is inactive. When the window is activated, the
picture buttons assume their state as set by the NewPictButton routine, and subsequent calls to the EnablePictButton
routine. The two constants that can be used for this flag are enabled and disabled.

CONST {Button state }
enabled = true; {picture button is enabled }
disabled = false; {picture button is disabled }

See the NewPictButton routine for additional information pertaining to the picture button’s enabling, disabling, and
selection.

PictButtonlsEnabled

Determine if a picture button is enabled or disabled.
pascal Boolean PictButtonIsEnabled (short Button);
function PictButtonIsEnabled (Button: INTEGER): BOOLEAN;

Button specifies the picture button number (from 1 to 511) that is queried in the current window.

The routine’s value returns true if the picture button is enabled, and false if the button is disabled. If the current
window doesn’t belong to your application, or if no windows are open, or if the button does not exist in the current
window, PictButtonIsEnabled returns false. PictButtonIsEnabled returns the button’s enabled state as it is currently
displayed, so if the button’s window is inactive and has temporarily disabled the button, PictButtonIsEnabled returns
false.

SelectPictButton

Select or deselect a picture button.
pascal void SelectPictButton (short Button, Boolean SelectedFlag);
procedure SelectPictButton (Button: INTEGER; SelectedFlag: BOOLEAN);

Button specifies the picture button number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, SelectPictButton does nothing.

The SelectedFlag indicates if the picture button is selected or not. The two constants that can be used for this flag are
selected and notSelected.

Water’s Edge Software 201



H

H

Tools Plus

CONST {Button state }
selected = true; {picture button is selected }
notSelected = false; {picture button is not selected }

See the NewPictButton routine for additional information pertaining to the picture button’s enabling, disabling, and
selection.

PictButtonlsSelected

Determine if a picture button is selected.
pascal Boolean PictButtonIsSelected (short Button);
function PictButtonIsSelected (Button: INTEGER): BOOLEAN;

Button specifies the picture button number (from 1 to 511) that is queried in the current window.

The routine’s value returns frue if the picture button is selected, and false if the picture button is not selected. If the
current window doesn’t belong to your application, or if no windows are open, or if the picture button does not exist in
the current window, PictButtonIsSelected returns false.

CONST {Button state }
selected = true; {picture button is selected }
notSelected = false; {picture button is not selected }

See the NewPictButton routine for additional information pertaining to the picture button’s enabling, disabling, and
selection.

GetPictButtonMin

Get a picture button’s minimum value limit.
pascal short GetPictButtonMin (short Button);
function GetPictButtonMin (Button: INTEGER): INTEGER;

Button specifies the picture button number (from 1 to 511) that is queried in the current window.

GetPictButtonMin returns a picture button’s minimum value limit. If the current window doesn’t belong to your
application, or if no windows are open, or if the picture button does not exist in the current window, GetPictButtonMin
will return a value of zero (0).

SetPictButtonMin

Set a picture button’s minimum value limit.
pascal void SetPictButtonMin (short Button, short minimum);
procedure SetPictButtonMin (Button, minimum: INTEGER);

Button specifies the picture button number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, SetPictButtonMin does nothing. The minimum and maximum limit cannot be changed in multistage
buttons.

202



H

H

7 Picture Buttons

Minimum specifies the picture button’s new minimum value limit. The picture button’s current value and maximum
limit are automatically adjusted (if necessary) to be consistent with the new minimum limit.

GetPictButtonMax

Get a picture button’s maximum value limit.
pascal short GetPictButtonMax (short Button);

function GetPictButtonMax (Button: INTEGER): INTEGER;

Button specifies the picture button number (from 1 to 511) that is queried in the current window.

GetPictButtonMax returns a picture button’s maximum value limit. If the current window doesn’t belong to your
application, or if no windows are open, or if the picture button does not exist in the current window,
GetPictButtonMax will return a value of zero (0).

SetPictButtonMax

Set a picture button’s maximum value limit.
pascal void SetPictButtonMax (short Button, short maximum);
procedure SetPictButtonMax (Button, maximum: INTEGER);

Button specifies the picture button number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, SetPictButtonMax does nothing. The minimum and maximum limit cannot be changed in multistage
buttons

Maximum specifies the picture button’s new maximum value limit. The picture button’s current value and minimum
limit are automatically adjusted (if necessary) to be consistent with the new maximum limit.

GetPictButtonVal

Get a picture button’s current value.
pascal short GetPictButtonVal (short Button);

function GetPictButtonVal (Button: INTEGER): INTEGER;

Button specifies the picture button number (from 1 to 511) that is queried in the current window.

GetPictButtonVal returns a picture button’s current value. If the current window doesn’t belong to your application, or
if no windows are open, or if the picture button does not exist in the current window, GetPictButtonVal will return a
value of zero (0).

Water’s Edge Software 203



H

Tools Plus

SetPictButtonVal

Set a picture button’s current value.
pascal void SetPictButtonvVal (short Button, short value);
procedure SetPictButtonvVal (Button, Value: INTEGER);

Button specifies the picture button number (from 1 to 511) which is to be affected in the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, SetPictButtonVal does nothing.

Value specifies the picture button’s new current value. In multistage buttons, the value is adjusted to fit within the
button’s minimum and maximum limit. In single stage buttons, the minimum and maximum limits are automatically
adjusted (if necessary) to be consistent with the new current value.

SetPictButtonValSelect

Set a picture button’s current value, and simultaneously select or deselect the button.

pascal void SetPictButtonvValSelect (short Button, short wvalue,
Boolean SelectedFlag);

procedure SetPictButtonvValSelect (Button, Value: INTEGER;
SelectedFlag: BOOLEAN);

Sometimes, it is necessary to simultaneously change a button’s value and to select or deselect it, otherwise the
transition from one stage to another would look jerky. An example of this is a multistage button that locks in the
selected position, then lets your application determine if conditions allow the button to be deselected in the next stage
(indicating acceptance of the button’s action), or deselected in the same stage (indicating rejection of the button’s
action).

Button specifies the picture button number (from 1 to 511) which is to be affected in the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, SetPictButtonValSelect does nothing.

Value specifies the picture button’s new current value. In multistage buttons, the value is adjusted to fit within the
button’s minimum and maximum limit. In single stage buttons, the minimum and maximum limits are automatically
adjusted (if necessary) to be consistent with the new current value.

The SelectedFlag indicates if the picture button is selected or not. The two constants that can be used for this flag are
selected and notSelected.

CONST {Button state
selected true; {picture button is selected
notSelected false; {picture button is not selected

B e e ad

204



H

7 Picture Buttons

SetPictButtonAccel

Set a picture button’s value change rate.
pascal void SetPictButtonAccel (short Button, short Rate);
procedure SetPictButtonAccel (Button, Rate: INTEGER);

Button specifies the picture button number (from 1 to 511) which is to be affected in the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, SetPictButtonAccel does nothing.

Rate specifies the rate at which the picture button’s value changes. The four constants that can be used for this setting
are:
picbutLinear Linear: The button’s value changes when the button is selected. After a brief pause, the
value continues to change at a slow and consistent rate.

picbutSlowAccel Slow Acceleration: The button’s value changes when the button is selected. After a
brief pause, the value continues to change at a rate that slowly accelerates.

picbutMedAccel Medium Acceleration: The button’s value changes when the button is selected. After a
brief pause, the value continues to change at a moderately accelerating rate.

picbutFastAccel Fast Acceleration: The button’s value changes when the button is selected. After a
brief pause, the value continues to change at a rate that rapidly accelerates.

The affected picture button must be created with the “automatic value change” and “repeating events” options both
turned on for this routine to have any effect. Using SetPictButtonAccel overrides the settings established by the
SetPictButtonSpeed routine.

CONST {Value change rates:
picbutLinear = 0; {Linear (does not accelerate) }
picbutSlowAccel = 1; {Slow acceleration }
picbutMedAccel = 2; {Medium acceleration }
picbutFastAccel = 3; {Fast acceleration }

See the NewPictButton routine for additional information pertaining to the picture button’s automatic value change
rate. Also see the SetPictButtonSpeed routine for another method of setting the button’s speed.

SetPictButtonSpeed

Set a picture button’s value change speed.
pascal void SetPictButtonSpeed (short Button, short Rate);
procedure SetPictButtonSpeed (Button, Rate: INTEGER);

Button specifies the picture button number (from 1 to 511) which is to be affected in the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, SetPictButtonSpeed does nothing.

Rate specifies the constant speed at which the picture button’s value changes. The rate is expressed as an amount that
is incremented per second (i.e., “30” means change the button’s value by 30 for each second it is held down).

The picture button’s value will change at the specified speed as soon as the user presses down on the button (there is
no pause before the event starts repeating). The affected picture button must be created with the “automatic value
change” and “repeating events” options both turned on for this routine to have any effect. Using SetPictButtonSpeed
overrides the settings established by the SetPictButtonAccel routine.

See the SetPictButtonAccel routine for another method of setting the button’s value change rate.

Water’s Edge Software 205



H

H

H

Tools Plus

FlashPictButton
Flash a picture button as though it was clicked by the user.

pascal void FlashPictButton (short Button);
procedure FlashPictButton (Button: INTEGER);

Button specifies the picture button number (from 1 to 511) that is affected in the active window. If the active window
doesn’t belong to your application, or if no windows are open, FlashPictButton does nothing.

FlashPictButton can be used in some specific instances. Advanced programmers may decide to display a modal
window when the Macintosh is busy with a lengthy process. If a picture button (such as “Cancel”) on this window is
equivalent to typing 8-., your application should flash the picture button when a 3-. is reported to your event handler
routine. This makes the user feel that the key triggered the picture button. Another example is double-clicking in a list
box; this action can be interpreted as “select line and OK” in which case the OK picture button should be flashed.

MovePictButton

Move a picture button to a new location on the window.
pascal void MovePictButton (short Button, short toHoriz, short toVert);
procedure MovePictButton (Button, toHoriz, toVert: INTEGER);

Button specifies the picture button number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, if no windows are open, or if Button specifies a picture button that does
not exist, MovePictButton does nothing. The change is seen immediately providing that the picture button is not
hidden. The picture button’s width and height are not changed.

ToHoriz is the new horizontal co-ordinate at which the left side of the picture button appears.

ToVert is the new vertical co-ordinate at which the top of the picture button appears.

OffsetPictButton

Change a picture button’s co-ordinates without affecting its image on the window.
pascal void OffsetPictButton (short Button, short distHoriz, short distVert);
procedure OffsetPictButton (Button, distHoriz, distVert: INTEGER);

When you scroll an area that contains picture buttons, first use ScrollRect to scroll the pixel image containing the
affected objects in the window. OffsetPictButton is used to offset a picture button’s co-ordinates without altering its
image (since ScrollRect has already done so). At this point, the picture button’s co-ordinates match the scrolled image
of the picture button. ObscurePictButton or KillPictButton can be used to hide or delete picture buttons that are
scrolled out of view.

Button specifies the picture button number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, if no windows are open, or if Button specifies a picture button that does
not exist, OffsetPictButton does nothing.

DistHoriz and distVert specify the horizontal and vertical amount by which the picture button’s co-ordinates are offset.
Positive numbers are right and down. The picture button’s co-ordinates are updated but no change is seen.

206



H

ISy

7 Picture Buttons

AutoMoveSizePictButton

Specify how a picture button is automatically moved as its window’s size is changed.
pascal void AutoMoveSizePictButton (short Button, Boolean left, Boolean top);
procedure AutoMoveSizePictButton (Button: INTEGER; left, top: BOOLEAN);

Button specifies the picture button number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, if no windows are open, or if Button specifies a picture button that does
not exist, AutoMoveSizePictButton does nothing.

The left and top parameters specify if that side of the picture button is automatically adjusted when the window’s size
changes. These setting are applied to the picture button and are used the next time the window’s size changes:

left Do the picture button’s left and right side track the window’s right edge?
top Do the picture button’s top and bottom track the window’s bottom edge?

You can think of each false value as locking that side of the picture button to a fixed co-ordinate regardless of the
window’s size (this is the default). Each true value establishes a fixed distance between that side of the picture button
and the window’s edge. For example, setting only /eft to frue makes the picture button move horizontally as the
window widens and narrows, but the picture button does not move vertically when the window’s height changes.

If you are setting these values identically for a group of objects, use AutoMoveSize to define the settings then add the
appropriate xAutoMoveSize constant (such as picbutAutoMoveSize for picture buttons) to the objects’ spec as they are
created. The objects will adopt the settings specified by the AutoMoveSize routine.

Warning: Make sure that you resize objects in a way that makes sense. Don’t allow a window to shrink down to a
size where objects become unusable or disappear altogether.

Water’s Edge Software 207



Tools Plus

208



8 Scroll Bars

8 Scroll Bars

Tools Plus supports the use of scroll bars on any Tools Plus window. Additionally, custom control definitions (CDEFs)
that are similar to scroll bars, such as sliders, can also be used. Within this manual, the term “scroll bar” refers to a real
scroll bar or a custom CDEF that works like a scroll bar.

Scroll bars are created on the current window by the NewScrollBar routine. Each scroll bar is referenced by a unique
scroll bar number that can be from 1 to 511. This number is specified when the scroll bar is created, and refers to the
specific scroll bar until that scroll bar is deleted. Note that the scroll bar number is related to its associated window.
This means that two different windows can each have a scroll bar numbered “1” without interfering with each other.
Whenever a scroll bar is used by the user, Tools Plus calls your event handler routine and reports the scroll bar
number, the part (see below) that was used, and its window number. You can also create a scroll bar from a ‘CNTL’
resource by using the LoadScrollBar routine.

Scroll bars can be moved to a new location with MoveScrollBar and have their width and/or height changed with
SizeScrollBar. MoveSizeScrollBar combines both tasks by letting you specify new co-ordinates for the scroll bar.

Scroll bars can be either horizontal or vertical, and are made up of five distinct parts: [1] up arrow, [2] “page up”
region, [3] thumb (also called an indicator), [4] “page down” region, and [5] down arrow.

up arrow minimum

setting
“page up” region

~ current

thumb
value

page down” region —— : maximum

down arrow — setting

! ! !
minimum current maximum
setting value setting

A scroll bar’s minimum and maximum settings can be obtained by the GetScrollBarMin and GetScrollBarMax
routines. The current value can be obtained by the GetScrollBarVal routine. Conversely, these values can be set by
using the SetScrollBarMin, SetScrollBarMax, and SetScrollBarVal routines.

When a scroll bar is no longer required, it is deleted by the DeleteScrollBar routine, which releases the memory used
by the scroll bar. This is done automatically if a window is closed. A scroll bar can be hidden or displayed with the
ScrollBarDisplay routine.

Tools Plus also supports the use of custom CDEFs as scroll bars, as well as the extended set of controls that are part of
the Appearance Manager which first appeared in Mac OS 8. Many of these controls are implemented as scroll bars and
are detailed in this section. See the chapter on Buttons for details on the remaining Appearance Manager controls.

Water’s Edge Software 209



Tools Plus

Scroll Bar States

A scroll bar is enabled or disabled by the EnableScrollBar routine. When a window is inactive, all the associated scroll
bars are automatically hidden (only the outline is displayed) and cannot be selected. When the window is activated, the
scroll bars return to their normal status as set by your application. This standard behavior can be overridden to merely
disable scroll bars on inactive windows, which is more appropriate for custom CDEFs like sliders.

k2] |

enabled disabled

Colors

By default, Apple’s scroll bars have a black frame and a background that matches their parent window’s backdrop
color (which is white by default). The rest of the scroll bar is colored appropriately. Third party CDEFs used as scroll
bars may behave differently. Optionally, each scroll bar can adopt unique color settings as it is created. The colors for
the various scroll bar parts are defined by the ScrollBarColors routine, and are optionally adopted by scroll bars as they
are created. Scroll bars’ colors can be changed afterwards using the SetScrollBarColors routine. Conversely, the
GetScrollBarColors routine retrieves a scroll bar’s color settings.

When designing applications, always design them in black and white then apply color (if required) to add value to your
application. Don’t add color just because you can. In the case of color scroll bars, test your color selection thoroughly
on a monitor set to 8, 4, and 2-bit color and gray scale, and black and white to ensure that your colors and window
backdrop color map to usable colors. Note that some controls ignore color settings, particularly those in the
Appearance Manager.

Text

Scroll bars do not normally have any associated text. A custom CDEF like a slider may have text such as numbers that
are part of a numeric scale. When your application creates a scroll bar, it memorizes the window’s text settings as set
by TextFont, TextSize, and TextFace, and it retains those setting whenever the scroll bar is used. This way, custom
CDEFs that have a “use window font” variant code will be able to use the window’s font setting that were established
when the scroll bar was created. This also facilitates custom CDEFs that always display text using the window’s
current font settings. CDEFs that do not display any text will suffer no ill effects from this strategy.

If you are creating scroll bars that display text, set the window’s font settings as required using TextFont, TextSize and
TextFace before the scroll bar is created. Once the scroll bar is created, it will automatically have access to those text
settings. You can use the GetScrollBarFontSettings and SetScrollBarFontSettings routines to get and set the scroll
bar’s font, size and style settings.

Scroll Bar Speed

Normally, scroll bars generate doScrollBar events as quickly as your application can handle them. Tools Plus lets you
control the rate at which doScrollBar events are generated, thereby letting you slow down a scroll bar to an ideal
speed. As a beneficial side effect, scroll bars move at a consistent speed to compensate for time-consuming processes
in your application, such as those that display the material that is scrolled by a scroll bar.

ScrollBarLineTime and ScrollBarPageTime are used to specify the rate at which scroll bars move a line at a time
(when the up/down arrows are used), and a page at a time (when the page up/down regions are used). Subsequently
created scroll bars adopt the settings specified by these routines. Similarly, SetScrollBarLineTime and
SetScrollBarPageTime set the rate for an individual scroll bar.

210



8 Scroll Bars

Substituting Scroll Bar ProclDs

Certain system resources may or may not be available to your application depending on the system version of the
Macintosh that is running your application. A good example of this is the sliders that are part of the Appearance
Manager in Mac OS 8 or later. With Tools Plus, you can design and write your application to use a custom slider
(CDEF resource) to provide sliders in your application, such as those in SuperCDEFs. Then at the beginning of your
application it can determine the Mac’s capabilities, specifically if the Appearance Manager is running to make the
system’s sliders available to your application. If this is the case, your application can easily substitute the use of the
custom slider CDEF with the Appearance Manager’s slider throughout your application.

Two routines in the Miscellaneous Routines chapter of this manual help facilitate determining the capabilities of the
Macintosh that is running your application: HasAppearanceManager and UsingAppearanceManager. You can also use
the toolbox’s Gestalt routines to determine whether other features are available or not. Tools Plus’s
ReplaceControlProcID routine is used to replace a specific scroll bar procID with another procID throughout your
application, thereby substituting the use of one type of scroll bar (or slider) with another. The ReplaceControlProcID
routine is detailed in the Buttons chapter of this manual.

Handling Scroll Bars

Your application specifies if a scroll bar is enabled or disabled. When a window in inactive, Tools Plus disables all
scroll bars on that window. When the window is activated again, all the scroll bars regain their correct status as
specified by your application. If a window contains a scroll bar along its right side and/or bottom (such as on word
processing documents and spreadsheets), these scroll bars are automatically sized and moved if the user drags the

LT3

window’s “size box” (providing that the window has a “size box™) or clicks the “zoom box.”

Processing doScrollBar Events

There are two basic ways your application can respond to the user’s interaction with a scroll bar. The first one, the
easier of the two alternatives, is to have your application simply respond to doScrollBar events. When Tools Plus
detects a mouse-down event in a scroll bar, it calls your event handler routine and reports it as a doScrollBar event.
The event also includes information about which part was clicked: up button, down button, page up region, page down
region, or thumb. In the case of all the up/down possibilities, your application should respond by scrolling the screen’s
image if required (using the toolbox’s ScrollRect routine), updating the scroll bar with its new value (using the
SetScrollBarVal routine), and possibly offsetting user interface element co-ordinates. With Tools Plus, your
application will get a series of doScrollBar events as long as the user holds the mouse down and has the cursor in the
originally clicked region. See the tutorials for examples of how to scroll user interface elements.

When Tools Plus reports a doScrollBar event, the part code may indicate the event is a result of the user moving the
scroll bar’s thumb, in which case your application can obtain the scroll bar’s value by using the GetScrollBarVal
routine then scrolling the required area. Tools Plus supports optional “live scrolling” that causes the scroll bar to move
its thumb in real time as it tracks the cursor. During this tracking, your event handler routine gets a doScrollBar event
each time the scroll bar’s value changes. The live scrolling feature works with virtually any CDEF that behaves like a
scroll bar, including Apple’s scroll bars and third party sliders. It’s easy for you to program this because as far as your
application is concerned, the user is moving the scroll bar’s thumb in a series of steps.

Action routine

The second method of responding to the user’s interaction with a scroll bar is the one originally designed by Apple,
that being creating an “action routine” and installing it in a scroll bar with the SetScrollBarAction routine. Your action
routine is called continuously while the user interacts with the scroll bar, be it holding the mouse in the scroll bar’s up
button or while dragging the scroll bar’s thumb. Your action routine can call GetScrollBarActionInfo to determine
which scroll bar is being called, its parent window, the part that was clicked by the user, and if the mouse is still in the
originally clicked part (i.e., is the mouse still in the page up region).

Water’s Edge Software 211



Tools Plus

In some cases, your application will experience better performance by using the action routine. A typical case where
this is true is using a slider to control the volume of music in real time, such as in an audio mixer. Beware that some
CDEFs (like the Apple scroll bar) do not change the scroll bar’s value when the user drags the thumb. The value is
changed only when the user releases the thumb, so an action routine is ineffective in trying to regulate or control
something in real time. This is when you should use Tools Plus’s live scrolling option in conjunction with processing
doScrollBar events.

Water’s Edge Software offers a set of slider CDEFs that can be used with either method of handling scroll bar. They
can easily be integrated into your existing application without having to change any code. They can also be used in the
most demanding real-time control environments where you can create an action routine that responds to the indicator’s
movement in real time.

3> Warning: If you have obtained a handle to a scroll bar, do not change any of the fields in the scroll bar’s record.

Appearance Manager Controls

The Appearance Manager, first introduced in mid 1997 with Mac OS 8, gives your application a number of 3D
controls in addition to the ordinary push button, check box, radio button, and scroll bar that were originally supplied by
Apple when Macintosh debuted in 1984. All the new Appearance Manager controls are implemented as CDEFs, but
unlike third party CDEF resources that must be installed in your application when it is built, the Appearance
Manager’s controls are available to your application without having to install them. They are available from the
system, just like regular system controls, if the Macintosh running your application has an Appearance Manager.

Your application can access the Appearance Manager’s 3D push buttons, check boxes, radio buttons and scroll bars
without any special programming. In fact, you can replace the standard controls throughout your application with the
equivalent Appearance Manager controls as a default behavior when you initialize Tools Plus libraries with the
InitToolsPlus routine. However, if you want to make use of other Appearance Manager controls and features, you need
to make your application “Appearance Manager aware.” 680x0 applications are automatically Appearance Manager
aware. To make your PowerPC application Appearance Manager aware, see the Designing Your Application chapter
of this manual for details in the “Using the Appearance Manager” section.

Many of the Appearance Manager’s controls are considerably more complex than the standard controls, and
understandably so because they offer considerably more features. Many controls place special significance on their
initial values when they are created, specifically the control’s minimum limit, maximum limit and current value (these
items equate to the contrlMin, contrlMax and contrlValue fields of the Control Manager’s ControlRecord record).
Constants for these controls and all their options appear in the Appearance.h (C/C++ header) and Appearance.p (Pascal
interface) files, as well as in Controls.h and Controls.p files.

See the chapters on Buttons, Editing Fields, List Boxes and Pop-Up Menus in this user manual for additional
Appearance Manager controls.

@) Note: For complete information on Appearance Manager concepts, the Appearance Manager’s features, and how to
best use the Appearance Manager’s new controls, please read the documentation pertaining to the Appearance
Manager. It is available from Apple or in the latest issue of Inside Macintosh. This manual does not duplicate
that material.

212



8 Scroll Bars

Scroll Bar (CDEF 24)

This scroll bar works identically to a standard scrollBarProc scroll bar.

CONST
kControlScrollBarProc = 384; {Normal Scroll Bar ProcID }
kControlScrollBarLiveProc = 386; {Live scrolling variant }

Enabled

T Dl

Disabled

Slider (CDEF 3)

The slider works similarly to a scroll bar, except it has no page up, page down, line up or line
down regions. The user can only set a slider by dragging the indicator.

CONST
kControlSliderProc = 48; {Slider ProcID }
kControlSliderLiveFeedback = $01; {Live scrolling variant }
{Add these variants to the ProcID.. }
kControlSliderHasTickMarks = $02; {Slider has tick marks }
kControlSliderReverseDirection = $04; {Thumb points in opposite direction
kControlSliderNonDirectional = $08; {Thumb is non-directional }

When creating a slider with tick marks, the control’s initial value is used to determine the
number of tick marks that appear in the slider.

l:@:i

Slider

I I I
Slider with Tick Marks

l:m:i

Non-Directional

Progress Indicator or “Thermometer” (CDEF 5)

The progress indicator is implemented like a scroll bar, but unlike a scroll bar, the user cannot
interact with this control. The standard progress indicator’s height is 14 pixels.

CONST
kControlProgressBarProc = 80; {Progress Indicator ProcID
scrlBusyThermometerMinLimit = -32768; {Minimum value for indeterminate }
{ indicator. }

Your application sets the progress indicator’s current value such that it indicates a relative
progress between the indicator’s minimum limit and maximum limit. An “indeterminate” state
can exist when the application does not know how long a task will take. In Tools Plus, the
progress indicator assumes an indeterminate state when its minimum limit is set to -32768.

An indeterminate indicator animates automatically each time your event handler routine
finishes executing. If you need to animate the indicator more frequently, see the
Process1EventWhileBusy routine for details.

—

Determinate

e ——

Indeterminate

Little Arrows (CDEF 6)

Little Arrows are used to increase or decreased a value, as seen in the Clock control. In Tools
Plus, this control can be implemented either as a button to allow the user to step through a
series of values one at a time with each click, or as a scroll bar to allow the user to also hold the
up arrow or down arrow to continuously increase or decrease a value while the button is held
down.

If you are using a ‘*CNTL’ resource to create this control, add 1 to the procID to tell Tools Plus
that you want to implement the Little Arrows control as a scroll bar, otherwise it is
implemented as a button. Little Arrows should always be created in a rectangle that is 13 pixels
wide by 23 pixels high.

CONST

kControlLittleArrowsProc = 96; {Little Arrows ProcID }

5B 8 E

Little Arrows

Water’s Edge Software

213



Tools Plus

Appearance Manager and Keyboard Focus

Before the Appearance Manager’s arrival, the only user interface element that could process keystrokes was an editing
field. With the Appearance Manager present, a variety of user interface elements can process keystrokes, such as
editing fields, list boxes and the clock control. Keystrokes are directed at only one user interface element at a time (and
possibly at no element at all). When a user interface element processes keystrokes in such a way, it is said to have the
“keyboard focus.” Only one user interface element can have the keyboard focus at a time, and it is visually indicated
with a highlighted “band” around the object. Tools Plus takes care of the focus highlight, and of applying keystrokes to
the element that has the keyboard focus.

The process of moving the keyboard focus between objects, either by tabbing or clicking, is identical to that of
navigating between editing fields. For details, see the “Clicking and Tabbing” section in the Editing Fields chapter.

NewScrollBar

Create a new scroll bar.

pascal void NewScrollBar (short ScrollBar,
short left, short top, short right, short bottom,
long Spec, Boolean EnabledFlag,
short minimum, short value, short maximum);

procedure NewScrollBar (ScrollBar: INTEGER;
left, top, right, bottom: INTEGER;
Spec: LONGINT; EnabledFlag: BOOLEAN;
minimum, value, maximum: INTEGER);

ScrollBar specifies the scroll bar number (from 1 to 511) that is created in the current window. Once a scroll bar is
created, it is referenced by this scroll bar number. If a scroll bar has been previously created in the current window
using the same number, it is replaced with a new scroll bar as specified by the parameters in the NewScrollBar routine.
If the current window doesn’t belong to your application, or if no windows are open, NewScrollBar does nothing.

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the scroll bar’s size and location in
the window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-
hand corner (right,bottom). A scroll bar is vertical or horizontal depending on whether the height or width of the
rectangle is greatest. Scroll bars should be exactly 16 pixels wide, so there should be a 16 pixel difference between the
scroll bar’s top and bottom, or left and right side. If there isn’t, the scroll bar is scaled to fit into the rectangle and will
not look as attractive. Also, the scroll bar must be at least 40 pixels long in order to contain the up arrow, down arrow,
and thumb.

For windows with a ProcID of documentProc (i.e., with a “size box”) special scroll bars may be created along the right
side of a window and/or along the bottom. These scroll bars are special because they are automatically sized and
moved if the window’s size is changed. Here are some useful measurements and constants for these specialized scroll
bars:

Co-Ordinates
Type of Scroll Bar Left Top Right Bottom
At window’s right edge scrlRightEdge scrlTopEdge (or -1) scrlRightEdge
(window width - 15) (optional) (window width + 1) | (your co-ordinate)

At window’s right edge, scrlRightEdge scrlTopEdge (or -1) scrlRightEdge scriBottomEdge
bottom linked to grow box | (window width - 15) (optional) (window width + 1)
At window’s bottom scrlLeftEdge (or -1) scriBottomEdge scriBottomEdge

(optional) (window height-15) | (your co-ordinate) | (window height + 1)
At window’s bottom, right | scrlLeftEdge (or -1) scrlBottomEdge scrlRightEdge scrlBottomEdge
side linked to grow box (optional) (window height-15) (window height + 1)

214

(The window’s dimensions can be obtained from the WindowStatus routine.)




8 Scroll Bars

Spec specifies the scroll bar’s appearance and behavior characteristics. It is a combination of a control procID plus
various Tools Plus options detailed later in this section.

EnabledFlag specifies if the scroll bar is enabled or disabled when the window is active. When a scroll bar is disabled,
the thumb and toned “page up” and “page down” regions disappear, and the scroll bar cannot be used by the operator.
The two constants that can be used for this purpose are enabled and disabled. All scroll bars automatically become
hidden (only the outline is shown) when the window containing them becomes inactive. When the window is
activated, the scroll bars will assume their normal state as set by the NewScrollBar routine, and subsequent calls to the
EnableScrollBar routine. Below is an example:

Ee] |5

EnabledFlag = enabled EnabledFlag = disabled

Minimum declares the scroll bar’s minimum limit.

Value defines the scroll bar’s current value. The current value must be greater than or equal to the minimum setting,
and less than or equal to the maximum setting.

Maximum declares the scroll bar’s maximum limit. The maximum limit must be greater than the minimum limit.

Appearance and Behavior Specification

Spec specifies the scroll bar’s appearance and behavior characteristics. The value for this 4-byte long integer can be
specified by adding a set of constants to obtain the desired result. The constants defining the available options are as
follows:

Choose only one of the following proclIDs...

scrollBarProc Standard Apple scroll bar.
scrlStandard Same as the standard Apple scroll bar procID.
(your own proclD) You can use your own scroll bar or slider procID and Tools Plus will make

it work. When using custom control definitions (CDEFs), realize that the
proclD specifies both the control’s resource number as well as optional
variants (low 4 bits) that are ignored by Tools Plus but may be used by the
CDEF. The proclD is calculated as follows: CDEF resource ID x 16 + the
optional variants (0-15).

Optionally choose any of the following options...

scrlColorScrollBar Adopt the color settings as defined by the ScrollBarColors routine. By
default, scroll bars have a black frame and a background that matches their
parent window’s backdrop color (which is white by default). Note that some
controls ignore color settings, particularly those in the Appearance
Manager.

scrllLiveScroll Scroll an object in real time as the user moves a scroll bar’s thumb. This is
not a Macintosh user interface standard. By default, an outline tracks the
mouse as the user drags the scroll bar’s thumb, then when the user releases
the mouse button, the scroll bar’s thumb snaps to the new position and
generates an event. When using this option, the thumb tracks the mouse
position and generates a doScrollBar event when the thumb moves to a new
position.

scrlvalueLimit When setting the scroll bar’s value, it is always limited by the scroll bar’s
minimum and maximum limit. By default, if you set a value that is lower
than the minimum limit or higher than the maximum limit, Tools Plus
adjusts the minimum or maximum limit to accommodate the new value.
With this option, if a scroll bar’s minimum limit is 0 and maximum is 100
and you specify a new value of 110 it will be adjusted to 100 to prevent

Water’s Edge Software 215



Tools Plus

exceeding the scroll bar’s maximum limit.

scrlNoObscure Display the scroll bar as disabled when it is on an inactive window. This is
the preferred behavior for custom CDEFs. By default, a scroll bar is drawn
as an outlined frame when it is on an inactive window.

scrlAutoMoveSize Automatically move and/or resize the scroll bar when the window’s size
changes. The AutoMoveSize routine lets you specify which sides are
altered. You can use the AutoMoveSizeScrollBar routine as an alternative to
setting this option.

scrlHidden Create a hidden scroll bar. This kind of scroll bar is accessible to your
application but not to the user.

Custom Control Definitions (CDEFs)

Your application can use custom control definitions (CDEFs) on a per-scroll bar basis. If your CDEF is written to
Apple’s specifications, Tools Plus will make your custom scroll bar work like a regular scroll bar or slider. When
using a custom CDEEF, you will need to include a special control definition (CDEF resource) in your application’s
resource fork. Add the required CDEF resource to your project’s resource file before you compile your application.
Tools Plus includes custom CDEFs in the “Optional Resources” folder.

You can write your own CDEFs or you can use third-party CDEFs. As per Macintosh standards, a control’s procID is
comprised from the following formula: CDEF ID x 16 + variant code. Your CDEF’s ID can be in the range of 2 to
2047. Make sure your CDEF resource IDs do not conflict with System resources (i.e., the standard Apple button CDEF
ID is 0).

Note: When using third party CDEFs, make sure you carefully read the documentation that accompanies the CDEF.
If your scroll bar is irregularly shaped, like most sliders, and it is on a manually drawn background (other than
a window’s backdrop), that background must be refreshed in response to a doPreRefresh event. Tools Plus
removes your scroll bar’s region from the update region when it generates the doRefresh event, thereby
protecting it from being overwritten.

Note: Tools Plus makes no attempt to control the placement of scroll bars or to protect them once they have been
created. It is your responsibility to ensure that scroll bars are of sufficient length to contain the up/down arrows
and the thumb, and that their placement within the window is reasonable and does not conflict with other
objects. Furthermore, you should not allow your application’s text and drawing processes to interfere with
scroll bars. Windows with a “size box” should not allow scroll bars to be obscured or hidden by making the
window too small.

Also see: SetAutoEmbed (in the Buttons chapter), NewScrollBarRect, NewDialogScrollBar, ScrollBarColors and
ReplaceControlProcID.

CONST {Scroll bar appearance and behavior:
enabled = true; {Enable the scroll bar
disabled = false; {Disable the scroll bar

{Automatic placement on window's edge..

scrlLeftEdge -32768; { 1left edge of document
scrlTopEdge -32768; { top edge of document
scrlRightEdge 32767; { right edge of document
scrlBottomEdge 32767; { Dbottom edge of document
scrlStandard $00000010; {Standard scroll bar (default)

B e el e e e ade s e

scrlLiveScroll $00010000; {Live scrolling when dragging thumb
scrlvValueLimit $00020000; {Vvalue is limited by minimum/maximum limit
scrlNoObscure $00040000; {Don't obscure scroll bar on inactive window
scrlColorScrollBar $00080000; {Use color settings for this scroll bar
scrlHidden = $00100000; {Create a hidden scroll bar

scrlAutoMoveSize = $00200000; {Auto-resize as window's size changes

216



H

8 Scroll Bars

NewScrollBarRect

Create a new scroll bar.

pascal void NewScrollBarRect (short ScrollBar, const Rect *Bounds, long Spec,
Boolean EnabledFlag, short minimum, short value, short maximum);

procedure NewScrollBarRect (ScrollBar: INTEGER; Bounds: rect; Spec: LONGINT;
EnabledFlag: BOOLEAN; minimum, value, maximum: INTEGER);

NewScrollBarRect is identical to the NewScrollBar routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

NewDialogScrollBar
Create a new scroll bar in a dialog using a dialog item’s co-ordinates.

pascal void NewDialogScrollBar (short ScrollBar, long Spec,
Boolean EnabledFlag, short minimum, short value, short maximum);

procedure NewDialogScrollBar (ScrollBar: INTEGER; Spec: LONGINT;
EnabledFlag: BOOLEAN; minimum, value, maximum: INTEGER);

NewDialogScrollBar is identical to the NewScrollBar routine, except that the scroll bar is created in a dialog (a
window opened with the LoadDialog routine, or one that had a dialog list attached with the LoadDialogList routine).
The scroll bar’s co-ordinates are obtained from the dialog item whose number matches the scroll bar number.

LoadScrollBar

Create a new scroll bar using a ‘CNTL’ resource.
pascal void LoadScrollBar (short ScrollBar, short ResID);
procedure LoadScrollBar (ScrollBar, ResID: INTEGER);

LoadScrollBar creates a scroll bar by calling the NewScrollBar routine and supplying it with values from a ‘CNTL’
resource, commonly called a control template. This is a good way to create a scroll bar or scroll bar-like control that
requires a color table with more elements than those supported by the SetScrollBarColors routines. Note that some
controls ignore color settings, particularly those in the Appearance Manager.

ScrollBar specifies the scroll bar number (from 1 to 511) that is created in the current window. Once a scroll bar is
created, it is referenced by this scroll bar number. If a scroll bar has been previously created in the current window
using the same number, it is replaced with a new scroll bar as specified by the parameters in the ‘CNTL’ resource. If
the current window doesn’t belong to your application, or if no windows are open, LoadScrollBar does nothing.

ReslID is the ‘CNTL’ resource ID number that is used to create the scroll bar. If the scroll bar has a ‘cctb’ color table
resource, it must use the same ID number. Any resource ID number can be used, but numbers 128 or higher are safest
as stated in Inside Macintosh.

When creating scroll bars using ‘CNTL’ resources, please note the following:
¢ Flag your ‘CNTL’ and ‘cctb’ resources as purgeable to save memory. Tools Plus makes a copy of their data.

* The RefCon field in the ‘CNTL’ resource is ignored since Tools Plus uses the control’s RefCon field to store its
own data.

Also see: NewScrollBar and LoadSpecScrollBar.

Water’s Edge Software 217



H

Tools Plus

LoadSpecScrollBar

Create a new scroll bar using a ‘CNTL’ resource.
pascal void LoadSpecScrollBar (short ScrollBar, long Spec, short ResID);

procedure LoadSpecScrollBar (ScrollBar: INTEGER; Spec: LONGINT;
ResID: INTEGER);

LoadSpecScrollBar is identical to the LoadScrollBar routine, except that it requires the additional Spec parameter to
give you control over all the appearance and behavior options offered by Tools Plus. See the NewScrollBar routine for
details about the Spec parameter.

EmbedScrollBarinButton

Embed a scroll bar into a button or into the window’s root control (Appearance Manager only).
pascal void EmbedScrollBarInButton (short ScrollBar, short ContainerButton);
procedure EmbedScrollBarInButton (ScrollBar, ContainerButton: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedScrollBarInButton lets you
manually embed a scroll bar into a button, or into the window’s root control. Note that the term “button” does not
literally mean a button control. It means any control that is implemented as a button in Tools Plus. The most likely
candidate is a Group Box control. The same applies to the term “scroll bar.” If the Appearance Manager is not
available, EmbedScrollBarInButton does nothing.

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
EmbedScrollBarInButton does nothing.

ContainerButton specifies the button number (from 1 to 511) into which ScrollBar is embedded. This control must
exist in the current window, and it must be a “container” type control such as the Appearance Manager’s Group Box.
The scroll bar must fit entirely within the container control or EmbedScrollBarInButton does nothing. If a value of O is
provided for a container button, ScrollBar is embedded into the window’s root control.

Also see: EmbedScrollBarInScrollBar and SetAutoEmbed.

EmbedScrollBarinScrollBar

Embed a scroll bar into a scroll bar or into the window’s root control (Appearance Manager only).

pascal void EmbedScrollBarInScrollBar (short ScrollBar,
short ContainerScrollBar);

procedure EmbedScrollBarInScrollBar (ScrollBar, ContainerScrollBar: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedScrollBarInScrollBar lets you
manually embed a scroll bar into a scroll bar, or into the window’s root control. Note that the term “scroll bar” does
not literally mean a scroll bar control. It means any control that is implemented as a scroll bar in Tools Plus. If the
Appearance Manager is not available, EmbedScrollBarInScrollBar does nothing.

218



H

8 Scroll Bars

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
EmbedScrollBarInScrollBar does nothing.

ContainerScrollBar specifies the scroll bar number (from 1 to 511) into which ScrollBar is embedded. This control
must exist in the current window, and it must be a “container” type control. The scroll bar must fit entirely within the
container control or EmbedScrollBarInScrollBar does nothing. If a value of O is provided for a container scroll bar,
ScrollBar is embedded into the window’s root control.

Also see: EmbedScrollBarInButton and SetAutoEmbed.

GetFreeScrollBarNum

Get the first unused scroll bar number.
pascal short GetFreeScrollBarNum (void);
function GetFreeScrollBarNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own scroll bar
number, GetFreeScrollBarNum returns the first unused (free) scroll bar number. Using this routine, you can assign an
unused scroll bar number to a variable, then use that variable throughout your application without concern for the true
scroll bar number.

GetFreeScrollBarNum returns the first free scroll bar number on the current window. If the current window doesn’t
belong to your application, if no windows are open, or if the maximum number of scroll bars has already been created
on the current window (no new ones can be created), GetFreeScrollBarNum returns a value of zero (0).

ScrollBarColors
Set the colors for new scroll bars as they are created.
pascal void ScrollBarColors (const RGBColor *Frame, const RGBColor *Body,

const RGBColor *Text, const RGBColor *Thumb,
const RGBColor *Back);

procedure ScrollBarColors (Frame, Body, Text, Thumb, Back: RGBColor);

When new scroll bars are created, by default they have a black outline and they adopt their parent window’s backdrop
as a background color. When you use the ScrollBarColors routine, new scroll bars adopt the colors specified in this
routine (providing that the scroll bar is created with the scrlColorScrollBar option in the scroll bar’s spec). This is the
most efficient way to color multiple scroll bars using the same colors. Note that some controls ignore color settings,
particularly those in the Appearance Manager.

Frame is the scroll bar’s frame color.
Body is the scroll bar’s body color.

Text is the scroll bar’s text color. Apple’s standard scroll bars as well as most other scroll bars do not have text.
Custom CDEFs like sliders may have text as a part of a numeric scale.

Thumb is the scroll bar’s thumb color. The thumb is typically outlined using the frame color.

Water’s Edge Software 219



H

H

Tools Plus

Back is the scroll bar’s background color. The standard Apple scroll bar uses this color only when the scroll bar is on
an inactive window and is displayed as and empty rectangle. Tools Plus overrides the window’s backdrop color with
this setting so that custom CDEFs are drawn using this color as a background.

Also see: NoScrollBarColors and SetScrollBarColors.

NoScroliBarColors

Reset the colors for new scroll bars to the default.
pascal void NoScrollBarColors (void);
procedure NoScrollBarColors;

When new scroll bars are created, by default they have a black outline and they adopt their parent window’s backdrop
as a background color. When you use the ScrollBarColors routine, new scroll bars adopt the colors specified by that
routine (providing that the scroll bar is created with the scrlColorScrollBar option in the scroll bar’s spec).

This routine resets the settings of the ScrollBarColors routine to the default values (black frame, white body and
background). It is seldom required since you can create default scroll bars by simply excluding the scrlColorScrollBar
constant from the scroll bar’s spec parameter.

Also see: ScrollBarColors.

DeleteScrollBar

Delete a scroll bar.
pascal void DeleteScrollBar (short ScrollBar);

procedure DeleteScrollBar (ScrollBar: INTEGER);

ScrollBar specifies the scroll bar number (from 1 to 511) that is deleted from the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the scroll bar does not exist in the current
window, DeleteScrollBar does nothing. Use KillScrollBar if you want to delete the scroll bar without removing its
image from the window.

KillScrollBar

Delete a scroll bar without affecting its image on the window.
pascal void KillScrollBar (short ScrollBar);
procedure KillScrollBar (ScrollBar: INTEGER);

KillScrollBar is identical to DeleteScrollBar except that it does not remove the scroll bar’s image from the window.
This routine is useful for scrolling scroll bars in an area within a window (i.e., not the entire window). ScrollRect is
used to scroll the images in the affected area. OffsetScrollBar repositions the scroll bar’s co-ordinates without affecting
its image (since ScrollRect has already moved it). KillScrollBar then deletes the scroll bars that are scrolled out of
view without affecting their image (ScrollRect has already scrolled them out of view).

220



H

8 Scroll Bars

ScrollBarDisplay

Hide or show a scroll bar.
pascal void ScrollBarDisplay (short ScrollBar, Boolean Show);
procedure ScrollBarDisplay (ScrollBar: INTEGER; Show: BOOLEAN);

ScrollBarDisplay hides or shows a scroll bar on the current window. The result is seen immediately. Use discretion
with this routine since scroll bars should be enabled and disabled to indicate if they are accessible by the user.

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
ScrollBarDisplay does nothing.

Show indicates if the scroll bar is being hidden or displayed. The two constants that can be used for this flag are on and

off.

ScroliBarlsVisible

Determine if a scroll bar is visible.
pascal Boolean ScrollBarIsVisible (short ScrollBar);

function ScrollBarIsVisible (ScrollBar: INTEGER): BOOLEAN;

ScrollBarlsVisible reports if a scroll bar (or a control that is implemented as a scroll bar) is visible on the current
window, or if it is hidden.

ScrollBar specifies the scroll bar number (from 1 to 511) that is queried in the current window.

This routine’s value returns frue if the scroll bar is visible, and false if the scroll bar is hidden. If the current window
doesn’t belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
ScrollBarlsVisible returns false. This routine takes control embedding into account, so it will return false if the target
scroll bar is embedded and its container control is hidden.

ObscureScroliBar

Hide a scroll bar without removing its image from the window.
pascal void ObscureScrollBar (short ScrollBar);
procedure ObscureScrollBar (ScrollBar: INTEGER);

ObscureScrollBar hides a scroll bar on the current window without removing its image from the window. This routine
is useful for scrolling scroll bars (moving their position) in an area within a window (i.e., not the entire window).
ScrollRect is used to scroll the images in the affected area. OffsetScrollBar repositions the scroll bar’s co-ordinates
without affecting its image (since ScrollRect has already moved it). ObscureScrollBar then hides the scroll bars that
are scrolled out of view without affecting their image (ScrollRect has already scrolled them out of view).

ScrollBar specifies the scroll bar number (from 1 to 511) that is hidden in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
ObscureScrollBar does nothing.

Water’s Edge Software 221



H

H

Tools Plus

ActivateScrollBar

Activate a scroll bar to give it the keyboard focus.
pascal void ActivateScrollBar (short ScrollBar, short PartCode);
procedure ActivateScrollBar (ScrollBar, PartCode: INTEGER);

ScrollBar specifies the scroll bar number (from 1 to 511) that acquires the keyboard focus in the current window.
ActivateScrollBar does nothing under any of these conditions: the current window doesn’t belong to your application,
no windows are open, the scroll bar does not exist in the current window, the scroll bar is disabled or hidden, the scroll
bar cannot accept the keyboard focus, or the Appearance Manager is not available to your application.

PartCode is the control’s part number that is being activated. The part number is available either in the Appearance
Manager documentation, or from the author of the custom control you are using.

Activating a scroll bar allows the user to interact with the scroll bar by typing on the keyboard. On an active window,
the scroll bar acquires the keyboard focus making it the item that automatically processes keystrokes. Visually, this is
indicated by having the text highlighted or with a flashing caret. Additionally, the scroll bar is encompassed with a
highlighting keyboard focus band to indicate that it has the focus. Using ActivateScrollBar in an active window
removes the keyboard focus from any other object that may have the focus within the same window or any other active
window such as a tool bar or floating palette. This action may deactivate an active editing field.

If the scroll bar being activated is in an active window that allows access to pull-down menus, the Edit menu’s “Undo”
item is changed to “Can’t Undo” and is disabled. The “Cut”, “Copy”, “Paste”, “Clear” and “Select All” items are also
disabled.

Your application can activate virtually any editing field or Appearance Manager control that accepts the keyboard
focus. This flexibility can lead to a confusing user interface by allowing the keyboard focus to jump between active
windows. A good rule to observe is to activate a single item only on a standard window (not a tool bar or a floating
palette) when the window first opens. This sets up the default keyboard focus item for that window. At all other times,
activate a scroll bar only in response to a user’s actions.

Also see: HaveTabInFocus, TabToFocus, the doClickToFocus event, and ClickToFocus for other activating services.

GetScrollBarRect

Get a scroll bar’s co-ordinates.
pascal void GetScrollBarRect (short ScrollBar, Rect *Bounds);

procedure GetScrollBarRect (ScrollBar: INTEGER; var Bounds: RECT);

ScrollBar specifies the scroll bar number (from 1 to 511) that is queried in the current window.

Bounds returns the scroll bar’s bounding rectangle specified in the window’s local co-ordinates. These co-ordinates
match those used to create the scroll bar. If the current window doesn’t belong to your application, or if no windows
are open, or if the scroll bar does not exist in the current window, Bounds returns with all co-ordinates set to zero (0).

222



H

H

8 Scroll Bars

EnableScroliBar

Enable or disable a scroll bar.
pascal void EnableScrollBar (short ScrollBar, Boolean EnabledFlag);
procedure EnableScrollBar (ScrollBar: INTEGER; EnabledFlag: BOOLEAN);

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
EnableScrollBar does nothing.

EnabledFlag specifies if the scroll bar is enabled or disabled when the window is active. When a scroll bar is disabled,
the thumb and toned “page up” and “page down” regions disappear and the scroll bar cannot be selected by the user.
The two constants that can be used for this purpose are enabled and disabled.

All scroll bars automatically become disabled if the window containing them becomes inactive. When the window is
activated, the scroll bars assume their normal state as set by the EnableScrollBar routine.

CONST {Scroll bar state }
enabled = true; {enable the scroll bar }
disabled = false; {disable the scroll bar }

ScrollBarlsEnabled

Determine if a scroll bar is enabled or disabled.
pascal Boolean ScrollBarIsEnabled (short ScrollBar);
function ScrollBarIsEnabled (ScrollBar: INTEGER): BOOLEAN;

ScrollBar specifies the scroll bar number (from 1 to 511) that is queried in the current window.

The routine’s value returns frue if the scroll bar is enabled, and false if the scroll bar is disabled. If the current window
doesn’t belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
ScrollBarIsEnabled returns false. ScrollBarlsEnabled returns the scroll bar’s enabled state as it is currently displayed,
so if the scroll bar’s window is inactive and has temporarily disabled the scroll bar, ScrollBarIsEnabled returns false.

GetScrollBarMin

Get a scroll bar’s minimum value limit.
pascal short GetScrollBarMin (short ScrollBar);
function GetScrollBarMin (ScrollBar: INTEGER): INTEGER;

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window.

GetScrollBarMin returns a scroll bar’s minimum value limit. If the current window doesn’t belong to your application,
or if no windows are open, or if the scroll bar does not exist in the current window, GetScrollBarMin will return a
value of zero (0).

Water’s Edge Software 223



H

H

H

H

Tools Plus

SetScroliBarMin

Set a scroll bar’s minimum value limit.
pascal void SetScrollBarMin (short ScrollBar, short minimum);
procedure SetScrollBarMin (ScrollBar, minimum: INTEGER);

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
SetScrollBarMin does nothing.

Minimum specifies the scroll bar’s new minimum value limit. The scroll bar’s current value and maximum limit are
automatically adjusted (if necessary) to be consistent with the new minimum limit.

GetScrollBarMax

Get a scroll bar’s maximum value limit.
pascal short GetScrollBarMax (short ScrollBar);
function GetScrollBarMax (ScrollBar: INTEGER): INTEGER;

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window.

GetScrollBarMax returns a scroll bar’s maximum value limit. If the current window doesn’t belong to your
application, or if no windows are open, or if the scroll bar does not exist in the current window, GetScrollBarMax will
return a value of zero (0).

SetScroliBarMax

Set a scroll bar’s maximum value limit.
pascal void SetScrollBarMax (short ScrollBar, short maximum);
procedure SetScrollBarMax (ScrollBar, maximum: INTEGER);

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
SetScrollBarMax does nothing.

Maximum specifies the scroll bar’s new maximum value limit. The scroll bar’s current value and minimum limit are
automatically adjusted (if necessary) to be consistent with the new maximum limit.

GetScrollBarVal

Get a scroll bar’s current value.
pascal short GetScrollBarVal (short ScrollBar);
function GetScrollBarVal (ScrollBar: INTEGER): INTEGER;

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window.

224



H

H

8 Scroll Bars

GetScrollBarVal returns a scroll bar’s current value. If the current window doesn’t belong to your application, or if no
windows are open, or if the scroll bar does not exist in the current window, GetScrollBarVal will return a value of zero

(0).

SetScroliBarVal

Set a scroll bar’s current value.
pascal void SetScrollBarVal (short ScrollBar, short value);
procedure SetScrollBarVal (ScrollBar, Value: INTEGER);

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
SetScrollBarVal does nothing.

Value specifies the scroll bar’s new current value. The scroll bar’s minimum and maximum limits are automatically
adjusted (if necessary) to be consistent with the new current value.

MoveScrollBar

Move a scroll bar to a new location on the window.
pascal void MoveScrollBar (short ScrollBar, short toHoriz, short toVert);
procedure MoveScrollBar (ScrollBar, toHoriz, toVert: INTEGER);

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if ScrollBar specifies a scroll bar that does not exist,
MoveScrollBar does nothing. The change is seen immediately providing that the scroll bar is not hidden. The scroll
bar’s width and height are not changed.

ToHoriz is the new horizontal co-ordinate at which the left side of the scroll bar appears.

ToVert is the new vertical co-ordinate at which the top of the scroll bar appears.

Also see: SizeScrollBar and MoveSizeScrollBar.

OffsetScrollBar

Change a scroll bar’s co-ordinates without affecting its image on the window.

pascal void OffsetScrollBar (short ScrollBar,
short distHoriz, short distVert);

procedure OffsetScrollBar (ScrollBar, distHoriz, distVert: INTEGER);

When you scroll an area that contains scroll bars, first use ScrollRect to scroll the pixel image containing the affected
objects in the window. OffsetScrollBar is used to offset a scroll bar’s co-ordinates without altering its image (since
ScrollRect has already done so). At this point, the scroll bar’s co-ordinates match the scrolled image of the scroll bar.
ObscureScrollBar or KillScrollBar can be used to hide or delete scroll bars that are scrolled out of view.

Water’s Edge Software 225



H

Tools Plus

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if ScrollBar specifies a scroll bar that does not exist,
OffsetScrollBar does nothing.

DistHoriz and distVert specify the horizontal and vertical amount by which the scroll bar’s co-ordinates are offset.
Positive numbers are right and down. The scroll bar’s co-ordinates are updated but no change is seen.

SizeScrollBar

Change a scroll bar’s size.
pascal void SizeScrollBar (short ScrollBar, short width, short height);
procedure SizeScrollBar (ScrollBar, width, height: INTEGER);

SizeScrollBar changes a scroll bar’s width and/or height without altering the scroll bar’s top or left co-ordinate. The
change is seen immediately providing that the scroll bar is not hidden.

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if ScrollBar specifies a scroll bar that does not exist,
SizeScrollBar does nothing.

Width and height specify the scroll bar’s new width and height in pixels. If either parameter is less than 1,
SizeScrollBar does nothing.

Also see: MoveScrollBar and MoveSizeScrollBar.

MoveSizeScrollBar
Change a scroll bar’s co-ordinates.

pascal void MoveSizeScrollBar (short ScrollBar,
short left, short top, short right, short bottom);

procedure MoveSizeScrollBar (ScrollBar, left, top, right, bottom: INTEGER);

MoveSizeScrollBar changes any of the scroll bar’s four co-ordinates. The change is seen immediately providing that
the scroll bar is not hidden. This routine combines the functions of MoveScrollBar and SizeScrollBar.

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if ScrollBar specifies a scroll bar that does not exist,
MoveSizeScrollBar does nothing.

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the scroll bar’s size and location in
the window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-
hand corner (right,bottom). If these parameters specify an empty rectangle, MoveSizeScrollBar does nothing.

Also see: GetScrollBarRect.

226



H

IS

8 Scroll Bars

MoveSizeScroliBarRect

Change a scroll bar’s co-ordinates.
pascal void MoveSizeScrollBarRect (short ScrollBar, const Rect *Bounds);
procedure MoveSizeScrollBarRect (ScrollBar: INTEGER; Bounds: RECT);

MoveSizeScrollBarRect is identical to the MoveSizeScrollBar routine, except that it accepts the Bounds rectangle in
place of the individual left, top, right and bottom co-ordinates.

AutoMoveSizeScrollBar

Specify how a scroll bar is automatically moved and/or resized as its window’s size is changed.

pascal void AutoMoveSizeScrollBar (short ScrollBar,
Boolean left, Boolean top, Boolean right, Boolean bottom);

procedure AutoMoveSizeScrollBar (ScrollBar: INTEGER;
left, top, right, bottom: BOOLEAN) ;

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if ScrollBar specifies a scroll bar that does not exist,
AutoMoveSizeScrollBar does nothing.

The left, top, right and bottom parameters specify if that side of the scroll bar is automatically adjusted when the
window’s size changes. These setting are applied to the scroll bar and are used the next time the window’s size
changes:

left Does the scroll bar’s left side track the window’s right edge?

top Does the scroll bar’s top track the window’s bottom edge?

right Does the scroll bar’s right side track the window’s right edge?

bottom  Does the scroll bar’s bottom track the window’s bottom edge?

You can think of each false value as locking that side of the scroll bar to a fixed co-ordinate regardless of the
window’s size (this is the default). Each true value establishes a fixed distance between that side of the scroll bar and
the window’s edge. For example, setting only left and right to true makes the scroll bar move horizontally as the
window widens and narrows, but the scroll bar does not move vertically when the window’s height changes.

If you are setting these values identically for a group of objects, use AutoMoveSize to define the settings then add the
appropriate xAutoMoveSize constant (such as scrlAutoMoveSize for scroll bars) to the objects’ spec as they are
created. The objects will adopt the settings specified by the AutoMoveSize routine.

Warning: Make sure that you resize objects in a way that makes sense. Don’t allow a window to shrink down to a
size where objects become unusable or disappear altogether.

Water’s Edge Software 227



H

H

Tools Plus

SetScrollBarFontSettings

Set a scroll bar’s font, size and style settings.

pascal void SetScrollBarFontSettings (short ScrollBar,
short theFont, short theSize, Style theStyle);

procedure SetScrollBarFontSettings (ScrollBar: INTEGER;
theFont: INTEGER; theSize: INTEGER; theStyle: Style);

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if the scroll bar does not exist, SetScrollBarFontSettings
does nothing. Otherwise, the change is seen immediately.

TheFont specifies the scroll bar’s new font. The default is Chicago, which is represented by the systemFont constant.

TheSize specifies the font’s size. The default is 0, which represents the default font size used by the system font, or
12pt in this case.

TheStyle specifies the scroll bar’s new style. Special character constants defined by the Font Manager are bold, italic,
underline and shadow. C programmers use the Font Manager’s constants to specify a composite style, such as
SetScrollBarFontSettings(1, geneva, 9, bold + outline) for bold and outlined, or for plain text,
SetScrollBarFontSettings(1, geneva, 9, 0). Pascal programmers use the Font Manager’s constants to specify a style set,
such as SetScrollBarFontSettings(1, geneva, 9, [bold, outline]) for bold and outlined, or for plain text,
SetScrollBarFontSettings(1, geneva, 9, [ ]).

A scroll bar’s font settings are set when a scroll bar is created, so this routine is not normally used by many
applications.

Note: This routine works on Appearance Manager savvy controls (ones that were written to take advantage of the
Appearance Manager’s extended features) that accept the “set font” command. This routine also works on
classic controls (those that were not written to take advantage of the Appearance Manager, including Apple’s
controls in System 6 and System 7, and SuperCDEFs) as well as third party controls that observe two rules:

1. The high bit of the variant code (8) indicates that the control uses the window’s font.

2. All parameters that are used to create the control, specifically the control’s rectangle, title, visible state,

initial value, minimum limit, maximum limit, and reference constant, all have no special significance.

You may experience issues with third-party CDEFs that place special significance on the initial settings that
are used to create the control. For example, you may experience issues if you use a third-party slider CDEF
that initially uses the “current value” setting to determine which pictures it should display for the slider’s parts,
then it later changes the control’s “current value” setting to reflect the slider’s real value. Your only solutions
are: (1) create the control with the high bit of the variant code set on (+8 or bUseWFont), or (2) use another
CDEEF that does not place special significance on initial settings when the control is created, or (3) do not use
the SetScrollBarFontSettings routine on that control.

GetScrollBarFontSettings

Get a scroll bar’s font, size and style settings.

pascal void GetScrollBarFontSettings (short ScrollBar,
short *theFont, short *theSize, Style *theStyle);

procedure GetScrollBarFontSettings (ScrollBar: INTEGER;
var theFont: INTEGER; var theSize: INTEGER; var theStyle: Style);

ScrollBar specifies the scroll bar number (from 1 to 511) in the current window whose font settings are being
retrieved. If the current window doesn’t belong to your application, if no windows are open, or if ScrollBar specifies a
scroll bar that does not exist, GetScrollBarFontSettings returns default values.

228



8 Scroll Bars

TheFont is the scroll bar’s font number. The default is O which is represented by the systemFont constant.

TheSize is the font’s size. The default is 0, which represents the default font size used by the system font, or 12pt in
this case.

TheStyle is the field’s font style. The default is plain text, which is represented by 0 in C and [ ] in Pascal.

SetScroliBarColors

Set a scroll bar’s colors.

pascal void SetScrollBarColors (short ScrollBar, const RGBColor *Frame,
const RGBColor *Body, const RGBColor *Text, const RGBColor *Thumb,
const RGBColor *Back);

procedure SetScrollBarColors (ScrollBar: INTEGER;
Frame, Body, Text, Thumb, Back: RGBColor);

ScrollBar specifies the scroll bar number (from 1 to 511) in the current window whose colors are being set. If the
current window doesn’t belong to your application, or if no windows are open, SetScrollBarColors does nothing. Also,
if ScrollBar specifies a scroll bar that does not exist, SetScrollBarColors does nothing. The change is seen
immediately, regardless if the scroll bar was originally created with the scrlColorScrollBar option or not. Note that
some controls ignore color settings, particularly those in the Appearance Manager.

Frame is the scroll bar’s frame color.
Body is the scroll bar’s body color.

Text is the scroll bar’s text color. Apple’s standard scroll bars as well as most other scroll bars do not have text.
Custom CDEFs like sliders may have text as a part of a numeric scale.

Thumb is the scroll bar’s thumb color. The thumb is typically outlined using the frame color.

Back is the scroll bar’s background color. The standard Apple scroll bar uses this color only when the scroll bar is on
an inactive window and is displayed as and empty rectangle. Tools Plus overrides the window’s backdrop color with
this setting so that custom CDEFs are drawn using this color as a background.

Also see: ScrollBarColors and GetScrollBarColors.

GetScrollBarColors
Get a scroll bar’s colors.

pascal void GetScrollBarColors (short ScrollBar, RGBColor *Frame,
RGBColor *Body, RGBColor *Text, RGBColor *Thumb, RGBColor *Back);

procedure GetScrollBarColors (ScrollBar: INTEGER; var Frame: RGBColor;
var Body: RGBColor; var Text: RGBColor; var Thumb: RGBColor;
var Back: RGBColor);

ScrollBar specifies the scroll bar number (from 1 to 511) in the current window whose colors are being retrieved. If the
current window doesn’t belong to your application, or if no windows are open, or if ScrollBar specifies a scroll bar
that does not exist, GetScrollBarColors returns default color values.

Frame is the scroll bar’s frame color.
Body is the scroll bar’s body color.

Text is the scroll bar’s text color. Apple’s standard scroll bars as well as most other scroll bars do not have text.

Water’s Edge Software 229



H

H

Tools Plus

Custom CDEFs like sliders may have text as a part of a numeric scale.
Thumb is the scroll bar’s thumb color. The thumb is typically outlined using the frame color.

Back is the scroll bar’s background color. The standard Apple scroll bar uses this color only when the scroll bar is on
an inactive window and is displayed as and empty rectangle. Tools Plus overrides the window’s backdrop color with
this setting so that custom CDEFs are drawn using this color as a background.

Also see: ScrollBarColors and SetScrollBarColors.

ScrollBarLineTime

Set the line scrolling speed for new scroll bars.
pascal void ScrollBarLineTime (short Ticks);
procedure ScrollBarLineTime (Ticks: INTEGER);

Subsequently created scroll bars adopt the specified speed when their up arrow or down arrow is used. Use this routine
when you want a number of scroll bars (or all of them) to scroll at the same rate.

Ticks specifies the number of ticks (1/60 of a second) that elapse between doScrollBar events when the user clicks and
holds the up arrow or down arrow. A value of zero (0) will generate doScrollBar events as rapidly as your application
can handle them (no throttling), whereas the maximum value of 60 causes the scroll bar to wait one second between
each doScrollBar event.

Also see: ScrollBarPageTime, SetScrollBarLineTime and SetScrollBarPageTime.

ScrollBarPageTime

Set the page scrolling speed for new scroll bars.
pascal void ScrollBarPageTime (short Ticks);
procedure ScrollBarPageTime (Ticks: INTEGER);

Subsequently created scroll bars adopt the specified speed when their page up or page down region is used. Use this
routine when you want a number of scroll bars (or all of them) to scroll at the same rate.

Ticks specifies the number of ticks (1/60 of a second) that elapse between doScrollBar events when the user clicks and
holds the page up or page down region. A value of zero (0) will generate doScrollBar events as rapidly as your
application can handle them (no throttling), whereas the maximum value of 60 causes the scroll bar to wait one second
between each doScrollBar event.

Also see: ScrollBarLineTime, SetScrollBarLineTime and SetScrollBarPageTime.

230



H

8 Scroll Bars

SetScroliBarLineTime

Set a scroll bar’s line scrolling speed.
pascal void SetScrollBarLineTime (short ScrollBar, short Ticks);
procedure SetScrollBarLineTime (ScrollBar: INTEGER; Ticks: INTEGER);

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
SetScrollBarLineTime does nothing.

Ticks specifies the number of ticks (1/60 of a second) that elapse between doScrollBar events when the user clicks and
holds the up arrow or down arrow. A value of zero (0) will generate doScrollBar events as rapidly as your application
can handle them (no throttling), whereas the maximum value of 60 causes the scroll bar to wait one second between
each doScrollBar event.

Also see: ScrollBarLineTime, ScrollBarPageTime and SetScrollBarPageTime.

SetScrollBarPageTime

Set a scroll bar’s page scrolling speed.
pascal void SetScrollBarPageTime (short ScrollBar, short Ticks);
procedure SetScrollBarPageTime (ScrollBar: INTEGER; Ticks: INTEGER);

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
SetScrollBarPageTime does nothing.

Ticks specifies the number of ticks (1/60 of a second) that elapse between doScrollBar events when the user clicks and
holds the page up or page down region. A value of zero (0) will generate doScrollBar events as rapidly as your
application can handle them (no throttling), whereas the maximum value of 60 causes the scroll bar to wait one second
between each doScrollBar event.

Also see: ScrollBarLineTime, ScrollBarPageTime and SetScrollBarLineTime.

SetScroliBarAction

Set a scroll bar’s action routine.

pascal void SetScrollBarAction (short ScrollBar,
ScrollBarActionUPP ActionProc);

procedure SetScrollBarAction (ScrollBar: INTEGER;
ActionProc: ScrollBarActionUPP);

SetScrollBarAction sets a routine that is called repeatedly when a scroll bar is tracked. This occurs as long as the user
holds the mouse button down in the scroll bar, regardless if the cursor wanders off the scroll bar. Each scroll bar can
have its own action routine or several scroll bars can share the same routine, even if they are on different windows.

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
SetScrollBarAction does nothing.

Water’s Edge Software 231



Tools Plus

ActionProc is the routine that is called repeatedly while the scroll bar is being tracked.

The ScrollBarActionUPP type is a Universal Procedure Pointer used for consistency across all interfaces (C/C++ and
Pascal using the original Apple interfaces or the newer universal interfaces required for PowerMacs). In 680x0
applications, the ScrollBarActionUPP is nothing more than a ProcPtr, or a pointer to a Pascal routine. This is how you
set an action routine in C/C++:

SetScrollBarAction(5, myActionProc);

In Pascal, a similar statement is used except the “@” symbol indicates the address of a routine which is the same thing
as a pointer to a routine:

SetScrollBarAction(5, @myActionProc);

In PowerMac applications, the ScrollBarActionUPP is a pointer to a structure that is allocated using the
NewScrollBarActionProc routine. If you are writing a PowerMac application, or if your source code will compile to
both 680x0 and PowerMac-native code, you will need to use the new universal headers (or universal interfaces for
Pascal) and do the following to ensure 680x0 and PowerPC compatibility:

1. Create a global variable for each action routine you will use throughout your application. If you are using the
same action routine for several scroll bars, all the scroll bars can share a single global variable. Declare the
variable as a ScrollBarActionUPP type. In 680x0 applications, this variable will be used as a pointer to an action
routine. In PowerMac applications, it will be used as a pointer to a universal procedure structure. In this example,
define a global variable named myActionUPP of type ScrollBarActionUPP.

2. Populate myActionUPP so that it points to your scroll bar’s action routine. In this example, the action routine is
named myScrollAction. In C/C++, the code looks like this:

myActionUPP = NewScrollBarActionProc(myScrollAction);
In Pascal, the code is identical except the “@” symbol indicated the address of a routine:
myActionUPP := NewScrollBarActionProc(@myScrollAction);
Do this very early in your application because you are creating a non-relocatable structure and allocating it early
will prevent memory fragmentation.

3. After you create your scroll bar, you can install the action routine into the scroll bar with the following code. This

example assumes the action routine is being installed into scroll bar number 5 on the current window:
SetScrollBarAction(5, myActionUPP);

The action routine is written as a Pascal procedure that has no parameters. Here is an example of how your routine
should be written:

pascal void myScrollAction (void)
{
// Your code goes here

}

procedure myScrollAction;
begin
{Your code goes here}
end;

If you want to deallocate the UPP for scroll bar’s action routine in a PowerMac application or plug-in, use the
DisposeRoutineDiscriptor routine. PowerMac plug-ins will certainly want to do this as part of their quitting logic along
with calling DeinitToolsPlus.

Your action routine will likely need to know some information about the scroll bar that called the action routine and
how the user is interacting with the scroll bar. See the GetScrollBarActionInfo routine to obtain this information.

Also see: GetScrollBarActionInfo.

232



H

IS

8 Scroll Bars

GetScrollBarActioninfo

Get info about the caller of a scroll bar’s action routine.

pascal void GetScrollBarActionInfo (short *Window,
short *ScrollBar, short *Part, Boolean *InPart);

procedure GetScrollBarActionInfo (var Window: INTEGER;
var ScrollBar: INTEGER; var Part: INTEGER; var InPart: BOOLEAN);

This routine can be used in a scroll bar’s action routine to learn about the scroll bar that has called the routine. Its
values will be valid only when called from inside a scroll bar action routine.

Window is the window number containing the scroll bar that the user is using.
ScrollBar is the scroll bar number that is being used.

Part is the part code that corresponds to the region in the scroll bar where the mouse when down. The values for
standard scroll bars and CDEFs that are written to behave like scroll bars are available through the constants
inUpButton, inDownButton, inPageUp, inPageDown and inThumb.

InPart tells your action routine if the user’s mouse is still in the region that is specified by the Part parameter. If, for
example, the user starts by pressing the mouse on the up button, Part will always be set to inUpButton each time your
action routine is called but InPart is set to true only when the cursor is on the up button. When InPart returns false,
your action routine should behave as though the scroll bar is not being used and not perform any scrolling.

CONST {Scroll Bar parts }
inUpButton = 20; {up arrow of a scroll bar }
inDownButton = 21; {down arrow of a scroll bar }
inPageUp = 22; {"page up" region of a scroll bar }
inPageDown = 23; {"page down" region of a scroll bar }
inThumb = 129; {thumb of a scroll bar }

GetScrollBarHandle

Get a handle to a scroll bar’s control record.
pascal ControlHandle GetScrollBarHandle (short ScrollBar);
function GetScrollBarHandle (ScrollBar: INTEGER): ControlHandle;

This routine returns a standard ControlHandle to a scroll bar that was created by a Tools Plus routine. You should
never need to use this routine. It is provided for advanced programmers who may have specialized needs. Always use
Tools Plus routines to create and manipulate scroll bars.

ScrollBar specifies the scroll bar number (from 1 to 511) in the current window whose handle is being retrieved. If the
current window doesn’t belong to your application, or if no windows are open, or if ScrollBar specifies a scroll bar
that does not exist, GetScrollBarHandle returns nil.

Warning: If you need to lock the handle or change its attributes, do so temporarily then restore the original settings
before using any Tools Plus routines. If you alter this handle or any data that is made accessible by this
handle, you do so at your own risk. The only exception is the control’s reference constant (contrIRfCon
field) which can safely be set using the toolbox’s SetControlReference routine, and retrieved using the
toolbox GetControlReference routine.

Water’s Edge Software 233



Tools Plus

234



9 Editing Fields

9 Editing Fields

Editing fields are supported by Tools Plus windows with some notable enhancements over the Macintosh’s standard
TextEdit fields. Editing fields (or simply “fields”) are created on the current window with the NewField routine. Each
field is referenced by a unique field number that can be from 1 to 511. Fields that are not implemented using the
Appearance Manager’s Edit Text control or Static Control can be numbered from 1 to 32767. This number is specified
when the field is created, and refers to the specific field until that field is deleted. Note that the field number is related
to its associated window. This means that two different windows can each have a field numbered “1” without
interfering with each other. Whenever any field event occurs, such as the user clicking on a field, Tools Plus calls your
event handler routine and reports the field number as well as the window number to which the field belongs.

Fields can edit and store as much as 32K of text. Tools Plus also accommodates Pascal’s 255 characters strings
(Str255). Your application can limit the number of characters that can be typed by the user, as well as the number of
characters that are eventually stored by the field. Details are provided later in this chapter. Both C and Pascal
programmers can make use of both C and Pascal strings within an application.

Tools Plus fields offer an option called a “static text” field, that being a field that cannot be edited by the user. It is
used to display information like a title or caption, and can be created as part of a dialog resource, or dynamically just
like regular fields. Additional information about creating and maintaining fields in dialogs can be found in the
Windows chapter, specifically in the LoadDialog routine.

Tools Plus also supports a “read only” field that looks like an editing field, but cannot be changed by the user. With
this option, the user can select text in the field and copy text from the field, but the user cannot change the text in the
field.

The Field’s String

When a field is first created, your application initiates a permanent association between the editing field and its related
text by providing a handle that points to the field’s string. The handle can point to either a Pascal string (up to 255
characters long plus a length-byte prefix), or to a C string (up to 32767 characters long plus a null termination byte).
Each field must have its own string handle that is valid while the field exists. You must either allocate memory for the
handle and set it to a default string value before using it in the NewField routine, or let NewField allocate the string for
you. Tools Plus’s NewStrHandle routine is perfect for allocating a handle of a specific size and initializing its string to
zero characters.

Note: Your application must allocate memory for a text handle when creating a new field. The NewStrHandle routine
is best suited for this. If your editing fields contain random characters, it is a sure sign that you provided an
invalid handle when creating the field.

Dynamic String Handles

A field can optionally store its string more efficiently by resizing its string handle on an ongoing basis to accommodate
only the number of valid characters currently stored in the string as opposed to the maximum number of characters the
string may contain. This feature is especially useful if you let NewField dynamically allocate a string handle for you.
You should consider turning this feature on for all fields if your application has numerous editing fields. To make a
field store its string handle more efficiently, call DynamicFieldHandles(true) and all subsequently created fields will
automatically resize their associated text handle. You can also do this on a field-by-field basis when a field is being
created by including the teResizeHdl constant in the field’s specification.

The one thing you must pay attention to is that a dynamic handle may be smaller than you expect, and that you can
accidentally damage your application’s heap if you write more data into the handle than the handle can physically
accommodate. To prevent this, make a habit of using PasteIntoField to change a field’s text instead of writing to the
handle directly.

Water’s Edge Software 235



Tools Plus

The Active Field

Text editing can occur in only one field at a time even if multiple applications are running concurrently or multiple
windows are open in an a variety of applications. The application’s active field is the field in which the user is working
when an application is active. The active field indicates it is active by containing either a flashing insertion point
(called a “caret”), or several highlighted (selected) characters as seen below.

|an illdstration| |an inuTgXion|

A field can be activated by using the ActivateField routine. When a field is first activated by your application, an
insertion point can be placed at the beginning or at the end of the field’s text, or the field’s entire text can be selected.
In most cases, the field’s entire text is selected. When a window becomes inactive, the flashing insertion point
disappears and selected text becomes deselected. When the window is activated again, the insertion point or selection
reappears. A field can be deactivated by either calling the DeactivateField routine, or by activating another field.

Each window can have its own editing field that becomes the application’s active editing field when the window is
active. This is called the window’s active field. For example, field 3 could be active in the “add customer” window,
and when the “add shipping address” window is active, field 8 could be active in that window. This concept is simple
as long as only one window is active at a time.

When your application uses a tool bar and/or floating palettes, multiple windows are active simultaneously: the tool
bar, all floating palettes, and the frontmost standard window. Tools Plus manages the additional functionality required
to make editing fields work on all windows in your application, including the tool bar and floating palettes. It ensures
that only one field is active at a time, and that it is the appropriate one.

Editing Field Window

The Editing Field Window is the one window in your application containing the active editing field. The field either
has a flashing insertion point, or its selected text is highlighted. Tools Plus automatically keeps track of which window
contains your application’s active editing field.

If your application does not use a tool bar or floating palettes, this window is the active window providing it has an
editing field. If your application uses a tool bar and/or floating palettes, potentially any active window (tool bar, any
floating palette, or the active standard window) can contain the active editing field.

Activating a Field and Editing Text

Your application can activate a field by using the ActivateField routine to specify the field that is active when its
parent window is active. This is usually done to specify the default field when the window is first opened. When a field
is activated, a copy of its associated text (the field’s string) is made. It is the copy that is edited by the user while the
field’s original string is left untouched. The copy being edited by the user is called the edited text. The edited text can
be inspected by your application by using GetEditString which returns a copy of the edited text, or GetEditHandle
which returns a handle to the edited text. The edited text is saved as the field’s string by calling the SaveFieldString
routine.

When a field is deactivated, the text edited by the user is destroyed without being saved and the field’s string is
redrawn. This is done in case your application determines that the edited text should not be saved. If you saved the
edited text with SaveFieldString, no apparent change is seen. Tools Plus has options to automatically save edited text,
as explained later in the chapter under “Clicking and Tabbing.”

Editing fields are fully integrated with all Tools Plus windows. As a result, Tools Plus prevents fields from being
mysteriously activated or deactivated as windows are opened, closed, hidden, displayed, activated and deactivated. The
user’s interaction with editing fields is completely intuitive.

236



9 Editing Fields

Length Limited Fields

In some applications, it may be necessary to limit the length of edited text to a specific number of characters. This can
be done by calling FieldLengthLimit(true). All subsequently created fields will be length limited. You can also length
limit a field as it is being created by including the teLengthLimit constant in the field’s specification.

If a field is length limited, the user can type characters until the field’s maximum length is reached. After this point, a
beep is heard when the user types any keys. For example, if you create a 30 character string handle and length limit the
field, the user can type only 30 characters into that field. This also applies when pasting text into a length limited field.

Length limited fields look their best if you use a monospaced font like Monaco 9 in a single-line editing field that is
long enough to hold the maximum number of characters without scrolling.

Clicking and Tabbing

The task of moving between active fields, either by tabbing or clicking, is accomplished in one of two very different
ways:

(1) When your application is initialized, you can use the initAutoFocusChanges option to automatically let the user
tab to the next/previous field, or to activate an inactive (but enabled) field by clicking on it. This option makes for
much simpler coding, but it does not give your application the opportunity to validate fields’ contents on a field-
by-field basis. Instead, your application can edit the fields’ contents in a batch when the user clicks the OK
button to process the entire window.

(2) If you need to edit your fields on a field-by-field basis, meaning the user may get an error message as he tries to
tab to another field thereby forcing him to correct his error before moving on, then you should not use the
initAutoFocusChanges option when initializing Tools Plus. Instead, your application will be informed when the
user wants to move to another field by way of events. This lets you edit the field before letting the user activate
another field.

If you chose the second option to allow editing on a field-by-field basis, Tools Plus reports a doClickToFocus event to
your event handler routine when the user clicks in an inactive field. When this happens, your event handler will likely
call GetEditString (or GetEditHandle) to obtain a copy of the edited text and check the string for errors. If an error is
detected, display an appropriate alert and ignore the doClickToFocus event. If no error is detected, call the
SaveFieldString routine to save the edited text in the field’s string, then call the ClickToFocus routine to activate the
required field and places the insertion point at the appropriate place. The following code shows you how to respond to
a doClickToFocus event in your application’s event handler routine:

case doClickToFocus:
GetEditString(&theString);
// your code to validate string for errors
if (errorInString)
// Show alert
else {
SaveFieldString();
ClickToFocus();
}

break;

doClickToFocus:
begin
GetEditString(theString);
{your code to validate string for errors}
if errorInString then
{Show alert}
else
begin
SaveFieldString;
ClickToFocus;
end;
end;

Water’s Edge Software 237



Tools Plus

If your application allows field validation on a field-by-field basis, it will also be interested in validating the active
field when the user tabs out of it. When Tools Plus reports a doKeyDown or doAutoKey event, your event handler can
call HaveTabInFocus to determine if a tab or shift-tab was typed by the user in an editing field. If HaveTabInFocus
returns true, you will likely validate the edited text as described in the previous paragraph, then activate the next field
if the tab was pressed or the previous field if shift-tab is pressed. A simpler alternative is to use TabToFocus which
takes care of tabbing to the correct field. The Event Management chapter details key and mouse events. The following
code illustrates how to tab to another field:

case doKeyDown: case doAutoKey:
if (HaveTabInFocus()) {
GetEditString(&theString);
// your code to validate string for errors
if (errorInString)
// Show alert
else {
SaveFieldString();
TabToFocus( ) ;
}

break;

doKeyDown, doAutoKey:
If HaveTabInFocus then
begin
GetEditString(theString);
{your code to validate string for errors}
if errorInString then
{Show alert}
else
begin
SaveFieldString;
TabToFocus;
end;
end;

Keyboard Focus on Tool Bars and Floating Palettes

If your application includes a tool bar and/or a floating palette, and any of these windows contains an editing field or
any other object that can assume the keyboard focus (such as a list box or a clock control), then you may have to write
your application with a few special considerations. The easiest way to address these special cases is to initialize your
application with the initAutoFocusChanges option. That way, Tools Plus will automatically save any edited text as and
when required, and it will move the keyboard focus as the user tabs and clicks to other user interface elements.
Without the initAutoFocusChanges option, you may have to account for some special cases as described in this
section.

Normally, a Macintosh application has only one active window at a time, so when a window with the keyboard focus
is deactivated, that window remembers all the information about its own focus while the application’s keyboard focus
is temporarily transferred to a newly activated window. When the user activates the original window again, the
keyboard focus returns to that window exactly as it was left. When using only standard window (no tool bars or
floating palettes), each window’s keyboard focus is specific to that window and it never conflicts or interacts with the
focus on any other window. This is what Macintosh users and developers are used to.

=[0= Window 1 SEE Window 1 | 0= Window 1 SE=

w 2 Firs 22Z Window 2 SEE w 2
—& | — =]

| u B u
User working in Window 1 User activates window 2 by clicking on it. User activates window 1 by clicking on it.
Keyboard focus moves to window 2. Keyboard focus returns to window 1 exactly as it was left.

238



9 Editing Fields

When a tool bar or a floating palette with a keyboard focus item is introduced to your application, your application
then has two or more active windows, only one of which can have the keyboard focus at a time. Two potentially
problematic situations can arise:

* When your application gets a doClickToFocus event, it may indicate that the user is clicking on an object in
another active window. An example of this is when the user is working on a standard window, then clicks in an
editing field on a floating palette. This means you may have to save the edited text on one window before
allowing the user to move to another by calling ClickToFocus.

* Once the keyboard focus has been placed on a tool bar or floating palette, it will not automatically move to a
standard window that is being activated. This may impact your application because the user could do something
like this:

- User edits text in a field in window 1

- User clicks on window 2 to activate it (window 1 and its field with edited text are deactivated)

- User clicks on a floating palette and enters text in a field (focus now stays on the floating palette)

- User clicks on window 1. Window 1 activates but the editing field is deactivated because the
floating palette, an active window, is still holding onto the keyboard focus.

The actions required by your application are as follows:

* When your application gets a doClickToFocus event, save the edited text on the window that has the active field
(the EditFldWindowNumber routine tells you which one it is). This must be done before you allow the focus to
move to the other window by calling ClickToFocus.

* Before a window is activated, check to see if the keyboard focus or active editing field is on a tool bar or floating
palette. If so, save the edited text on the window that is being activated before you activate it.

Alignment of Text in a Field

Each field can be either left aligned, right aligned, or centered. It cannot, however, be fully justified (i.e., margin to
margin). Each field can have its own font, font size, and font styling. Variations of font, size and style within a single
field are not possible. Static text fields can only be left aligned.

Fonts

All fields default to using the Chicago 12pt font. When a field is created, it can optionally adopt and remember the
window’s current font, size and style settings (as set by the TextFont, TextSize, and TextFace routines) by including
the teUseWFont option in the spec parameter. The window’s settings can then be changed without affecting the field.
Unlike regular fields, Tools Plus fields can each have a different font. You can use the GetFieldFontSettings and
SetFieldFontSettings routines to get and set the field’s font, size and style settings.

Colors

By default, a field is displayed using black text on a white background. You can change this by adding the
teColorText, teColorBack or teBackdrop constants to the field’s specification parameter when you create the field.
When doing so, the field stores the window’s foreground and background colors and displays its text using these
colors. After the field is created, you can change the window’s colors without affecting the field. The GetFieldColors
and SetFieldColors routines are used to set and retrieve a field’s text and background colors.

The Appearance Manager does not support the use of colors in static text fields (it supplies colors and patterns that are
consistent with the user-selected theme). Initializing Tools Plus with the initPure AppearanceManager option enforces
this principle by ignoring custom color information when the Appearance Manager is available.

Water’s Edge Software 239



Tools Plus

Disabled Fields

Individual fields can be disabled to prevent the user from making changes to those fields. This can be done by calling
the EnableField routine with a value of false. A disabled field cannot be activated by your application. The user can’t
tab to it, click in it, or otherwise change the disabled field’s contents. By default, a disabled field’s text and its
outlining box (if it has one) are grayed out, but you can override this appearance with the DisabledFieldLook and
SetDisabledFieldLook routines. You can also disable a field as it is being created by including the teDisabled constant
in the field’s specification.

Filtering Characters

Tools Plus supports field filters that act like gates to either allow or disallow specified characters into fields. The filter
affects any action that puts text into a field: typing, pasting from the Edit menu, and pasting under your application’s
control.

You create a new filter with the NewFieldFilter routine by specifying characters and the behavior characteristics you
want the filter to exhibit. By default, the filter is sensitive to case and diacritical marks, so if you specify only the
characters “ABCDE”, the filter will consider the characters “e” and “E” to be alien to the character set. You can
optionally override a filter’s sensitivity to case and/or diacritical marks. When you do this, NewFieldFilter expands the
set of characters you specify to account for the other implied characters. The table below illustrates this:

Specified Characters Option Filter’s Character Set | Comments
ABCDE (none) ABCDE Contains only the characters you specify
ABCDE ignore case ABCDEabcde Also includes upper and lower case equivalents
ABCDE ignore diacritical marks AAAAAAAB Also includes diacritical equivalents of the same
CCDEEEEE case
ABCDE ignore case and AAAAAAABCCDEEE | Also includes upper and lower case equivalents,
ignore diacritical marks | EEadafaaad’bccdeéeté | and diacritical equivalents

A filter can also optionally shift all characters to upper case or lower case letters, so a user typing “Smith” would see
“SMITH” appear in the field if the “shift to upper case” option is used. This is useful for entering postal codes or part
numbers where case uniformity is required.

Use NewFieldFilter to create a filter and to obtain a unique Filter Reference Number (1 through 32767) that is used to
reference the filter at a later time.

To make an editing field (or set of fields) adopt a specific filter, use the CurrentFieldFilter routine to specify a filter
before the field is created. Subsequently created fields that include the teFilter constant in their specification code
adopt the filter specified by CurrentFieldFilter. CurrentFieldFilter also specifies if the filter allows or disallows the
characters in its set. You can also assign filters on a field-by-field basis using SetFieldFilter.

If you want to prevent all characters from being typed into the field, consider creating the field with the teReadOnly
option which makes the field “read only,” thereby allowing the user to select the text and copy it, but not alter it.

Word Wrap

Word wrap occurs automatically in fields. When a word is too long to appear on the current line of a field, the entire
word is moved to the next line and scrolling is performed (if necessary) to ensure that the insertion point is visible. A
word is defined as any series of characters excluding the space (ASCII character 32) and carriage return (ASCII
character 13).

If a field’s height is less than or equal to its font’s height (font height can be determined by calling the GetFontInfo
routine and adding Ascent + Descent + Leading), and you disallow carriage return characters ($0D) in the field, the
field is deemed to be a “single line field.” Word wrap does not occur in single line fields. Instead, the field’s text
automatically scrolls to ensure that the selection always remains in view.

240



9 Editing Fields

User Interaction with Fields

An inactive field cannot be edited by the user. It must first be activated by clicking on the field or tabbing to it. Note,
however, that the contents of any field can be changed by your application by using the PasteIntoField routine.

An active field contains either an insertion point (a flashing caret) or a selection (one or more highlighted characters).
A selection of characters is made by extending (dragging the mouse inside a field) away from the insertion point. The
insertion point’s position becomes a fixed “anchor,” and the selection is lengthened by moving the “head” away from
the anchor, or shortened by moving it towards the anchor. Fields automatically scroll to insure that the selection
remains in view.

The following illustration demonstrates the head and anchor of a selection range.

Insertion Point Extending a Selection Range Shortening a Selection Range
| an illystration| | an iluJIEYion| |an inugIgtion|
1 po= T
Insertion Point Anchor Head Anchor Head
| a[lMstration| |anflistration|
<=1 = 1 1
Head Anchor Head  Anchor

When a field is active, all key-down and auto-key events are automatically intercepted and processed by the field.
Notable exceptions and features are listed below.

Note: Older keyboards, namely those found on the Macintosh 512KE and Macintosh Plus, have a “Backspace” key
instead of a “Delete” key. However, it performs the same function.

When the user types characters on the Mac’s keyboard and an editing field is active, Tools Plus automatically applies
those characters to the active field (just as you would expect). However, there are some keys on the keyboard that do
not produce characters in the field. Instead, they perform some function pertaining to the active field. Below, is a list of
those keys and the function they perform:

S Any 8-key sequence entered from the keyboard is first interpreted as a menu event. If it matches a
menu’s 88-key equivalent, the corresponding menu is highlighted and a doMenu event is generated.
88-key equivalents for Undo, Cut, Copy, and Paste in the Edit menu are processed automatically
without generating an event. If the key does not match a menu’s 88-key equivalent, a doKeyDown
or doAutoKey event is reported. The edited text and selection are not changed

Enter If an enabled default button exists, the Enter key is interpreted as a doButton event for the default
button. Otherwise, a doKeyDown or doAutoKey event is reported. The edited text and selection are
not changed.

Return If a window is open that contains an active editing field that accepts the Return key, the field
executes a carriage return (move insertion point to the next line). If the active field doesn’t accept a
Return key, the keystroke is ignored.
If a field is not active, and a default button exists on the active standard window, the Return
key is interpreted as a doButton event for the default button. Otherwise, a doKeyDown or
doAutoKey event is reported.

Tab The Tab key generates a doKeyDown or doAutoKey event and must be processed by your
application. The edited text and selection are not changed.

Delete If the Delete key is pressed at an insertion point, the character immediately to the left is erased
without being placed on the clipboard. Backspacing on a selection of characters erases the selection.

Water’s Edge Software 241



Tools Plus

Delete Forward

Home

End

Page Up

Page Down

Clear

Shift <

Option <

Option Shift <

Shift —

Option —

Option Shift —

242

If the Delete Forward key (available on extended keyboards) is pressed at an insertion point, the
character immediately to the right is erased without being placed on the clipboard. Deleting
Forward on a selection of characters erases the selection.

Scroll field vertically to top. Insertion point or selection is not altered. The field is not scrolled
horizontally.

Scroll field vertically to bottom. Insertion point or selection is not altered. The field is not scrolled
horizontally.

Scroll field up by one page (visible area less one line). Insertion point or selection is not altered.
The field is not scrolled horizontally.

Scroll field down by one page (visible area less one line). Insertion point or selection is not altered.
The field is not scrolled horizontally.

Clear the selected characters in the field without placing them on the clipboard. The clear key and
the Clear item in the Edit menu perform the same function.

When used at an insertion point, the caret is moved one character to the left. When used at a
selection range, the selection becomes an insertion point at the left side of the selection. The edited
text is not changed.

Lengthen or shorten the selection by one character (i.e., the range’s head is moved one character to
the left). The edited text is not changed.

Move the insertion point one word to the left. When used at an insertion point, the caret is moved
leftward to the beginning of a word. When used at a selection range, the selection becomes an
insertion point and moves leftward to the beginning of a word. The edited text is not changed.

Lengthen or shorten the selection range by one word. When used at an insertion point, a word is
selected by moving leftward to the beginning of a word, then the selection is extended by moving
the anchor rightward to the end of a single word. When used at a selection range, the selection is
first checked to ensure that it starts at the beginning of a word, and ends at the end of a word. If this
is the case, the selection range is lengthened or shortened by one word (i.e., the range’s head is
moved one word to the left). If the selection does not start at the beginning of a word and/or
terminate at the end of a word, a word is selected by moving leftward to the beginning of a word,
then the selection is extended by moving the anchor rightward to the end of a single word. In all
cases, the edited text is not changed.

Move the insertion point one character to the right. When used at an insertion point, the caret is
moved one character to the right. When used at a selection range, the selection becomes an insertion
point at the right side of the selection. The edited text is not changed.

Lengthen or shorten the selection by one character (i.e., the range’s head is moved one character to
the right). The edited text is not changed.

Move the insertion point one word to the right. When used at an insertion point, the caret is moved
rightward to the beginning of a word. When used at a selection range, the selection becomes an
insertion point and is moved rightward to the beginning of a word. The edited text is not changed.

Lengthen or shorten the selection range by one word. When used at an insertion point, a word is
selected by moving rightward to the beginning of a word, then the selection is extended by moving
the anchor leftward to the end of a single word. When used at a selection range, the selection is first
checked to ensure that it starts at the beginning of a word, and terminates at the end of a word. If
this is the case, the selection range is lengthened or shortened by one word (i.e., the range’s head is
moved one word to the right). If the selection does not begin at the beginning of a word and/or
terminate at the end of a word, a word is selected by moving rightward to the beginning of a word,
then the selection is extended by moving the anchor leftward to the end of a single word. In all
cases, the edited text is not changed.



9 Editing Fields

1 Move the insertion point up one line. When used at an insertion point, the caret is moved up one
or Option 1 line. When used at a selection range, the selection becomes an insertion point at the left side of the
P selection. Nothing happens if the insertion point is on the field’s first line. The edited text is not
changed.
Shift 1 Lengthen or shorten the selection by one line (i.e., the range’s head is moved up one line). The

or Shift Option 1 edited text is not changed.

l Move the insertion point down one line. When used at an insertion point, the caret moves down one
or Option | line. When used at a selection range, the selection becomes an insertion point at the right side of the
P selection. Nothing happens if the insertion point is on the field’s last line. The edited text is not

changed.
Shift | Lengthen or shorten the selection by one line (i.e., the range’s head is moved down one line). The

or Shift Option | edited text is not changed.

Clicking Clicking in an active field deselects the current selection and places an insertion point where the
or Click/Drag mouse was clicked. If the mouse button is held down, the insertion point may be dragged to form a
selection range. The field’s text scrolls automatically to keep the selection in view.

If a click occurs in an inactive field, a doClickToFocus event is reported. Your application
should then respond by validating the active field’s text (GetEditString or GetEditHandle routine),
then saving the field’s edited text by using the SaveFieldString routine. Then, by calling the
ClickToFocus routine, the click is processed as previously described.

Double-Clicking Double-clicking in an active field deselects the current selection and selects the word that was
or clicked. If the mouse button is held down, the selection range may be dragged to extend or shorten
Double Click/Drag the range by one word. The field’s text scrolls automatically to keep the selection in view.
If a double-click occurs in an inactive field, a doClickToFocus event is generated. Your
application should then respond by validating the active field’s text (GetEditString or
GetEditHandle routine), then saving the field’s edited text by using the SaveFieldString routine.
Then, by calling the ClickToFocus routine, the double-click is processed as previously described.

Mac 512KE and Mac Plus keyboard with numeric pad

In order to provide the Shift-Arrow combinations as previously described, Tools Plus must discern an Arrow key from
a Shift-Arrow key. This causes a slight problem on Macintosh 512KE and Macintosh Plus keyboards. Shift-<, for
example, produces the same key code as the “+” on the numeric pad. A problem arises when Tools Plus cannot discern
between a Shift-<- and a “+” key on the numeric pad.

It is for this reason that the =, /, *, and + keys on the numeric pad are treated as Shift-|, Shift-1, Shift-—, and Shift-<
respectively. This occurs only in an active field on a Macintosh 512KE and Macintosh Plus.

The Edit Menu

If a second menu exists, it must be called “Edit” and must contain “Undo”, “Cut”, “Copy”, “Paste” and “Clear” as the
first five items in the listed order. A dividing line must exist between “Undo” and “Cut”. See the chapter on Menus for
more details.

When a field is active in a window that allows access to pull-down menus, the Edit menu’s “Undo”, “Cut”, “Copy”,
“Paste”, and “Clear” items automatically affect the active field in the following manner:

Undo Undo is disabled when a field is activated or deactivated. It is enabled and changed to “Undo Cut,” “Undo
Copy” and “Undo Paste” when the respective menus are selected, and changed to “Undo Typing” when keys
are typed or the Delete key is used at an insertion point.

Selecting “Undo fask” performs all the necessary operations that are required to undo the previous
operation, and changes the item to “Redo fask.” Selecting “Redo fask” restores the field to a state before
“Undo task” was used. Undoing and Redoing also remembers insertion point positions and selection ranges.

Cut Cut deletes the selected text from the field and places it on the Clipboard. This item is disabled when a field is
deactivated or when an insertion point exists in an active field (i.e., a selection range has not been made).

Water’s Edge Software 243



Tools Plus

Copy Copy takes a copy of the selected text and places it on the Clipboard without changing the field. Copy is
disabled when a field is deactivated or when an insertion point exists in an active field (i.e., a selection range
has not been made).

Paste At an insertion point, Paste inserts a copy of the Clipboard’s text. At a selection range, Paste replaces the

selected characters with the Clipboard’s text. The Clipboard’s contents are not changed.

In a length limited field, the Clipboard’s text is pasted a character at a time (although very quickly) until
all the Clipboard’s text has been pasted, or the field is full (whichever comes first).

Paste does not paste Carriage Returns into fields where they are disallowed.

Paste is disabled when a field is deactivated or when no text exists on the Clipboard. Paste is also disabled
if a field has been length limited and the insertion point is in a field that has reached its limit of characters
(i.e., a full field).

Clear Clear is disabled when a field is deactivated or when an insertion point exists in an active field (i.e., a
selection range has not been made). Clear deletes the selected characters in the field without placing them on
the clipboard. The clear key and the Clear item in the Edit menu perform the same function.

Select Al The “Select All...” item is optional, but frequently used in applications. It selects all the text in the active
field.

ﬁn Note: See the Multiple Languages chapter for changing the text that appears in the Edit menu’s Undo item. Tools
Plus supports multiple languages, and you can replace the English text with equivalent words of your own.

Large Fields and Buffers

Tools Plus is designed to be quick and to make efficient use of memory. One of the methods it uses to accomplish this
is to create only one TextEdit record for each window, regardless of the number of fields the window has. (A TextEdit
record is a mechanism used by the Macintosh toolbox to display the contents of a field and to allow its text to be
edited.) This strategy saves at least 70 bytes per field as compared to having a TextEdit record for each field. A
negative side effect is that there is a performance penalty when activating a field or when an inactive field is refreshed.
This effect is inperceivable when working with fields containing small amounts of text, however it becomes quite
annoying when working with fields that hold larger amounts.

As an option, you can create a Tools Plus field with its own TextEdit record by adding the teBuffered option to the
field’s specification. When you do this, Tools Plus creates and maintains a TextEdit record for the field thereby giving
it maximum performance at all times. This is called a buffered field. The price you pay for this additional performance
is that more memory is required for fields using this option: an additional 96 bytes + 2 bytes per line of text in the
field.

You should consider using a buffered field under any of the following conditions:
* field’s string is over 1K and your application is expected to run on a Mac Plus
* you need excellent response on a mid-powered Mac (25 MHz ‘040) and the field’s string is over 4K
* you need acceptable response on a mid-powered Mac and the field’s string is over 8K

Fields with Scroll Bars

Tools Plus’s fields can optionally have a vertical and/or horizontal scroll bar (except single-line fields which cannot
have any). The field’s text and its scroll bars are kept synchronized at all times: changing the text or moving through it
updates the scroll bars, and moving the scroll bars scrolls the field’s text.

To add a vertical scroll bar along the right side of your editing field, add the teVScroll option to the field’s
specification. The vertical scroll bar typically runs along the field’s right side, so for the best visual results, make sure
your field is at least 50 pixels high so that you can see the scroll bar’s up arrow, down arrow and thumb. The top of the
scroll bar can be brought down in 15 pixel increments by adding the teV ScrollDown option. This lets you place picture
buttons or other user interface elements just above the vertical scroll bar. The bottom of the scroll bar is brought up
automatically to accommodate a window’s grow box if necessary.

244



9 Editing Fields

[
[

A vertical scroll is placed just outside the field’s
right edge by adding teVScroll to the field
specification. Use NewWideField to create a field
with a horizontal scroll bar.

el

=

<

To add a horizontal scroll bar along the bottom edge of the field, use the NewWideField routine. It requires one
additional parameter that specifies how wide the area containing the text is (the width at which word wrapping takes
place, referred to as the destination rectangle in Inside Macintosh). The left side of the scroll bar can be moved to the
right in 15 pixel increments by adding the teHScrollRight option. This lets you place picture buttons or other user
interface elements just below the bottom left corner of the field. The right side of the scroll bar is automatically moved
left to accommodate a window’s grow box if necessary.

El

Big Fieldl S=——— EC)
1|

Big Field

ol

‘When placing a field against a window’s right or
bottom edge, Tools Plus automatically makes
room for the grow box (if the window has one) by
shortening the scroll bars.

[l

L
W

Big Field =

Big Field

Scroll bars can be pushed away from the left and
top of the field to make room for other user
interface elements by adding teHScrollRight or
teVScrollDown constants to the field’s

o) specification.

[c[@ 1205 Chars |G [

Bl

]
€] [

=

Normally when the user drags the scroll bar’s thumb, an outline of the thumb tracks the cursor then when the user
releases the mouse button, the scroll bar’s thumb and the related text snap to the new position. A useful feature that is
not a Macintosh standard is live scrolling. If you add the teLiveScroll option to the field’s specification, the text is
scrolled in real time when the user drags a scroll bar’s thumb. If you use live scrolling in your fields, you should do so
with all fields to give your interface a consistent feel.

Memory Management

This section describes how Tools Plus manages memory in relation to editing fields and the clipboard. If your
application uses large fields (1K to 32K), this section will help you understand how Tools Plus is protecting your
application in low memory situations, and how a “tiny” application can suddenly become “memory hungry.” It is also
a good idea to understand how much memory Tools Plus expects or will consume in certain situations so that you can
write your application appropriately in anticipation of this.

Tools Plus automatically maintains all the “memory objects” (data) related to your editing fields and the clipboard.
Even though you may not immediately realize it, in a worse-case scenario a single 32K editing field can consume over
128K of your application’s memory, even if only on a temporary basis. If you are not aware of this or your application
is not prepared for a sudden consumption of memory, Tools Plus will do various things to protect your application
from behaving ungracefully or from getting dangerously low on memory. Details are provided later in this section.

The following is a list of “memory objects” maintained by Tools Plus and details on zow they are maintained.
Throughout this section, references to memory refer to your application’s heap and not the stack. If you don’t know
what a heap or stack is, it is sufficient to say that it means the section of Macintosh memory that is reserved by (and
exclusively for) your application while it is running.

Desk Scrap

The desk (or System) scrap is equivalent to what users call the Clipboard. It is used to transfer text, images, or other
kinds of data between applications and desk accessories. The desk scrap can contain multiple “versions” of data: a
paragraph represented as plain text, and a copy of the paragraph represented as text formatted by its originating word
processor. Nearly all applications include a “plain text” version of the text they are cutting or copying to the clipboard
(they’re all supposed to), and Tools Plus accesses only the plain text ignoring other kinds of data.

Water’s Edge Software 245



Tools Plus

When you launch your application, the desk scrap normally shares your application’s memory. During the launch, if
the desk scrap is bigger than half your application’s memory, the Macintosh toolbox automatically unloads the desk
scrap to disk so that it does not occupy any application memory. Finally, InitToolsPlus (Tools Plus initialization)
unloads the desk scrap to disk if there is less that 90K of free memory just before Tools Plus libraries are initialized
(although you can override this default).

It is important to remember that the desk scrap can potentially occupy up to half your application’s memory at startup.
This can also happen while your application is running if you switch to a word processor and copy a large selection of
text to the clipboard. That copied text can potentially consume all your free application memory.

Whenever any application cuts or copies anything, it ends up in the desk scrap, possibly with multiple copies in
different formats. When your application cuts or copies text from an editing field, it too ends up in the desk scrap but
only as plain text. When you paste text in a Tools Plus editing field, the plain text is copied from the desk scrap to your
editing field.

TextEdit Scrap

The TextEdit scrap is a local copy of the desk scrap. It contains only text data ignoring images and other kinds of data.
TextEdit scrap is necessary only if your application uses editing fields that are not created by Tools Plus. The TextEdit
scrap always has a “plain text” copy of the text in the desk scrap. Having a TextEdit scrap can consume up to 32K of
memory. By default, Tools Plus does not create or maintain a TextEdit scrap although you can override this default at
initialization in the InitToolsPlus routine.

The size of the TextEdit scrap will not grow beyond the “buffer size” you specify when initializing Tools Plus (in the
InitToolsPlus routine).

Scrap “Undo” Text

Tools Plus automatically lets you undo and redo edits in an editing field. The undo/redo services also let you undo a
copy or cut, which obviously put new text in the scrap (Clipboard). Just before you cut or copy text from a Tools Plus
editing field, a copy of the clipboard’s text is automatically made which can consume up to 32K of memory. Undo
Cut, Redo Cut, Undo Copy and Redo Copy automatically swap the text that is currently on the clipboard with the
“scrap ‘undo’ text.”

The size of the “scrap ‘undo’ text” will not grow beyond the “buffer size” you specify when initializing Tools Plus (in
the InitToolsPlus routine).

Field’s String

The field’s string is a Pascal string or C string that is referenced by a handle. It contains the field’s permanent text (not
the text being edited by the user), and usually does not change its size. You may optionally decide to have the handle
automatically resize to accommodate the text it contains (“dynamic handles” option when creating a field). This saves
memory overall, but may introduce additional risk by suddenly consuming additional memory when you save your
field’s edited text using the SaveFieldString routine.

The size of the field’s string handle will not grow if you have not specified that you are using dynamic handles in
editing fields. If you are using a dynamic handle, it will not grow beyond its own maximum size (the size is was
initialized to).

Field’s Edited Text

The field’s edited text is the text being edited by the user when the field is active. Each window can have one active
field, and can therefore consume up to 32K of memory (per field) as the user types or pastes text into the field. When
you deactivate a field (using DeactivateField or TabToFocus, or by closing the parent window), the edited text is
destroyed and its memory is released.

Edited text can consume up to 32K of memory per active field. You can reduce this amount by using length limited
fields which allow a user to type a certain number of characters into a field. Additional characters are not accepted
when the field is full, and the user is beeped when they try to type more characters.

246



9 Editing Fields

Edited “Undo” Text

Tools Plus automatically lets you undo and redo edits in an editing field. Just before any change is made in a field (cut,
paste, clear, typing, backspace, or delete forward), a copy if the field’s edited text is automatically made. This copy can
consume up to 32K of memory. Undo/redo automatically swap the field’s edited text with the “edited ‘undo’ text.”

The size of the “edited ‘undo’ text” will not grow beyond the “buffer size” you specify when initializing Tools Plus (in
the InitToolsPlus routine). Also, it won’t exceed the number of characters of edited text in the field.

”Low Memory” Protection

When it comes to editing fields, Tools Plus automatically protects your application from running out of memory and
from getting into situations where memory is dangerously low. Your application can define several memory thresholds
that trigger certain actions:

* Low memory for editing: If the largest piece of continuous memory is smaller than this specified value after the
Undo/Redo services have been set up, the user is warned with a message stating “Low memory... Continue
without ‘Undo/Redo’?” A “Continue” button lets the user continue without the Undo/Redo services being set up
(i.e., the Edit menu’s “Undo...” item is disabled and set to “Can’t Undo”). A “Cancel” button lets the user cancel
the editing operation without making any changes. See the SetTENoUndoThresh routine to set this value.

* No memory for editing: If there is not enough memory to set up the Undo/Redo services and the largest piece of
continuous memory is smaller than this specified value after the edit is performed (such as a paste or typing), the
user is warned with a message stating “WARNING... Not enough memory for this operation.” A “Cancel” button
lets the user cancel the editing operation without making any changes. See the SetTENoEditThresh routine to set
this value.

* Low memory while typing: If the largest piece of continuous memory is smaller than this specified value after the
user types a character, the user is warned with a message stating “WARNING... Low memory!” An “OK” button
lets the user proceed. This message is displayed every 90 seconds as long as the user continues to type while
memory is low. See the SetTELowMemThresh routine to set this value

All these thresholds are set to reasonable default values when Tools Plus is initialized, so your application benefits
from low-memory protection without you having to explicitly do anything. You can change the messages displayed by
Tools Plus as described in the Multiple Languages chapter.

Tips for Conserving Memory

(1) Use UnloadScrap at the beginning of your application to store the desk scrap on the disk. This can be done as part
of initialization by InitToolsPlus. Remember to use LoadScrap just before you quit your application.

(2) Don’t use a TextEdit scrap. This is done as part of initialization by InitToolsPlus.

(3) Limit copy, paste, undo/redo to less than 32K. This is done as part of initialization by InitToolsPlus. If your
largest field is only 400 characters, why be able to cut, copy, paste or undo/redo more than that?

(4) Length limit your fields to prevent the user from being able to type or paste a full 32K into a field.

(5) If you don’t use dynamic handles (declared when creating a field), you won’t have to worry about the field’s
string suddenly growing. However, you can save memory overall by using dynamic handles in your fields.

Handling Fields

Once a field is activated, Tools Plus performs all the editing required within the field. When a window in inactive,
Tools Plus deselects the text in the active field on that window and hides the insertion point. When the window is
activated again, the active field regains its original state.

Tools Plus constantly inquires about any events that have occurred, including typing in fields. It also maintains the
enabled/disabled status for the Edit menu’s Undo, Cut, Copy, Paste, and Clear items. The active field is automatically
affected if the user selects the Edit Menu’s Undo, Cut, Copy, Paste, or Clear command. Command key equivalents for
these items have the same effect.

If you did not use the initAutoFocusChanges option when initializing Tools Plus, many types of events may indicate
that the user has completed using the field. For example, a doKeyDown event may report that Tab or Return was
pressed, indicating the user wishes to advance to the next field. The doClickToFocus event may indicate that the user

Water’s Edge Software 247



Tools Plus

has clicked on an inactive field, or the doMenu event may indicate that the user wants to quit your application. In these
cases, you will likely want to validate the active field’s edited text before accepting it as the field’s string. A copy of
the field’s edited text can be obtained by GetEditString or GetEditHandle. If your application determines that the
edited text is invalid, display an appropriate alert box and ignore the event. If no error is detected, call the
SaveFieldString routine to save the edited text as the field’s string, then process the event.

If your application needs to monitor changes as they occur in an editing field, it can do so by responding to the
doChglnField event. An example of this is disabling a “save” button when a field is empty.

See the Event Management chapter for details.

Special Handling of Fields

Some applications may find it necessary to reposition a field. An example of this occurs in an application that has a
matrix of fields aligned as cells: 3 columns across and 10 lines down. If your application needs to “scroll” this block of
fields, it is necessary to change the position of existing fields. This can be done by using the OffsetField routine.

Another unusual circumstance occurs if your application needs to paste text into a field under your application’s
control. For example, your application may choose to insert a commonly used word or phrase into a field when the
user selects a menu item or a specific command key. The PasteIntoField routine allows text to be pasted directly into a
field.

If your application sets other user interface elements depending on a field’s contents (i.e., disabling a “Save” button if
a field is empty), then you can use the doChgInField event which is reported whenever the active field’s contents are
changed. See the Event Management chapter for details.

Appearance Manager and Keyboard Focus

Before the Appearance Manager’s arrival, the only user interface element that could process keystrokes was an editing
field. With the Appearance Manager present, a variety of user interface elements can process keystrokes, such as
editing fields, list boxes and the clock control. Keystrokes are directed at only one user interface element at a time (and
possibly at no element at all). When a user interface element processes keystrokes in such a way, it is said to have the
“keyboard focus.” Only one user interface element can have the keyboard focus at a time, and it is visually indicated
with a highlighted “band” around the object. Tools Plus takes care of the focus highlight, and of applying keystrokes to
the element that has the keyboard focus.

The process of moving the keyboard focus between objects, either by tabbing or clicking, is identical to that of
navigating between editing fields. For details, see the “Clicking and Tabbing” section in this chapter.

Appearance Manager Controls

The Appearance Manager, first introduced in mid 1997 with Mac OS 8, gives your application a number of 3D
controls including editing fields with a 3D box around them, and static text controls. All the new Appearance Manager
controls are implemented as CDEFs, but unlike third party CDEF resources that must be installed in your application
when it is built, the Appearance Manager’s edit text and static text control is available to your application without
having to install them. They are available from the system, just like regular system controls, if the Macintosh running
your application has an Appearance Manager.

If you want to use the Appearance Manager’s edit text control or static text control, you need to make your application
“Appearance Manager aware.” 680x0 applications are automatically Appearance Manager aware. To make your
PowerPC application Appearance Manager aware, see the Designing Your Application chapter of this manual for
details in the “Using the Appearance Manager” section.

See the chapters on Buttons, Scroll Bars, List Boxes and Pop-Up Menus in this user manual for additional Appearance
Manager controls.

248



9 Editing Fields

ﬁ{) Note: For complete information on Appearance Manager concepts, the Appearance Manager’s features, and how to
best use the Appearance Manager’s new controls, please read the documentation pertaining to the Appearance
Manager. It is available from Apple or in the latest issue of Inside Macintosh. This manual does not duplicate
that material.

Edit Text (CDEF 17)

The Edit Text control is implemented as a Tools Plus editing field, so you can use the same
Tools Plus routines to create and work with standard TextEdit fields or with the Appearance
Manager’s Edit Text controls. Edit Text control

The Appearance Manager’s Edit Text controls do not support some of features that are part of
Tools Plus. This is due to the limitations of the Appearance Manager.
* Scroll bars cannot be attached to the field
* Tools Plus’s “smart scrolling” (text scrolling that accelerates as you drag the mouse further
out of the editing field)
¢ The following cursor control keys do nothing: Home, End, Page Up and Page Down
* A field’s text is always reset to the top when the field is deactivated
e Word-wrap is always on. This is most noticeable in 1-line fields that are not length limited
because as the text wraps, all the user sees in the caret at the left of an empty field. The
user is in fact on the second line of the field, but he cannot see the first line of text so it
may appear that the text disappeared. This is standard behavior for editing fields, but in
Tools Plus’s fields that don’t use the Appearance Manager’s Edit Text control, text only
scrolls horizontally without word wrap.

CONST
kControlEditTextProc = 272; {Edit Text ProcID }

Static Text (CDEF 18)

The Static Text control can be implemented as a non-selectable button (see the Buttons static Texnt
chapter), or as a special kind of field called a static text field. You can use static text controls in Enabled
place of standard static text items in dialogs. The advantage this provides is that the text looks

disabled on an inactive window (it is dimmed) and you can easily manipulate the text as you Disabled
would any other control, such as hiding and showing the control. The user cannot interact with

this control.

CONST
kControlStaticTextProc = 288; {Static Text ProcID }

Creating a Field Using a ‘CNTL’ Resource

Tools Plus offers considerable versatility in the way it supports the creation of editable fields and static fields from
‘CNTL’ resources. These features are most often used when opening a dialog (‘DLOG’ resource) that contains fields
or static text items. In all cases, the ‘CNTL’ resource specifies a CDEF ID of 17 which produces a procID of 272 plus
any variants for an editable field, or a CDEF ID of 18 which produces a procID of 288 plus any variants for a static
text field. When you open a dialog, ‘CNTL’ resources that reference these CDEF IDs (the edit text or static text
control) create a Tools Plus field. The translation from a ‘CNTL’ resource to a Tools Plus field takes place as follows:

* Tools Plus starts by assuming that you want to use the Appearance Manager’s edit text control (CDEF 17) or
static text control (CDEF 18) and it attempts to create the control.

* If the Appearance Manager is not available, a regular TextEdit field is created. You can use the same Tools Plus
routines to access standard TextEdit fields as you would an edit text or static text control.

Water’s Edge Software 249



H

H

Tools Plus

* The field is created using a default appearance and behavior specification. You can change this default value using
the SetDialogEditTextSpec and SetDialogStaticTextSpec routines.

* To set the appearance and behavior specifications for a field, place the specification’s value in the ‘CNTL’
resource’s contrlRfCon field, the reference constant. A list of possible values can be found in the NewField
description.

Flag your ‘CNTL’ resources as purgeable to save memory. Tools Plus makes a copy of their data.

NewStrHandle

Allocate memory for a string and initialize it to an empty string.
pascal StringHandle NewStrHandle (short StringLen);
function NewStrHandle (StringLen: INTEGER): StringHandle;

StringLen is the size of the string being allocated, from 1 to 32767 characters. Although a Pascal string (Str255) can
contain a maximum of 255 characters, Pascal applications can still reference the larger 32K structure as a large block
of text. NewStrHandle automatically allocates one additional byte to account for a Pascal string’s length byte or a C
string’s null terminator.

The routine’s value returns a handle to a string of the specified length. It is initialized to an empty string (‘), thus
making is ready for immediate use with the NewField or NewFieldRect routines.

When you are finished using this handle, you can deallocate it using the toolbox’s DisposeHandle routine. Be careful
not to deallocate this handle after you assign it to a field unless the field is deleted first.

Warning: When allocating a Pascal string handle, make sure you do not use a value that is greater than 255 (Pascal’s
maximum string size). If you do, NewField will reject the handle and tell you that you have given it an
invalid parameter.

NewField

Create a new field. The new field is not activated.

pascal void NewField (short Field, short left, short top, short right,
short bottom, Handle hStr, long Spec, short Just);

procedure NewField (Field, left, top, right, bottom: INTEGER;
hStr: HANDLE; Spec: LONGINT; Just: INTEGER);

Field specifies the field number (from 1 to 32767, or 1 to 511 when using the Appearance Manager’s Edit Text control
or Static Text control) that is created in the current window. Once a field is created, it is referenced by this field
number. If a field has been previously created in the current window using the same number, it is replaced with a new
field as specified by the parameters in the NewField routine. If the current window doesn’t belong to your application,
or if no windows are open, NewField does nothing.

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the field’s size and location in the
current window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom
right-hand corner (right,bottom). The field must be wide enough for at least 1 character (minimum of 5 pixels). The
height of the field should be the same as a font’s height (font height can be determined by calling the GetFontInfo
routine and adding Ascent + Descent + Leading). In multiple-line fields, the height should be in increments of the font
height. If top and bottom are the same, NewField calculates the line height for you and creates a field that is one line
high. If bottom is less that top, NewField takes the absolute value of bottom and creates a field that is that many lines

250



9 Editing Fields

high (i.e., if top is 30 and bottom is -4, a four line field is created starting downward at the top co-ordinate).

You can align the field’s edge to a window’s edge by using the teLeftEdge, teTopEdge, teRightEdge or teBottomEdge
constants. Tools Plus calculates the field’s co-ordinates correctly regardless if your field has scroll bars or not.

HStr is a handle that points to a Pascal string or a C string. It provides this editing field with a reference to its
associated text. You must either allocate memory for this handle and set it to a default string value before using it here,
or specify nil and let NewField allocate the string for you. Using the NewStrHandle routine is a good way to allocate
and initialize a string handle of a required size. When you specify nil, NewField allocates a handle to a 255 character
string structure and initializes it to zero characters. NewField can automatically allocate a 32767 character C string if
you include the teCstring and teBuffered options (high speed buffering). An automatically allocated string is
automatically deallocated when the field is deleted or when its parent window is closed. If you must lock this handle,
do so temporarily and make sure it is unlocked before calling any Tools Plus routines.

Spec specifies the appearance and behavior of the editing field. See “Appearance and Behavior Specification” for
details later in this section.

Just specifies if a field is left aligned, right aligned, or centered. The constants teJustLeft, teJustRight or teJustCenter
can be used.

Appearance and Behavior Specification

Spec specifies a field’s appearance and behavior. The value for this 4-byte long integer can be specified by adding a set
of constants to obtain the desired result. The constants defining the available options are as follows:

Optionally choose any of the following options...

teSystemBody Create the field using the Appearance Manager’s edit text control or static text
control. If the Appearance Manager is not available, a regular TextEdit field is
created. When you create a field with this option, the text and optional box are
dimmed when the field is on an inactive window. Note: Only fields that are
implemented as a control can be embedded into other controls.

teStaticText Create the field as a static text field. This option is used to create display-only
fields that do not have a box around them. They look just like ordinary text does
on a window, except static text fields are automatically refreshed and your
application can change their text as required.

teReadOnly This option prevents the user from editing the field in any way (typing, Edit
menu, etc.) If the field is editable and enabled, the user can select text in the
field and copy it only.

teUseWFont Display the field using the window’s current font, size and style settings (as set

by the TextFont, TextSize, and TextFace routines). The field stores this
information for future reference. By default, fields are drawn using the system
font (Chicago, 12 pt).

teDimWhenInactive Dim the field as though it is disabled when it is displayed on an inactive
window. This option is automatically turned on when the teSystemBody option
is used.

teAllowCR Allow carriage return characters (Return) in the field. By default, carriage

returns are disallowed and are ignored while a user is typing in a field.

teNoCR Disallow carriage return characters (Return) in the field. This is the default and it
does not need to be explicitly included.

teBox A 1-pixel wide box is drawn around the field as a rectangle that is exactly 3
pixels larger than the coordinates specified by left, top, right and bottom. This is
the default and it does not need to be explicitly included.

Water’s Edge Software 251



Tools Plus

252

teNoBox

teLengthLimit

teResizeHdl

teFilter

teCstring

teDisabled

teAutoMoveSize

teHidden

teBuffered

teNoResetOnDeactivate

teVScroll

teLiveScroll

A box is not drawn around the field. One reason you may decide not to have a
box drawn around your field is to accommodate many small fields that are laid
out as a grid to resemble a spreadsheet.

The user is prevented from typing more characters than the field’s maximum
string length. By default, the user can type up to 32767 characters in a field. All
fields can be length limited by using FieldLengthLimit(on) immediately after
Tools Plus initialization.

Automatically resize the field’s text handle to accommodate the exact amount of
text stored in it. By default, the handle’s size is not changed by Tools Plus.
When using this option, the handle’s size may shrink, but it will not grow larger
than the originally supplied handle size. If you specify nil in place of a string
handle (thereby indicating that NewField should allocate the handle for you), a
Pascal string handle may grow up to 255 characters while a C string handle may
grow up to 32767 characters.

This option saves memory but introduces additional risk because memory
consumption becomes more dynamic.

Apply the current field filter to this field (the current filter is specified by the
CurrentFilter routine). The field remembers the current filter. Whenever the user
types or pastes into the field, that filter is used to allow or disallow a specific
character set and/or to convert characters to upper or lower case letters. See
NewFieldFilter and CurrentFilter for details on creating and setting a filter.

The hStr handle points to a null-terminated C string. By default, NewField
expects the handle to point to a Pascal string which is prefixed by a length byte.

The field is disabled. By default, a new field is enabled.

Automatically move and/or resize the field and its scroll bars when the
window’s size changes. The AutoMoveSize routine lets you specify which sides
are altered. You can use the AutoMoveSizeField routine as an alternative to
setting this option.

Create a hidden field. This kind of field is accessible to your application but not
to the user.

Increase the field’s performance by assigning a TextEdit record to this field.
This requires more memory but speeds up activating the field and refreshing it
when it is inactive. Not needed for fields storing less that 1K.

Note: If the field’s text handle was automatically allocated (by specifying nil as
a string handle) Tools Plus does not allocate a Pascal or C string. It
allocates a generic text handle that is the exact length of the text. It is not
prefixed with a Pascal-styled length byte or null-terminated like a C
string.

By default, a field scrolls to the top left (or right if it’s right aligned) when it is
deactivated. Use this option to leave the field as the user leaves it when the field
is deactivated (i.e., when tabbing to another field, when the user clicks in
another field, or when the application activates another field).

Include a vertical scroll bar for this field. By default, fields do not have scroll
bars. The scroll bar is created outside the field’s co-ordinates.

Scroll the field’s text in real time as the user moves the scroll bar’s thumb. This
is not a Macintosh user interface standard. By default, an outline tracks the
mouse as the user drags the scroll bar’s thumb. When the user releases the
mouse button, the scroll bar’s thumb and the field’s text snap to their new
position.



9 Editing Fields

Optionally choose only one of the following text selection options...

teTabSelectAll

teTabSelectEnd
teTabSelectStart

Select the entire field’s text when tabbing into this field. This is the default and it
does not need to be explicitly included.

Place an insertion point at the end of the field’s text when tabbing into this field.

Place an insertion point at the beginning of the field’s text when tabbing into this
field.

Optionally choose only one of the following vertical scroll bar offset options...

teVScrollDownl5
teVScrollDown30
teVScrollDownd45
|
teVScrollDownl95
teVScrollDown210
teVScrollDown225

Bring the top of the vertical (right) scroll bar down by multiple of 15 pixels to
allow additional user interface elements to be placed above the scroll bar.
Normally, the vertical scroll bar extends to the top of field.

1=l

No offset j With teVScrollDown15 offset
%

<

Optionally choose only one of the following background options...

teWhiteBack

teBackdrop
teColorBack

The field’s background is white. This is the default and it does not need to be
explicitly included.

The field’s background is the same color as the window’s backdrop color.

The field remembers the window’s background color and uses it as the field’s
background color. If Color QuickDraw is unavailable (or unused), the
background is white.

Optionally choose only one of the following text color options...

teBlackText
teColorText

Single Line Fields

Text is black. This is the default, so omitting all options implies using this one.

The field remembers the window’s foreground color and uses it as the field’s
text color. If Color QuickDraw is unavailable (or unused), the text is black.

Tools Plus lets you create single line editing fields in which word wrap does not occur. Instead, characters are
automatically scrolled horizontally along a single line. To create a single line field, set the field’s height equal to its
font’s height (font height can be determined by calling the GetFontInfo routine and adding Ascent + Descent +
Leading). You can also accomplish this by specifying a bottom co-ordinate that is the same as the top and letting
NewgField calculate the exact line height. You must also specify carriage returns are disallowed in the field.

Also see: NewFieldRect and NewDialogField
FieldLengthLimit to limit the length of editable text
EnableField to enable or disable a field
NewFieldFilter, CurrentFieldFilter and SetFieldFilter to utilize character filtering and or/case shifting
NewWideField and NewWideFieldRect for fields with a horizontal scroll bar

,@D Note: The numeric range for the field number (1 through 32767) for each window is a theoretical limit. Your actual
limit will be determined by the amount of available memory and your processor’s speed. Even though the
Macintosh running your application may have enough memory, a large number of fields can slow down
operations that access fields such as tabbing between fields and activating fields. This is only a concern with a
very large number of fields since even the slowest Macintosh can easily handle a few hundred fields in a single

window.

Water’s Edge Software

253



Tools Plus

,@D Note: Tools Plus makes no attempt to control the placement of fields or to protect them once they have been created.
It is your responsibility to ensure that fields are a sufficient size (at least 1 character wide and high), and that
their placement within the window is reasonable and does not conflict with other objects. Furthermore, you
should not allow your application’s text and drawing processes to interfere with fields. Windows with a “size
box” should not allow fields to be obscured or hidden by making the window too small.

3> Warning: Your application must allocate memory for each handle that it provides to NewField by using the
NewHandle routine. Tools Plus does not automatically allocate this memory. If your editing fields contain
random characters, it is a sure sign that you have not allocated memory for your handle.

CONST {Behavior and Appearance Options: }
{Field co-ordinates: }

teLeftEdge =-32768; { Window's left edge }
teTopEdge =-32768; { Window's top edge }
teRightEdge = 32767; { Window's right edge }
teBottomEdge = 32767; { Window's bottom edge }
{Carriage Returns and Box: }

teAllowCR = $00000100; { Allow Carriage Return in text }
teNoCR = $00000000; { Disallow Carriage Return in text }
teBox = $00000000; { Draw box around field }
teNoBox = $00000200; { Don't draw box around field }
{Combined Box and/or CR constants: }

teBoxNoCR = teBox + teNoCR; { Box around field, no CR allowed }
teBoxCR = teBox + teAllowCR; { Box around field, CR allowed }
teNoBoxNoCR = teNoBox + teNoCR; { No box, no CR allowed }
teNoBoxCR = teNoBox + teAllowCR; { No box, CR allowed }
{Other Options: }

teSystemBody = $00000020; {Use Appearance Manager Edit Text control }
teStaticText = $00000040; {Create 'Static Text' field }
teReadOnly = $00000080; {Field cannot be edited by user }
teDimWhenInactive = $00000004; {Dim when field is on an inactive window }
teUseWFont = $00000008; {Use window's font }
teLengthLimit = $00000400; { Limit typing to field's length }
teResizeHdl = $00000800; { Resize text handle to save memory }
teFilter = $00001000; { Use current field filter }
teCstring = $00002000; { C string text format (32K max) }
teDisabled = $00004000; { Field is disabled }
teHidden = $00008000; { Create a hidden field }
teBuffered = $00040000; { Accelerate large field with buffer }
teAutoMoveSize = $00080000; { Auto-resize as window's size changes }
teNoResetOnDeactivate = $00100000; { Retain scrolling on deactivate }
teLiveScroll = $00200000; { Live scrolling using scroll bars }
teVScroll = $00400000; { Field has a vertical scroll bar }
{Default selection on activation: }

teTabSelectEnd = $00010000; { Insertion point at end }
teTabSelectStart = $00020000; { 1Insertion point at start }
teTabSelectAll = $00000000; { Select all text }
{Move top of vertical scroll bar down by: }

tevVScrollDownl5 = $01000000; { 15 pixels }
teVScrollDown30 = $02000000; { 30 pixels }
teVScrollDown45 = $03000000; { 45 pixels }
teVScrollDown60 = $04000000; { 60 pixels }
teVScrollDown75 = $05000000; { 75 pixels }
teVScrollDown90 = $06000000; { 90 pixels }
tevVScrollDownl05 = $07000000; { 105 pixels }
tevVScrollDownl20 = $08000000; { 120 pixels }
teVScrollDownl35 = $09000000; { 135 pixels }
tevVScrollDownl50 = $0A000000; { 150 pixels }
teVScrollDownl65 = $0B000000; { 165 pixels }
teVScrollDownl80 = $0C000000; { 180 pixels }
tevVScrollDownl95 = $0D000000; { 195 pixels }
tevVScrollDown210 = $0E000000; { 210 pixels }
teVScrollDown225 = $0F000000; { 225 pixels }
{Background Color: }

teWhiteBack = $0000; { White background (default) }
teBackdrop = $0001; { Draw on backdrop color }
teColorBack = $0002; { Color background }
{Text Color: }

teBlackText = $0000; { Black text (default) }
teColorText = $0010; { Foreground colored text }
{Combined text & background color constants: }

teBlackOnBackdrop = teBlackText + teBackdrop; {Black text on backdrop }

254



H

9 Editing Fields

teBlackOnWhite = teBlackText + teWhiteBack; {Black text on white }
teBlackOnColor = teBlackText + teColorBack; {Black text on color }
teColorOnBackdrop = teColorText + teBackdrop; {Color text on backdrop }
teColorOnWhite = teColorText + teWhiteBack; {Color text on white }
teColorOnColor = teColorText + teColorBack; {Color text on color }

{Text alignment: }
teJustLeft = 0; { Left aligned (default) }
teJustCenter = 1; { Centered }
teJustRight =-1; { Right aligned }

NewFieldRect

Create a new field. The new field is not activated.

pascal void NewFieldRect (short Field, const Rect *Bounds, Handle hStr,
long Spec, short Just);

procedure NewFieldRect (Field: INTEGER; Bounds: RECT; hStr: HANDLE;
Spec: LONGINT; Just: INTEGER);

NewFieldRect is identical to the NewField routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

NewDialogField

Create a new field in a dialog using a dialog item’s co-ordinates.
pascal void NewDialogField (short Field, Handle hStr, long Spec, short Just);

procedure NewDialogField (Field: INTEGER; hStr: HANDLE; Spec: LONGINT;
Just: INTEGER);

NewDialogField is identical to the NewField routine, except that the field is created in a dialog (a window opened with
the LoadDialog routine, or one that had a dialog list attached with the LoadDialogList routine). The field’s co-
ordinates are obtained from the dialog item whose number matches the field number.

NewWideField

Create a new field with a horizontal scroll bar. The new field is not activated.

pascal void NewWideField (short Field, short left, short top, short right,
short bottom, short DestWidth, Handle hStr, long Spec,
short Just);

procedure NewWideField (Field: INTEGER; left, top, right, bottom: INTEGER;
DestWidth: INTEGER; hStr: HANDLE; Spec: LONGINT; Just: INTEGER);

NewWideField is identical to the NewField routine except that it creates a field with a horizontal scroll bar. The scroll
bar is created outside the field’s co-ordinates.

DestWidth is an additional parameter that specifies the width in pixels at which word wrap takes place. Inside
Macintosh refers to this as the destination rectangle’s width. The co-ordinates specified by left, top, right and bottom
are the viewing area inside which text can be seen and edited. DestWidth, on the other hand, is the width of the
rectangle containing the text behind the scenes. DestWidth can have a value from 50 to 15000.

Water’s Edge Software 255



(Pascal)

Tools Plus

You can have Tools Plus calculate the destination rectangle’s width by specifying a value of zero (0) for DestWidth.

Viewing and Editing Area

Now is the time for all good mes { do whaiener ;‘é
is that all good men do.

<l

o

<

DestWidth

For field’s whose right side is attached to the window’s right edge, or if you have included the teAutoMoveSize option

with the field’s right side tracking the window’s width, NewWideField creates a destination rectangle whose width is

as wide as the field’s width when the window is sized to its maximum width.

Spec specifies the appearance and behavior of the editing field. The value for this 4-byte long integer can be specified
by adding a set of constants to obtain the desired result. In addition to the values specified in NewField, you can also

optionally offset the horizontal scroll bar’s left side.

Optionally choose only one of the following horizontal scroll bar offset options...

teHScrollRight15 Bring the horizontal (bottom) scroll bar’s left side to the right by a multiple of
teHScrollRight30 15 pixels to allow additional user interface elements to be placed to the left the
teHScrollRight45 scroll bar. Normally, the horizontal scroll bar extends to the field’s left side.
teHScrollRight195 No offset With teHScrollRight45 offset
teHScrollRight210 o oftse 1 fEESCToTRIghtas otise
teHScrollRight225  E—

CONST {Move left side of horiz. scroll bar right by: }
teHScrollRightl5 = $10000000; { 15 pixels }
teHScrollRight30 = $20000000; { 30 pixels }
teHScrollRight45 = $30000000; { 45 pixels }
teHScrollRight60 = $40000000; { 60 pixels }
teHScrollRight75 = $50000000; { 75 pixels }
teHScrollRight90 = $60000000; { 90 pixels }
teHScrollRight105 = $70000000; { 105 pixels }
teHScrollRight120 = $80000000; { 120 pixels }
teHScrollRight135 = $90000000; { 135 pixels }
teHScrollRight150 = $A0000000; { 150 pixels }
teHScrollRight165 = $B0000000; { 165 pixels }
teHScrollRight180 = $C0000000; { 180 pixels }
teHScrollRight195 = $D0000000; { 195 pixels }
teHScrollRight210 = $E0000000; { 210 pixels }
teHScrollRight225 = $F0000000; { 225 pixels }

NewWideFieldRect

Create a new field with a horizontal scroll bar. The new field is not activated.

pascal void NewWideFieldRect (short Field, const Rect *Bounds,

short DestWidth, Handle hStr,

procedure NewWideFieldRect (Field:

DestWidth:

NewWideFieldRect is identical to the NewWideField routine, except that it accepts the Bounds rectangle in place of

INTEGER; hStr:

the individual left, top, right and bottom co-ordinates.

long Spec,

HANDLE; Spec:

short Just);

INTEGER; Bounds: RECT;

LONGINT; Just:

INTEGER) ;

256



H

9 Editing Fields

NewDialogWideField

Create a new field with a horizontal scroll bar in a dialog using a dialog item’s co-ordinates.

pascal void NewDialogWideField (short Field, short DestWidth, Handle hStr,
long Spec, short Just);

procedure NewDialogWideField (Field: INTEGER; DestWidth: INTEGER;
hStr: HANDLE; Spec: LONGINT; Just: INTEGER);

NewDialogWideField is identical to the NewWideField routine, except that the field is created in a dialog (a window
opened with the LoadDialog routine, or one that had a dialog list attached with the LoadDialogList routine). The
field’s co-ordinates are obtained from the dialog item whose number matches the field number.

EmbedFieldinButton

Embed a field into a button or into the window’s root control (Appearance Manager only).
pascal void EmbedFieldInButton (short Field, short ContainerButton);
procedure EmbedFieldInButton (Field, ContainerButton: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedFieldInButton lets you
manually embed a field into a button, or into the window’s root control. Note that the term “button” does not literally
mean a button control. It means any control that is implemented as a button in Tools Plus. The most likely candidate is
a Group Box control. If the Appearance Manager is not available, EmbedFieldInButton does nothing.

Field specifies the field number (from 1 to 511) that is affected in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the field does not exist in the current window,
EmbedFieldInButton does nothing. Note that the only fields that can be embedded are those that are drawn using a
CDEF (use the teSystemBody option when creating the field).

ContainerButton specifies the button number (from 1 to 511) into which Field is embedded. This control must exist in
the current window, and it must be a “container” type control such as the Appearance Manager’s Group Box. The field
must fit entirely within the container control or EmbedFieldInButton does nothing. If a value of O is provided for a
container button, Field is embedded into the window’s root control.

Also see: EmbedFieldInScrollBar and SetAutoEmbed.

EmbedFieldInScrollBar

Embed a field into a scroll bar or into the window’s root control (Appearance Manager only).
pascal void EmbedFieldInScrollBar (short Field, short ContainerScrollBar);
procedure EmbedFieldInScrollBar (Field, ContainerScrollBar: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedFieldInScrollBar lets you
manually embed a field into a scroll bar, or into the window’s root control. Note that the term “scroll bar” does not
literally mean a scroll bar control. It means any control that is implemented as a scroll bar in Tools Plus. If the
Appearance Manager is not available, EmbedFieldInScrollBar does nothing.

Water’s Edge Software 257



H

Tools Plus

Field specifies the field number (from 1 to 511) that is affected in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the field does not exist in the current window,
EmbedFieldInScrollBar does nothing. Note that the only fields that can be embedded are those that are drawn using a
CDEF (use the teSystemBody option when creating the field).

ContainerScrollBar specifies the scroll bar number (from 1 to 511) into which Field is embedded. This control must
exist in the current window, and it must be a “container” type control. The field must fit entirely within the container
control or EmbedFieldInScrollBar does nothing. If a value of O is provided for a container scroll bar, Field is
embedded into the window’s root control.

Also see: EmbedFieldInButton and SetAutoEmbed.

GetFreeFieldNum

Get the first unused field number.
pascal short GetFreeFieldNum (void);

function GetFreeFieldNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own field
number, GetFreeFieldNum returns the first unused (free) field number. Using this routine, you can assign an unused
field number to a variable, then use that variable throughout your application without concern for the true field
number.

GetFreeFieldNum returns the first free field number on the current window. If the current window doesn’t belong to
your application, if no windows are open, or if the maximum number of fields has already been created on the current
window (no new ones can be created), GetFreeFieldNum returns a value of zero (0).

DeleteField
Delete a field.

pascal void DeleteField (short Field);
procedure DeleteField (Field: INTEGER);

Field specifies the field number (from 1 to 32767) that is deleted from the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the field does not exist in the current window,
DeleteField does nothing.

If the field being deleted is the active field then it is deactivated before being deleted. If field was also in an active
window that allows access to pull-down menus, the Edit menu’s “Undo” item is changed to “Can’t Undo” and is
disabled along with the “Cut”, “Copy”, “Paste” and “Clear” items. Use KillField if you want to delete the field without
removing its image from the window.

258



H

9 Editing Fields

KillField

Delete a field without affecting its image on the window.
pascal void KillField (short Field);
procedure KillField (Field: INTEGER);

KillField is identical to DeleteField except that it does not remove the field’s image from the window. This routine is
useful for scrolling fields in an area within a window (i.e., not the entire window). ScrollRect is used to scroll the
images in the affected area. OffsetField repositions the field’s co-ordinates without affecting its image (since
ScrollRect has already moved it). KillField then deletes the fields that are scrolled out of view without affecting their
image (ScrollRect has already scrolled them out of view).

FieldDisplay
Hide or show a field.

pascal void FieldDisplay (short Field, Boolean Show);
procedure FieldDisplay (Field: INTEGER; Show: BOOLEAN);

FieldDisplay hides or shows a field on the current window. The result is seen immediately. Use discretion with this
routine since fields should be enabled and disabled to indicate if they are accessible by the user.

Field specifies the field number (from 1 to 32767) that is affected in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the field does not exist in the current window, FieldDisplay
does nothing.

Show indicates if the field is being hidden or displayed. The two constants that can be used for this flag are on and off.
If the affected field is the window’s active field, it is automatically deactivated before it is hidden. This will result in
the loss of the edited text if you do not call SaveFieldString before hiding the field.

FieldlsVisible

Determine if a field is visible.
pascal Boolean FieldIsVisible (short Field);
function FieldIsVisible (Field: INTEGER): BOOLEAN;

FieldIsVisible reports if a field is visible on the current window, or if it is hidden.
Field specifies the field number (from 1 to 32767) that is queried in the current window.

This routine’s value returns true if the field is visible, and false if the field is hidden. If the current window doesn’t
belong to your application, or if no windows are open, or if the field does not exist in the current window,
FieldIsVisible returns false. This routine takes control embedding into account, so it will return false if the target field
is embedded and its container control is hidden.

Water’s Edge Software 259



H

Tools Plus

ObscureField

Hide a field without removing its image from the window.
pascal void ObscureField (short Field);
procedure ObscureField (Field: INTEGER);

ObscureField hides a field on the current window without removing its image from the window. This routine is useful
for scrolling fields in an area within a window (i.e., not the entire window). ScrollRect is used to scroll the images in
the affected area. OffsetField repositions the field’s co-ordinates without affecting its image (since ScrollRect has
already moved it). ObscureField then hides the fields that are scrolled out of view without affecting their image
(ScrollRect has already scrolled them out of view).

Field specifies the field number (from 1 to 32767) that is hidden in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the field does not exist in the current window,
ObscureField does nothing. If the affected field is the window’s active field, it is automatically deactivated before it is
hidden. This will result in the loss of the edited text if you do not call SaveFieldString before hiding the field.

GetFieldRect

Get a field’s co-ordinates.
pascal void GetFieldRect (short Field, Rect *Bounds);
procedure GetFieldRect (Field: INTEGER; var Bounds: RECT);

Field specifies the field number (from 1 to 32767) that is queried in the current window.

Bounds returns the field’s bounding rectangle specified in the window’s local co-ordinates. These co-ordinates match
those used to create the field. If the current window doesn’t belong to your application, or if no windows are open, or if
the field does not exist in the current window, Bounds returns with all co-ordinates set to zero (0).

SetFieldFontSettings

Set a field’s font, size and style settings.

pascal void SetFieldFontSettings (short Field,
short theFont, short theSize, Style theStyle);

procedure SetFieldFontSettings (Field: INTEGER;
theFont: INTEGER; theSize: INTEGER; theStyle: Style);

Field specifies the field number (from 1 to 32767) that is affected in the current window. If the current window doesn’t
belong to your application, if no windows are open, or if the field does not exist, SetFieldFontSettings does nothing.
Otherwise, the change is seen immediately.

TheFont specifies the field’s new font. The default is Chicago, which is represented by the systemFont constant.

TheSize specifies the font’s size. The default is 0, which represents the default font size used by the system font, or
12pt in this case.

TheStyle specifies the field’s new style. Special character constants defined by the Font Manager are bold, italic,
underline and shadow. C programmers use the Font Manager’s constants to specify a composite style, such as
SetFieldFontSettings(1, geneva, 9, bold + outline) for bold and outlined, or SetFieldFontSettings(1, geneva, 9, 0) for
plain text. Pascal programmers use the Font Manager’s constants to specify a style set, such as

260



H

H

9 Editing Fields

SetFieldFontSettings(1, geneva, 9, [bold, outline]) for bold and outlined, or SetFieldFontSettings(1, geneva, 9, [ ]) for
plain text.

A field’s font settings are set when a field is created, so this routine is not normally used by many applications.

GetFieldFontSettings
Get a field’s font, size and style settings.

pascal void GetFieldFontSettings (short Field,
short *theFont, short *theSize, Style *theStyle);

procedure GetFieldFontSettings (Field: INTEGER;
var theFont: INTEGER; var theSize: INTEGER; var theStyle: Style);

Field specifies the field number (from 1 to 32767) in the current window whose font settings are being retrieved. If the
current window doesn’t belong to your application, if no windows are open, or if Field specifies a field that does not
exist, GetFieldFontSettings returns default values.

TheFont is the field’s font number. The default is O which is represented by the systemFont constant.

TheSize is the font’s size. The default is 0, which represents the default font size used by the system font, or 12pt in
this case.

TheStyle is the field’s font style. The default is plain text, which is represented by 0 in C and [ ] in Pascal.

SetFieldColors

Set a field’s colors.

pascal void SetFieldColors (short Field,
const RGBColor *TextColor, const RGBColor *BackColor);

procedure SetFieldColors (Field: INTEGER;
TextColor: RGBColor; BackColor: RGBColor);

Field specifies the field number (from 1 to 32767) in the current window whose colors are being set. If the current
window doesn’t belong to your application, or if no windows are open, SetFieldColors does nothing. Also, if Field
specifies a field that does not exist, or if Color QuickDraw is unavailable or not used, SetFieldColors does nothing.
The change is seen immediately, regardless if the field was originally created with colors or not.

TextColor is the color of the field’s text.
BackColor is the field’s background color upon which the text is drawn.

Normally, a field’s colors are set when this field is created with NewField or NewFieldRect, so this routine would not
be used by many applications.

Water’s Edge Software 261



H

H

Tools Plus

GetFieldColors
Get a field’s colors.

pascal void GetFieldColors (short Field,
RGBColor *TextColor, RGBColor #*BackColor);

procedure GetFieldColors (Field: INTEGER;
var TextColor: RGBColor; var BackColor: RGBColor);

Field specifies the field number (from 1 to 32767) in the current window whose colors are being retrieved. If the
current window doesn’t belong to your application, or if no windows are open, or if Field specifies a field that does not
exist, GetFieldColors returns default color values.

TextColor is the color of the field’s text. The default color is black.

BackColor is the field’s background color upon which the text is drawn. The default color is white.

ActivateField
Activate a field.

pascal void ActivateField (short Field, short Selection);
procedure ActivateField (Field, Selection: INTEGER);

Field specifies the field number (from 1 to 32767) being activated in the current window. ActivateField does nothing
under any of these conditions: the current window doesn’t belong to your application, no windows are open, the field
does not exist in the current window, the field is disabled or hidden, or the field is a static text field.

Selection specifies which part of the text is selected. The constants that can be used to specify a field’s text selection
are teSelectStart (places insertion point at beginning of the field), feSelectEnd (places insertion point at end of the
field), teSelectAll (selects all the text in the field) and reSelectDefault (selects text according to the field’s default
specifications).

Activating a field allows the user to interact with the field by typing on the keyboard. On an active window, the field
acquires the keyboard focus making it the item that automatically processes keystrokes. Visually, this is indicated by
having the field’s text highlighted, or by a flashing caret. Additionally, if the Appearance Manager is available, the
field is encompassed by a highlighting keyboard focus band to indicate that it has the focus. Using ActivateField in an
active window removes the keyboard focus from any other object that may have the focus within the same window or
any other active window such as a tool bar or floating palette. This action may deactivate another active field.

If the field being activated is in an active window that allows access to pull-down menus, the Edit menu’s “Undo” item
is changed to “Can’t Undo” and is disabled, while the “Cut”, “Copy”, “Paste” and “Clear” items are enabled/disabled
according to the insertion point or selection range as previously described in this chapter under “The Edit Menu.”

Your application can activate virtually any field. This flexibility can lead to a confusing user interface by allowing the
keyboard focus (active field) to jump between active windows. A good rule to observe is to activate a field only on a
standard window (not a tool bar or a floating palette) when the window first opens. This sets up the default field for
that window. At all other times, activate a field only in response to a user’s actions.

Also see: HaveTabInFocus, TabToFocus, the doClickToFocus event, and ClickToFocus for other activating services.

CONST {Field text selection: }
teSelectStart =1; {Insertion point at beginning of field }
teSelectEnd =2; {Insertion point at end of field }
teSelectAll =3; {Select the field's entire text }
teSelectDefault =0; {Set selection as specified when creating field }

262



H

H

H

9 Editing Fields

GetFieldSelection

Get a field’s selection range.
pascal void GetFieldSelection (short *SelStart, short *SelEnd);
procedure GetFieldSelection (var SelStart: INTEGER; var SelEnd: INTEGER);

GetFieldSelection returns the start and end of the selection range in the current window’s active field. If the current
window doesn’t belong to your application, if no windows are open, or if the current window does not have an active
field, SelStart and SelEnd return with values of zero (0).

SelStart returns the beginning of the selection range. Character numbering starts from O and increases sequentially,
therefore a value of O indicates the beginning of the selection range is just before the first character.

SelEnd returns the end of the selection range. Character numbering starts from O and increases sequentially, therefore a
value of 6 indicates the end of the selection range is just before the seventh character, or just after the sixth character.

Tetet| perd

Character Number: 0 1 234567 89

SetFieldSelection

Set a field’s selection range.
pascal void SetFieldSelection (short SelStart, short SelEnd);
procedure SetFieldSelection (SelStart, SelEnd: INTEGER);

SetFieldSelection sets the start and end of the selection range in the current window’s active field. If the current
window doesn’t belong to your application, if no windows are open, or if the current window does not have an active
field, SetFieldSelection does nothing. You will only need to use this routine if you need to specify selection on a
character by character basis. ActivateField lets you activate a field and place the insertion point at the beginning or end
of the field, or select the field’s entire text.

SelStart defines the beginning of the selection range. Character numbering starts from O and increases sequentially,
therefore a value of O indicates the beginning of the selection range is just before the first character.

SelEnd defines the end of the selection range. Character numbering starts from O and increases sequentially, therefore a
value of 6 indicates the end of the selection range is just before the seventh character, or just after the sixth character.

DeactivateField

Deactivate the active field.
pascal void DeactivateField (void);
procedure DeactivateField;

The active field, if one exists in the current window, is deactivated by this routine. If the current window doesn’t
belong to your application, or if no windows are open, or if a field is not active, DeactivateField does nothing. Once a
field is deactivated, its edited text is discarded and replaced with the field’s string. Therefore, if you want to save the
field’s edited text, call GetEditString or GetEditHandle and validate the text, then call SaveFieldString prior to
deactivating the field.

Water’s Edge Software 263



H

H

H

Tools Plus

If the deactivated field is in an active window that allows access to pull-down menus, the Edit menu’s “Undo” item is
changed to “Can’t Undo” and is disabled along with the “Cut”, “Copy”, “Paste” and “Clear” items.

EnableField
Enable or disable a field.

pascal void EnableField (short Field, Boolean EnabledFlag);
procedure EnableField (Field: INTEGER; EnabledFlag: BOOLEAN);

Field specifies the field number (from 1 to 32767) that is affected in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the field does not exist in the current window, EnableField
does nothing.

EnabledFlag specifies if the field is enabled or disabled. A disabled field cannot be activated by your application. The
user can’t tab to it, click in it, or otherwise change the disabled field’s contents. A disabled field’s text and its outlining
box (if it has one) are grayed out. If you disable a field while it is active, the field is automatically deactivated and the
field’s edited text is not saved. The two constants that can be used for this purpose are enabled and disabled.

Also see: DisabledFieldLook and SetDisabledFieldLook.

CONST {Field state }
enabled = true; {enable the field }
disabled = false; {disable the field }

FieldlsEnabled

Determine if a field is enabled or disabled.
pascal Boolean FieldIsEnabled (short Field);
function FieldIsEnabled (Field: INTEGER): BOOLEAN;

Field specifies the field number (from 1 to 511) that is queried in the current window.

The routine’s value returns true if the field is enabled, and false if the field is disabled. If the current window doesn’t
belong to your application, or if no windows are open, or if the field does not exist in the current window,
FieldIsEnabled returns false. FieldIsEnabled returns the field’s enabled state as it is currently displayed, so if the
field’s window is inactive and has temporarily disabled the field, FieldIsEnabled returns false.

ClickToFocus

Process a mouse click that has occurred in a field or other item that wants the keyboard focus in an active window.
pascal void ClickToFocus (void);
procedure ClickToFocus;

When Tools Plus reports a doClickToFocus event, it indicates that the user clicked the mouse in an a field or in
another user interface element that wants the keyboard focus. If a field is active when this event is reported, it may be
necessary to first validate the active field before responding to the click (before ClickToFocus is called). First, call
GetEditString or GetEditHandle to retrieve the active field’s edited text for validation. If the string cannot be validated,
display an appropriate alert box and ignore the doClickToFocus event. If no error occurred, save the edited text as the

264



H

9 Editing Fields

field’s string by calling SaveFieldString, then process the click by calling ClickToFocus. The InitToolsPlus routine
offers various options for automatically moving between fields and for saving fields’ edited text.

ClickToFocus first deactivates the active field (if one exists) in any active window including a tool bar or floating
palette. Similarly, it removes the keyboard focus from any user interface element that may have it. The routine then
activates the required item and gives it the keyboard focus. In the case of an editing field, this means that an insertion
point is placed at the point of the click. A double-click in the field and/or subsequent dragging is processed
automatically.

If an editing field is activated in a window that allows access to pull-down menus, the Edit menu’s “Undo” item is
changed to “Can’t Undo” and is disabled, while the “Cut”, “Copy”, “Paste” and “Clear” items are enabled/disabled as
previously described in this chapter under “The Edit Menu”. For other items that accept the keyboard focus, the Edit
menu’s items are disabled.

Warning: Between the time when the doClickToFocus event is reported and when your application calls

ClickToFocus is called, observe the following rules:

* do not call Process1EventWhileBusy or ProcessToolboxEvent

* do not open or close any windows, including alerts and dialogs

* do not hide or show any windows

* do not activate any windows

* do not activate, deactivate, enable, disable or delete any user interface elements
ClickToFocus depends on working with the same window that registered the doClickToFocus event, and
will not work if your application gets or processes any subsequent events, or if you alter user interface
elements.

HaveTablnFocus

Determine if the user is tabbing to the next or previous field or item that can take the keyboard focus.
pascal Boolean HaveTabInFocus (void);
function HaveTabInFocus: boolean;

When Tools Plus reports a doKeyDown or doAutoKey event, it simply indicates that Tools Plus is unable to
automatically process the key stroke by automatically applying to the active editing field or other item that has the
keyboard focus. Several conditions must be tested to determined if the user wants to tab to the next or previous item,
and fortunately, HaveTabInFocus performs all the necessary tests.

If the routine returns with a value of #rue, then the user wants to tab to the next or previous item.

HaveTabInFocus looks for the following conditions to return with a frue value:
* A doKeyDown or doAutoKey event was reported
* The user is in an active editing field or other item that has the keyboard focus
* You do not activate another window in response to a doKeyDown or doAutoKey event
* You do not change the active editing field number (or keyboard focus item number) in response to a
doKeyDown or doAutoKey event
» The Tab key was typed (optionally, with the Shift key to tab to the previous field)
e The Command, Option, and Control key modifiers were all up when Tab was typed

It may be necessary to first process the active field before responding to the tab (before activating another field or
using TabToFocus). First, call GetEditString or GetEditHandle to retrieve the active field’s edited text for validation. If
the string cannot be validated, display an appropriate alert box and ignore the doKeyDown or doAutoKey event. If no
error occurred, save the edited text as the field’s string by calling SaveFieldString, then process the tab by calling
TabToFocus. The InitToolsPlus routine offers various options for automatically moving between fields and for saving
fields’ edited text.

Also see: TabToFocus.

Water’s Edge Software 265



Tools Plus

TabToFocus

Tab to the next or previous field or item that can acquire the keyboard focus.
pascal void TabToFocus (void);
procedure TabToFocus;

This routine is used in response to the HaveTabInFocus routine which detects that the user wants to tab to the next or
previous field or item that can acquire the keyboard focus. When Tools Plus reports a doKeyDown or doAutoKey
event (typing), and HaveTabInFocus returns with a value of true it indicates that the user wants to move to the
previous/next keyboard focus item. Your application then uses TabToFocus to execute the request.

TabToFocus first deactivates the active field and/or removes the keyboard focus from any user interface element that
has the focus in the active window. The routine then activates the previous or next user interface element that can
acquire the keyboard focus. If an editing field is activated in a window that allows access to pull-down menus, the Edit
menu’s “Undo” item is changed to “Can’t Undo” and is disabled, while the “Cut”, “Copy”, “Paste” and “Clear” items
are enabled/disabled as previously described in this chapter under “The Edit Menu”. For other items that accept the
keyboard focus, the Edit menu’s items are disabled.

TabToFocus considers the list of keyboard focus items to be cyclical, in that tabbing off the end of the list starts you at
the beginning of the list and vice versa.

Also see: HaveTabInFocus.

,@D Note: If you are using standard editing fields (without the teSystemBody option) make sure your fields are numbered
in the order in which you want to tab. If you are using the Appearance Manager and it’s controls that can
acquire the keyboard focus (fields with the teSystemBody option and other user interface elements that acquire
the keyboard focus), make sure the items are created in the order in which you want to tab.

3> Warning: Do not mix ordinary editing fields (those created without the teSystemBody option) with Appearance
Manager items that acquire the keyboard focus because the user will not be able to tab through all the
elements in one continuous cycle. If the user is editing a non Appearance Manager field, then he will be
able to tab only between those fields. Similarly, if the user is working in an Appearance Manager control
that has the keyboard focus such as a field creed with the teSystemBody option, list box or clock control,
he will only be able to tab to other Appearance Manager controls.

3> Warning: Between the time when your application calls HaveTabInFocus and when your application calls

TabToFocus is called, observe the following rules:

* Do not call ProcessToolboxEvent or Process1EventWhileBusy

* Do not open or close any windows, including alerts and dialogs

* Do not hide or show any windows

* Do not activate any windows

* Do not activate, deactivate, enable, disable or delete any user interface elements
TabToFocus depends on working with the same window that registered the typing-related event, and may
not work as expected if Tools Plus reports or processes any subsequent events or if you alter user interface
elements.

266



H

H

H

9 Editing Fields

GetEditString

Obtain a copy of the active field’s edited text.
pascal void GetEditString (Str255 EditString);
procedure GetEditString (var EditString: Str255);

EditString retrieves a copy of the edited text from the active field in the current window. The field’s edited text is not
altered by this routine. Although it is physically possible for the user to type more than 255 characters into a field that
is not length limited, only the first 255 characters (the limit of a Pascal string) are retrieved by this routine. If the
current window doesn’t belong to your application or if it doesn’t have an active field, or if no windows are open,
GetEditString returns an empty string (string length of 0).

If the field is not length limited, the text retrieved by GetEditString may be longer than the field’s associated string
handle (as specified by the hStr handle when the field was created). If the field is length limited, EditString’s length
will never exceed the size limit of the field’s associated string.

Also see: GetEditHandle, GetEditLength, GetFieldString, GetFieldHandle and GetFieldLength.

GetEditHandle
Obtain a handle to the active field’s edited text.

pascal Handle GetEditHandle (void);
function GetEditHandle: HANDLE;

This routine returns a handle to the edited text in the active field in the current window. Nil is returned if the current
window does not have an active field or if the current window does not belong to your application.

The handle points to a generic block of text, and not a Pascal or C string. This is the actual text being edited by the user
(it is not a copy of the text), so it is critically important that you do not change the text, resize, or deallocate the handle.
If you must lock this handle, do so only on a temporary basis and make sure the handle is unlocked before using any
Tools Plus routines.

Also see: GetEditString, GetEditLength, GetFieldString, GetFieldHandle and GetFieldLength.

GetEditLength

Determine the length of the active field’s edited text.
pascal short GetEditLength (void);
function GetEditLength: INTEGER;

This routine returns the length of the edited text in the active field in the current window. Zero (0) is returned if the
current window does not have an active field or if the current window does not belong to your application.

The length refers to a generic block of text, and not a Pascal or C string. This is the number of characters in the actual
text being edited by the user, and it does not have a Pascal string length-byte prefix or C string null-byte terminator. Its
value can be up to 32767 characters if the field is not length limited. In length limited fields, this number won’t exceed
the field’s maximum size.

Also see: GetEditString, GetEditHandle, GetFieldString, GetFieldHandle and GetFieldLength.

Water’s Edge Software 267



H

H

a

IS

Tools Plus

GetFieldString
Obtain a copy of a field’s string.

pascal void GetFieldString (short Field, Str255 EditString);
procedure GetFieldString (Field: INTEGER; var EditString: Str255);

Field specifies the editing field number (from 1 to 32767) that is queried in the current window.

EditString retrieves a copy of the specified field’s string as a Pascal string. If the field is active, the string contains the
text that existed before changes were made by the user. Only the first 255 characters are retrieved if the field’s string is
a C string and is larger than 255 characters. If the current window doesn’t belong to your application, or if no windows
are open, or if the editing field does not exist in the current window, an empty string is returned.

Also see: GetEditString, GetEditHandle, GetEditLength, GetFieldHandle and GetFieldLength.

GetFieldHandle
Obtain a handle to a field’s string.

pascal Handle GetFieldHandle (short Field);
function GetFieldHandle (Field: INTEGER): HANDLE;

Field specifies the editing field number (from 1 to 32767) that is queried in the current window.

This routine returns a handle to the specified field’s Pascal string or C string. If the field is active, the handle points to
text that existed before changes were made by the user. If the current window doesn’t belong to your application, or if
no windows are open, or if the editing field does not exist in the current window, a nil handle is returned. It is critically
important that you do not change the text, resize, or deallocate the handle once your field has been created. If you must
lock this handle, do so only on a temporary basis and make sure the handle is unlocked before using any Tools Plus
routines. It is safest to paste text into the field using PasteIntoField or a similar Tools Plus routine.

Also see: GetEditString, GetEditHandle, GetEditLength, GetFieldString and GetFieldLength.

Note: When you create a field using a nil text handle to automatically allocate a string handle, and you use the
teBuffered option to give a large field high performance, Tools Plus does not allocate a Pascal or C string. It
allocates a generic text handle that is the exact length of the text. It is not prefixed with a Pascal-styled length
byte or null-terminated like a C string. GetFieldHandle returns this generic handle.

Warning: When you create a field using a nil text handle to automatically allocate a string handle, and you use the
teBuffered option to give a large field high performance, Tools Plus performs some memory swapping
when a field is activated or deactivated. Therefore, your handle to the field’s unedited text is valid until the
next time the file field is activated or deactivated.

268



H

H

H

9 Editing Fields

GetFieldLength

Determine the length of a field’s string.
pascal short GetFieldLength (short Field);
function GetFieldLength (Field: INTEGER): INTEGER;

Field specifies the editing field number (from 1 to 32767) that is queried in the current window.

This routine returns the length of the specified field’s string (it excludes a Pascal string’s length-byte prefix or a C
string’s null termination byte). If the field is active, the length is for the text that existed before changes were made by
the user. Its value can be up to 32767 characters in a C string, or 255 characters in a Pascal string. In length limited
fields, this number won’t exceed the maximum size of the field. If the current window doesn’t belong to your
application, or if no windows are open, or if the editing field does not exist in the current window, zero is returned.

Also see: GetEditString, GetEditHandle, GetEditLength, GetFieldString and GetFieldHandle.

FieldlsEmpty

Determine if the specified field is empty.
pascal Boolean FieldIsEmpty (short Field);
function FieldIsEmpty (Field: INTEGER): BOOLEAN;

Field specifies the editing field number (from 1 to 32767) that is queried in the current window.

The routine’s value returns true if the field is empty (string length is zero). A non-zero string length returns a value of
false. If the specified field is the window’s active editing field (even though the window itself may not be active at the
time), the function is performed on the field’s edited text. Otherwise, the function is performed on the field’s string. If
the current window doesn’t belong to your application, or if no windows are open, or if the editing field does not exist
in the current window, FieldIsEmpty returns with a value of true.

SaveFieldString

Save the active field’s edited text as the field’s associated string.
pascal void SaveFieldString (void);
procedure SaveFieldString;

SaveFieldString is used to save an active field’s edited text by copying it into the field’s associated string. This action
occurs in the current window. If the current window doesn’t belong to your application, or if no windows are open, or
if a field is not active in the current window, SaveFieldString does nothing.

When SaveFieldString is called, the field’s string handle (hStr) dictates the maximum number of characters that can be
saved from the edited text. For example, if the field uses an Str255 (255 character Pascal string), up to 255 characters
of edited text are saved in the field’s associated string. These settings are established when a field is created. If the
field is length limited, the edited text complies to these constraints by physically preventing the user from typing
characters that would exceed the field’s limit.

Water’s Edge Software 269



H

H

Tools Plus

EditFidWindowNumber

Get the window number of the window containing your application’s active editing field.
pascal short EditFldWindowNumber (void);
function EditFldWindowNumber: INTEGER;

This routine returns the window number of the window containing the active editing field in your application. If your
application does not have a tool bar or floating palettes, this window will either be the active window (frontmost), or it
will be zero (0) when there is no active field or no windows are open. When a tool bar and/or floating palettes are used,
this window can potentially be any of the active windows (tool bar, any floating palette, or the active standard
window).

ActiveFieldNumber

Determine the active field number.
pascal short ActiveFieldNumber (void);
function ActiveFieldNumber: INTEGER;

The routine’s value returns the active field number in the current window. If the current window does not belong to
your application, or if no windows are open, or if no field is active in the current window, ActiveFieldNumber returns
a value of zero (0). If you want to determine which window contains your application’s active field, use the
EditFldWindowNumber routine.

FieldLengthLimit
Turn field length limiting on or off.

pascal void FieldLengthLimit (Boolean Limits);
procedure FieldLengthLimit (Limit: BOOLEAN) ;

Limit specifies if subsequently created fields are length limited or not. The boolean constants “on” or “off” may be
used.

Length limiting is an enhancement supported by Tools Plus. It prevents a field’s edited text from exceeding a fixed
length. This is done by preventing additional characters from being typed once the field has reached its limit, and by
truncating text (if necessary) after a “Paste” command is executed. The user is beeped when excess characters are
typed instead of accepting the key-strokes.

If a field is length limited, the limit is set to the maximum length of the field’s string (referenced via the hStr handle)
as described in the NewField routine.

A field takes on its limited/unlimited status when it is created by the NewField routine, depending on
FieldLengthLimit’s setting. When FieldLengthLimit(true) has been set, subsequently created fields are length limited.
When FieldLengthLimit(false) is in effect, subsequently created fields will not be length limited. You can achieve the
same thing on a field-by-field basis by adding the teLengthLimit constant when creating a field.

For the sake of consistency, all fields on a window should either be limited or unlimited. Length limiting works best, in
a visual sense, when a mono-spaced (non-proportional) font is used and the field’s width is long enough to contain the
maximum number of characters. In this way, the user is limited to the number of characters that are visible in a field.

FieldLengthLimit is set to false when Tools Plus is initialized.

270



H

H

9 Editing Fields

Programming Tips:
1 To help you keep track of which fields have adopted length limiting, use FieldLengthLimit(on) immediately
before creating a set of fields that are length limited. After the fields are created, use FieldLengthLimit(off) to
make subsequently created fields non-limited (as per the default).

SetFieldLengthLimit
Set field length limiting for an existing field.

pascal void SetFieldLengthLimit (short Field, short NewLimit);
procedure SetFieldLengthLimit (Field, NewLimit: INTEGER);

See the FieldLengthLimit routine for details about what “length limiting” is, and related information.

Field specifies the editing field number (from 1 to 32767) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the field does not exist in the current window,
FieldLengthLimit does nothing

NewLimit specifies the number of characters that the user can type or paste into the editing field. If the specified new
limit is smaller than the number if characters that are currently in the field, or the number of characters that the user is
editing in the field, then the value of NewLimit is automatically adjusted to account for the current number of
characters in the field.

DynamicFieldHandles

Turn fields’ automatic handle resizing on or off.
pascal void DynamicFieldHandles (Boolean Resize);
procedure DynamicFieldHandles (Resize: BOOLEAN);

Resize specifies if subsequently created fields will have their string handles automatically resized or not. The boolean
constants “on” or “off” may be used. If a field is set to resize its string handle, the handle grows and shrinks to reflect
the amount of text it contains.

A field takes on its dynamic or static status when it is created by the NewField routine, depending on
DynamicFieldHandles’ setting. When DynamicFieldHandles(true) has been set, subsequently created fields have their
string handles automatically resized. When DynamicFieldHandles(false) is in effect, subsequently created fields have
fixed size string handles. You can achieve the same thing on a field-by-field basis by adding the teResizeHdl constant
when creating a field.

DynamicFieldHandles is set to false when Tools Plus is initialized.

DisabledFieldLook

Set the appearance and behavior for disabled fields.
pascal void DisabledFieldLook (long DimFieldSpec);
procedure DisabledFieldLook (DimFieldSpec: LONGINT);

Field disabling is an enhancement supported by Tools Plus. It prevents a user from changing a field’s contents or
activating a field. A field takes on its “disabled characteristics” when it is created by the NewField routine. For the
sake of consistency, all fields in an application should have the same characteristics when disabled, so it’s a good idea

Water’s Edge Software 271



Tools Plus

to call DisabledFieldLook once early in your application before any fields are created.

DimFieldSpec specifies the appearance and behavior of subsequently created fields when they are disabled. The value
for this 4-byte long integer is specified by adding a set of constants to obtain the desired result as illustrated below. By

default, all options are off.

teNeverDimBWText

teNeverDimColorText

teColSys6Text

teNeverDimBWBox

teNeverDimColorBox

teColSys6Box

teClickBeep

teDfltDisabledLook

Also see: SetDisabledFieldLook.

Do not dither disabled text on a monochrome monitor. By default, disabled
text is dithered on a black and white monitor. Fine fonts such as Geneva and
Helvetica become unreadable when dithered, so you may want to use this
option when appropriate.

[Large | iaigs ! [Smam Fant | {5 Fins !

Examples of enabled and disabled fields using large and small fonts on a black and white monitor

Do not change the appearance of a disabled field’s text when displayed on a
color or gray scale monitor. By default, disabled text is dimmed on a color or
gray scale monitor in System 7 or later, and dithered in System 6 or earlier.
This is consistent with Apple’s controls.

Dim disabled text on a color or gray scale monitor in System 6 or earlier. By
default, disabled text is dithered on System 6 or earlier. Using this option
makes Macs running older system versions look more like System 7. This
setting has no effect on Macs running System 7 or later.

Don’t dither a disabled field’s outline box (if it has one) when it is displayed
on a black and white monitor. By default, the outline box is dithered using a
gray pattern on a black and white monitor.

Do not change the appearance of a disabled field’s outline box (if it has one)
when it is displayed on a color or gray scale monitor. By default, a disabled
field’s outline is dimmed on a color or gray scale monitor in System 7 or later,
and dithered in System 6 or earlier. This is consistent with Apple’s controls.

Dim a disabled field’s outline on a color or gray scale monitor in System 6 or
earlier. By default, disabled objects are dithered on System 6 or earlier. Using
this option makes Macs running older system versions look more like System
7. This setting has no effect on Macs running System 7 or later.

Beep when a disabled field is clicked by the user. By default, nothing happens
when a disabled field is clicked. You may want to use this option if you have
turned off all visual cues for disabling and you want an audible cue to indicate
that the clicked field cannot be activated.

Use this constant alone to restore all settings back to their default values (all

off).

CONST {Behavior and Appearance Specs for disabled }
{ fields: }

teNeverDimBWText = $0001; {Never dim text (B&W) }
teNeverDimColorText = $0002; {Never dim text (color) }

teColSys6Text = $0004; {Colorize System 6 text }
teNeverDimBWBox = $0008; {Never dim outline (B&W) }
teNeverDimColorBox = $0010; {Never dim outline (color) }

teColSys6Box = $0020; {Colorize Sys 6 outline }

teClickBeep = $0040; {Beep when disabled }
teDfltDisabledLook = $0000; {Use default settings }

272



H

9 Editing Fields

Programming Tips:

1 If your application displays text that changes but is not editable (such as status or feedback information), you
can use an editing field for this purpose. First you create a field without an outline box. The field’s text should
not dim (add teNeverDimBWText and teNeverDimColorText when specifying the disabled field look). Then
use PasteIntoField to change the field’s text.

2 To create a non-editable field with scroll bars, use teNeverDimBWText + teNeverDimColorText +
teNeverDimBWBox + teNeverDimColorBox. The field will look normal and will be scrollable but will not be
editable.

3 To help you keep track of which fields have adopted a certain appearance when disabled, use
DisabledFieldLook immediately before creating a set of fields that need a non-default look. After the fields
are created, set DisabledFieldLook back to the default value after by using the teDfltDisabledLook constant.

SetDisabledFieldLook

Set the appearance and behavior for a disabled field.
pascal void SetDisabledFieldLook (short Field, long DimFieldSpec);
procedure SetDisabledFieldLook (Field: INTEGER; DimFieldSpec: LONGINT);

This routine is similar to DisabledFieldLook except that it sets the disabled appearance and behavior for a single field.
The change is seen immediately if the field is disabled when calling this routine.

Field specifies the editing field number (from 1 to 32767) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the editing field does not exist in the current
window, SetDisabledFieldLL.ook does nothing.

DimFieldSpec specifies the appearance and behavior of subsequently created fields when they are disabled. The value
for this 4-byte long integer is specified by adding a set of constants to obtain the desired result as illustrated below.

teNeverDimBWText Do not dither disabled text on a monochrome monitor. By default, disabled
text is dithered on a black and white monitor. Fine fonts such as Geneva and
Helvetica become unreadable when dithered, so you may want to use this
option when appropriate.

[Large | iarge | [Smal Font | {50 Eoe

Examples of enabled and disabled fields using large and small fonts on a black and white monitor

teNeverDimColorText Do not change the appearance of a disabled field’s text when displayed on a
color or gray scale monitor. By default, disabled text is dimmed on a color or
gray scale monitor in System 7 or later, and dithered in System 6 or earlier.
This is consistent with Apple’s controls

teColSys6Text Dim disabled text on a color or gray scale monitor in System 6 or earlier. By
default, disabled text is dithered on System 6 or earlier. Using this option
makes Macs running older system versions look more like System 7. This
setting has no effect on Macs running System 7 or later.

teNeverDimBWBox Don’t dither a disabled field’s outline box (if it has one) when it is displayed
on a black and white monitor. By default, the outline box is dithered using a
gray pattern on a black and white monitor.

teNeverDimColorBox Do not change the appearance of a disabled field’s outline box (if it has one)
when it is displayed on a color or gray scale monitor. By default, a disabled
field’s outline is dimmed on a color or gray scale monitor in System 7 or later,
and dithered in System 6 or earlier. This is consistent with Apple’s controls.

Water’s Edge Software 273



H

Tools Plus

teColSys6Box Dim a disabled field’s outline on a color or gray scale monitor in System 6 or
earlier. By default, disabled objects are dithered on System 6 or earlier. Using
this option makes Macs running older system versions look more like System
7. This setting has no effect on Macs running System 7 or later.

teClickBeep Beep when a disabled field is clicked by the user. By default, nothing happens
when a disabled field is clicked. You may want to use this option if you have
turned off all visual cues for disabling and you want an audible cue to indicate
that the clicked field cannot be activated.

teDfltDisabledLook Use this constant alone to restore all settings back to their default values (all
off).

CONST {Behavior and Appearance Specs for disabled }

{ fields: }

teNeverDimBWText = $0001; {Never dim text (B&W) }

teNeverDimColorText = $0002; {Never dim text (color) }

teColSys6Text = $0004; {Colorize System 6 text }

teNeverDimBWBox = $0008; {Never dim outline (B&W) }

teNeverDimColorBox = $0010; {Never dim outline (color) }

teColSys6Box = $0020; {Colorize Sys 6 outline }

teClickBeep = $0040; {Beep when disabled }

teDfltDisabledLook = $0000; {Use default settings }
PastelntoField

Paste text into a field.
pascal void PasteIntoField (short Field, const Str255 Text, Boolean Replace);

procedure PasteIntoField (Field: INTEGER; Text: STRING; Replace: BOOLEAN);

Some applications need to paste text directly into a field under their own control. An example of this is an operation
that lets the user select an item from a List Box, then the selected item is pasted into a field as though the user had
typed it. Use this routine judiciously, because indiscriminate pasting can be detrimental to a good user interface. Text
can be pasted into an active or inactive field. After pasting into an active field, the insertion point is placed after the
last character of the pasted text. If the pasting occurred in the active field within a window, then the Edit menu, if one
exists, has its “Undo” item set to “Undo Paste” thereby allowing the pasting to be undone.

Field specifies the field number (from 1 to 32767) into which the text is pasted in the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the field does not exist in the current
window, PastelntoField does nothing.

Text specifies the string that is pasted into the specified field. If an empty string (length of 0) is specified, the field’s
affected text is cleared. When pasting into a length limited field, text is pasted one character at a time (although very
quickly) and stops when the field is full. This text is automatically filtered if the field is using a filter.

Replace specifies if the pasted text is inserted into the field or if it replaces the field’s entire contents. With a value of
telnsert, the field’s selected range of characters is removed (if a selection range exists) and the new text is inserted at
the insertion point. If a value of teReplace is used, the field’s entire text is replaced with the contents of the supplied
string. When pasting into an inactive field, the field’s contents are replaced regardless of the value of the Replace
parameter.

Also see: PastePintoField and PasteHIntoField.

CONST {Types of pasting }
teReplace = true; {Replace field's contents with specified text }
teInsert = false; {Insert specified text at the insertion point }

274



H

9 Editing Fields

PastePIntoField

Paste text into a field using a pointer.

pascal void PastePIntoField (short Field, Ptr Text, short TextLength,
Boolean Replace);

procedure PastePIntoField (Field: INTEGER; Text: PTR; TextLength: INTEGER;
Replace: BOOLEAN) ;

PastePIntoField is similar to PasteIntoField in that it pastes text into a field, however this routine pastes text from a
pointer instead of a string.

Field specifies the field number (from 1 to 32767) into which the text is pasted in the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the field does not exist in the current
window, PastePIntoField does nothing.

Text is a pointer to the text that is being pasted. It can also be the address of a C string or any other structure where the
text begins at the first byte.

TextLength specifies the number of characters being pasted. It may be in the range of 0 to 32767 characters. If O is
specified, the field’s affected text is cleared. When pasting into a length limited field, text is pasted one character at a
time (although very quickly) and stops when the field is full. This text is automatically filtered if the field is using a
filter.

Replace specifies if the pasted text is inserted into the field or if it replaces the field’s entire contents. With a value of
telnsert, the field’s selected range of characters is removed (if a selection range exists) and the new text is inserted at
the insertion point. If a value of feReplace is used, the field’s entire text is replaced with the contents of the supplied
string. When pasting into an inactive field, the field’s contents are replaced regardless of the value of the Replace
parameter.

CONST {Types of pasting }
teReplace = true; {Replace field's contents with specified text }
teInsert = false; {Insert specified text at the insertion point }

PasteHIntoField

Paste text into a field using a handle.

pascal void PasteHIntoField (short Field, Handle Text, short TextLength,
Boolean Replace);

procedure PasteHIntoField (Field: INTEGER; Text: HANDLE; TextLength: INTEGER;
Replace: BOOLEAN) ;

PasteHIntoField is similar to PastePIntoField except that it accepts a handle to the text instead of a pointer. Your
application can pass either a locked or unlocked handle

Water’s Edge Software 275



H

H

Tools Plus

MoveField

Move a field to a new location on the window.
pascal void MoveField (short Field, short toHoriz, short toVert);
procedure MoveField (Field, toHoriz, toVert: INTEGER);

Field specifies the field number (from 1 to 32767) that is affected in the current window. If the current window doesn’t
belong to your application, if no windows are open, or if Field specifies a field that does not exist, MoveField does
nothing. The change is seen immediately providing that the field is not hidden. The field’s width and height are not
changed.

ToHoriz is the new horizontal co-ordinate at which the left side of the field appears.

ToVert is the new vertical co-ordinate at which the top of the field appears.

Also see: SizeField and MoveSizeField.

OffsetField

Change a field’s co-ordinates without affecting its image on the window.
pascal void OffsetField (short Field, short distHoriz, short distVert);
procedure OffsetField (Field, distHoriz, distVert: INTEGER);

When you scroll an area that contains fields, first use ScrollRect to scroll the pixel image containing the affected
objects in the window. OffsetField is used to offset a field’s co-ordinates without altering its image (since ScrollRect
has already done so). At this point, the field’s co-ordinates match the scrolled image of the field. ObscureField or
KillField can be used to hide or delete fields that are scrolled out of view.

Field specifies the field number (from 1 to 32767) that is affected in the current window. If the current window doesn’t
belong to your application, if no windows are open, or if Field specifies a field that does not exist, OffsetField does
nothing.

DistHoriz and distVert specify the horizontal and vertical amount by which the field’s co-ordinates are offset. Positive
numbers are right and down. The field’s co-ordinates are updated but no change is seen.

Scrolling fields

Your application can create a matrix of fields and treat them as though they were “cells” in a spread-sheet. For
example, fields could be aligned to represent columns and rows as illustrated below:

Seven rows, each with 3 fields, is a total of 21 fields. In fact,
any combination of lines and columns can be used as long as
no more than 32767 fields are visible at a time.

Custorner Marme Telephone
12413 | John SmitH

By scrolling up or down, the user is given the impression that
there are actually more lines available than those that are
currently visible. The scrolling process is accomplished by
the following series of steps.

1. Shift Lines: Use the toolbox’s ScrollRect routine to shift the lines to their new position. They should be shifted to
the position where they will appear after scrolling, typically a multiple of a field’s height.

2. Delete Old Fields: Use KillField to delete fields that are scrolled out of view. KillField does not affect the
window’s image.

276



H

H

9 Editing Fields

3. Shift Fields: Use OffsetField to change co-ordinates of each remaining field that is visible after scrolling.

4. Create New Fields: Create new fields that are now in view due to scrolling.

Note that within the steps outlined above, you will have to decide how your application deals with the active field and
its edited text, since it may be scrolled out of view during this process. See the tutorials folder for a working example
of scrolled a “field list.”

SizeField

Change a field’s size.
pascal void SizeField (short Field, short width, short height);
procedure SizeField (Field, width, height: INTEGER);

SizeField changes a field’s width and/or height without altering the field’s top or left co-ordinate. The change is seen
immediately providing that the field is not hidden.

Field specifies the field number (from 1 to 32767) that is affected in the current window. If the current window doesn’t
belong to your application, if no windows are open, or if Field specifies a field that does not exist, SizeField does
nothing.

Width and height specify the field’s new width and height in pixels. You must specify a minimum width of 5 and a
minimum height of 8 or SizeField does nothing. The height parameter is ignored if you are changing a single line field.

Also see: MoveField and MoveSizeField.

MoveSizeField

Change a field’s co-ordinates.

pascal void MoveSizeField (short Field,
short left, short top, short right, short bottom);

procedure MoveSizeField (Field, left, top, right, bottom: INTEGER);

MoveSizeField changes any of the field’s four co-ordinates. The change is seen immediately providing that the field is
not hidden. This routine combines the functions of MoveField and SizeField.

Field specifies the field number (from 1 to 32767) that is affected in the current window. If the current window doesn’t
belong to your application, if no windows are open, or if Field specifies a field that does not exist, MoveSizeField does
nothing.

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the field’s size and location in the
window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-hand
corner (right,bottom). You must specify a minimum width of 5 and a minimum height of 8 or MoveSizeField does
nothing. The bottom parameter is ignored if you are changing a single line field to prevent changing the field’s height.

Also see: GetFieldRect.

Water’s Edge Software 277



H

IS

Tools Plus

MoveSizeFieldRect

Change a field’s co-ordinates.
pascal void MoveSizeFieldRect (short Field, const Rect *Bounds);
procedure MoveSizeFieldRect (Field: INTEGER; Bounds: RECT);

MoveSizeFieldRect is identical to the MoveSizeField routine, except that it accepts the Bounds rectangle in place of
the individual left, top, right and bottom co-ordinates.

AutoMoveSizeField

Specify how a field is automatically moved and/or resized as its window’s size is changed.

pascal void AutoMoveSizeField (short Field,
Boolean left, Boolean top, Boolean right, Boolean bottom);

procedure AutoMoveSizeField (Field: INTEGER;
left, top, right, bottom: BOOLEAN);

Field specifies the field number (from 1 to 32767) that is affected in the current window. If the current window doesn’t
belong to your application, if no windows are open, or if Field specifies a field that does not exist, AutoMoveSizeField
does nothing.

The left, top, right and bottom parameters specify if that side of the field is automatically adjusted when the window’s
size changes. These setting are applied to the field and are used the next time the window’s size changes:

left Does the field’s left side track the window’s right edge?

top Does the field’s top track the window’s bottom edge?

right Does the field’s right side track the window’s right edge?

bottom  Does the field’s bottom track the window’s bottom edge?

You can think of each false value as locking that side of the field to a fixed co-ordinate regardless of the window’s size
(this is the default). Each frue value establishes a fixed distance between that side of the field and the window’s edge.
For example, setting only left and right to true makes the field move horizontally as the window widens and narrows,
but the field does not move vertically when the window’s height changes.

If you are setting these values identically for a group of objects, use AutoMoveSize to define the settings then add the
appropriate xAutoMoveSize constant (such as teAutoMoveSize for fields) to the objects’ spec as they are created. The
objects will adopt the settings specified by the AutoMoveSize routine.

Warning: Make sure that you resize objects in a way that makes sense. Don’t allow a window to shrink down to a
size where objects become unusable or disappear altogether.

278



H

H

9 Editing Fields

ResetFieldScrolling

Scroll the text in an editing field to its default position.
pascal void ResetFieldScrolling (short Field);
procedure ResetFieldScrolling (Field: INTEGER);

By default, an editing field’s text is automatically reset to its default scrolling orientation when it is deactivated, that is:
* top-left for left-aligned fields
* top-center for centered fields
* top-right for right aligned fields
Your application can override this behavior when the field is created by adding the teNoResetOnDeactivate option to
the field’s specification. When this is done and the user tabs or clicks in another field, the current field stays scrolled
exactly as the user left it.

Field specifies the editing field number (from 1 to 32767) that is affected. If the current window doesn’t belong to your
application, or if no windows are open, or if the editing field does not exist in the current window, ResetFieldScrolling
does nothing. This routine does not work on editing fields created with the Appearance Manager’s Edit Text control
(created with the teSystemBody option).

NewFieldFilter

Create a new field filter independently of any fields.
pascal short NewFieldFilter (const Str255 Chars, long FilterSpec);
function NewFieldFilter (Chars: STRING; FilterSpec: LONGINT): INTEGER;

Chars specifies the character set that makes up a single, unique filter. By default, the filter is sensitive to case and
diacritical marks. Later, when your application applies this filter to a field or a set of fields (using CurrentFieldFilter),
it specifies if the characters in the filter are allowed or disallowed in the field. Tools Plus automatically processes the
following special characters by either carrying out their correct action as is the case with the right arrow, or by filtering
out the character as is the case with the escape key. You do not have to specify any of these special characters in your
filter. They are ASCII characters 0-16, 21-31 and 127:

EscClearKey HelpKey LeftArrowKey
FKey DeleteFwdKey RightArrowKey
BackSpaceKey HomeKey UpArrowKey
TabKey EndKey DownArrowKey
ReturnKey PageUpKey

EnterKey PageDownKey

FilterSpec specifies several options for the filter. The value for this 4-byte long integer is specified by adding a set of
constants to obtain the desired result as illustrated below. By default, all options are off.

teIgnoreCase The filter automatically adds upper and lower case characters to those you specify. For
example, if you specify “AbC” the field’s character set it expanded to “ABCabc”.

teIgnoreDiac The filter automatically adds diacritically equivalent characters to those you specify.
For example, if you specify “bce” the field’s character set it expanded to “bcgeéeee”.

teShiftCaseUp As characters are added to fields using this filter, they are converted to their upper case
equivalent.

teShiftCaseDown As characters are added to fields using this filter, they are converted to their lower case

equivalent. Do not use this option in conjunction with teShiftCaseUp.

Water’s Edge Software 279



H

Tools Plus

The routine’s value returns with a unique Filter Reference Number that is in the range of 1 to 32767. If your
application tries to create two identical filters, the second attempt will return the prior Filter Reference Number
without creating a duplicate filter.

Although NewFieldFilter does not fragment memoryi, it is a good idea to create all your filters early in your application
before memory is fragmented at all.

Also see: CurrentFieldFilter and SetFieldFilter to apply a filter to a field.
Note: The telgnoreDiac option includes all diacritically equivalent characters, even though those characters may not

be present in a field’s font. Helvetica, for example, has the character ““Y” (upper case “y”’) while Chicago does
not. If this is a concern, manually specify the characters in the filter instead of using the teIgnoreDiac option.

CONST {Filter options }
teIgnoreCase = $0001; {Disable case sensing }
teIgnoreDiac = $0002; ({Disable diacritical sensing }
teshiftCaseUp = $0004; {Shift typed/pasted characters to upper case }
teShiftCaseDown = $0008; {Shift typed/pasted characters to lower case }

CurrentFieldFilter

Apply a filter to subsequently created editing fields.
pascal void CurrentFieldFilter (short FilterRefNum);
procedure CurrentFieldFilter (FilterRefNum: INTEGER);

FilterRefNum specifies the Filter Reference Number of the filter that is used by subsequently created editing fields. If
zero (0) is used, or if the specified filter does not exist, subsequently created fields are not filtered. A filter’s reference
number is returned when the filter is created by using the NewFieldFilter routine. Text pasted into static text fields is
always unfiltered.

A field adopts a filter when it is created by the NewField routine, depending on CurrentFieldFilter’s setting. Specifying
a positive filter number allows only the characters contained in the filter’s character set. Using a negative version of
the same reference number disallows the characters contained in the filter’s character set. The following example
disallows the digits O through 9:

myFilter := NewFieldFilter ('0123456789', 0); {Create new filter & return reference number }
CurrentFieldFilter (-myFilter); {Disallow chars in filter specified by myFilter }

CurrentFieldFilter is set to 0 when Tools Plus is initialized.

Also see: NewFieldFilter to create new filters.

SetFieldFilter
Apply a filter to an editing field.

pascal void SetFieldFilter (short Field, short FilterRefNum);
procedure SetFieldFilter (Field: INTEGER; FilterRefNum: INTEGER);

Field specifies the field number (from 1 to 32767) in the current window that will adopt the specified filter. If the
current window doesn’t belong to your application, or if no windows are open, or if the specified field number does
not exist, SetFieldFilter does nothing.

FilterRefNum specifies the Filter Reference Number for the filter that is applied to the field. A filter’s reference
number is returned when the filter is created by using the NewFieldFilter routine. Specifying a positive number allows

280



9 Editing Fields

only the characters in the filter. Specifying a negative number disallows the characters in the filter. The field becomes
unfiltered if zero (0) is used for this parameter. If the specified Filter Reference Number does not exist, SetFieldFilter
does nothing.

SetFieldFilter establishes the relationship between the field and a filter. Subsequently, the field uses that filter to filter
unwanted characters as they are typed or pasted into the field. This routine does not filter characters that are already in
the field when SetFieldFilter is used.

Also see: NewFieldFilter to create new filters.

SetTENoUndoThresh

Specify the minimum free memory required after “undo” services are set up.
pascal void SetTENoUndoThresh (long Threshold);
procedure SetTENoUndoThresh (Threshold: LONGINT);

Threshold specifies the minimum amount of contiguous memory you want your application to have after Tools Plus’s
Undo/Redo services have been set up (which may consume up to 64K of memory). The services are set up just before
a change is made to an active editing field.

If the largest piece of continuous memory is smaller than this specified value after the Undo/Redo services have been
set up, the user is warned with a message stating “Low memory... Continue without ‘Undo/Redo’?” A “Continue”
button lets the user continue without the Undo/Redo services being set up (i.e., the Edit menu’s “Undo...” item is
disabled and set to “Can’t Undo”). A “Cancel” button lets the user cancel the editing operation without making any
changes.

This threshold is set to a reasonable default value when Tools Plus is initialized, so your application benefits from low-
memory protection without you having to explicitly do anything. You can change the message displayed by Tools Plus
as described in the Multiple Languages chapter.

SetTENoEditThresh

Specify minimum free memory below which text editing is disallowed.
pascal void SetTENoEditThresh (long Threshold);
procedure SetTENoEditThresh (Threshold: LONGINT);

Threshold specifies the minimum amount of contiguous memory you want your application to have after an editing
operation (such as pasting) is performed without Undo/Redo services. The condition is checked just before a change is
made to an active editing field.

If there is not enough memory to set up the Undo/Redo services and the largest piece of continuous memory is smaller
than this specified value after the edit is performed (such as a paste or typing), the user is warned with a message
stating “WARNING... Not enough memory for this operation.” A “Cancel” button lets the user cancel the editing
operation without making any changes.

This threshold is set to a reasonable default value when Tools Plus is initialized, so your application benefits from low-
memory protection without you having to explicitly do anything. You can change the message displayed by Tools Plus
as described in the Multiple Languages chapter.

Water’s Edge Software 281



H

IS

Tools Plus

SetTELowMemThresh

Specify minimum free memory below which a “low memory” warning is displayed while typing.
pascal void SetTELowMemThresh (long Threshold);
procedure SetTELowMemThresh (Threshold: LONGINT);

Threshold specifies the minimum amount of contiguous memory you want your application to have after the user types
in a field. The condition is checked as the user types in an active field.

If the largest piece of continuous memory is smaller than this specified value after the user types a character, the user
is warned with a message stating “WARNING... Low memory!” An “OK” button lets the user continue. This message
is displayed every 90 seconds as long as the user continues to type while memory is low.

This threshold is set to a reasonable default value when Tools Plus is initialized, so your application benefits from low-
memory protection without you having to explicitly do anything. You can change the message displayed by Tools Plus
as described in the Multiple Languages chapter.

GetTEHandle
Get a handle to a field’s TextEdit record.

pascal TEHandle GetTEHandle (short Field);
function GetTEHandle (Field: INTEGER): TEHandle;

This routine returns a standard TEHandle to a field that was created by a Tools Plus routine. You should never need to
use this routine. It is provided for advanced programmers who may have specialized needs. Always use Tools Plus
routines to create and manipulate fields.

Field specifies the field number (from 1 to 32767) in the current window whose handle is being retrieved. If the
current window doesn’t belong to your application, or if no windows are open, or if Field specifies a field that does not
exist, GetTEHandle returns nil.

To conserve memory, Tools Plus does not always allocate a TextEdit record for each field. This is detailed at the
beginning of this chapter and in the section describing the NewField routine. If a field is “buffered” with its own
TextEdit record, you can get a handle to the TextEdit record at any time. If the field is not buffered, meaning it shares
a single TextEdit record with other fields on the same window, then you can only obtain a handle to the TextEdit
record when the field is active. This is true even if the field is deselected when its window is inactive.

Warning: If you need to lock the handle or change its attributes, do so temporarily then restore the original settings
before using any Tools Plus routines. If you alter this handle or any data that is made accessible by this
handle, you do so at your own risk.

282



10 List Boxes

10 List Boxes

List boxes are a mechanism that lets the user make a selection from multiple choices. Where this interface differs from
radio buttons, is that the user can optionally make multiple selections from the list, and the available choices are
dynamic. Your application specifies the list box’s dimensions as the visible area in which the items appear. A 1-pixel
border is drawn just outside these co-ordinates and a scroll bar is integrated to the right of the list box, thereby
consuming an additional 16 pixels. Once a list box is created, your application can define each line of text within the
list. Lines can be added, changed and deleted as required. Tools Plus also supports the use of custom LDEFs.

Various selection rules can be put into place to control how the user can select lines. The
simplest rule allows only one line to be selected at a time. More complex methods allow
multiple lines to be selected with various limitations imposed. When a line is selected, it is
highlighted, such as “Geneva” in the example to the left. When the user clicks or double-
clicks a line, Tools Plus reports this to your application with a doListBox event (your
application may choose to ignore double-clicks). Although your application can create
blank lines in a list box, they can’t be selected by the user.

Dover

Dover P%
Futura Ext...
Geneva
Helvetica

List boxes are created on the current window by the NewListBox routine. Each list box is referenced by a unique list

box number that can be from 1 to 511. This number is specified when the list box is created, and refers to the specific
list box until that list box is deleted. Note that the list box number is related to its associated window. This means that
two different windows can each have a list box numbered “1” without interfering with each other. Whenever the user
clicks on a line within the list box, Tools Plus reports this to your application.

After NewListBox creates an empty list box, repeated calls to SetListBoxText will append lines to the list box, or
replace an existing line’s text with new text. The GetListBoxText routine is used to obtain any line’s text. Individual
lines are referenced by a relative line number, where the top line is line 1, the second from the top is line 2, and so on.
All lines are referenced by the relative line number, even when lines are inserted or deleted.

The InsertListBoxLine routine inserts a new line between two existing lines. The DeleteListBoxLine routine deletes an
existing line. ResNamesToListBox inserts resource names (such as fonts or sounds), sorted alphabetically, at a
specified line. In all cases, if any other lines were selected before calling the routine, they retain their selection status.

SetListBoxLine is used to highlight a line, and is often used to set a default line the first time a list box is displayed.
The first selected line is automatically scrolled into view. GetListBoxLine is a complementary routine that tells you if
a specific line is selected or not. An additional routine, GetListBoxLines (ending with an “s”) is used to determine the
next selected line. This is useful when the selection of multiple lines is allowed because your application does not have
to query each line individually.

Lines in a list box can be arranged in alphabetical order by adding or inserting lines in the correct place. The
SearchListBox routine tells you where to insert a new text line to make the list alphabetic.

One additional routine is used to make your list boxes look professional: DrawListBox. Because list boxes are “live,”
the use of SetListBoxText, SetListBoxLine, InsertListBoxLine, and DeleteListBoxLine has an immediate and visible
affect on your list. This can become quite unsightly when adding one line at a time to a list box of any significant
length. DrawListBox turns the drawing process off prior to your application’s maintenance of lines. When the task is
completed, DrawListBox turns the drawing process on and instantly displays all the visible lines.

An entire list box can be deleted by using DeleteListBox. ClearListBox deletes all the lines in a list box.

When a window becomes inactive, any selected lines become deselected and the scroll bar is disabled. When the
window is activated again, the selection(s) reappear and the scroll bar is enabled.

When a list box is no longer required, it is deleted by the DeleteListBox routine, which releases the memory used by
the list box. This is done automatically if a window is closed. A list box can also be hidden or displayed with the
ListBoxDisplay routine. List boxes can be moved to a new location with MoveListBox and have their width and/or
height changed with SizeListBox. MoveSizeListBox combines both tasks by letting you specify new co-ordinates for
the list box.

Water’s Edge Software 283



Tools Plus

Auto-Positioning Options

Tools Plus can automatically position a list box if you use one or more of the following |§|:|§ Font
constants in place of actual co-ordinates: listLeftEdge, listTopEdge, listRightEdge and Dover
listBottomEdge. A special situation exists when you create a list box whose bottom co-

ordinate is equal to the window’s bottom local co-ordinate (or listBottomEdge), and the list’s Dover PS
right co-ordinate is equal to the window’s right local co-ordinate less 15 pixels (or Futura Ext...
listRightEdge): the list attaches itself to the window’s bottom right corner and resizes Geneva
automatically when the window’s size changes. Tools Plus also shortens the scroll bar Helpetica
appropriately if the window has a grow box so that the list fits perfectly around the window’s
grow box.

ll
I

Fonts

All list boxes default to using the Chicago 12pt font. When a list box is created, it can optionally adopt and remember
the window’s current font, size and style settings (as set by the TextFont, TextSize, and TextFace routines) by
including the listUseWFont option in the spec parameter. The window’s settings can then be changed without affecting
the list box. Unlike regular list boxes, Tools Plus list boxes can each have a different font. You can use the
GetListBoxFontSettings and SetListBoxFontSettings routines to get and set the list box’s font, size and style settings.

Colors

By default, a list box is displayed using black text on a white background. You can change this by adding the
listColorList constant to the list’s type when it is created. When doing so, the list box stores the window’s foreground
and background colors and displays its text using these colors. The GetListBoxColors and SetListBoxColors routines
can be used to set and retrieve a lists box’s text and background colors. When you implement a list box as a control (an
option under Tools Plus), the list box ignores the window’s colors. Note that some controls ignore color settings,
particularly those in the Appearance Manager. If you create a list box using the Appearance Manager’s List Box
control, it ignores color settings.

Appearance Manager Controls

The Appearance Manager, first introduced in mid 1997 with Mac OS 8, gives your application a number of 3D
controls including a list box control with an integrated 3D scroll bar. All the new Appearance Manager controls are
implemented as CDEFs, but unlike third party CDEF resources that must be installed in your application when it is
built, the Appearance Manager’s list box control is available to your application without having to install it. It is
available from the system, just like regular system controls, if the Macintosh running your application has an
Appearance Manager.

If you want to use the Appearance Manager’s list box control, you need to make your application “Appearance
Manager aware.” 680x0 applications are automatically Appearance Manager aware. To make your PowerPC
application Appearance Manager aware, see the Designing Your Application chapter of this manual for details in the
“Using the Appearance Manager” section. Your application must also include an ‘ldes’ resource to let the Appearance
Manager do its work. In Tools Plus, a single ‘ldes’ resource is shared by all list box controls. The settings in this
resource are ignored because Tools Plus populates it with the correct values just before the Appearance Manager reads
the resource. To include an ‘ldes’ resource in your application, just copy the ‘ldes’ resource that is supplied in the
“Optional Resources” folder into the resource file you are using for your project.

See the chapters on Buttons, Scroll Bars, Editing Fields and Pop-Up Menus in this user manual for additional
Appearance Manager controls.

Note: For complete information on Appearance Manager concepts, the Appearance Manager’s features, and how to
best use the Appearance Manager’s new controls, please read the documentation pertaining to the Appearance
Manager. It is available from Apple or in the latest issue of Inside Macintosh. This manual does not duplicate
that material.

284



10 List Boxes

ﬁ{) Note: Remember to include an ‘ldes’ resource in your project!

List Box (CDEF 22)

Tools Plus supports the Appearance Manager’s list box control in a way that, from a Chicago -

programmer’s perspective, it is indistinguishable from a regular list box. This lets you use a Courier =

consistent set of Tools Plus routines and programming principles to take advantage of the List Geneva

Box control if it is available, or the regular List Manager list box. Tools Plus automatically Helretica

implements a regular List Manager list box if the Appearance Manager is not available. Monaco o

Remember to include an ‘Ides’ resource in your project. New York |-

CONST List Box control
kControlListBoxProc = 352; {List Box ProcIDs }

Creating a List Box Using a ‘CNTL’ Resource

Tools Plus offers considerable versatility in the way it supports the creation of list boxes from ‘CNTL’ resources.
These features are most often used when opening a dialog (‘DLOG’ resource) that contains list boxes. In all cases, the
‘CNTL’ resource specifies a CDEF ID of 22 which produces a procID of 352 plus any variants. When you open a
dialog, ‘CNTL’ resources that reference CDEF ID 22 (the list box control) create a Tools Plus list box. The translation
from a ‘CNTL’ resource to a Tools Plus list box takes place as follows:

* Tools Plus starts by assuming that you want to use the Appearance Manager’s list box control (CDEF 22) and it
attempts to create the control.

« If the Appearance Manager is not available, a regular List Manager list box is created. You can use the same Tools
Plus routines to access the List Manager’s list box as you would a list box control.

 The list box is created using the listOnlyOne option, thereby allowing only one item to be selected by the user in
the list.

* To set the appearance and behavior specifications for a list box, place the specification’s value in the ‘CNTL’
resource’s contrlRfCon field, the reference constant. A list of possible values can be found in the NewListBox
description.

ﬁ]} Note: Remember to include an ‘ldes’ resource in your application. See the “Appearance Manager Controls” section
earlier in this chapter for details. Flag your ‘CNTL’ and ‘ldes’ resources as purgeable to save memory. Tools
Plus makes a copy of their data.

Appearance Manager and Keyboard Focus

Before the Appearance Manager’s arrival, the only user interface element that could process keystrokes was an editing
field. With the Appearance Manager present, a variety of user interface elements can process keystrokes, such as
editing fields, list boxes and the clock control. Keystrokes are directed at only one user interface element at a time (and
possibly at no element at all). When a user interface element processes keystrokes in such a way, it is said to have the
“keyboard focus.” Only one user interface element can have the keyboard focus at a time, and it is visually indicated
with a highlighted “band” around the object. Tools Plus takes care of the focus highlight, and of applying keystrokes to
the element that has the keyboard focus.

The process of moving the keyboard focus between objects, either by tabbing or clicking, is identical to that of
navigating between editing fields. For details, see the “Clicking and Tabbing” section in the Editing Fields chapter.

Special Considerations

Starting with Mac OS 8.5, the Appearance Manager’s List Box control (i.e., a list box created with the listSystemBody
option) always draws a 3 pixel thick band around the outer edge of the box using the window’s background theme. If
you want the list box to be drawn perfectly when running on Mac OS 8.5 or later, you must make sure you do one of
the following:

Water’s Edge Software 285



H

Tools Plus

* Leave the window’s backdrop color as white, and do not apply a background theme or backdrop color to the
window.

* Apply a background theme to the window

* Create a standard list box without using the listSystemBody. This list box will not get the keyboard focus.

Handling List Boxes

Once a list box is created, Tools Plus performs all the processing required within the box and its scroll bar. When a
window in inactive, Tools Plus deselects items in all list boxes on that window. When the window is activated again,
all list boxes regain their original state as specified by your application. Tools Plus constantly inquires about any
events that have occurred, inlcuding events in a list box.

Several types of events may indicate that your application has to perform some action. For example, you may want to
enable or disable buttons based on whether a selection has been made in the list box. Or you may ignore all list box
action and use GetListBoxLine to determine the selection only after an OK button is clicked. Though various
interpretations can be implemented, please adhere to the Macintosh User Interface Guidelines as outlined in Inside
Macintosh. In any case, Tools Plus tells your application if any activity has occurred in a list box, or if a selection has
been double clicked.

See the Event Management chapter for details pertaining to list box events.

NewListBox

Create a new list box.

pascal void NewListBox (short ListBox, short left, short top, short right,
short bottom, long Spec);

procedure NewListBox (ListBox, left, top, right, bottom: INTEGER;
Spec: LONGINT);

ListBox specifies the list box number (from 1 to 511) that is created in the current window. Once a list box is created, it
is referenced by this list box number. If a list box has been previously created in the current window using the same
number, it is replaced with a new (empty) list box as specified by the parameters in the NewListBox routine (which is
a good way to clear all of an existing list box’s lines). If the current window doesn’t belong to your application, or if
no windows are open, NewListBox does nothing.

Left, top, right, and bottom define a rectangle in the current window’s local co-ordinates that determine the list box’s
size and location in the window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and
the bottom right-hand corner (right,bottom). A 1-pixel wide outline is drawn as a frame for the list box just outside
these co-ordinates. Also, a scroll bar is created along the entire length of the list box’s right side. The scroll bar is 16
pixels wide and is drawn outside the specified co-ordinates. To make a list box operate at its best, the list box’s height
(difference between top and bottom) should be a multiple of its font’s height (font height can be determined by calling
the GetFontInfo routine and adding Ascent + Descent + Leading). If bottom is less than top, NewListBox takes the
absolute value of bottom and creates a list box that is that many lines high (i.e., if top is 30 and bottom is -8, an eight
line list box is created starting downward at the top co-ordinate). You can align the list box’s edge to a window’s edge
by using the listLeftEdge, listTopEdge, listRightEdge or listBottomEdge constants in place of the list box’s left, top,
right or bottom co-ordinates.

Spec specifies a list box’s appearance and behavior. It is a combination of various Tools Plus options detailed below.

286



10 List Boxes

Appearance and Behavior Specification

Spec specifies a list box’s appearance and behavior. To maintain backwards compatibility with previous versions of
Tools Plus, the value for this 4-byte long integer can be calculated in either of the following ways:

(a) By adding only standard Apple constants. Apple’s standard LDEEF is used.

(b) By adding Tools Plus constants plus an optional custom LDEF procID. If no procID is specified, Apple’s
standard LDEEF is used. Using this method, spec is a combination of an LDEF procID (low 16 bits) plus
various Tools Plus options (high 16 bits).

Do not mix standard Apple constants with Tools Plus constants when specifying the spec. Doing so will produce

unpredictable results.

Choose any of the following selection methods (when using Apple’s standard LDEF)...

0 (zero)

10nlyOne

1ExtendDrag

1NoDisjoint

1NoExtend

lUseSense

This is the default selection method. If additional options are specified they override the
default behavior. Line selection is affected by modifier keys as follows:

Option The Option key is always ignored even when used in combination with
other keys.

no Shiftor 8  Any click in the list box deselects previous selections and selects the
line clicked by the user. If the mouse is moved while the mouse button
is held down, only the line beneath the cursor is selected.

Shift If the Shift key is down before clicking the mouse, the selection is
extended or shortened as if it were an expandable rectangle. When the
mouse is first clicked, the selection is changed to include the line that
was just clicked. If the mouse is dragged, the selection either extends or
shortens to follow the mouse’s pointer.

S If the 8 key is down before clicking the mouse, lines are either selected
or unselected, depending on the first clicked line. If the initial line was
selected, it is deselected along with any other lines the mouse’s pointer
passes over. If the initial line was not selected, it is selected along with
any other lines the mouse’s pointer passes over. This is called “sense of
first line.”

Only one line can be selected at a time. Any previous selection is deselected when a new
line is clicked.

Selections are extended without using the Shift key. All lines dragged over by the mouse
are selected. It works best when used in conjunction with INoDisjoint, INoExtend, and
1UseSense.

Multiple lines can be selected, but all lines are deselected when the mouse is clicked.
This occurs even if the Shift or 8 keys are held down, and prevents “disjointed”
selections.

The current selection is ignored. The mouse’s click defines an anchor point for the new
Shift selection.

If the Shift key is pressed, “sense of first line” is in effect. This means if the initial line
was selected, it is deselected along with any other line the mouse passes over. If the
initial line was not selected, it is selected along with any other line the mouse passes
over.

Common or interesting selection methods (combinations of the above)...

10nlyOne

1NoExtend +
lUseSense

Water’s Edge Software

Only one selection can be made at a time. Any previous selection is deselected. This
is a Macintosh standard.

A click deselects previous selections. A Shift-Click selects a deselected line, or
deselects a selected line. A Shift-Click can also be dragged to perform the same action
across other lines. The “Font/DA Mover” uses this method.

287



Tools Plus

lExtendDrag +
1NoDisjoint +
1NoExtend +
lUseSense

lExtendDrag +
1NoExtend +
lUseSense

A click deselects previous selections. Dragging the click selects lines along the drag.
This is a good way to let the user select multiple lines that must be grouped together.

A click selects a deselected line, or deselects a selected line. A click can be dragged to
perform the same action across other lines. Shift is ignored. This selection method
makes a list box behave as though it were a list of check boxes. Although this is a neat
idea, it does not follow the Macintosh User Interface Guidelines.

If you need to create a list box that goes beyond Apple’s standard list and/or uses a custom LDEF, use the following
Tools Plus constants in place of Apple’s constants.

Choose any of the following selection methods...

listDefault
listOnlyOne
listExtendDrag
listNoDisjoint
listNoExtend

listUseSense

Same as 0 (zero) when using Apple’s constants.
Same as 10nlyOne when using Apple’s constants.
Same as IExtendDrag when using Apple’s constants.
Same as INoDisjoint when using Apple’s constants.
Same as INoExtend when using Apple’s constants.

Same as 1UseSense when using Apple’s constants.

Optionally choose any of the following options...

288

listSystemBody

listUseWFont

Create the list box using the Appearance Manager’s list box control. If the Appearance
Manager is not available, a regular List Manager list box is created. When you create a
list box with this option, the list dims when it is on an inactive window. Note: Only list
boxes that are implemented as a control can be embedded into other controls.

Display the list box using the window’s current font, size and style settings (as set by the
TextFont, TextSize, and TextFace routines). The list box stores this information for
future reference. By default, list boxes are drawn using the system font (Chicago, 12 pt).

listDimWhenInactive

listColorList

listNoFrame

listAutoMoveSize

listHidden

(LDEF procID)

Using this option causes the list’s text and frame to be dimmed when the list is inactive,
such as on an inactive window. This option is automatically included when you use the
listSystemBody option.

Use the window’s foreground color for the list’s text, and the window’s background
color for the list’s background. The list stores this information for future reference. By
default, the list box is drawn using black text on a white background. This option is
ignored if you use the listSystemBody option.

Do not draw a box around the list. By default, list boxes have a 1-pixel wide frame
around them. This option is useful if you are integrating the list box into a graphic
element and you do not want a line between the two elements. This option is ignored if
you use the listSystemBody option.

Automatically move and/or resize the list box when the window’s size changes. The
AutoMoveSize routine lets you specify which sides are altered. You can use the
AutoMoveSizeListBox routine as an alternative to setting this option.

Create a hidden list box. This kind of list box is accessible to your application but not to
the user.

If you want to use an LDEEF other than the default Apple LDEF, add its procID to the
spec’s value. Do not specify kControlListBoxProc, because the is a CDEF (control)
procID, and not one for an LDEF. If you use the listSystemBody option, it automatically
calls the Appearance Manager’s list box LDEF.



10 List Boxes

Also see: NewListBoxRect and NewDialogListBox.

ﬁn Note: Tools Plus makes no attempt to control the placement of list boxes or to protect them once they have been
created. It is your responsibility to ensure that list boxes are of sufficient size to contain their lines, and that
their placement within the window is reasonable and does not conflict with other objects. Furthermore, you
should not allow your application’s text and drawing processes to interfere with list boxes. Windows with a
“size box” should not allow list boxes to be obscured or hidden by making the window too small.

CONST {LIST BOXES: }
{Standard Apple constants for backwards }

{compatibility. Don't mix with T+ constants: }

lUseSense = 4; { Shift senses state of initial line }
1NoExtend = 16; { Shift won't extend selection }
1NoDisjoint = 32; { Click deselects previous selections }
lExtendDrag = 64; { Drag extends without shift key }
10nlyOne = -128; { Prevent multiple selections }
{List box co-ordinates: }

listLeftEdge =-32768; { Window's left edge }
listTopEdge =-32768; { Window's top edge }
listRightEdge = 32767; { Window's right edge }
listBottomEdge = 32767; { Window's bottom edge }
{Tools Plus List Box constants: }

listDefault = $00000000; { Default list box }
listSystemBody = $80000000; { Use Appearance Manager List Box }
listUseWFont = $40000000; { Use window's font }
listNoFrame = $00040000; { Don't draw frame around the list box }
listColorList = $00080000; { Use color settings for this list box }
listHidden = $00100000; { Create a hidden list box }
listAutoMoveSize = $00200000; { Auto-move/size as window's size chg }
listUseSense = $00400000; { Shift senses state of initial line }
listNoExtend = $00800000; { Shift won't extend selection }
listNoDisjoint = $01000000; { Click deselects previous selections }
listExtendDrag = $02000000; { Drag extends without shift key }
listOnlyOne = $04000000; { Prevent multiple selections }

NewListBoxRect

Create a new list box.

pascal void NewListBoxRect (short ListBox, const Rect *Bounds,
long Spec);

H

ascal procedure NewListBoxRec istBox: ; Bounds: ;
P d NewListBoxRect (ListB INTEGER; B d RECT
Spec: LONGINT);

NewListBoxRect is identical to the NewListBox routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

NewDialogListBox

Create a new list box in a dialog using a dialog item's co-ordinates.

pascal void NewDialogListBox (short ListBox, long Spec);

H

procedure NewDialogListBox (ListBox: INTEGER; Spec: LONGINT);

NewDialogListBox is identical to the NewListBox routine, except that the list box is created in a dialog (a window
opened with the LoadDialog routine, or one that had a dialog list attached with the LoadDialogList routine). The list
box’s co-ordinates are obtained from the dialog item whose number matches the list box number.

Water’s Edge Software 289



H

Tools Plus

EmbedListBoxinButton

Embed a list box into a button or into the window’s root control (Appearance Manager only).
pascal void EmbedListBoxInButton (short ListBox, short ContainerButton);
procedure EmbedListBoxInButton (ListBox, ContainerButton: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedListBoxInButton lets you
manually embed a list box into a button, or into the window’s root control. Note that the term “button” does not
literally mean a button control. It means any control that is implemented as a button in Tools Plus. The most likely
candidate is a Group Box control. If the Appearance Manager is not available, EmbedListBoxInButton does nothing.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the list box does not exist in the current window,
EmbedListBoxInButton does nothing. Note that the only list boxes that can be embedded are those that are drawn
using a CDEF (use the listSystemBody option when creating the list box).

ContainerButton specifies the button number (from 1 to 511) into which ListBox is embedded. This control must exist
in the current window, and it must be a “container” type control such as the Appearance Manager’s Group Box. The
list box must fit entirely within the container control or EmbedListBoxInButton does nothing. If a value of 0 is
provided for a container button, ListBox is embedded into the window’s root control.

Also see: EmbedListBoxInScrollBar and SetAutoEmbed.

EmbedListBoxInScrollBar

Embed a list box into a scroll bar or into the window’s root control (Appearance Manager only).

pascal void EmbedListBoxInScrollBar (short ListBox,
short ContainerScrollBar);

procedure EmbedListBoxInScrollBar (ListBox, ContainerScrollBar: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedListBoxInScrollBar lets you
manually embed a list box into a scroll bar, or into the window’s root control. Note that the term “scroll bar” does not
literally mean a scroll bar control. It means any control that is implemented as a scroll bar in Tools Plus. If the
Appearance Manager is not available, EmbedListBoxInScrollBar does nothing.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the list box does not exist in the current window,
EmbedListBoxInScrollBar does nothing. Note that the only list boxes that can be embedded are those that are drawn
using a CDEF (use the listSystemBody option when creating the list box).

ContainerScrollBar specifies the scroll bar number (from 1 to 511) into which ListBox is embedded. This control must
exist in the current window, and it must be a “container” type control. The list box must fit entirely within the
container control or EmbedListBoxInScrollBar does nothing. If a value of O is provided for a container scroll bar,
ListBox is embedded into the window’s root control.

Also see: EmbedListBoxInButton and SetAutoEmbed.

290



H

H

H

10 List Boxes

GetFreeListBoxNum

Get the first unused list box number.
pascal short GetFreeListBoxNum (void);

function GetFreeListBoxNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own list box
number, GetFreeListBoxNum returns the first unused (free) list box number. Using this routine, you can assign an
unused list box number to a variable, then use that variable throughout your application without concern for the true
list box number.

GetFreeListBoxNum returns the first free list box number on the current window. If the current window doesn’t
belong to your application, if no windows are open, or if the maximum number of list boxes has already been created
on the current window (no new ones can be created), GetFreeListBoxNum returns a value of zero (0).

DeleteListBox

Delete a list box.
pascal void DeleteListBox (short ListBox);
procedure DeleteListBox (ListBox: INTEGER);

ListBox specifies the list box number (from 1 to 511) that is deleted from the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the list box does not exist in the current window,
DeleteListBox does nothing. Use KillListBox if you want to delete the list box without removing its image from the
window.

KillListBox

Delete a list box without affecting its image on the window.
pascal void KillListBox (short ListBox);
procedure KillListBox (ListBox: INTEGER);

KillListBox is identical to DeleteListBox except that it does not remove the list box’s image from the window. This
routine is useful for scrolling list boxes in an area within a window (i.e., not the entire window). ScrollRect is used to
scroll the images in the affected area. OffsetListBox repositions the list box’s co-ordinates without affecting its image
(since ScrollRect has already moved it). KillListBox then deletes the list boxes that are scrolled out of view without
affecting their image (ScrollRect has already scrolled them out of view).

Water’s Edge Software 291



H

H

H

Tools Plus

ListBoxDisplay

Hide or show a list box.
pascal void ListBoxDisplay (short ListBox, Boolean Show);
procedure ListBoxDisplay (ListBox: INTEGER; Show: BOOLEAN);

ListBoxDisplay hides or shows a list box on the current window. The result is seen immediately.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the list box does not exist in the current window,
ListBoxDisplay does nothing.

Show indicates if the list box is being hidden or displayed. The two constants that can be used for this flag are on and

off.

ListBoxlIsVisible

Determine if a list box is visible.
pascal Boolean ListBoxIsVisible (short ListBox);
function ListBoxIsVisible (ListBox: INTEGER): BOOLEAN;

ListBoxIsVisible reports if a list box is visible on the current window, or if it is hidden.
ListBox specifies the list box number (from 1 to 511) that is queried in the current window.

This routine’s value returns frue if the list box is visible, and false if the list box is hidden. If the current window

doesn’t belong to your application, or if no windows are open, or if the list box does not exist in the current window,
ListBoxIsVisible returns false. This routine takes control embedding into account, so it will return false if the target list
box is embedded and its container control is hidden.

ObscureListBox

Hide a list box without removing its image from the window.
pascal void ObscureListBox (short ListBox);
procedure ObscureListBox (ListBox: INTEGER);

ObscureListBox hides a list box on the current window without removing its image from the window. This routine is
useful for scrolling list boxes in an area within a window (i.e., not the entire window). ScrollRect is used to scroll the
images in the affected area. OffsetListBox repositions the list box’s co-ordinates without affecting its image (since
ScrollRect has already moved it). ObscureListBox then hides the list boxes that are scrolled out of view without
affecting their image (ScrollRect has already scrolled them out of view).

ListBox specifies the list box number (from 1 to 511) that is hidden in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the list box does not exist in the current window,
ObscureListBox does nothing.

292



H

10 List Boxes

ActivateListBox

Activate a list box to give it the keyboard focus.
pascal void ActivateListBox (short ListBox);
procedure ActivateListBox (ListBox: INTEGER);

ListBox specifies the list box number (from 1 to 511) that acquires the keyboard focus in the current window.
ActivateListBox does nothing under any of these conditions: the current window doesn’t belong to your application,
no windows are open, the list box does not exist in the current window, the list box is disabled or hidden, the list box
was not implemented using the listSystemBody option, or the Appearance Manager is not available to your
application.

Activating a list box allows the user to interact with the list box by typing on the keyboard. On an active window, the
list box acquires the keyboard focus making it the item that automatically processes keystrokes. Visually, this is
indicated by having highlighted lines. Additionally, the list box is encompassed with a highlighting keyboard focus
band to indicate that it has the focus. Using ActivateListBox in an active window removes the keyboard focus from
any other object that may have the focus within the same window or any other active window such as a tool bar or
floating palette. This action may deactivate an active editing field.

If the list box being activated is in an active window that allows access to pull-down menus, the Edit menu’s “Undo”
item is changed to “Can’t Undo” and is disabled. The “Cut”, “Copy”, “Paste”, “Clear” and “Select All” items are also
disabled.

Your application can activate virtually any editing field or Appearance Manager control that accepts the keyboard
focus. This flexibility can lead to a confusing user interface by allowing the keyboard focus to jump between active
windows. A good rule to observe is to activate a single item only on a standard window (not a tool bar or a floating
palette) when the window first opens. This sets up the default keyboard focus item for that window. At all other times,
activate a list box only in response to a user’s actions.

Also see: HaveTablInFocus, TabToFocus, the doClickToFocus event, and ClickToFocus for other activating services.

GetListBoxRect

Get a list box’s co-ordinates.
pascal void GetListBoxRect (short ListBox, Rect *Bounds);
procedure GetListBoxRect (ListBox: INTEGER; var Bounds: RECT);

ListBox specifies the list box number (from 1 to 511) that is queried in the current window.

Bounds returns the list box’s bounding rectangle specified in the window’s local co-ordinates. These co-ordinates
match those used to create the list box. If the current window doesn’t belong to your application, or if no windows are
open, or if the list box does not exist in the current window, Bounds returns with all co-ordinates set to zero (0).

Water’s Edge Software 293



Tools Plus

SetListBoxText

Create a new line in a list box, or replace an existing line’s text.

pascal void SetListBoxText (short ListBox, short LineNum, const Str255 Text);

H

procedure SetListBoxText (ListBox, LineNum: INTEGER; Text: STRING);

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the list box does not exist in the current window,
SetListBoxText does nothing.

LineNum specifies the line number (from 1 to 32767) that is affected in the specified list box. The line is created if it
does not already exist. If necessary, blank lines are created between the last line in the list box and the new line being
created. If the line already exists, the line’s text is simply replaced.

The Text parameter is the text that appears in the list box’s line. When running on System 6 or older, text that is too
long to be displayed in its entirety is truncated and appended with an ellipsis (*...”). System 7 (or later) does not do
this. Instead, it first condenses character spacing, then, as a last resort, gives the appearance of truncation without
altering the text.

Repeated calls of SetListBoxText should be bracketed by calls to DrawListBox. See the DrawListBox routine for
details.

Programming Tips:

1 If you are going to create several list boxes, create all the empty list boxes first using NewListBox. This
makes all the list boxes appear in quick succession. Next, turn list box drawing off by using DrawListBox,
and fill all the list boxes as required. Lastly, turn list box drawing back on. Your list boxes will be filled in
quick succession. No time is saved, but the display looks more professional.

2 If you know in advance how many lines are going to be added to a list box, add the last line first, even if it is
blank. By doing this, all the blank lines you need will be created at the same time. Since it takes less time to
replace text in an existing line than it does to append a new line, your list box will be filled much quicker.

3 If you are creating a list box of font names, be aware that some Macintoshes have some fonts in ROM. That
means that calling CountResources(‘FOND’) will include not only the number of fonts in your system, but in
ROM too. Before you add a font name to your list box, check to see if it already exists in the list to avoid
duplicates. You can use the ResNamesToListBox routine to find, sort and insert the resource names for you.

4 If your application is running on a system file prior to System 7, long lines of text in the list are actually
truncated as you see them on the screen (i.e., “Long word...”). In System 7 or higher, long lines only appear
to be truncated. When you retrieve a line by using the GetListBoxText routine under System 7 or higher, you
will obtain the full string that was placed in that line, even if it appears truncated on the screen to fit in the list.
The same call, when using a system file prior to System 7, retrieves the truncated text as it appears in the list.

33> Warning: Apple’s List Manager (and the LDEF written by Apple) is limited to 32K of data. This means that your list
can’t contain more than thirty-two thousand characters. Tools Plus will break this limit in a future release
by writing our own list manager. Tools Plus routines will continue to work as they do now, but will have
additional functionality available to them.

294



H

10 List Boxes

ResNamesToListBox

Insert resource names into a list box.
pascal void ResNamesToListBox (short ListBox, short LineNum, ResType rType);
procedure ResNamesToListBox (ListBox, LineNum: INTEGER; rType: RESTYPE);

This routine finds all named resources of the specified type and inserts those names (sorted alphabetically) into a list
box. Duplicated names are ignored as are ones that start with “.” (period) or “%”.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the list box does not exist in the current window,
ResNamesToListBox does nothing.

LineNum specifies the line number (from 1 to 32767) where the resource names are inserted. The line is created if it
does not already exist. If necessary, blank lines are created between the last line in the list box and the new line being
created.

rType is the four character resource type whose names are being inserted into the list box. When running on System 6
or older, names that are too long to be displayed in their entirety are truncated and appended with an ellipsis (“...”).
System 7 (or later) does not do this. Instead, it first condenses characters spacing then as a last resort, gives the
appearance of truncation without altering the name. If you specify ‘FOND’ or ‘FONT’ resources, both are obtained
since they are just different types of fonts.

StrTolListBox

Copy a set of strings to a list box.
pascal void StrToListBox (short ListBox, Handle hRec);
procedure StrToListBox (ListBox: INTEGER; hRec: HANDLE);

StrToListBox is a highly optimized routine used to copy a set of strings into a list box. It is about 30 times faster than
using toolbox routines to populate the list. You can think of this routine as a “batch loader” for a list box.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the list box does not exist in the current window,
StrToListBox does nothing. This list is cleared of entries before the new ones are added.

HRec is a handle to an indexed string structure, or commonly known as an ‘STR#’ record or resource. Your
application can create and populate the record using Tools Plus’s routines, or it can read an ‘STR#’ resource from a
resource file. If this handle points to a resource, it is best if you flag the resource as purgeable since you won’t need to
keep it in memory after the strings have been loaded into the list. The following code shows you how to copy an
‘STR#’ resource to a list box:

hRec := GetResource('STR#', 128); {Load the resource into memory }
HNoPurge (hRec) ; {Prevent purging while we copy strings to the list box }
StrToListBox(1l, hRec); {Copy 'STR#' resource to the list box }
HPurge(hRec); {Allow the resource to be purged }
ReleaseResource(hRec); {Release the resource to save memory }

The hRec parameter can also be used to specify an ‘STR#’ resource ID instead of a handle to an ‘STR#’ structure. To
do so, typecast the resource ID as a handle before passing it to the routine.

Water’s Edge Software 295



H

H

Tools Plus

GetListBoxText

Get the text from a specific line in a list box.
pascal void GetListBoxText (short ListBox, short LineNum, Str255 Text);
procedure GetListBoxText (ListBox, LineNum: INTEGER; var Text: Str255);

ListBox specifies the list box number (from 1 to 511) that is queried in the current window.
LineNum specifies the line number (from 1 to 32767) that is queried in the specified list box.

The Text variable is the text that appears in the list box’s specified line. If the current window doesn’t belong to your
application, or if no windows are open, or if the list box does not exist in the current window, or if LineNum does not
exist in the specified list box, Text will return as a null string.

Programming Tips:

1 If your application is running on a system file prior to System 7, long lines of text in the list are actually
truncated as you see them on the screen (i.e., “Long word...”). In System 7 or higher, long lines only appear
to be truncated. When you retrieve a line by using the GetListBoxText routine under System 7 or higher, you
will obtain the full string that was placed in that line, even if it appears truncated on the screen to fit in the list.
The same call, when using a system file prior to System 7, retrieves the truncated text as it appears in the list.

SearchListBox

Search a list box for a line that is greater than or equal to the specified text.
pascal short SearchListBox (short ListBox, const Str255 Text);
function SearchListBox (ListBox: INTEGER; Text: STRING): INTEGER;

ListBox specifies the list box number (from 1 to 511) that is queried in the current window.
Text is a string that is used to find a matching line.

The routine searches all the lines in the specified list box for the string indicated by Text. If an exact match is found,
the routine’s value returns the line number containing the matching string. If a match is not found, the routine returns
the first line number that contains text that is greater than the specified Text. If the current window doesn’t belong to
your application, or if no windows are open, or if the list box does not exist in the current window, a value of zero (0)
is returned.

This routine is most useful if you want to create a list box with the lines in alphabetical order (such as fonts). Before
your application adds a line, call SearchListBox to determine where the line should be inserted. Using the returned
value, call InsertListBoxLine to insert a blank line in the list box, then use SetListBoxText to set the blank line’s text.
Keep in mind that the alphabetic comparison that is made between the list box’s lines and the string specified by Text
differentiates between upper and lower case letters. Also, under systems older than System 7, the list box’s lines may
have been truncated and suffixed by with an ellipsis (“...”) if they were too wide to fit in the list box.

296



H

10 List Boxes

SetListBoxLine

Select or deselect a line in a list box.
pascal void SetListBoxLine (short ListBox, short LineNum, Boolean SetIt);
procedure SetListBoxLine (ListBox, LineNum: INTEGER; SetIt: BOOLEAN);

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window

doesn’t belong to your application, or if no windows are open, or if the list box does not exist in the current window,

SetListBoxLine does nothing.

LineNum specifies the line number (from 1 to 32767) that is affected in the specified list box. If the line number does

not exist in the specified list box, SetListBoxLine does nothing. This line scrolls into view if it is being selected.
Setlt specifies if the line is to be selected or deselected. The constants on and off can be used for this purpose.

The SetListBoxLine routine should be used to set default lines within a list box immediately after it is created.
Normally, you won’t have to use this routine because the user’s actions will select and deselect lines.

If you are going to select a number of lines using this routine, first use the DrawListBox routine to turn list drawing

off, set your lines, then use DrawListBox to turn drawing on. The user sees all the lines selected at once instead of
seeing each line selected individually.

CONST {list box's line state }
on = true; {line is selected }
off = false; {line is deselected }

GetListBoxLine

Determine if a specified line in a list box is selected or deselected.
pascal Boolean GetListBoxLine (short ListBox, short LineNum);
function GetListBoxLine (ListBox, LineNum: INTEGER): BOOLEAN;

ListBox specifies the list box number (from 1 to 511) that is queried in the current window.
LineNum specifies the line number (from 1 to 32767) that is queried in the specified list box.

The routine’s value returns as true if the line is selected, or false if the line is not selected. If the current window

doesn’t belong to your application, or if no windows are open, or if the list box does not exist in the current window, or

if LineNum does not exist in the specified list box, the routine’s value returns a false.

See the GetListBoxLines (ending with an “s”) routine.

Water’s Edge Software

297



H

H

Tools Plus

GetListBoxLines

Find the first selected line in a list box, starting at a specified line number.
pascal short GetListBoxLines (short ListBox, short LineNum);
function GetListBoxLines (ListBox, LineNum: INTEGER): INTEGER;

ListBox specifies the list box number (from 1 to 511) that is queried in the current window.
LineNum specifies the line number (from 1 to 32767) that is the first in a series to be queried in the specified list box.

The routine’s value returns the line number of the first selected line starting at LineNum. If no selected lines were
found, the routine returns a value of zero (0). If the current window doesn’t belong to your application, or if no
windows are open, or if the list box does not exist in the current window, or if LineNum does not exist in the specified
list box, the routine’s value returns a zero (0).

When multiple lines can be selected in a list box, GetListBoxLines is a good way to determine which lines are
currently selected. Instead of checking each line individually, use GetListBoxLines with a LineNum of 1 to determine
the first selected line. Add 1 to the resultant value to resume the search starting at the next LineNum. When
GetListBoxLines returns a value of zero, you know you have reached the end of the list.

A second use for this routine is to enable or disable a button depending on whether any items are selected in a list box.
The “Open...” dialog box provides a good example. If a line (i.e., file name) is not selected in the list box, the Open
button is disabled. As soon as a line is selected, the Open button is enabled. To do this, your application merely has to
set up the correct default (or absence of one) in the list box, and correctly enable or disable a push button. When Tools
Plus informs your application that some activity has taken place in the list box, call GetListBoxLines with a LineNum
of 1 to determine if any lines were selected. If GetListBoxLines returns a non-zero value, you know a selection has
been made, otherwise, no selections have been made. Based on this conclusion, you could enable or disable the push
button accordingly.

InsertListBoxLine

Insert a blank line into a list box.
pascal void InsertListBoxLine (short ListBox, short LineNum);
procedure InsertListBoxLine (ListBox, LineNum: INTEGER);

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the list box does not exist in the current window,
InsertListBoxLine does nothing.

LineNum specifies the line number (from 1 to 32767) that is the targeted destination for a blank line in the specified list
box. The specified line number, and all the lines below it, are pushed down one line. If the line number does not exist
in the specified list box, InsertListBoxLine does nothing.

Repeated calls to InsertListBoxLine should be bracketed by calls to DrawListBox. See the DrawListBox routine for
details.

298



H

H

10 List Boxes

DeleteListBoxLine

Delete an existing line from a list box.
pascal void DeleteListBoxLine (short ListBox, short LineNum);
procedure DeleteListBoxLine (ListBox, LineNum: INTEGER);

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the list box does not exist in the current window,
DeleteListBoxLine does nothing.

LineNum specifies the line number (from 1 to 32767) that is deleted. The specified line number is deleted, and all the
lines below it are moved up one line. If the line number does not exist in the specified list box, DeleteListBoxLine
does nothing.

If you want to clear a line (i.e., clear the existing text and leave a blank line), use SetListBoxText and specify a null
string (“\p” in C, or *‘ in Pascal).

Repeated calls to DeleteListBoxLine should be bracketed by calls to DrawListBox. See the DrawListBox routine for
details. You can delete all lines in a list box with ClearListBox.

ClearListBox

Delete all lines from a list box.
pascal void ClearListBox (short ListBox);
procedure ClearListBox (ListBox: INTEGER);

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the list box does not exist in the current window,
ClearListBox does nothing.

ClearListBox deletes all lines in a list box. This routine is very quick regardless of the number of lines in the list box
so you can leave list box drawing on when you use it.

ListBoxisEnabled

Determine if a list box is enabled or disabled.
pascal Boolean ListBoxIsEnabled (short ListBox);
function ListBoxIsEnabled (ListBox: INTEGER): BOOLEAN;

ListBox specifies the list box number (from 1 to 511) that is queried in the current window.

The routine’s value returns frue if the list box is enabled, and false if the list box is disabled. If the current window
doesn’t belong to your application, or if no windows are open, or if the list box does not exist in the current window,
ListBoxIsEnabled returns false. ListBoxIsEnabled returns the list box’s enabled state as it is currently displayed, so if
the list box’s window is inactive and has temporarily disabled the list box, ListBoxIsEnabled returns false.

Water’s Edge Software 299



H

H

Tools Plus

SetListBoxFontSettings

Set a list box’s font, size and style settings.

pascal void SetListBoxFontSettings (short ListBox,
short theFont, short theSize, Style theStyle);

procedure SetListBoxFontSettings (ListBox: INTEGER;
theFont: INTEGER; theSize: INTEGER; theStyle: Style);

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if the list box does not exist, SetListBoxFontSettings
does nothing. Otherwise, the change is seen immediately.

TheFont specifies the list box’s new font. The default is Chicago, which is represented by the systemFont constant.

TheSize specifies the font’s size. The default is 0, which represents the default font size used by the system font, or
12pt in this case.

TheStyle specifies the list box’s new style. Special character constants defined by the Font Manager are bold, italic,
underline and shadow. C programmers use the Font Manager’s constants to specify a composite style, such as
SetListBoxFontSettings(1, geneva, 9, bold + outline) for bold and outlined, or SetListBoxFontSettings(1, geneva, 9, 0)
for plain text. Pascal programmers use the Font Manager’s constants to specify a style set, such as
SetListBoxFontSettings(1, geneva, 9, [bold, outline]) for bold and outlined, or SetListBoxFontSettings(1, geneva, 9, [
]) for plain text.

A list box’s font settings are set when a list box is created, so this routine is not normally used by many applications.

GetListBoxFontSettings
Get a list box’s font, size and style settings.

pascal void GetListBoxFontSettings (short ListBox,
short *theFont, short *theSize, Style *theStyle);

procedure GetListBoxFontSettings (ListBox: INTEGER;
var theFont: INTEGER; var theSize: INTEGER; var theStyle: Style);

ListBox specifies the list box number (from 1 to 511) in the current window whose font settings are being retrieved. If
the current window doesn’t belong to your application, if no windows are open, or if ListBox specifies a list box that
does not exist, GetListBoxFontSettings returns default values.

TheFont is the list box’s font number. The default is O which is represented by the systemFont constant.

TheSize is the font’s size. The default is 0, which represents the default font size used by the system font, or 12pt in
this case.

TheStyle is the list box’s font style. The default is plain text, which is represented by 0 in C and [ ] in Pascal.

300



H

H

10 List Boxes

SetListBoxColors

Set a list box’s colors.

pascal void SetListBoxColors (short ListBox,
const RGBColor *TextColor, const RGBColor *BackColor);

procedure SetListBoxColors (ListBox: INTEGER;
TextColor: RGBColor; BackColor: RGBColor);

ListBox specifies the list box number (from 1 to 511) in the current window whose colors are being set. If the current
window doesn’t belong to your application, or if no windows are open, SetListBoxColors does nothing. Also, if
ListBox specifies a list box that does not exist, or if Color QuickDraw is unavailable or not used, SetListBoxColors
does nothing. The change is seen immediately, regardless if the list box was originally created with the listColorList
option or not. If the list box is implemented using the listSystemBody option, it ignores color settings.

TextColor is the color of the list’s text.
BackColor is the list box’s background color upon which the text is drawn.

Normally, a list box’s colors are set when this list box is created with NewListBox or NewListBoxRect, so this routine
would not be used by many applications.

GetListBoxColors

Get a list box’s colors.

pascal void GetListBoxColors (short ListBox,
RGBColor *TextColor, RGBColor #*BackColor);

procedure GetListBoxColors (ListBox: INTEGER;
var TextColor: RGBColor; var BackColor: RGBColor);

ListBox specifies the list box number (from 1 to 511) in the current window whose colors are being retrieved. If the
current window doesn’t belong to your application, or if no windows are open, or if ListBox specifies a list box that
does not exist, GetListBoxColors returns default color values. If the list box is implemented as a control it ignores
color settings.

TextColor is the color of the list’s text. The default color is black.

BackColor is the list box’s background color upon which the text is drawn. The default color is white.

ListBoxLineCount

Determine the number of lines in a list box.
pascal short ListBoxLineCount (short ListBox);
function ListBoxLineCount (ListBox): INTEGER;

ListBox specifies the list box number (from 1 to 511) you wish to query in the current window.

The routine’s value returns the number of lines in the specified list box. If the list box number does not exist, the
routine returns zero.

Water’s Edge Software 301



H

Tools Plus

DrawListBox

Turn list box drawing on or off (immediate update when lines are changed).
pascal void DrawListBox (short ListBox, Boolean Drawlt);
procedure DrawListBox (ListBox: INTEGER; DrawIt: BOOLEAN);

When your application makes changes to a list box by adding, changing, deleting or inserting lines, the change is
immediately visible. This can become quite unsightly when adding one line at a time to a list box of any significant
length. Whenever changes are going to be made to more than a single line, turn drawing off before making any
changes. After all the changes are completed, turn list drawing back on.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the list box does not exist in the current window,
DrawListBox does nothing.

Drawlt specifies if the drawing is to be turned on or off. The constants on and off may be used. When list drawing is
turned off, any changes made to the lines are not displayed although changes are invisibly accumulated. When list
drawing is turned back on, the list box is drawn instantly with all its lines and selections displayed.

DrawListBox has no effect on hidden list boxes since their drawing mode is always turned off while they are hidden.

CONST {List box's line drawing }
on = true; {Text lines are drawn }
off = false; {Text lines are not drawn }

MovelListBox

Move a list box to a new location on the window.
pascal void MoveListBox (short ListBox, short toHoriz, short toVert);
procedure MoveListBox (ListBox, toHoriz, toVert: INTEGER);

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if ListBox specifies a list box that does not exist,
MoveListBox does nothing. The change is seen immediately providing that the list box is not hidden. The list box’s
width and height are not changed.

ToHoriz is the new horizontal co-ordinate at which the left side of the list box appears.

ToVert is the new vertical co-ordinate at which the top of the list box appears.

Also see: SizeListBox and MoveSizeListBox.

302



H

10 List Boxes

OffsetListBox

Change a list box’s co-ordinates without affecting its image on the window.

pascal void OffsetListBox (short ListBox,
short distHoriz, short distVert);

procedure OffsetListBox (ListBox, distHoriz, distVert: INTEGER);

When you scroll an area that contains list boxes, first use ScrollRect to scroll the pixel image containing the affected
objects in the window. OffsetListBox is used to offset a list box’s co-ordinates without altering its image (since
ScrollRect has already done so). At this point, the list box’s co-ordinates match the scrolled image of the list box.
ObscureListBox or KillListBox can be used to hide or delete list boxes that are scrolled out of view.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if ListBox specifies a list box that does not exist,
OffsetListBox does nothing.

DistHoriz and distVert specify the horizontal and vertical amount by which the list box’s co-ordinates are offset.
Positive numbers are right and down. The list box’s co-ordinates are updated but no change is seen.

SizeListBox

Change a list box’s size.
pascal void SizeListBox (short ListBox, short width, short height);
procedure SizeListBox (ListBox, width, height: INTEGER);

SizeListBox changes a list box’s width and/or height without altering the list box’s top or left co-ordinate. The change
is seen immediately providing that the list box is not hidden.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if ListBox specifies a list box that does not exist,
SizeListBox does nothing.

Width and height specify the list box’s new width and height in pixels. If either parameter is less than 1, SizeListBox
does nothing.

Also see: MoveListBox and MoveSizeListBox.

MoveSizeListBox

Change a list box’s co-ordinates.

pascal void MoveSizeListBox (short ListBox,
short left, short top, short right, short bottom);

procedure MoveSizeListBox (ListBox, left, top, right, bottom: INTEGER);

MoveSizeListBox changes any of the list box’s four co-ordinates. The change is seen immediately providing that the
list box is not hidden. This routine combines the functions of MoveListBox and SizeListBox.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if ListBox specifies a list box that does not exist,
MoveSizeListBox does nothing.

Water’s Edge Software 303



H

IS5

Tools Plus

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the list box’s size and location in
the window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-
hand corner (right,bottom). If these parameters specify an empty rectangle, MoveSizeListBox does nothing.

Also see: GetListBoxRect.

MoveSizeListBoxRect

Change a list box’s co-ordinates.
pascal void MoveSizeListBoxRect (short ListBox, const Rect *Bounds);
procedure MoveSizeListBoxRect (ListBox: INTEGER; Bounds: RECT);

MoveSizeListBoxRect is identical to the MoveSizeListBox routine, except that it accepts the Bounds rectangle in place
of the individual left, top, right and bottom co-ordinates.

AutoMoveSizeListBox

Specify how a list box is automatically moved and/or resized as its window’s size is changed.

pascal void AutoMoveSizeListBox (short ListBox,
Boolean left, Boolean top, Boolean right, Boolean bottom);

procedure AutoMoveSizeListBox (ListBox: INTEGER;
left, top, right, bottom: BOOLEAN);

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesn’t belong to your application, if no windows are open, or if ListBox specifies a list box that does not exist,
AutoMoveSizeListBox does nothing.

The left, top, right and bottom parameters specify if that side of the list box is automatically adjusted when the
window’s size changes. These setting are applied to the list box and are used the next time the window’s size changes:

left Does the list box’s left side track the window’s right edge?
top Does the list box’s top track the window’s bottom edge?
right Does the list box’s right side track the window’s right edge?
bottom  Does the list box’s bottom track the window’s bottom edge?

You can think of each false value as locking that side of the list box to a fixed co-ordinate regardless of the window’s
size (this is the default). Each true value establishes a fixed distance between that side of the list box and the window’s
edge. For example, setting only left and right to true makes the list box move horizontally as the window widens and
narrows, but the list box does not move vertically when the window’s height changes.

If you are setting these values identically for a group of objects, use AutoMoveSize to define the settings then add the
appropriate xAutoMoveSize constant (such as listAutoMoveSize for list boxes) to the objects’ spec as they are created.
The objects will adopt the settings specified by the AutoMoveSize routine.

Warning: Make sure that you resize objects in a way that makes sense. Don’t allow a window to shrink down to a
size where objects become unusable or disappear altogether.

304



H

IS

10 List Boxes

GetListBoxHandle

Get a handle to a list box’s list record.
pascal ListHandle GetListBoxHandle (short ListBox);
function GetListBoxHandle (ListBox: INTEGER): ListHandle;

This routine returns a standard ListHandle to a list box that was created by a Tools Plus routine. You should never
need to use this routine. It is provided for advanced programmers who may have specialized needs. Always use Tools
Plus routines to create and manipulate list boxes. If you are using an Appearance Manager List Box control, that is a
control created with the listSystemBody option, GetListBoxHandle returns a handle to the control. You can then use
toolbox routines to get a handle to the list itself.

ListBox specifies the list box number (from 1 to 511) in the current window whose handle is being retrieved. If the
current window doesn’t belong to your application, or if no windows are open, or if ListBox specifies a list box that
does not exist, GetListBoxHandle returns nil.

Warning: If you need to lock the handle or change its attributes, do so temporarily then restore the original settings
before using any Tools Plus routines. If you alter this handle or any data that is made accessible by this
handle, you do so at your own risk. The only exception is the list box’s reference constant (refCon field)
which can safely be used to store any value you want.

Water’s Edge Software 305



Tools Plus

306



11 Pop-Up Menus

11 Pop-Up Menus

Pop-up menus are a mechanism that lets the operator make a selection from multiple choices. Where this interface
differs from a set of radio buttons, a set of check boxes, or a list box, is that a pop-up menu requires minimal space on
a window by hiding most of its detail until it is required. Pop-up menus are typically used for lists of items, such as
fonts. See the Macintosh User Interface Guidelines chapter of Inside Macintosh for details on the use of pop-up menus.
The implementation of pop-up menus shares many similarities with pull-down menus, so you will find that this chapter
has a lot of commonalty with the chapter on Menus.

A pop-up menu is typically made up of two components as illustrated below on the left: a title, and a pop-up box. The
pop-up box contains the selected item, and a “down arrow” which provides the user with a visual cue that the control is
a pop-up menu. When the user clicks and holds the title or the pop-up box, a list of choices is displayed in a pop-up
menu, allowing the user to select one of the items. By default, Tools Plus pop-up menus allow only a single item to be
selected, but you can easily override this behavior.

Title Pop-Up Box  (Selected Item) (Down-Arrow) Inverted Title Pop-up Menu

Baud rate:| 9600 Baud rate: FEglI]l)

Before Selection During Selection

Tools Plus’s pop-up menus provide several options that are not available on ordinary Macintosh pop-up menus, as
illustrated below. One of these options displays the selected item’s icon within the pop-up box. As you may notice,
you can also suppress the “down arrow” if you want. Tools Plus’s pop-up menus also perform automatic adjustments
to create the perfect looking pop-up menu without having to calculate font heights.

Another feature that is not available in ordinary Macintosh pop-up menus is the “pop down” option. It displays the
menu’s list below the pop-up menu’s body. If the pop-up menu has a title, it is displayed within the control’s body,
otherwise the first selected item is displayed in the control’s body, like a regular pop-up menu. This feature is useful in
a window where space is limited and several “do it now” options are required.

Search Here:[ [ Desktop | serial Port:| [, Format... ~
. : ] Clear
Paragraph...

Character...
Style...

Icon in the Pop-Up Box Automatic Adjustment “Pop-Down” Option

In this document, the term pop-up menu refers to the entire control; that is, the pop-up box and its contents, the name
that appears to the left, and the individual items which appear during selection. The term menu item or item refers to
individual items found within a pop-up menu. The item number is determined by counting from the top of the list, the
first item being 1, the second being 2, etc.

Water’s Edge Software 307



Tools Plus

A pop-up menu is created on the current window with the NewPopUp routine. Each pop-up menu is referenced by a
unique pop-up menu number that can be from 1 to 511. This number is specified when the pop-up menu is created, and
refers to the specific pop-up menu until it is deleted. Note that the pop-up menu number is related to its associated
window. This means that two different windows can each have a pop-up menu numbered “1” without interfering with
each other. Whenever the user makes a selection in the pop-up menu, Tools Plus reports this to your application. You
can also create an entire pop-up menu from a ‘MENU’ resource by using the LoadPopUp routine.

The PopUpMenu routine is used to add items to a specific pop-up menu, or to rename existing items in a pop-up menu.
ResNamesToPopUp inserts resource names (such as fonts or sounds), sorted alphabetically, at a specified item.

Pop-up menu items can also be inserted between others using the InsertPopUpltem routine. This lets your application
maintain a dynamic pop-up menu that may be used, for example, for a list of available font sizes.

An entire pop-up menu can be deleted by using the RemovePopUp routine. This routine reclaims the memory used by
the pop-up menu. Individual items can also be deleted using this routine.

Pop-up menu items can be renamed by using the RenamePopUp routine. This should be done judiciously, since
changes to pop-up menu items may prove to be confusing to the user.

An entire pop-up menu can be enabled or disabled with the EnablePopUp routine, as can individual menu items. When
an entire pop-up menu is disabled, it is dimmed and it cannot be selected. Furthermore, its items cannot be displayed.
When an item is disabled, it becomes dim and cannot be selected. A pop-up menu can be hidden and displayed using
PopUpDisplay.

Various other menu item-related features are supported, such as setting or removing “check marks” with the
CheckPopUp routine. You can set or remove other marks with the PopUpMark routine, and determine which mark is
displayed by using GetPopUpMark. You can set and retrieve an item’s icon number with PopUplcon and
GetPopUplcon. An item’s text is retrieved with GetPopUpString, and its style is set with PopUpStyle.

Pop-up menus can be moved to a new location with MovePopUp and have their width changed with SizePopUp.
MoveSizePopUp combines both tasks by letting you specify new co-ordinates for the pop-up menu.

Fonts

All pop-up menus default to using the Chicago 12pt font. When a pop-up menu is created, it can optionally adopt and
remember the window’s current font, size and style settings (as set by the TextFont, TextSize, and TextFace routines)
by including the popupUseWFont option. The window’s settings can then be changed without affecting the pop-up
menu. You can use the GetPopUpFontSettings and SetPopUpFontSettings routines to get and set the pop-up menu’s
font, size and style settings.

Colors

By default, a pop-up menu has black text on a white background. The control’s frame is also black and the control
body is white. The pop-up menu’s items are displayed using black text on a white background. Optionally, each pop-
up menu can adopt unique color settings as it is created. The colors for the various parts are defined by the
PopUpColors routine, and are optionally adopted by pop-up menus as they are created. Pop-up menus’ colors can be
changed afterwards using the SetPopUpColors routine. Conversely, the GetPopUpColors routine retrieves a pop-up
menu’s color settings. If you want to get or set the colors for a single menu item, use the GetPopUpltemColors and
SetPopUpltemColors routines.

When designing applications, always design them in black and white then apply color (if required) to add value to your
application. Don’t add color just because you can. In the case of color pop-up menus, test your color selection
thoroughly on a monitor set to 8, 4, and 2-bit color and gray scale, and black and white to ensure that your colors and
window backdrop color map to usable colors. In all cases, use color very judiciously, and only if there is value in
adding colors.

The Appearance Manager does not support the use of colors in pop-up menus (it supplies colors and patterns that are
consistent with the user-selected theme). Initializing Tools Plus with the initPure AppearanceManager option enforces
this principle by ignoring custom color information when the Appearance Manager is available.

308



11 Pop-Up Menus

Command Keys & Hierarchical Pop-Up Menus

Macintosh User Interface Guidelines recommend against using command keys or submenus in a pop-up menu. Tools
Plus enforces this to a great degree, but for developers who insist on creating hierarchical pop-up menus, a solution is
at hand. The AttachPopUpSubMenu routine lets you attach a hierarchical menu to a pop-up menu (see the Menus
chapter for details about creating a hierarchical menu). If you populate your pop-up menu using a ‘MENU’ resource,
Tools Plus recognizes the submenus and attaches them appropriately to the pop-up menu.

When you create hierarchical menus for a pop-up menu, make sure that the hierarchical menu does not contain
command key equivalents because Tools Plus ignores them. Also make sure that your hierarchical menu number is in
the range of 16 through 200. A hierarchical menu can be shared by numerous pop-up menus, but keep in mind that if
you make a change to a shared hierarchical menu, that change shows up in all the pop-up menus in your application
that use that hierarchical menu.

Creating a Pop-Up Menu Using a ‘CNTL’ Resource

Tools Plus offers considerable versatility in the way it supports the creation of pop-up menus from ‘CNTL’ resources.
These features are most often used when opening a dialog (‘DLOG’ resource) that contains pop-up menus. In all cases,
the ‘CNTL’ resource specifies a CDEF ID of 63, which produces a procID of 1008 plus any variants. Just after you
initialize your application, use the SetDialogCNTLPopUpSpec routine to specify the default appearance and behavior
specifications (“spec” parameter) for pop-up menus that are created by dialogs. A list of possible values can be found
in the NewPopUp description. By default, Tools Plus simply creates a pop-up menu using the system’s CDEF, thus
providing you with the ease of use that is provided by Tools Plus’s pop-up menu routines.

Pure System Pop-Up Menu

For “pure” pop-up menus, that being without any of the advantages of Tools Plus’s pop-up menu routines, call
SetDialogCNTLPopUpSpec(-1) just after you initialize your application. This causes ‘CNTL’ resources that reference
the pop-up menu CDEF to be implemented as “buttons” instead of being implemented as Tools Plus’s pop-up menus.
Your application has access to the control’s handle via the GetButtonHandle routine. This approach gives you the
ultimate control over your pop-up menu. It also makes it the most difficult alternative in terms of programming
because you must do all the toolbox coding for the pop-up menu. In this situation, set up the ‘CNTL’ resource’s fields
with values as detailed in Inside Macintosh.

Tools Plus Pop-Up Menu (CDEF 63)

A much easier alternative is to create a Tools Plus pop-up menu using the ‘CNTL’ resource. When you open a dialog,
‘CNTL’ resources that reference CDEF ID 63 (the pop-up menu) create a Tools Plus pop-up menu. The translation
from a ‘CNTL’ resource to a Tools Plus pop-up menu takes place as follows:

* Tools Plus first looks at the default pop-up menu appearance and behavior specifications, as set by the
SetDialogCNTLPopUpSpec. You will likely set this value to something like popupSystemBody, simply telling
Tools Plus to create a pop-up menu that looks like the system’s pop-up menu.

* If the Macintosh running your application does not have a pop-up menu CDEEF as is the case with System 6, Tools
Plus will create a standard pop-up menu using its own code.

* To override the default appearance and behavior specifications for a single pop-up menu, place the replacement
spec value in the ‘CNTL’ resource’s contrlRfCon field, the reference constant. A list of possible values can be
found in the NewPopUp description. A contrlRfCon value of zero (0) indicates that the default appearance and
behavior specification is used, as set by the SetDialogCNTLPopUpSpec routine.

* The ‘CNTL’ resource’s contrlMin field (control’s minimum limit) is used to specify the ‘MENU’ resource that is
used to name the pop-up menu and to populate it with items. The menu’s title is used as the title for the pop-up
menu. The ‘MENU’ resource ID must be in the range of 16000 through 31999.

¢ If the ‘CNTL’ resource’s contrlMin field (control’s minimum limit) is set to zero (0), the contrITitle field (title) is
used for the pop-up menu’s title, and the pop-up menu is not populated with menu items. Make sure you disable a
pop-up menu that has no items since the user cannot select anything in it.

Water’s Edge Software 309



Tools Plus

Bevel Button Pop-Up Menu (CDEF 2)

The Appearance Manager’s bevel button control has a number of options that can be
implemented as pop-up menus. You create this kind of user interface element by using a
‘CNTL’ resource in a dialog. When you open the dialog, Tools Plus recognizes this kind of
bevel button control as a “special case” and implements it as a pop-up menu instead of a
button, thereby providing you with all the advantages and ease of use offered by Tools Plus’s
pop-up menus.

The bevel button is the most versatile control offered by the Appearance Manager. It allows
you to specify the button’s appearance, its content (picture, icon, etc.), its behavior (push
button, toggle, or sticky), and its pop-up menu ID. All these capabilities are invoked by
correctly setting the control’s variant code, minimum limit, maximum limit, and value. You
will use CDEF 2 in all cases, therefore the control’s procID will be 32 plus a variant code.

Small, Medium and
Large Bevel Buttons

Parameter Parameter’s value is used for... Selected

Variant Code Bit 3 = Use window’s font
Bit 2 = Pop-up arrow’s direction T
Bits 0-1 = Bevel size
Min Limit ~ High byte = Behavior
Low byte = Type of content
Value Menu ID being attached (16000 to 31999). The menu’s title,
if one is specified, appears inside the pop-up menu’s body.
Max Limit ~ Resource ID for resource-based content types

Deselected

CONST

{Bevel Button ProcIDs: }
kControlBevelButtonSmallBevelProc = 32; {Small bevel }
kControlBevelButtonNormalBevelProc = 33; {Standard size bevel }
kControlBevelButtonLargeBevelProc = 34; {Large bevel }
kControlBevelButtonMenuOnRight = $04; {Pop-up arrow points right }

{Behaviors (in min. limit): }
kControlBehaviorMultivValueMenu = $4000; {Multiple menu items allowed }
kControlBehaviorOffsetContents = $8000; {Contents offset 1 pixel down}

{ and right when clicked. }

{Content (in min. limit): }
kControlContentTextOnly = 0; {Button contains only text }
kControlContentIconSuiteRes = 1; {Image us an icon suite }
kControlContentCIconRes = 2; {Image is a 'cicn' icon }
kControlContentPictRes = 3; {Image is a 'PICT' }
kControlContentIconRef = 132; {Image is an 'ICON' }

Flag your ‘CNTL’ and ‘MENU’ resources as purgeable to save memory. Tools Plus makes a copy of their data. See
the chapters on Buttons, Scroll Bars, Editing Fields, and List Boxes in this user manual for additional Appearance
Manager controls.

Handling Pop-Up Menus

Once a pop-up menu is created, Tools Plus performs all the processing required to maintain it. When a window is
inactive, Tools Plus disables all pop-up menus on that window. When the window is activated again, all the pop-up
menus regain their correct status as specified by your application. Tools Plus constantly inquires about any events that
have occurred, including the user clicking a pop-up menu.

See the Event Management chapter for complete details on the handling of pop-up menus.

310



11 Pop-Up Menus

NewPopUp

Create a new pop-up menu.

pascal void NewPopUp (short MenuNumber,
short left, short top, short right, short bottom,
const Str255 MenuTitle, long Spec, Boolean EnabledFlag);

procedure NewPopUp (MenuNumber, left, top, right, bottom: INTEGER;
MenuTitle: STRING; Spec: LONGINT; EnabledFlag: BOOLEAN) ;

This routine just creates the pop-up menu control and its title. Pop-up menu items are created with PopUpMenu.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is created in the current window. Once a pop-up
menu is created, it is referenced by this pop-up menu number. If a pop-up menu has been previously created in the
current window using the same number, it is replaced with a new pop-up menu (without any items) as specified by the
parameters in the NewPopUp routine. If the current window doesn’t belong to your application, or if no windows are
open, NewPopUp does nothing.

Left, top, right, and bottom define a rectangle in the current window’s local co-ordinates that determine the pop-up
menu’s size and location in the window. These parameters can be seen as two corners; the upper left-hand corner
(left,top) and the bottom right-hand corner (right,bottom) of the pop-up box. The pop-up box’s 1-pixel border and its
drop shadow are drawn outside these co-ordinates. Also, the pop-up menu’s title is drawn to the left of the specified
rectangle. To make a pop-up menu operate at its best, its height (difference between top and bottom) must be
equivalent to the font’s height (font height can be determined by calling the GetFontInfo routine and adding Ascent +
Descent + Leading). If you make bottom equal to fop, the bottom is adjusted automatically to the exact font height. If
your menu is comprised entirely of icons (no text in the items), set the height of the rectangle to equal the height of the
icon, and add 2.

MenuTitle is the pop-up menu’s name that appears to the left of the pop-up box, or inside the pop-up box when the
“pop down” option is used. You may specify a null string (‘) if you do not want to have an external title displayed.

Spec specifies the pop-up menu’s appearance and behavior characteristics. The value for this 4-byte long integer can
be specified either by adding a set of constants to obtain the desired result, or using a specially defined variant record.
See the section below for details.

EnabledFlag indicates if the newly created pop-up menu is enabled or not. When a pop-up menu is disabled, it
becomes dim and cannot be selected by the user, nor can its items be viewed. All pop-up menus automatically become
disabled when the window containing them is inactive. When the window is activated, the pop-up menus assume their
state as set by the NewPopUp routine and subsequent calls to the EnablePopUp routine. The two constants that can be
used for this flag are enabled and disabled.

Water’s Edge Software 311



Tools Plus

Appearance and Behavior

Spec specifies the pop-up menu’s appearance and behavior characteristics. The value for this 4-byte long integer can
be specified either by adding a set of constants to obtain the desired result, or using a specially defined variant record,

as illustrated below.

Optionally choose only one of the following pop-up menu styles...

popupSystemBody

popup3DBody

Use CDEF ID = 63. The pop-up menu CDEF is available in

System 7 or later. You can also use a custom CDEF by
setting its ID to 63. In System 7, the pop-up menu CDEF
looks identical to the regular Tools Plus pop-up menu, but it
has fewer features and some bugs (from Apple, not from
us). If a CDEF with ID 63 can’t be found as is the case in
System 6, the standard Tools Plus pop-up menu is used.

The system’s pop-up menu CDEF will likely look
different in future versions of Mac OS. Using this option
will ensure a consistent appearance with Mac OS 8, but you
won’t be able to use some of the options offered in Tools
Plus’s pop-up menus.

Note: Only pop-up menus that use a CDEF can be
embedded into other controls.

Use a 3D pop-up menu that supports all Tools Plus features.

This pop-up menu’s appearance is designed to mimic a
popular 3D look in Mac OS 8, but it is available on all
system versions.

Optionally choose any of the following options...

popupUseWFont

popupColorPopUp

popupHasBackground

popupNeverDimOutline

popupNeverDimSelection

312

Use the window’s font for the menu. By default, pop-up menus use the
System Font (Chicago 12pt.) You may want to use a smaller font, such as
Geneva 9, in windows where space is scarce.

When using this option, the window’s current font, size and style settings
(as set by the TextFont, TextSize, and TextFace routines) are remembered by
the pop-up menu as it is created. The window’s font settings (font, size, text-
transfer mode, and style) can then be changed without affecting the pop-up
menu.

Adopt the color settings as defined by the PopUpColors routine. By default,
pop-up menus have black text, frame, and items while their body and list
background color are white. Colors are ignored by some pop-up menu CDEFs
if you use the popupSystemBody option.

The pop-up menu is drawn on a complex (non-solid) background such as a
picture. When this option is used, a doPreRefresh event is generated after the
user uses the pop-up menu in to let your application refresh the image behind
the pop-up menu. Use this option only when necessary because it is slower.
This option is not supported when using popupSystemBody, the system’s pop-
up menu CDEF.

Never dim the pop-up box. By default, the pop-up box is dimmed when the
pop-up menu is disabled or when its parent window is inactive.

Never dim the selected item’s text (and the optional icon and “down arrow”)
displayed in the pop-up box. By default, the selected item is dimmed when the
pop-up menu is disabled or when its parent window is inactive. This option is
useful when using small fonts on a black and white monitor, since those fonts
tend to look illegible when dithered.



popupNeverDimTitle

pPopupNOArrow

popupMultiSelect

popupIconTitle

popupDropDown

popupAutoMoveSize

11 Pop-Up Menus

Never dim the external title. By default, the external title is dimmed when the
pop-up menu is disabled or when its parent window is inactive. This option is
useful when using small fonts on a black and white monitor, since those fonts
tend to look illegible when dithered.

Suppress the “down arrow.” By default, the “down arrow” is displayed in the
pop-up box. This option is not supported when using popupSystemBody, the
system’s pop-up menu CDEF.

Allow multiple items to be selected. By default, pop-up menus allow only a
single item to be selected at a time (selecting another item deselects the
original one).

Draw the selected item’s icon in the pop-up box. By default, the selected
item’s icon is not drawn in the pop-up box regardless if icons are used in the
pop-up menu or not. This option is not supported when using
popupSystemBody, the system’s pop-up menu CDEEF.

Display the list below the pop-up menu’s control. If the pop-up menu has a
title it is displayed within the control, otherwise the first selected item in the
list is displayed in the control’s body.

Automatically move and/or resize the pop-up menu when the window’s size
changes. The AutoMoveSize routine lets you specify which sides are altered
(the top and bottom parameters set the same to retain the pop-up menu’s
height). You can use the AutoMoveSizePopUp routine as an alternative to
setting this option.

popupHidden Create a hidden pop-up menu. This kind of pop-up menu is accessible to your
application but not to the user.
popupDefaultType This constant, if used alone, produces a standard pop-up menu using Chicago

12 that allows one item to be selected at a time. Adding any of the above
options overrides default behavior.

So, if you want to create a pop-up menu that uses the window’s current font settings instead of Chicago 12, and you
wanted the selected item’s icon to be displayed in the pop-up box, you should use the combined constants
popupUseWFont + popuplconTitle. Alternatively, a C structure and a Pascal variant record are available to help you
define the Spec in a more intuitive way, as shown below:

union TPPopUpMenuSpec { /*Pop-Up Menu's appearance and behavior */
/* specifications in 2 formats.. */

struct{ /* - Parsed into components: */
unsigned short bit31to20: 12; /* (reserved bits) */
unsigned short UseColor: 1; /* Use color settings */
unsigned short bitl8tol6: 3; /* (reserved bits) */
unsigned short Hidden: 1; /* Create a hidden Pop-Up Menu */
unsigned short AutoMoveSize: 1; /* Auto-resize as window's size chg */
unsigned short BodyIs3D: 1; /* Body is drawn in 3D style */
unsigned short SystemBody: 1; /* Use system's standard body style */
unsigned short bitlltol0: 2; /* (reserved bits) */
unsigned short HasBackground: 1; /* Pop-Up Menu is drawn over an image */
unsigned short NeverDimOutline: 1; /* Never dim the control's outline */
unsigned short NeverDimSelectedItem: 1; /* Never dim the selected item's text */
unsigned short NeverDimTitle: 1; /* Never dim the title */
unsigned short NoArrow: 1; /* Is the "down arrow" hidden */
unsigned short MultipleSelections: 1; /* Allow multiple items to be selected */
unsigned short UseWindowFont: 1; /* Display using window's font */
unsigned short IconInTitle: 1; /* Draw icon in the control's title */
unsigned short DropDown: 1; /* Drop list down from control */
unsigned short bit0: 1; /* (reserved bit) */

} Bits; /* */
long Num; /* - Long equivalent */
Y /* */

typedef union TPPopUpMenuSpec TPPopUpMenuSpec;

Water’s Edge Software 313



Tools Plus

TPPopUpMenuSpec = packed record {Pop-Up Menu's appearance and behavior
specifications in 2 formats..
case integer of
0: (
bit31l, bit30, bit29, bit28: boolean;
bit27, bit26, bit25, bit24: boolean;
bit23, bit22, bit21, bit20: boolean;
UseColor: boolean;
bitl8, bitl7, bitl6: boolean;
Hidden: boolean;
AutoMoveSize: boolean;
BodyIs3D: boolean;

{

{

{ Parsed into components:

{ (reserved bits)

{ (reserved bits)

{ (reserved bits)

{ Use color settings

{ (reserved bits)

{ Create a hidden pop-up menu

{ Auto-move/size as window's size changes

{ Body is drawn in 3D style

SystemBody: boolean; { Use the system's standard body style

bitll, bitl0: boolean; { (reserved bits)

HasBackground: boolean; { Pop-up menu is drawn over an image

NeverDimOutline: boolean; { Never dim the control's outline

NeverDimSelectedItem: boolean; { Never dim the selected item's text

NeverDimTitle: boolean; { Never dim the title

NoArrow: boolean; { Is the "down arrow" hidden

MultipleSelections: boolean; { Allow multiple items to be selected

UseWindowFont: boolean; { Display using window's font

IconInTitle: boolean; { Draw icon in the control's title

DropDown: boolean; { Drop list down from control

bit0: boolean; { (reserved bit)
{
{
{
{

)
1 Longint equivalent:

(
Num: longint; Specification longint

e e i e e o an an an e e e i i o e an an an aon e ain e e e e e ad

~e ~o

)
end

As an example, lets create a pop-up menu that uses the window’s current font and displays the icon in the title. The
following code sample illustrates how this is done:

procedure DoItNow;

var

Spec: TPPopUpMenuSpec; {Define the variable used for the Spec }
begin

Spec.Num := 0; {Initialize all the bits to zero values }

Spec.UseWindowFont := true; {Specify that the window font is to be used }

Spec.IconInTitle := true; {Specify that the selected item's icon appears in }

{ the pop-up box. }

{Create the pop-up menu using the integer part of }

NewPopUp(1l, 110, 20, 209, 20, 'Day of Week:', Spec.Num, enabled); { the Spec. }

You can use whatever you like best as the Spec, a single constant, several constants added together, a variable, or the
short or 4-byte integer component of a structure or variant record.

Pop-Up Menus on Color Backgrounds

Sometimes it may be necessary to place a pop-up menu on a color surface, such as a tool bar. If you are creating a pop-
up menu on a color surface, set the window’s background color (by using SetBackRGB) to the color on which the pop-
up menu is being created, then create the menu. You may change the window’s foreground and background colors at
any time without affecting pop-up menus.

Each pop-up menu remembers the color on which it is created, and uses this color when any erasing is performed by
the pop-up menu. An example of this is when the user clicks and holds the pop-up menu. In such a case, the control’s
body temporarily disappears and is replaced by the pop-up menu’s list of items.

Also see: NewPopUpRect, NewDialogPopUp and PopUpMenu.

Programming Tips:
1 If you want to create a menu that is comprised entirely of icons (without any text items), make sure all the
icons have the same height, then make the pop-up menu’s height equal to the icon height plus 2.

CONST {Pop-Up Menu Behavior and Appearance Specs: }
popupColorPopUp = $00080000; {Use color settings for this pop-up menu }
popupHidden = $00008000; {Create a hidden pop-up menu? }
popupAutoMoveSize = $00004000; {Auto-resize as window's size changes }
popup3DBody = $00002000; {Draw body using 3D style }

314



11 Pop-Up Menus

popupSystemBody = $00001000; {Draw the system's standard body style }
popupHasBackground = $00000200; {Pop-Up Menu is drawn over an image? }
popupNeverDimOutline = $00000100; {Never dim the control's outline? }
popupNeverDimSelection = $00000080; {Never dim the selected item's text? }
popupNeverDimTitle = $00000040; {Never dim the title? }
popupNoOArrow = $00000020; {Is the "down arrow" hidden? }
popupMultiSelect = $00000010; {Allow multiple items to be selected? }
popupUseWFont = $00000008; {Use the window's font for the menu? }
popupIconTitle = $00000004; {Draw icon in the control's title? }
popupDropDown = $00000002; {Drop list down from control }
popupDefaultType = $00000000; {Default menu (sys font, 1 item, no icon) }
NewPopUpRect

Create a new pop-up menu.

pascal void NewPopUpRect (short MenuNumber, const Rect *Bounds,
const Str255 MenuTitle, long Spec, Boolean EnabledFlag);

H

procedure NewPopUpRect (MenuNumber: INTEGER; Bounds: RECT;
MenuTitle: STRING; Spec: LONGINT; EnabledFlag: BOOLEAN);

NewPopUpRect is identical to the NewPopUp routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

LoadPopUp

Create a new pop-up menu using a ‘MENU’ resource.

pascal void LoadPopUp (short MenuNumber, short left, short top, short right,
short bottom, long Spec, short ResID);

H

procedure LoadPopUp (MenuNumber, left, top, right, bottom: INTEGER;
Spec: LONGINT; ResID: INTEGER);

LoadPopUp is identical to the NewPopUp routine, except that it uses a ‘MENU”’ resource to populate the pop-up
menu. The ‘MENU’ resource contains the pop-up menu’s title. If the title is disabled then the pop-up menu is disabled.
The remainder of the ‘MENU’ resource specifies the pop-up menu’s items.

ResID is the ‘MENU’ resource ID number that is used to create the pop-up menu. If the menu has an ‘mctb’ color table
resource, it must use the same ID number. The resource ID number must be in the range of 16000 to 31999. These
resource numbers don’t overlap the range used by menu numbers, so you can think of them as a temporary holding
area for ‘MENU’ resources that have not become usable menus.

When creating pop-up menus using ‘MENU’ resources, please note the following:
¢ Flag your ‘MENU’ and ‘mctb’ resources as purgeable to save memory. Tools Plus makes a copy of their data.
¢ Submenus must be in the range of 16 to 200.
e Command key equivalents are cleared because they are not supported in pop-up menus in Tools Plus.

Water’s Edge Software 315



H

Tools Plus

LoadPopUpRect

Create a new pop-up menu using a ‘MENU’ resource.

pascal void LoadPopUpRect (short MenuNumber, const Rect *Bounds, long Spec,
short ResID);

procedure LoadPopUpRect (MenuNumber: INTEGER; Bounds: RECT; Spec: LONGINT;
ResID: INTEGER);

LoadPopUpRect is identical to the LoadPopUp routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

LoadDialogPopUp

Create a new pop-up menu in a dialog using a ‘MENU’ resource and a dialog item’s co-ordinates.
pascal void LoadDialogPopUp (short MenuNumber, long Spec, short ResID);

procedure LoadDialogPopUp (MenuNumber: INTEGER; Spec: LONGINT;
ResID: INTEGER);

LoadDialogPopUp is identical to the LoadPopUp routine, except that the pop-up menu is created in a dialog (a window
opened with the LoadDialog routine, or one that had a dialog list attached with the LoadDialogList routine). The pop-
up menu’s co-ordinates are obtained from the dialog item whose number matches the pop-up menu number.

EmbedPopUpinButton

Embed a pop-up menu into a button or into the window’s root control (Appearance Manager only).
pascal void EmbedPopUpInButton (short MenuNumber, short ContainerButton);
procedure EmbedPopUpInButton (MenuNumber, ContainerButton: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedPopUpInButton lets you
manually embed a pop-up menu into a button, or into the window’s root control. Note that the term “button” does not
literally mean a button control. It means any control that is implemented as a button in Tools Plus. The most likely
candidate is a Group Box control. If the Appearance Manager is not available, EmbedPopUpInButton does nothing.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the pop-up menu does not exist in the
current window, EmbedPopUpInButton does nothing. Note that the only pop-up menus that can be embedded are
those that are drawn using a CDEF (use the popupSystemBody option when creating the pop-up menu).

ContainerButton specifies the button number (from 1 to 511) into which MenuNumber is embedded. This control must
exist in the current window, and it must be a “container” type control such as the Appearance Manager’s Group Box.
The pop-up menu must fit entirely within the container control or EmbedPopUpInButton does nothing. If a value of 0
is provided for a container button, MenuNumber is embedded into the window’s root control.

Also see: EmbedPopUpInScrollBar and SetAutoEmbed.

316



11 Pop-Up Menus

EmbedPopUpInScrollBar

Embed a pop-up menu into a scroll bar or into the window’s root control (Appearance Manager only).

pascal void EmbedPopUpInScrollBar (short MenuNumber,
short ContainerScrollBar);

procedure EmbedPopUpInScrollBar (MenuNumber, ContainerScrollBar: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedPopUpInScrollBar lets you
manually embed a pop-up menu into a scroll bar, or into the window’s root control. Note that the term “scroll bar”
does not literally mean a scroll bar control. It means any control that is implemented as a scroll bar in Tools Plus. If the
Appearance Manager is not available, EmbedPopUpInScrollBar does nothing.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the pop-up menu does not exist in the
current window, EmbedPopUpInScrollBar does nothing. Note that the only pop-up menus that can be embedded are
those that are drawn using a CDEF (use the popupSystemBody option when creating the pop-up menu).

ContainerScrollBar specifies the scroll bar number (from 1 to 511) into which MenuNumber is embedded. This control
must exist in the current window, and it must be a “container” type control. The pop-up menu must fit entirely within
the container control or EmbedPopUpInScrollBar does nothing. If a value of O is provided for a container scroll bar,
MenuNumber is embedded into the window’s root control.

Also see: EmbedPopUpInButton and SetAutoEmbed.

GetFreePopUpNum

Get the first unused pop-up menu number.
pascal short GetFreePopUpNum (void);
function GetFreePopUpNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own pop-up
menu number, GetFreePopUpNum returns the first unused (free) pop-up menu number. Using this routine, you can
assign an unused pop-up menu number to a variable, then use that variable throughout your application without
concern for the true pop-up menu number.

GetFreePopUpNum returns the first free pop-up menu number on the current window. If the current window doesn’t
belong to your application, if no windows are open, or if the maximum number of pop-up menus has already been
created on the current window (no new ones can be created), GetFreePopUpNum returns a value of zero (0).

Water’s Edge Software 317



Tools Plus

AttachPopUpSubMenu

Attach a hierarchical menu to a pop-up menu item, or detach a hierarchical menu from a pop-up menu item.

pascal void AttachPopUpSubMenu (short MenuNumber, short ItemNumber,
short SubMenuNumber);

procedure AttachPopUpSubMenu (MenuNumber, ItemNumber,
SubMenuNumber: INTEGER);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if the specified pop-up menu doesn’t exist, AttachPopUpSubMenu does
nothing.

ItemNumber specifies the menu item number (from 1 to 32767) that is affected. If the item number does not exist
within the pop-up menu specified by MenuNumber, AttachPopUpSubMenu does nothing.

SubMenuNumber specifies the “offspring” menu number (from 16 to 200) that is attached to the pop-up menu. You
can specify zero (0) to detach a submenu from a known parent pop-up menu item. If the submenu number does not
exist, AttachPopUpSubMenu does nothing.

Note: When a submenu is attached to a parent pop-up menu’s item, that item’s “mark” (as defined by MenuMark) is
cleared. Also, if an SICN icon is displayed in the item, it too is cleared. The Macintosh’s Menu Manager uses
these characters to make hierarchical menus work.

PopUpColors
Set the colors for new pop-up menus as they are created.
pascal PopUpColors (const RGBColor *Title, const RGBColor *Frame,

const RGBColor *Body, const RGBColor *DfltItemText,
const RGBColor *ListBackground);

procedure PopUpColors (Title, Frame, Body, DfltItemText,
ListBackground: RGBColor);

When new pop-up menus are created, by default they have a black frame and text and the control’s body is white. The
list’s text is black on a white background. When you use the PopUpColors routine, new pop-up menus adopt the colors
specified in this routine (providing that the pop-up menu is created with the popupColorPopUp option in the pop-up
menu’s spec). This is the most efficient way to color multiple pop-up menus using the same colors.

Title is the color of the pop-up menu’s title, which may be external to the control or a fixed title within the control.
Frame is the pop-up menu’s frame color.

Bodly is the pop-up menu’s body color. This is the color that is used to fill the control’s body.

DfltltemText is the default color used to display items in the pop-up menu’s list.

ListBackground is the background color used for the pop-up menu’s list.

Also see: NoPopUpColors and SetPopUpColors.

318



H

11 Pop-Up Menus

NoPopUpColors

Reset the colors for new pop-up menus to the default.
pascal void NoPopUpColors (void);
procedure NoPopUpColors;

When new pop-up menus are created, by default they have a black frame and text and the control’s body is white. The
list’s text is black on a white background. When you use the PopUpColors routine, new pop-up menus adopt the colors
specified by that routine (providing that the pop-up menu is created with the popupColorPopUp option in the pop-up
menu’s Spec).

This routine resets the settings of the PopUpColors routine to the default values (black title, frame and item text, white
body and list background). It is seldom required since you can create default pop-up menus by simply excluding the
popupColorPopUp constant from the pop-up menu’s spec parameter.

Also see: PopUpColors.

PopUpMenu

Create a pop-up menu, add more items, or rename existing items.

pascal void PopUpMenu (short MenuNumber, short ItemNumber,
Boolean EnabledFlag, const Str255 MenuText);

procedure PopUpMenu (MenuNumber, ItemNumber: INTEGER;
EnabledFlag: BOOLEAN; MenuText: STRING);

After a pop-up menu is created with NewPopUp or NewPopUpRect, pop-up menu items can then be added to the
menu. Your application should define items in their correct order (i.e., top to bottom) in order to use the full power of
this routine.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if the specified pop-up menu doesn’t exist, PopUpMenu does nothing.

ItemNumber specifies the pop-up menu’s item number (from 1 to 32767) that is affected.

EnabledFlag specifies whether the menu item is enabled or disabled. The menu item can be selected only when
enabled. When disabled, the pop-up menu item is dimmed and cannot be selected by the user. The two constants that
can be used for this purpose are enabled and disabled. Pop-up menus and their items can be enabled and disabled by
using the EnablePopUp routine.

MenuText is the pop-up menu item’s name. If you specify a null string (Ilength equal to zero), Tools Plus will insert a
space to prevent anomalous behavior. When a pop-up menu item is first created, certain metacharacters are recognized
by Tools Plus to provide special instructions to the Menu Manager. You may choose to include or exclude these
characters within MenuText, however, you should be aware of their effects. Pop-up menu items can include multiple
metacharacters.

Note: The Macintosh’s Menu Manager allows only the first 31 items of a pop-up menu to be disabled individually.
The entire pop-up menu, however, can always be disabled.

Metacharacters

Metacharacters are symbols that tell the Menu Manager to perform special functions on a menu. They are recognized
and processed only when a menu item is first created, and are ignored (displayed as ordinary characters) when menu
items are renamed. Menu items can include multiple metacharacters or combinations of metacharacters.

Water’s Edge Software 319



Tools Plus

Unlike the Macintosh toolbox’s menu routines, Tools Plus removes the semi-colon (;) and Return character ($0D), and
does not process them as metacharacters.

Metacharacter
A

Meaning

Display an icon to the left of the menu item. The number following the caret (*) should be from 1 to 255 (i.e.,
“A28”). The Menu Manager adds 256 to the number you state to specify a resource ID that is in the range of 257
to 511, so if you specify 28, resource ID 284 is used (28 + 256 = 284). These icon resources are read from your
application.

Tools Plus tries to use a ‘cicn’ icon if Color QuickDraw is available on the Macintosh running your
application. Otherwise, it will search for an ‘ICON’ (black and white) icon, then an ‘SICN’ icon.

Unlike the equivalent Macintosh toolbox routine, your menu item will remain unaffected if the specified
icon can’t be found (i.e., empty space is not reserved in the menu).

Be aware that the Menu Manager drawing a ‘cicn’ icon in color will do so even if the icon was created using
8-bit colors and the monitor is set to 4-bits. This may produce unsatisfactory results. If possible, use 4-bit colors
or colors that translate well into 4-bit colors.

Display a special mark to the left of a menu item. The single character that follows the exclamation mark (!) is
displayed. The check mark is the default. (It is best to use the CheckPopUp or PopUpMark routines.)

The item is displayed in a special character style. The single character that follows this symbol specifies the
style (Bold, Italic, Underline, Outline, or Shadow). Multiple styles can be combined, such as “<B<I” for “bold
and italic.” It is best to use PopUpStyle to change styles.

To create a “dividing line” between sections of related pop-up menu items, disable the item and use ‘-’ (a minus or
dash) as the MenuText value. You can use the constant mDividingLine for this purpose.

Special care should be taken to create pop-up menu items in their correct order. If any items are skipped when defining
a pop-up menu item (i.e., creating item 3 without first creating 1 and 2) the missing pop-up menu items (1 and 2) are
automatically created as blank, disabled items. Consequently, metacharacters will not be recognized when the
PopUpMenu routine references these automatically created items; the PopUpMenu routine will simply rename the

existing item.

Programming Tips:

1 If you are creating a pop-up menu that contains font names, be aware that some Macintoshes have some fonts
in ROM. That means that calling CountResources(‘FOND’) will include not only the number of fonts in your
system, but in ROM too. Before you add a font name to your pop-up menu, check to see if it already exists to
avoid duplicates.

2 If you need any of the metacharacters to appear in an item’s text (such as an exclamation mark), first create a
blank item (MenuText equals a space), then change the item’s text with the PopUpMenu or RenamePopUp
routine to include the desired characters. Metacharacters are displayed but not specially processed when an
item’s name is changed.

3 If your pop-up menu contains icons, and the menu displays the icon in the title, you must exercise some care
in your design of icons. Make sure the icon is no wider than 16 pixels, and two pixels shorter than the font
height you are using. For the System Font, Chicago 12 pt, your icons must be 14 pixels high (or shorter), and
no more than 16 pixels wide.

CONST

{Menu and Menu Item status }
enabled = true; {enable the menu/item }
disabled = false; {disable the menu/item }
mDividingLine = '-'; {Dividing line }

320



H

H

11 Pop-Up Menus

InsertPopUpltem

Insert an item into an existing pop-up menu.

pascal void InsertPopUpItem (short MenuNumber, short ItemNumber,
Boolean EnabledFlag, const Str255 MenuText);

procedure InsertPopUpItem (MenuNumber, ItemNumber: INTEGER;
EnabledFlag: BOOLEAN; MenuText: STRING);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if the specified pop-up menu doesn’t exist, InsertPopUpltem does
nothing.

ItemNumber specifies the pop-up menu’s item number (from 1 to 32767) where the item is inserted. If the pop-up
menu item does not exist in the specified pop-up menu, InsertPopUpltem does nothing. InsertPopUpltem will append
one item to the end of a pop-up menu if the ItemNumber equals the current number of items plus 1.

EnabledFlag specifies whether the item is enabled or disabled. In the enabled state, the item can be selected whereas in
the disabled state, the item is dimmed and cannot be selected by the user. The two constants that can be used for this
purpose are enabled and disabled. An entire pop-up menu and individual pop-up menu items can be enabled and
disabled by using the EnablePopUp routine.

MenuText is the name of the item. Certain metacharacters are recognized by Tools Plus to provide special instructions
to the Menu Manager. You may choose to include or exclude these characters within MenuText, however, you should
be aware of their effects. See the PopUpMenu routine for details on metacharacters.

When the item is inserted, all existing items starting at ItemNumber are pushed down one space to make room for the
new item. This means that their item number will be changed. The new item is inserted at the location specified by
ItemNumber. The main use for this routine is to let your application maintain a dynamic menu, such as a list of open
document names.

Note: The Macintosh’s Menu Manager allows only the first 31 items of a pop-up menu to be disabled individually.
The entire pop-up menu, however, can always be disabled.

CONST {Menu and Menu Item status }
enabled = true; {enable the menu/item }
disabled = false; {disable the menu/item }
mDividingLine = '-'; {Dividing line }

ResNamesToPopUp

Insert resource names into a pop-up menu.

pascal void ResNamesToPopUp (short MenuNumber, short ItemNumber,
ResType rType);

procedure ResNamesToPopUp (MenuNumber, ItemNumber: INTEGER;
rType: RESTYPE);

This routine finds all named resources of the specified type and inserts those names (sorted alphabetically) into a pop-
up menu. Duplicated names are ignored as are ones that start with “.”” (period) or “%”.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if the specified pop-up menu doesn’t exist, ResNamesToPopUp does
nothing.

Water’s Edge Software 321



H

Tools Plus

ItemNumber specifies the pop-up menu item number (from 1 to 32767) where the resource names are inserted. If the
pop-up menu item does not exist in the specified pop-up menu, ResNamesToPopUp does nothing. This routine will
append to the end of a pop-up menu if the ItemNumber equals the current number of items plus 1.

rType is the four character resource type whose names are being inserted into the pop-up menu.

When the resource names are inserted, all existing items starting at ItemNumber are pushed down to make room for
the new items. This means that their item number will be changed. The new items are inserted starting at the location
specified by ItemNumber. If you specify ‘FOND’ or ‘FONT’ resources, both are obtained since they are just different
types of fonts.

Note: If the first character of a resource name is a dash (-), it is added into the menus as an option-dash (character
208) to prevent the Menu Manager from interpreting the name as a dividing line.

RemovePopUp

Delete a pop-up menu and its associated items, or delete an individual pop-up menu item.
pascal void RemovePopUp (short MenuNumber, short ItemNumber);
procedure RemovePopUp (MenuNumber, ItemNumber: INTEGER);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if the specified pop-up menu doesn’t exist, RemovePopUp does
nothing.

ItemNumber specifies the pop-up menu’s item number (from 1 to 32767) that is deleted. If ItemNumber is zero (0),
RemovePopUp refers to the pop-up menu and all its associated items. If ItemNumber is not zero and it does not exist,
RemovePopUp does nothing.

Use KillPopUp if you want to delete the pop-up menu without removing its image from the window.

Note: Use RemovePopUp to maintain a dynamic menu, such as a list of available font sizes. Do not use it to make
items unavailable. Instead, disable items with EnablePopUp.

ClearPopUp

Delete all items from a pop-up menu.
pascal void ClearPopUp (short MenuNumber);
procedure ClearPopUp (MenuNumber: INTEGER);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if the specified pop-up menu doesn’t exist, ClearPopUp does nothing.

322



H

H

11 Pop-Up Menus

KillPopUp

Delete a pop-up menu without affecting its image on the window.
pascal void KillPopUp (short MenuNumber);
procedure KillPopUp (MenuNumber: INTEGER);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is deleted in the current window. If the current
window doesn’t belong to your application, or if the specified pop-up menu doesn’t exist, KillPopUp does nothing.

KillPopUp is similar to RemovePopUp except that it does not remove the pop-up menu’s image from the window.
This routine is useful for scrolling pop-up menus in an area within a window (i.e., not the entire window). ScrollRect is
used to scroll the images in the affected area. OffsetPopUp repositions the pop-up menu’s co-ordinates without
affecting its image (since ScrollRect has already moved it). KillPopUp then deletes the pop-up menus that are scrolled
out of view without affecting their image (ScrollRect has already scrolled them out of view).

GetPopUpRect

Get a pop-up menu’s co-ordinates.
pascal void GetPopUpRect (short MenuNumber, Rect *Bounds);
procedure GetPopUpRect (MenuNumber: INTEGER; var Bounds: RECT);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is queried in the current window.

Bounds returns the pop-up menu’s bounding rectangle specified in the window’s local co-ordinates. These co-ordinates
match those used to create the pop-up menu. If the current window doesn’t belong to your application, or if no
windows are open, or if the pop-up menu does not exist in the current window, Bounds returns with all co-ordinates set
to zero (0).

PopUpDisplay

Hide or show a pop-up menu.
pascal void PopUpDisplay (short MenuNumber, Boolean Show);
procedure PopUpDisplay (MenuNumber: INTEGER; Show: BOOLEAN);

PopUpDisplay hides or shows a pop-up menu on the current window. The result is seen immediately. Use discretion
with this routine since pop-up menus should be enabled and disabled to indicate if they are accessible by the user.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the pop-up menu does not exist in the
current window, PopUpDisplay does nothing.

Show indicates if the pop-up menu is being hidden or displayed. The two constants that can be used for this flag are on
and off.

Water’s Edge Software 323



H

H

H

Tools Plus

PopUplsVisible

Determine if a pop-up menu is visible.
pascal Boolean PopUpIsVisible (short MenuNumber);
function PopUpIsVisible (MenuNumber: INTEGER): BOOLEAN;

PopUplsVisible reports if a pop-up menu (or a control that is implemented as a pop-up menu) is visible on the current
window, or if it is hidden.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is queried in the current window.

This routine’s value returns frue if the pop-up menu is visible, and false if the pop-up menu is hidden. If the current
window doesn’t belong to your application, or if no windows are open, or if the pop-up menu does not exist in the
current window, PopUplsVisible returns false. This routine takes control embedding into account, so it will return false
if the target pop-up menu is embedded and its container control is hidden.

ObscurePopUp

Hide a pop-up menu without removing its image from the window.
pascal void ObscurePopUp (short MenuNumber) ;
procedure ObscurePopUp (MenuNumber: INTEGER);

ObscurePopUp hides a pop-up menu on the current window without removing its image from the window. This
routine is useful for scrolling pop-up menus in an area within a window (i.e., not the entire window). ScrollRect is
used to scroll the images in the affected area. OffsetPopUp repositions the pop-up menu’s co-ordinates without
affecting its image (since ScrollRect has already moved it). ObscurePopUp then hides the pop-up menus that are
scrolled out of view without affecting their image (ScrollRect has already scrolled them out of view).

MenuNumber specifies the pop-up menu number (from 1 to 511) that is hidden in the current window. If the current
window doesn’t belong to your application, or if no windows are open, or if the pop-up menu does not exist in the
current window, ObscurePopUp does nothing.

GetPopUpString
Get a pop-up menu item’s text without the metacharacters.
pascal void GetPopUpString (short MenuNumber, short ItemNumber,

Str255 MenuText);

procedure GetPopUpString (MenuNumber, ItemNumber: INTEGER;
var MenuText: Str255);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window.
ItemNumber specifies the pop-up menu item number (from 1 to 32767) from which the text is obtained.

MenuText specifies the pop-up menu item’s name. If the specified pop-up menu does not exist in the current window,
or the specified item doesn’t exist, MenuText returns as a null string (Iength is zero). Note that the string will return as
a single space (* °) if a null string was specified when the item was created (this happens automatically to prevent the
Menu Manager from crashing).

324



H

11 Pop-Up Menus

RenamePopUp

Rename an existing pop-up menu item.

pascal void RenamePopUp (short MenuNumber, short ItemNumber,
const Str255 MenuText);

procedure RenamePopUp (MenuNumber, ItemNumber: INTEGER; MenuText: STRING);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if the specified pop-up menu doesn’t exist, RenamePopUp does
nothing.

ItemNumber specifies the menu item number (from 1 to 32767) which is changed. If the item number does not exist
within the pop-up menu specified by MenuNumber, RenamePopUp does nothing.

MenuText specifies the pop-up menu item’s new name. The item’s state (enabled/disabled), style (bold, underline,
etc.), icon and command key equivalent are not changed. Metacharacters are not interpreted by this routine.

RenamePopUp does not change the pop-up menu’s title. If the pop-up menu’s title must be changed, the affected pop-
up menu must be removed with the RemovePopUp routine, then re-created as required by using the NewPopUp
routine.

EnablePopUp

Enable or disable a pop-up menu or pop-up menu item.

pascal void EnablePopUp (short MenuNumber, short ItemNumber,
Boolean EnabledFlag);

procedure EnablePopUp (MenuNumber, ItemNumber: INTEGER;
EnabledFlag: BOOLEAN) ;

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if the specified pop-up menu doesn’t exist, EnablePopUp does nothing.

ItemNumber specifies the menu item number (from 1 to 32767) which is enabled/disabled. A value of zero (0) affects
the entire pop-up menu. If [temNumber is not zero and the item number does not exist within the menu specified by
MenuNumber, EnablePopUp does nothing.

EnabledFlag specifies whether the pop-up menu/item is enabled or disabled. In the enabled state, the menu/item can
be selected. The two constants that can used for this purpose are enabled and disabled. If the ItemNumber is zero, the
entire pop-up menu is disabled and the items cannot be viewed. When the pop-up menu later becomes enabled, all
items in the pop-up menu assume their correct enabling/disabling as specified by your application.

Note: The Macintosh’s Menu Manager allows only the first 31 items of a pop-up menu to be disabled individually.
The entire pop-up menu, however, can always be disabled.

CONST {Menu and Menu Item status }
enabled = true; {enable the item }
disabled = false; {disable the item }

Water’s Edge Software 325



H

Tools Plus

PopUplsEnabled

Determine if a pop-up menu is enabled or disabled.
pascal Boolean PopUpIsEnabled (short MenuNumber);
function PopUpIsEnabled (MenuNumber: INTEGER): BOOLEAN;

MenuNumber specifies the pop-up menu number (from 1 to 511) that is queried in the current window.

The routine’s value returns frue if the pop-up menu is enabled, and false if the pop-up menu is disabled. If the current
window doesn’t belong to your application, or if no windows are open, or if the pop-up menu does not exist in the
current window, PopUplsEnabled returns false. PopUplsEnabled returns the pop-up menu’s enabled state as it is
currently displayed, so if the pop-up menu’s window is inactive and has temporarily disabled the pop-up menu,
PopUplsEnabled returns false.

CheckPopUp

Display or hide a check mark to the left of a menu item.
pascal void CheckPopUp (short MenuNumber, short ItemNumber, Boolean checked);
procedure CheckPopUp (MenuNumber, ItemNumber: INTEGER; checked: BOOLEAN) ;

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if the specified pop-up menu doesn’t exist, CheckPopUp does nothing.

ItemNumber specifies the pop-up menu item number (from 1 to 32767) that is affected. If the item number does not
exist within the pop-up menu specified by MenuNumber, CheckPopUp does nothing.

Checked specifies whether the pop-up menu item’s check mark is displayed or hidden. The two constants that can be
used for this purpose are on and off. By default, pop-up menus can have only one item selected at a time. Therefore,
placing a check mark beside an item unchecks the previously checked item. See the NewPopUp routine if you want to
override this behavior.

To display characters other than the standard check mark, use the PopUpMark routine.

CONST {Menu Item check mark status }
on = true; {check mark is on }
off = false; {check mark is off }

PopUpMark

Display or hide a special character to the left of a pop-up menu item’s name. Use this routine instead of CheckPopUp
to display or hide characters other than the standard check mark.

pascal void PopUpMark (short MenuNumber, short ItemNumber, char markChar);
procedure PopUpMark (MenuNumber, ItemNumber: INTEGER; markChar: CHAR);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if the specified pop-up menu doesn’t exist, PopUpMark does nothing.

ItemNumber specifies the pop-up menu item number (from 1 to 32767) that is affected. If the item number does not
exist within the pop-up menu specified by MenuNumber, PopUpMark does nothing.

326



H

11 Pop-Up Menus

MarkChar specifies the character that is to be displayed. By default, pop-up menus can have only one item selected at
a time. Therefore, placing a mark beside an item unmarks the previously marked item. See the NewPopUp routine if
you want to override this behavior. The following constants are available for pop-up menu marks:

CONST {Menu Item characters }
AppleChar = char($14); {Apple character }
CheckChar = char($12); {Check Mark character }
DiamondChar = char($13); {Diamond character }
DotChar = char($A5); {Dot (or bullet) character }
NoChar = char($00); {No character (remove a character) }
GetPopUpMark

Get a pop-up menu item’s special character that is optionally displayed to the left of an item’s name.

pascal void GetPopUpMark (short MenuNumber, short ItemNumber,
char *markChar);

procedure GetPopUpMark (MenuNumber, ItemNumber: INTEGER; var markChar: CHAR);

MenuNumber specifies the pop-up menu number (from 1 to 511) in the current window that contains the desired item.
ItemNumber specifies the pop-up menu item number (from 1 to 32767) whose mark character is obtained.

MarkChar contains the “mark” character that is displayed to the left of the item’s name. If no mark is displayed by the
specified pop-up menu item, or if the specified pop-up menu or item doesn’t exist, MarkChar is set to null (char(0)).
The following are useful constants for testing menu marks:

CONST {Menu Item characters }
AppleChar = char($14); {Apple character }
CheckChar = char($12); {Check Mark character }
DiamondChar = char($13); {Diamond character }
DotChar = char($A5); {Dot (or bullet) character }
NoChar = char($00); {No character (remove a character) }
PopUplicon

Set a pop-up menu item’s icon.

pascal void PopUpIcon (short MenuNumber, short ItemNumber,
short IconSelector);

procedure PopUpIcon (MenuNumber, ItemNumber, IconSelector: INTEGER);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the pop-up
menu does not exist, PopUplcon does nothing.

ItemNumber specifies the pop-up menu item number (from 1 to 32767) that is affected. If the item number does not
exist within the pop-up menu specified by MenuNumber, PopUplcon does nothing.

IconSelector identifies the icon that is used, and should be from 1 to 255. The Menu Manager adds 256 to the number
you state to specify a resource ID that is in the range of 257 to 511, so if you specify 28, resource ID 284 is used (28 +
256 = 284). These icon resources are read from your application. If Color QuickDraw is available on the Macintosh
running your application, a ‘cicn’ (color) icon is used. If a ‘cicn’ is not available (or Color QuickDraw is unavailable),
an ‘ICON’ or ‘SICN’ is used. Use zero (0) if you don’t want an icon displayed.

Unlike the equivalent Macintosh toolbox routine, your menu item will remain unaffected if the specified icon can’t be
found (i.e., empty space is not reserved in the menu).

Water’s Edge Software 327



H

H

H

Tools Plus

Be aware that the Menu Manager drawing a ‘cicn’ icon in color will do so even if the icon was created using 8-bit
colors and the monitor is set to 4-bits. This may produce unsatisfactory results. If possible, use 4-bit colors or colors
that translate well into 4-bit colors.

GetPopUplcon
Get a pop-up menu item’s icon number.

pascal void GetPopUpIcon (short MenuNumber, short ItemNumber,
short *IconSelector);

procedure GetPopUpIcon (MenuNumber, ItemNumber: INTEGER;
var IconSelector: INTEGER);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window that contains
the desired menu item.
ItemNumber specifies the pop-up menu item number (from 1 to 32767) whose icon number is obtained.

IconSelector contains the item’s icon number. The Menu Manager automatically adds 256 to the IconSelector you
specify, so an IconSelector of 28 means that resource ID 284 is used (28 + 256 = 284). If an icon is not displayed by
the specified pop-up menu item, IconSelector will be equal to zero.

PopUpStyle

Set a pop-up menu item’s style.
pascal void PopUpStyle (short MenuNumber, short ItemNumber, Style theStyle);
procedure PopUpStyle (MenuNumber, ItemNumber: INTEGER; theStyle: Style);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the pop-up
menu does not exist, PopUpStyle does nothing.

ItemNumber specifies the pop-up menu item number (from 1 to 32767) that is affected. If the item number does not
exist within the pop-up menu specified by MenuNumber, PopUpStyle does nothing.

TheStyle specifies the style(s) in which the pop-up menu item is to be displayed. Special character constants defined by
the Font Manager are bold, italic, underline and shadow. C programmers will use the font manager’s constants to
specify a composite style, such as PopUpStyle(1,1, bold + outline) for bold and outlined, or PopUpStyle(1,1,0) for
plain text. Pascal programmers will use the font manager’s constants to specify a set, such as
PopUpStyle(1,1,[bold,outline]) for bold and outlined, or PopUpStyle(1,1, [ ]) for plain text.

PopUpltemCount

Determine the number of items in a pop-up menu.
pascal short PopUpItemCount (short MenuNumber);
function PopUpItemCount (MenuNumber): INTEGER;

MenuNumber specifies the pop-up menu number (from 1 to 511) you wish to query in the current window.

The routine’s value returns the number of items in the specified pop-up menu. If the pop-up menu number does not
exist, the routine returns zero.

328



H

H

11 Pop-Up Menus

GetPopUpSelection

Determine the selected item in a pop-up menu.
pascal short GetPopUpSelection (short MenuNumber);
function GetPopUpSelection (MenuNumber: INTEGER): INTEGER;

MenuNumber specifies the pop-up menu number (from 1 to 511) you wish to query in the current window.

The routine’s value returns the number of the pop-up menu item that is selected by having a “mark” (check mark or
otherwise) beside it. If you have defined your pop-up menu to allow multiple selections, PopUpltemCount returns the
number of the first selected item. If the pop-up menu number does not exist, the routine returns zero.

MovePopUp

Move a pop-up menu to a new location on the window.
pascal void MovePopUp (short MenuNumber, short toHoriz, short toVert);
procedure MovePopUp (MenuNumber, toHoriz, toVert: INTEGER);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, if no windows are open, or if MenuNumber specifies a pop-up menu that
does not exist, MovePopUp does nothing. The change is seen immediately providing that the pop-up menu is not
hidden. The pop-up menu’s width and height are not changed.

ToHoriz is the new horizontal co-ordinate at which the left side of the pop-up menu appears.

ToVert is the new vertical co-ordinate at which the top of the pop-up menu appears.

Also see: SizePopUp and MoveSizePopUp.

OffsetPopUp

Change a pop-up menu’s co-ordinates without affecting its image on the window.

pascal void OffsetPopUp (short MenuNumber,
short distHoriz, short distVert);

procedure OffsetPopUp (MenuNumber, distHoriz, distVert: INTEGER);

When you scroll an area that contains pop-up menus, first use ScrollRect to scroll the pixel image containing the
affected objects in the window. OffsetPopUp is used to offset a pop-up menu’s co-ordinates without altering its image
(since ScrollRect has already done so). At this point, the pop-up menu’s co-ordinates match the scrolled image of the
pop-up menu. ObscurePopUp or KillPopUp can be used to hide or delete pop-up menus that are scrolled out of view.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, if no windows are open, or if MenuNumber specifies a pop-up menu that
does not exist, OffsetPopUp does nothing.

DistHoriz and distVert specify the horizontal and vertical amount by which the pop-up menu’s co-ordinates are offset.
Positive numbers are right and down. The pop-up menu’s co-ordinates are updated but no change is seen.

Water’s Edge Software 329



H

H

Tools Plus

SizePopUp

Change a pop-up menu’s size.
pascal void SizePopUp (short MenuNumber, short width);
procedure SizePopUp (MenuNumber, width: INTEGER);

SizePopUp changes a pop-up menu’s width. The height cannot be changed. The change is seen immediately providing
that the pop-up menu is not hidden.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, if no windows are open, or if MenuNumber specifies a pop-up menu that
does not exist, SizePopUp does nothing.

Width specifies the pop-up menu’s new width in pixels. If the parameter is less than 1, SizePopUp does nothing.

Also see: MovePopUp and MoveSizePopUp.

MoveSizePopUp

Change a pop-up menu’s co-ordinates.

pascal void MoveSizePopUp (short MenuNumber,
short left, short top, short right, short bottom);

procedure MoveSizePopUp (MenuNumber, left, top, right, bottom: INTEGER);

MoveSizePopUp changes any of the pop-up menu’s four co-ordinates. The change is seen immediately providing that
the pop-up menu is not hidden. This routine combines the functions of MovePopUp and SizePopUp.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, if no windows are open, or if MenuNumber specifies a pop-up menu that
does not exist, MoveSizePopUp does nothing.

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the pop-up menu’s size and location
in the window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-
hand corner (right,bottom). If these parameters specify an empty rectangle, MoveSizePopUp does nothing. Note that
the bottom co-ordinate is ignored since the pop-up menu’s height cannot be changed.

Also see: GetPopUpRect.

MoveSizePopUpRect

Change a pop-up menu’s co-ordinates.
pascal void MoveSizePopUpRect (short MenuNumber, const Rect *Bounds);
procedure MoveSizePopUpRect (MenuNumber: INTEGER; Bounds: RECT);

MoveSizePopUpRect is identical to the MoveSizePopUp routine, except that it accepts the Bounds rectangle in place
of the individual left, top, right and bottom co-ordinates.

330



H

11 Pop-Up Menus

AutoMoveSizePopUp

Specify how a pop-up menu is automatically moved and/or resized as its window’s size is changed.

pascal void AutoMoveSizePopUp (short MenuNumber,
Boolean left, Boolean top, Boolean right);

procedure AutoMoveSizePopUp (MenuNumber: INTEGER; left, top, right: BOOLEAN);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, if no windows are open, or if MenuNumber specifies a pop-up menu that
does not exist, AutoMoveSizePopUp does nothing.

The left, top and right parameters specify if that side of the pop-up menu is automatically adjusted when the window’s
size changes. These setting are applied to the pop-up menu and are used the next time the window’s size changes:

left Does the pop-up menu’s left side track the window’s right edge?

top Do the pop-up menu’s top and bottom track the window’s bottom edge?

right Does the pop-up menu’s right side track the window’s right edge?

Notice that fop is used to make both the top and bottom of the menu track the window’s bottom. This ensures that the
pop-up menu’s height does not change.

You can think of each false value as locking that side of the pop-up menu to a fixed co-ordinate regardless of the
window’s size (this is the default). Each frue value establishes a fixed distance between that side of the pop-up menu
and the window’s edge. For example, setting only left and right to true makes the pop-up menu move horizontally as
the window widens and narrows, but the pop-up menu does not move vertically when the window’s height changes.

If you are setting these values identically for a group of objects, use AutoMoveSize to define the settings then add the
appropriate xAutoMoveSize constant (such as popupAutoMoveSize for pop-up menus) to the objects’ spec as they are
created. The objects will adopt the settings specified by the AutoMoveSize routine.

Warning: Make sure that you resize objects in a way that makes sense. Don’t allow a window to shrink down to a
size where objects become unusable or disappear altogether.

SetPopUpFontSettings

Set a pop-up menu’s font, size and style settings.

pascal void SetPopUpFontSettings (short MenuNumber,
short theFont, short theSize, Style theStyle);

procedure SetPopUpFontSettings (MenuNumber: INTEGER;
theFont: INTEGER; theSize: INTEGER; theStyle: Style);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, if no windows are open, or if the pop-up menu does not exist,
SetPopUpFontSettings does nothing. Otherwise, the change is seen immediately.

TheFont specifies the pop-up menu’s new font. The default is Chicago, which is represented by the systemFont
constant. This font is used to display the pop-up menu’s title and all the items in the list.

TheSize specifies the font’s size. The default is 0, which represents the default font size used by the system font, or
12pt in this case. This size is used to display the pop-up menu’s title and all the items in the list.

TheStyle specifies the pop-up menu’s new style. Special character constants defined by the Font Manager are bold,
italic, underline and shadow. C programmers use the Font Manager’s constants to specify a composite style, such as
SetPopUpFontSettings(1, geneva, 9, bold + outline) for bold and outlined, or SetPopUpFontSettings(1, geneva, 9, 0)
for plain text. Pascal programmers use the Font Manager’s constants to specify a style set, such as

Water’s Edge Software 331



H

Tools Plus

SetPopUpFontSettings(1, geneva, 9, [bold, outline]) for bold and outlined, or SetPopUpFontSettings(1, geneva, 9, [ ])
for plain text. This style applies only to the pop-up menu’s title. Items in the pop-up menu’s list are styled individually.

A pop-up menu’s font settings are set when a pop-up menu is created, so this routine is not normally used by many
applications.

Warning: Apple’s pop-up menu CDEFs are notorious for misbehaving if you change their font family or font size
(either one affects the font’s height). If you are using a CDEF for your pop-up menu, make sure you
thoroughly test the results of using the SetPopUpFontSettings routine. These issues do not affect Tools
Plus’s standard or 3D pop-up menus.

GetPopUpFontSettings
Get a pop-up menu’s font, size and style settings.

pascal void GetPopUpFontSettings (short MenuNumber,
short *theFont, short *theSize, Style *theStyle);

procedure GetPopUpFontSettings (MenuNumber: INTEGER;
var theFont: INTEGER; var theSize: INTEGER; var theStyle: Style);

MenuNumber specifies the pop-up menu number (from 1 to 511) in the current window whose font settings are being
retrieved. If the current window doesn’t belong to your application, if no windows are open, or if MenuNumber
specifies a pop-up menu that does not exist, GetPopUpFontSettings returns default values.

TheFont is the pop-up menu’s font number. The default is O which is represented by the systemFont constant.

TheSize is the font’s size. The default is 0, which represents the default font size used by the system font, or 12pt in
this case.

TheStyle is the field’s font style. The default is plain text, which is represented by 0 in C and [ ] in Pascal.

SetPopUpColors
Set a pop-up menu’s colors.
pascal void SetPopUpColors (short MenuNumber, const RGBColor *Title,

const RGBColor *Frame, const RGBColor *Body,
const RGBColor *DfltItemText, const RGBColor *ListBackground);

procedure SetPopUpColors (MenuNumber: INTEGER;
Title, Frame, Body, DfltItemText, ListBackground: RGBColor);

MenuNumber specifies the pop-up menu number (from 1 to 511) in the current window whose colors are being set. If
the current window doesn’t belong to your application, or if no windows are open, SetPopUpColors does nothing.
Also, if MenuNumber specifies a pop-up menu that does not exist, SetPopUpColors does nothing. The change is seen
immediately, regardless if the pop-up menu was originally created with the popupColorPopUp option or not.

Title is the color of the pop-up menu’s title, which may be external to the control or a fixed title within the control.
Frame is the pop-up menu’s frame color.

Body is the pop-up menu’s body color. This is the color that is used to fill the control’s body.

DfitltemText is the default color used to display items in the pop-up menu’s list.

ListBackground is the background color used for the pop-up menu’s list.

332



&

H

11 Pop-Up Menus

Note: Some pop-up menu CDEFs may not respond to all the settings provided by this routine. This is the case with
System 7’s CDEF 63 and may be the case with third party CDEFs as well.

Also see: PopUpColors and GetPopUpColors.

GetPopUpColors
Get a pop-up menu’s colors.
pascal void GetPopUpColors (short MenuNumber, RGBColor *Title,

RGBColor *Frame, RGBColor *Body, RGBColor *DfltItemText,
RGBColor *ListBackground);

procedure GetPopUpColors (MenuNumber: INTEGER; var Title: RGBColor;
var Frame: RGBColor; var Body: RGBColor;
var DfltItemText: RGBColor; var ListBackground: RGBColor);

MenuNumber specifies the pop-up menu number (from 1 to 511) in the current window whose colors are being
retrieved. If the current window doesn’t belong to your application, or if no windows are open, or if MenuNumber
specifies a pop-up menu that does not exist, GetPopUpColors returns default color values.

Title is the color of the pop-up menu’s title, which may be external to the control or a fixed title within the control.
Frame is the pop-up menu’s frame color.

Body is the pop-up menu’s body color. This is the color that is used to fill the control’s body.

DfltltemText is the default color used to display items in the pop-up menu’s list.

ListBackground is the background color used for the pop-up menu’s list.

Also see: PopUpColors and SetPopUpColors.

SetPopUpltemColors
Set a pop-up menu item’s colors.

pascal void SetPopUpItemColors (short MenuNumber, short ItemNumber,
const RGBColor *MarkColor, const RGBColor *ItemColor);

procedure SetPopUpItemColors (MenuNumber, ItemNumber: INTEGER;
MarkColor, ItemColor: RGBColor);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesn’t belong to your application, or if the specified pop-up menu doesn’t exist, SetPopUpltemColors does
nothing.

ItemNumber specifies the pop-up menu’s item number (from 1 to 32767) that is affected. If ltemNumber does not
exist, SetPopUpltemColors does nothing. If the pop-up menu displays the currently selected item and you are changing
the colors for that item, the change is seen immediately.

MarkColor is the color used to draw the specified menu item’s mark character.

ItemColor is the color used to draw the specified menu item’s text, command key, and submenu character.

Also see: PopUpColors and GetPopUpltemColors.

Water’s Edge Software 333



Tools Plus

GetPopUpltemColors

Get a pop-up menu item’s colors.

pascal void GetPopUpItemColors (short MenuNumber, short ItemNumber,
RGBColor *MarkColor, RGBColor *ItemColor);

H

procedure GetPopUpItemColors (MenuNumber, ItemNumber: INTEGER;
var MarkColor: RGBColor; var ItemColor: RGBColor);

MenuNumber specifies the pop-up menu number (from 1 to 511) in the current window whose colors are being
retrieved. If the current window doesn’t belong to your application, or if the specified pop-up menu doesn’t exist,
GetPopUpltemColors returns default color values.

ItemNumber specifies the pop-up menu’s item number (from 1 to 32767) whose colors are being retrieved. If
ItemNumber does not exist, GetPopUpltemColors returns default color values.

MarkColor is the color used to draw the specified menu item’s mark character.

ItemColor is the color used to draw the specified menu item’s text, command key, and submenu character.

Also see: PopUpColors and SetPopUpltemColors.

GetPopUpHandle

Get a handle to a pop-up menu’s control or menu record.

pascal Handle GetPopUpHandle (short MenuNumber);

H

function GetPopUpHandle (MenuNumber: INTEGER): Handle;

This routine returns a standard ControlHandle to a pop-up menu control that was created by a Tools Plus routine if the
popupSystemBody option was used when creating the pop-up menu. If the popupSystemBody option was not used, a
handle to a menu record is returned. You should never need to use this routine. It is provided for advanced
programmers who may have specialized needs. Always use Tools Plus routines to create and manipulate pop-up
menus.

MenuNumber specifies the pop-up menu number (from 1 to 511) in the current window whose handle is being
retrieved. If the current window doesn’t belong to your application, or if no windows are open, or if MenuNumber
specifies a pop-up menu that does not exist, GetPopUpHandle returns nil.

33> Warning: If you need to lock the handle or change its attributes, do so temporarily then restore the original settings
before using any Tools Plus routines. If you alter this handle or any data that is made accessible by this
handle, you do so at your own risk. The only exception is the control’s reference constant (contrlRfCon
field) which can safely be set using the toolbox’s SetControlReference routine, and retrieved using the
toolbox GetControlReference routine.

334



12 Panels

12 Panels

Panels and group boxes are user interface elements designed to give the user a visual cue that multiple objects are
related in some way. They can also be used purely as a cosmetic enhancement to give a window a more contemporary
3D look as seen in many of today’s applications. Group boxes are just a panel with a title, so within this manual the
terms “panel” and “group box” can be used interchangeably.

If your application is dependent upon the Appearance Manager, you should use the Appearance Manager’s Group Box
control through your application in place of Tools Plus’s panels. The Group Box control is not as versatile as a Tools
Plus panel, but it gives your application a user interface that is consistent with the Appearance Manager’s themes. See
the Buttons chapter for information on implementing the Appearance Manager’s Group Box control in your
application.

Tools Plus’s panels do more than just make your user interface look better. Panels map perfectly between windows of
varying depths on color and gray scale monitors as well as monochrome monitors (1-bit black and white). This means
that you can create a panel just like any other Tools Plus user interface element, and it takes care of itself and looks its
best at all times. Panels also enhance radio buttons and picture buttons by making them behave like a related group.
When you place buttons or picture buttons inside a panel you can optionally deselect the other buttons in the group
when a button is selected.

A panel is comprised of several parts all of which can be tailored to suit your

Title Border application’s needs. Any of the parts can be omitted to create a desired affect.

Speed: The border defines the panel’s perimeter. An optional shadow extends inwards from
I::::I .5 MHzZ. these co-ordinates to make the panel appear to be either inset into the window or raised
from the window. A channel option produces a 1-pixel wide groove that is cut into the
@ 1.0 MHz. window or elevated from the window. A variety of styles are available.
T I:::I 2.0 MH Az - If a title is included in the panel, the panel takes on the appearance of a group box. The

| 1 title can be set near the left or right edge of the border, or it can be centered. Various
Background  Content fonts, font sizes and styles can be used for the title. The text can also be inset or raised
using soft or heavy shadows. You can use the GetPanelFontSettings and
SetPanelFontSettings routines to get and set the panel’s font, size and style settings.

The panel’s background is always erased before drawing the panel or any of its parts. The background includes the
region occupied by the title and it can optionally include the interior of the panel as well.

A panel’s content is specified by your application. Typically this is either a set of radio buttons created with the
NewButton routine, or a set of picture buttons created with the NewPictButton routine. When you create a panel you
can set an option that deselects all other buttons inside the panel’s when one of them is selected.

Panels are created on the current window by the NewPanel routine. Each panel is referenced by a unique panel number
that can be from 1 to 511. This number is specified when the panel is created, and refers to the specific panel until that

panel is deleted. Note that the panel number is related to its associated window. This means that two different windows
can each have a panel numbered “1” without interfering with each other.

Panels can be moved to a new location with MovePanel and have their width and/or height changed with SizePanel.
MoveSizePanel combines both tasks by letting you specify new co-ordinates for the panel.

When a panel is no longer required, it is deleted by the DeletePanel routine, which releases the memory used by that
panel. This is done automatically if a window is closed. Panels can be hidden or displayed with the PanelDisplay
routine. Hiding, displaying or moving panels does not affect objects you place inside the panel.

Water’s Edge Software 335



H

Tools Plus

Color Tables

Panels provide a lot of versatility in the way that colors are used. Various options are offered to make efficient use of
memory and to ease programming. By default each panel points to a global standard color table for panels that
specifies the following colors:

Text Title’s color

Background Color filled behind title and optionally inside the panel
Border Color of panel’s border

Hilite Color used to draw highlights on the title and panels
Shadow Used for drawing the panel’s shadows

Text Shadow Used for drawing shadows for the title

Heavy Text Shadow  Used for drawing heavy shadows for the title

The standard color table is initialized to a set of light grays that are consistent with Macintosh user interface
guidelines. Your application can get and set these colors using GetStandardPanelColors and SetStandardPanelColors.
If you want most or all panels to share a common set of colors that are different from the standard color table, change
these settings during your application’s initialization routine.

Although the standard color table includes a background color, panels assume that their background is the same as
their window’s backdrop color. This lets you use the standard color table on a variety of window colors without having
to change the color table or use custom colors. A panel can optionally use the standard color table’s background color
instead of the window’s backdrop for the panel background. Using the standard color table is the most memory
efficient option since panels only refer to the global color table and do not make their own copy.

A second option is using the custom color table for panels. The custom color table is similar to the standard color table
in that your application can get and set the colors using GetCustomPanelColors and SetCustomPanelColors. When you
create a panel and instruct it to use the custom color table, the panel makes a copy of the custom color table for its own
use, thereby letting you set custom colors for several panels at a time then change the custom color table without
affecting any panels. Although there is no performance penalty, a panel that uses a custom color table consumes an
additional 42 bytes of memory to store a copy of the custom colors. The custom color table is initialized to a set of
darker grays. They produce an attractive interface but they do not follow the Macintosh tradition of “light,
unobstructive colors.”

A final set of options let you use the window’s foreground color for the panel’s text or border, and/or use the window’s
background color for the panel’s background. These options cause the panel to create their own copy of the standard
color table or custom color table, then override the specified entries in its own color table.

NewPanel

Create a new panel.

pascal void NewPanel (short Panel, short left, short top, short right,
short bottom, const Str255 Title, long Spec, short ShadowWidth);

procedure NewPanel (Panel, left, top, right, bottom: INTEGER; Title: STRING;
Spec: LONGINT; ShadowWidth: INTEGER);

Panel specifies the panel number (from 1 to 511) that is created in the current window. Once a panel is created, it is
referenced by this panel number. If a panel has been previously created in the current window using the same number,
it is replaced with a new panel as specified by the parameters in the NewPanel routine. If the current window doesn’t
belong to your application, or if no windows are open, NewPanel does nothing.

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the panel’s size and location in the

window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-hand

corner (right,bottom). If you want buttons or picture buttons to be automatically deselected, their co-ordinates must lie
within this rectangle. You can create a line by specifying a rectangle that is 1 pixel wide or high.

336



12 Panels

The Title parameter is the panel’s title. The title is drawn overlaying the rectangle’s top line and therefore extends
beyond the boundaries specified by the panel’s rectangle. You can have a panel without a title by specifying an empty
string.

Spec specifies a panel’s appearance and behavior. It is a combination of various Tools Plus options detailed later in
this section.

ShadowWidth specifies how wide the panel’s shadow is. The shadow usually extends in from the panel’s rectangle.
Use zero (0) when creating a group box. You can then specify you want a raised or inset 1-pixel wide channel, in
which case highlights and shadows are drawn inside and outside the panel’s rectangle.

Appearance and Behavior Specification

Spec specifies a panel’s appearance and behavior. The value for this 4-byte long integer can be specified by adding a
set of constants to obtain the desired result. The constants defining the available options are as follows:

Optionally choose any of the following options...

panFillBack Fill the panel’s content area with its background color. By default, only the title’s
background is filled and the panel’s interior is hollow allowing objects behind it to
show through.

panOutlined Always draw an outline around the panel. This is done
automatically for group boxes when you specify a shadow
width of zero (0). This outline puts more emphasis on a
raised or inset panel. without outline (default)
The outline is drawn using the border color on monitors
of all depths. Do not use this option if you want a border
displayed only on a monitor depth of 4 bits or less.

with outline

panBlackBorder This option is identical to the panOutlined option, except that the border is black
instead of using the border color which is usually gray.

panOutlinedbit Draw an outline around the panel only when it is displayed on a monitor set to 4-bits
or less. This is done automatically for group boxes when you specify a shadow width
of zero (0). This outline puts more emphasis on a raised or inset panel.
The outline is drawn using the border color. Do not use this option if you want a
border displayed only on a monitor depth of 2 bits or less.

panBWGrayBorder Draw an outline around the panel using a gray pattern to produce a dotted outline.
This occurs only when the panel is drawn on a black and white (1-bit) monitor. By
default, group boxes have a black outline on monochrome monitors, and ordinary
panels have no outline so they disappear because both the shadow and highlight are
mapped to white. Use this option if you do not want your panels to disappear on
monochrome monitors.

panUseWFont Display the panel’s title using the window’s current font, size and style settings (as
set by the TextFont, TextSize, and TextFace routines). The panel stores this
information for future reference. By default, all panels are drawn using the system
font (Chicago, 12 pt).

panCustomColors Make a copy of the custom color table and use those colors when drawing the panel.
By default, panels are drawn using a shared standard color table. Making a copy of
the custom color table consumes an additional 42 bytes but allows the panel to have
its own color scheme.

Water’s Edge Software 337



Tools Plus

panColorText

panColorBorder

panColorBack

panNoBackdrop

panAutoDeselect

panAutoMoveSize

panHidden

Use the window’s foreground color for the panel’s title. By default, the panel’s title
is drawn using the text color in the standard color table or in the custom color table if
you’ve elected to use the custom table. When you use this option, a copy of the
specified color table is made for this panel and its text color entry is replaced with
the window’s foreground color. This option is best used for overriding the text color
used in the standard or custom color table. If you find yourself using this option
frequently, consider changing the standard or custom color table.

Use the window’s foreground color for the panel’s border. By default, the panel’s
border is drawn using the border color in the standard color table or in the custom
color table if you’ve elected to use the custom table. When you use this option, a
copy of the specified color table is made for this panel and its border color entry is
replaced with the window’s foreground color. This option is best used for overriding
the border color used in the standard or custom color table. If you find yourself using
this option frequently, consider changing the standard or custom color table.

Use the window’s background color for the panel’s background. By default, the
panel’s background is drawn using the window’s backdrop color. When you use this
option, a copy of the specified color table is made for this panel and its background
color entry is replaced with the window’s background color. This option is best used
for overriding the background color used in the standard or custom color table. If you
find yourself using this option frequently, consider changing the standard or custom
color table. If you want to use the color table’s background color instead of the
window’s backdrop color for the panel’s background, use the panNoBackdrop
option.

Use the color table’s background color for the panel’s background. By default, the
panel’s background is drawn using the window’s backdrop color.

Automatically deselect other buttons and picture buttons inside the panel when a
button is selected. This option is ideal for radio button groups or groups of picture
buttons that behave like radio buttons. When your application gets a doButton or
doPictButton event, all it has to do is select the clicked button and all other buttons
inside the panel will be deselected. It is important that the buttons and/or picture
buttons are completely enclosed by the panel’s rectangle otherwise they are not
considered to be inside the panel. Hidden buttons and picture buttons are not
affected.

Automatically move and/or resize the panel when the window’s size changes. The
AutoMoveSize routine lets you specify which sides are altered. You can use the
AutoMoveSizePanel routine as an alternative to setting this option.

Create a hidden panel. This kind of panel is accessible to your application but not to
the user.

Optionally choose only one of the following title-position options...

338

panLeftTitle

panRightTitle

panCenterTitle

Position the panel’s title near the left side. This is the default and it does not need to
be explicitly included.

Position the panel’s title near the right side. By default, the panel’s title is positioned
near the left side.

Position the panel’s title in the center. By default, the panel’s title is positioned near
the left side.



12 Panels

Optionally choose only one of the following title 3D-style options...

panPlainTitle

panRaiseTitle

panRaiseTitleDark

panInsetTitle

panInsetTitleDark

Display the panel’s title without using 3D enhancements. This is the default and it
does not need to be explicitly included.

Display the panel’s title as being raised from the window. Soft shadows are used.
This option works very well with light colored backgrounds, and is a subtle effect
when used on a darker background.

Display the panel’s title as being raised from the window. Heavy shadows are used.
This option works very well with darker colored backgrounds but may be too
dramatic on lighter colored backgrounds.

Display the panel’s title as being inset into the window. Soft shadows are used. This
option works very well with light colored backgrounds, and is a subtle effect when
used on a darker background.

Display the panel’s title as being inset into the window. Heavy shadows are used.
This option works very well with darker colored backgrounds but may be too
dramatic on lighter colored backgrounds.

Optionally choose only one of the following shadow style options...

panNoShadow

panRaiseShadow

panInsetShadow

Draw the panel without any shadows. This option is used most often for plain group
boxes without a 3D effect. This is the default and it does not need to be explicitly
included.

Draw the panel as being raised from the window. If you specify this option in
conjunction with a shadow width of zero (0), a 1-pixel wide raised channel is
created, a suitable look for a group box.

Draw the panel as being inset into the window. If you specify this option in
conjunction with a shadow width of zero (0), a 1-pixel wide inset channel is created,
the default look for a 3D group box.

Optionally choose only one of the following round-corner options...

panRoundCornerl
panRoundCorner?2
panRoundCorner3
U
panRoundCorner29
panRoundCorner30
panRoundCorner3l

Draw the panel as a round-corner rectangle using an oval size that corresponds to the
specified value. By default, panels have square corners. The round-corner rectangle
is created with the toolbox’s FrameRoundRect routine using an oval height and
width of the specified value. If you are using a gray pattern outline on monochrome
monitors (panBWGrayBorder option), the corners may not look very tidy when
displayed on a 1-bit monitor.

Choose only one of the following popular combinations as a base for a spec...

panGroupBox

pan3DGroupBox

Standard group box without any 3D effects. This constant is simply a combination of
the following options: panLeftTitle + panBlackBorder + panNoShadow +
panAutoDeselect.

Standard 3D group box. This constant is simply a combination of the following
options: panLeftTitle + panlnsetShadow + panRaiseTitle + panAutoDeselect.

Also see: NewPanelRect and NewDialogPanel.

CONST {Panel appearance/behavior specifications: }
panFillBack = $00000001; {Fill panel with background color }
panOutlined = $00000002; {Always draw outline around panel }
panOutlinedbit = $00000004; {Draw outline on 4-bit monitors }
panBlackBorder = $00000008; {Draw black border instead of gray }
panBWGrayBorder = $00000010; {Draw gray pattern border on B&W monitor }
panUseWFont = $00000020; {Draw title using window's font }
panCustomColors = $00000040; {Use custom colors instead of standard ones }

Water’s Edge Software 339



Tools Plus

panColorText = $00000080; {Use foreground color for text }
panColorBorder = $00000100; {Use foreground color for border }
panColorBack = $00000200; {Use background color for background }
panNoBackdrop = $00000400; {Use standard or custom background color }
{ instead of window's backdrop color }
panAutoDeselect = $00000800; {Auto-deselect buttons in this group }
{Title alignment: }
panLeftTitle = $00001000; { Left (default) }
panRightTitle = $00002000; { Right }
panCenterTitle = $00003000; { Center }
{Title's 3D styling: }
panPlainTitle = $00000000; { Plain title (no 3D effect) }
panRaiseTitle = $00010000; { Raised with light shadow }
panRaiseTitleDark = $00020000; { Raised with heavy shadow }
panInsetTitle = $00030000; { Inset with light shadow }
panInsetTitleDark = $00040000; { 1Inset with heavy shadow }
{Shadow styling: }
panNoShadow = $00000000; { No shadow (default) }
panRaiseShadow = $00080000; { Panel raises from window }
panInsetShadow = $00100000; { Panel sinks into window }
{Round-corner Width: }
panRoundCornerl = $01000000; { RoundRect oval size of 1 pixel }
panRoundCorner2 = $02000000; { RoundRect oval size of 2 pixels }
panRoundCorner3 = $03000000; { RoundRect oval size of 3 pixels }
panRoundCorner4 = $04000000; { RoundRect oval size of 4 pixels }
panRoundCorner5 = $05000000; { RoundRect oval size of 5 pixels }
panRoundCorner6 = $06000000; { RoundRect oval size of 6 pixels }
panRoundCorner7 = $07000000; { RoundRect oval size of 7 pixels }
panRoundCorner8 = $08000000; { RoundRect oval size of 8 pixels }
panRoundCorner9 = $09000000; { RoundRect oval size of 9 pixels }
panRoundCornerl0 = $0A000000; { RoundRect oval size of 10 pixels }
panRoundCornerll = $0B000000; { RoundRect oval size of 11 pixels }
panRoundCornerl2 = $0C000000; { RoundRect oval size of 12 pixels }
panRoundCornerl3 = $0D000000; { RoundRect oval size of 13 pixels }
panRoundCornerl4 = $0E000000; { RoundRect oval size of 14 pixels }
panRoundCornerl5 = $0F000000; { RoundRect oval size of 15 pixels }
panRoundCornerl6 = $10000000; { RoundRect oval size of 16 pixels }
panRoundCornerl7 = $11000000; { RoundRect oval size of 17 pixels }
panRoundCornerl8 = $12000000; { RoundRect oval size of 18 pixels }
panRoundCornerl9 = $13000000; { RoundRect oval size of 19 pixels }
panRoundCorner20 = $14000000; { RoundRect oval size of 20 pixels }
panRoundCorner2l = $15000000; { RoundRect oval size of 21 pixels }
panRoundCorner22 = $16000000; { RoundRect oval size of 22 pixels }
panRoundCorner23 = $17000000; { RoundRect oval size of 23 pixels }
panRoundCorner24 = $18000000; { RoundRect oval size of 24 pixels }
panRoundCorner25 = $19000000; { RoundRect oval size of 25 pixels }
panRoundCorner26 = $1A000000; { RoundRect oval size of 26 pixels }
panRoundCorner27 = $1B000000; { RoundRect oval size of 27 pixels }
panRoundCorner28 = $1C000000; { RoundRect oval size of 28 pixels }
panRoundCorner29 = $1D000000; { RoundRect oval size of 29 pixels }
panRoundCorner30 = $1E000000; { RoundRect oval size of 30 pixels }
panRoundCorner3l = $1F000000; { RoundRect oval size of 31 pixels }
panAutoMoveSize = $40000000; {Auto-move/size as window's size changes }
panHidden = $80000000; {Panel is hidden }
{Popular combinations: }
{ Standard group box }
panGroupBox = panLeftTitle + panBlackBorder + panNoShadow + panAutoDeselect;
3D group box }

pan3DGroupBox = panLeftTitle + panInsetShadow + panRaiseTitle + panAutoDeselect;

Programming Tips:
1 You can suppress the panel’s border by specifying a rectangle whose bottom and top have the same vertical
co-ordinate (an empty rectangle). This lets you use a panel to draw 3D text that can be used for titles. Tools
Plus automatically refreshes these titles.

2 You can use panels to create vertical and/or horizontal lines that are automatically refreshed. For a vertical
line, make the panel’s right co-ordinate equal the left plus one. For a horizontal line, make the panel’s bottom
co-ordinate equal the top plus one.

340



H

H

12 Panels

NewPanelRect

Create a new panel.

pascal void NewPanelRect (short Panel, const Rect *Bounds,
const Str255 Title, long Spec, short ShadowWidth);

procedure NewPanelRect (Panel: INTEGER; Bounds: RECT;
Title: STRING; Spec: LONGINT; ShadowWidth: INTEGER);

NewPanelRect is identical to the NewPanel routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

NewDialogPanel
Create a new panel in a dialog using a dialog item's co-ordinates.

pascal void NewDialogPanel (short Panel, const Str255 Title, long Spec,
short ShadowWidth);

procedure NewDialogPanel (Panel: INTEGER; Title: STRING; Spec: LONGINT;
ShadowWidth: INTEGER);

NewDialogPanel is identical to the NewPanel routine, except that the panel is created in a dialog (a window opened
with the LoadDialog routine, or one that had a dialog list attached with the LoadDialogList routine). The panel’s co-
ordinates are obtained from the dialog item whose number matches the panel number.

GetFreePanelNum

Get the first unused panel number.
pascal short GetFreePanelNum (void);

function GetFreePanelNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own panel
number, GetFreePanelNum returns the first unused (free) panel number. Using this routine, you can assign an unused
panel number to a variable, then use that variable throughout your application without concern for the true panel
number.

GetFreePanelNum returns the first free panel number on the current window. If the current window doesn’t belong to
your application, if no windows are open, or if the maximum number of panels has already been created on the current
window (no new ones can be created), GetFreePanelNum returns a value of zero (0).

Water’s Edge Software 341



Tools Plus

SetStandardPanelColors
Set the standard color table’s colors.
pascal void SetStandardPanelColors (const RGBColor *Text,
const RGBColor #*Background, const RGBColor *Border,

const RGBColor *Hilite, const RGBColor *Shadow,
const RGBColor *TextShadow, const RGBColor *TextHeavyShadow);

procedure SetStandardPanelColors (Text, Background, Border, Hilite, Shadow,
TextShadow, TextHeavyShadow: RGBColor);

The standard color table for panels is used by all panels as a default set of colors. It is initialized to a set of light grays
that are consistent with Macintosh user interface guidelines. If you want to change the standard color table for panels,
do so early in your application, typically during the application initialization routine. Changing these colors does not
automatically force existing panels that use these colors to be redrawn.

Text is the color of the panel’s title.

Background is the color of the panel’s background. By default, the panel uses the window’s backdrop color but it may
be instructed to use this background color.

Border is the color of the panel’s border.

Hilite is the color that is used to draw highlights on both the title and the panel. This color is usually white.
Shadow 1is the color used to draw the panel’s shadows

TextShadow is the color used to draw soft shadows on the title.

TextHeavyShadow is the color used to draw heavy shadows on the title.

Also see: GetStandardPanelColors, SetCustomPanelColors and GetCustomPanelColors.

GetStandardPanelColors

Get the standard color table’s colors.

pascal void GetStandardPanelColors (RGBColor *Text, RGBColor *Background,
RGBColor *Border, RGBColor *Hilite, RGBColor *Shadow,
RGBColor *TextShadow, RGBColor *TextHeavyShadow);

procedure GetStandardPanelColors (var Text: RGBColor;
var Background: RGBColor; var Border: RGBColor;
var Hilite: RGBColor; var Shadow: RGBColor;
var TextShadow: RGBColor; var TextHeavyShadow: RGBColor);

This routine gets the colors from the standard color table for panels. These colors are used by all panels as a default set
of colors. If you want to change a few of the colors in the table, use GetStandardPanelColors to obtain all the colors in
the table, then use SetStandardPanelColors to update the table with new colors, some of which could be the original
colors obtained by the “get” operation.

Text is the color of the panel’s title.

Background is the color of the panel’s background. By default, the panel uses the window’s backdrop color but it may
be instructed to use this background color.

Border is the color of the panel’s border.

Hilite is the color that is used to draw highlights on both the title and the panel. This color is usually white.

342



12 Panels

Shadow is the color used to draw the panel’s shadows
TextShadow is the color used to draw soft shadows on the title.

TextHeavyShadow is the color used to draw heavy shadows on the title.

Also see: SetStandardPanelColors, GetCustomPanelColors and GetCustomPanelColors.

SetCustomPanelColors
Set the custom color table’s colors.
pascal void SetCustomPanelColors (const RGBColor *Text,
const RGBColor *Background, const RGBColor *Border,

const RGBColor *Hilite, const RGBColor *Shadow,
const RGBColor *TextShadow, const RGBColor *TextHeavyShadow);

procedure SetCustomPanelColors (Text, Background, Border, Hilite, Shadow,
TextShadow, TextHeavyShadow: RGBColor);

The custom color table for panels is optionally used by panels that require a custom color table instead of using the
default standard color table. A copy of this color table is made for each panel that uses it. The custom color table is
initialized to a set of darker grays. They produce an attractive interface but they do not follow the Macintosh tradition
of “light, unobstructive colors.” If you have a standard color theme for panels, use the standard color table to define
those colors. If you want to assign a different set of colors to a number of panels, use this routine to set the custom
panel color and they will be adopted by new panels as they are created.

Text is the color of the panel’s title.

Background is the color of the panel’s background. By default, the panel uses the window’s backdrop color but it may
be instructed to use this background color.

Border is the color of the panel’s border.

Hilite is the color that is used to draw highlights on both the title and the panel. This color is usually white.
Shadow 1is the color used to draw the panel’s shadows

TextShadow is the color used to draw soft shadows on the title.

TextHeavyShadow is the color used to draw heavy shadows on the title.

Also see: SetStandardPanelColors, GetStandardPanelColors and GetCustomPanelColors.

Water’s Edge Software 343



H

Tools Plus

GetCustomPanelColors
Get the custom color table’s colors.
pascal void GetCustomPanelColors (RGBColor *Text, RGBColor *Background,

RGBColor *Border, RGBColor *Hilite, RGBColor *Shadow,
RGBColor *TextShadow, RGBColor *TextHeavyShadow);

procedure GetCustomPanelColors (var Text: RGBColor;
var Background: RGBColor; var Border: RGBColor;
var Hilite: RGBColor; var Shadow: RGBColor;
var TextShadow: RGBColor; var TextHeavyShadow: RGBColor);

This routine gets the colors from the custom color table for panels. These colors are optionally used by panels for a
customized set of colors. If you want to change a few of the colors in the table, use GetCustomPanelColors to obtain
all the colors in the table, then use SetCustomPanelColors to update the table with new colors, some of which could be
the original colors obtained by the “get” operation.

Text is the color of the panel’s title.

Background is the color of the panel’s background. By default, the panel uses the window’s backdrop color but it may
be instructed to use this background color.

Border is the color of the panel’s border.

Hilite is the color that is used to draw highlights on both the title and the panel. This color is usually white.
Shadow 1is the color used to draw the panel’s shadows

TextShadow is the color used to draw soft shadows on the title.

TextHeavyShadow 1is the color used to draw heavy shadows on the title.

Also see: SetStandardPanelColors, GetStandardPanelColors and SetCustomPanelColors.

DeletePanel

Delete a panel.
pascal void DeletePanel (short Panel);
procedure DeletePanel (Panel: INTEGER);

Panel specifies the panel number (from 1 to 511) that is deleted from the current window. If the current window
doesn’t belong to your application, or if no windows are open, or if the panel does not exist in the current window,
DeletePanel does nothing. Use KillPanel if you want to delete the panel without removing its image from the window.

344



H

12 Panels

KillPanel

Delete a panel without affecting its image on the window.
pascal void KillPanel (short Panel);
procedure KillPanel (Panel: INTEGER);

KillPanel is identical to DeletePanel except that it does not remove the panel’s image from the window. This routine is
useful for scrolling panels in an area within a window (i.e., not the entire window). ScrollRect is used to scroll the
images in the affected area. OffsetPanel repositions the panel’s co-ordinates without affecting its image (since
ScrollRect has already moved it). KillPanel then deletes the panels that are scrolled out of view without affecting their
image (ScrollRect has already scrolled them out of view).

PanelDisplay

Hide or show a panel.
pascal void PanelDisplay (short Panel, Boolean Show);
procedure PanelDisplay (Panel: INTEGER; Show: BOOLEAN) ;

PanelDisplay hides or shows a panel on the current window. The result is seen immediately.

Panel specifies the panel number (from 1 to 511) that is affected in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the panel does not exist in the current window,
PanelDisplay does nothing.

Show indicates if the panel is being hidden or displayed. The two constants that can be used for this flag are on and off.

PanellsVisible

Determine if a panel is visible.
pascal Boolean PanellIsVisible (short Panel);
function PanelIsVisible (Panel: INTEGER): BOOLEAN;

PanellsVisible reports if a panel is visible on the current window, or if it is hidden.
Panel specifies the panel number (from 1 to 511) that is queried in the current window.

This routine’s value returns true if the panel is visible, and false if the panel is hidden. If the current window doesn’t
belong to your application, or if no windows are open, or if the panel does not exist in the current window,
PanellsVisible returns false.

Water’s Edge Software 345



H

H

H

Tools Plus

ObscurePanel

Hide a panel without removing its image from the window.
pascal void ObscurePanel (short Panel);
procedure ObscurePanel (Panel: INTEGER);

ObscurePanel hides a panel on the current window without removing its image from the window. This routine is useful
for scrolling panels in an area within a window (i.e., not the entire window). ScrollRect is used to scroll the images in
the affected area. OffsetPanel repositions the panel’s co-ordinates without affecting its image (since ScrollRect has
already moved it). ObscurePanel then hides the panels that are scrolled out of view without affecting their image
(ScrollRect has already scrolled them out of view).

Panel specifies the panel number (from 1 to 511) that is hidden in the current window. If the current window doesn’t
belong to your application, or if no windows are open, or if the panel does not exist in the current window,
ObscurePanel does nothing.

GetPanelRect

Get a panel’s co-ordinates.
pascal void GetPanelRect (short Panel, Rect *Bounds);
procedure GetPanelRect (Panel: INTEGER; var Bounds: RECT);

Panel specifies the panel number (from 1 to 511) that is queried in the current window.

Bounds returns the panel’s bounding rectangle specified in the window’s local co-ordinates. These co-ordinates match
those used to create the panel. If the current window doesn’t belong to your application, or if no windows are open, or
if the panel does not exist in the current window, Bounds returns with all co-ordinates set to zero (0).

MovePanel

Move a panel to a new location on the window.
pascal void MovePanel (short Panel, short toHoriz, short toVert);
procedure MovePanel (Panel, toHoriz, toVert: INTEGER);

Panel specifies the panel number (from 1 to 511) that is affected in the current window. If the current window doesn’t
belong to your application, if no windows are open, or if Panel specifies a panel that does not exist, MovePanel does
nothing. The change is seen immediately providing that the panel is not hidden. The panel’s width and height are not
changed.

ToHoriz is the new horizontal co-ordinate at which the left side of the panel appears.

ToVert is the new vertical co-ordinate at which the top of the panel appears.

Also see: SizePanel and MoveSizePanel.

346



H

12 Panels

OffsetPanel

Change a panel’s co-ordinates without affecting its image on the window.
pascal void OffsetPanel (short Panel, short distHoriz, short distVert);
procedure OffsetPanel (Panel, distHoriz, distVert: INTEGER);

When you scroll an area that contains panels, first use ScrollRect to scroll the pixel image containing the affected
objects in the window. OffsetPanel is used to offset a panel’s co-ordinates without altering its image (since ScrollRect
has already done so). At this point, the panel’s co-ordinates match the scrolled image of the panel. ObscurePanel or
KillPanel can be used to hide or delete panels that are scrolled out of view.

Panel specifies the panel number (from 1 to 511) that is affected in the current window. If the current window doesn’t
belong to your application, if no windows are open, or if Panel specifies a panel that does not exist, OffsetPanel does
nothing.

DistHoriz and distVert specify the horizontal and vertical amount by which the panel’s co-ordinates are offset. Positive
numbers are right and down. The panel’s co-ordinates are updated but no change is seen.

SizePanel

Change a panel’s size.
pascal void SizePanel (short Panel, short width, short height);
procedure SizePanel (Panel, width, height: INTEGER);

SizePanel changes a panel’s width and/or height without altering the panel’s top or left co-ordinate. The change is seen
immediately providing that the panel is not hidden.

Panel specifies the panel number (from 1 to 511) that is affected in the current window. If the current window doesn’t
belong to your application, if no windows are open, or if Panel specifies a panel that does not exist, SizePanel does
nothing.

Width and height specify the panel’s new width and height in pixels. If either parameter is less than 0, SizeButton does
nothing.

Also see: MovePanel and MoveSizePanel.

MoveSizePanel

Change a panel’s co-ordinates.

pascal void MoveSizePanel (short Panel,
short left, short top, short right, short bottom);

procedure MoveSizePanel (Panel, left, top, right, bottom: INTEGER);

MoveSizePanel changes any of the panel’s four co-ordinates. The change is seen immediately providing that the panel
is not hidden. This routine combines the functions of MovePanel and SizePanel.

Panel specifies the panel number (from 1 to 511) that is affected in the current window. If the current window doesn’t
belong to your application, if no windows are open, or if Panel specifies a panel that does not exist, MoveSizePanel
does nothing.

Water’s Edge Software 347



H

H

Tools Plus

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the panel’s size and location in the
window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-hand
corner (right,bottom). If these parameters specify a width or height that is less than zero (0), MoveSizePanel does
nothing.

Also see: GetPanelRect.

MoveSizePanelRect

Change a panel’s co-ordinates.
pascal void MoveSizePanelRect (short Panel, const Rect *Bounds);
procedure MoveSizePanelRect (Panel: INTEGER; Bounds: RECT);

MoveSizePanelRect is identical to the MoveSizePanel routine, except that it accepts the Bounds rectangle in place of
the individual left, top, right and bottom co-ordinates.

AutoMoveSizePanel

Specify how a panel is automatically moved and/or resized as its window’s size is changed.

pascal void AutoMoveSizePanel (short Panel,
Boolean left, Boolean top, Boolean right, Boolean bottom);

procedure AutoMoveSizePanel (Panel: INTEGER;
left, top, right, bottom: BOOLEAN);

Panel specifies the panel number (from 1 to 511) that is affected in the current window. If the current window doesn’t
belong to your application, if no windows are open, or if Panel specifies a panel that does not exist,
AutoMoveSizePanel does nothing.

The left, top, right and bottom parameters specify if that side of the panel is automatically adjusted when the window’s
size changes. These setting are applied to the panel and are used the next time the window’s size changes:

left Does the panel’s left side track the window’s right edge?
top Does the panel’s top track the window’s bottom edge?
right Does the panel’s right side track the window’s right edge?
bottom  Does the panel’s bottom track the window’s bottom edge?

You can think of each false value as locking that side of the panel to a fixed co-ordinate regardless of the window’s
size (this is the default). Each true value establishes a fixed distance between that side of the panel and the window’s
edge. For example, setting only left and right to true makes the panel move horizontally as the window widens and
narrows, but the panel does not move vertically when the window’s height changes.

If you are setting these values identically for a group of objects, use AutoMoveSize to define the settings then add the
appropriate xAutoMoveSize constant (such as panAutoMoveSize for panels) to the objects’ spec as they are created.
The objects will adopt the settings specified by the AutoMoveSize routine.

Warning: Make sure that you resize objects in a way that makes sense. Don’t allow a window to shrink down to a
size where objects become unusable or disappear altogether.

348



H

12 Panels

SetPanelFontSettings

Set a panel’s font, size and style settings.

pascal void SetPanelFontSettings (short Panel,
short theFont, short theSize, Style theStyle);

procedure SetPanelFontSettings (Panel: INTEGER;
theFont: INTEGER; theSize: INTEGER; theStyle: Style);

Panel specifies the panel number (from 1 to 511) that is affected in the current window. If the current window doesn’t
belong to your application, if no windows are open, or if the panel does not exist, SetPanelFontSettings does nothing.
Otherwise, the change is seen immediately.

TheFont specifies the panel’s new font. The default is Chicago, which is represented by the systemFont constant.

TheSize specifies the font’s size. The default is 0, which represents the default font size used by the system font, or
12pt in this case.

TheStyle specifies the panel’s new style. Special character constants defined by the Font Manager are bold, italic,
underline and shadow. C programmers use the Font Manager’s constants to specify a composite style, such as
SetPanelFontSettings(1, geneva, 9, bold + outline) for bold and outlined, or SetPanelFontSettings(1, geneva, 9, 0) for
plain text. Pascal programmers use the Font Manager’s constants to specify a style set, such as
SetPanelFontSettings(1, geneva, 9, [bold, outline]) for bold and outlined, or SetPanelFontSettings(1, geneva, 9, [ ]) for
plain text.

A panel’s font settings are set when a panel is created, so this routine is not normally used by many applications.

GetPanelFontSettings
Get a panel’s font, size and style settings.

pascal void GetPanelFontSettings (short Panel,
short *theFont, short *theSize, Style *theStyle);

procedure GetPanelFontSettings (Panel: INTEGER;
var theFont: INTEGER; var theSize: INTEGER; var theStyle: Style);

Panel specifies the panel number (from 1 to 511) in the current window whose font settings are being retrieved. If the
current window doesn’t belong to your application, if no windows are open, or if Panel specifies a panel that does not
exist, GetPanelFontSettings returns default values.

TheFont is the panel’s font number. The default is O which is represented by the systemFont constant.

TheSize is the font’s size. The default is 0, which represents the default font size used by the system font, or 12pt in
this case.

TheStyle is the panel’s font style. The default is plain text, which is represented by 0 in C and [ ] in Pascal.

Water’s Edge Software 349



Tools Plus

SetPanelColors
Set a panel’s colors.
pascal void SetPanelColors (short Panel, const RGBColor *Text,
const RGBColor #*Background, const RGBColor *Border,

const RGBColor *Hilite, const RGBColor *Shadow,
const RGBColor *TextShadow);

procedure SetPanelColors (Panel: INTEGER; Text, Background, Border, Hilite,
Shadow, TextShadow: RGBColor);

Panel specifies the panel number (from 1 to 511) in the current window whose colors are being set. If the current
window doesn’t belong to your application, or if no windows are open, SetPanelColors does nothing. Also, if Panel
specifies a panel that does not exist, SetPanelColors does nothing. The change is seen immediately. SetPanelColors
automatically creates a custom color table if required for the panel.

Text is the color of the panel’s title.

Background is the color of the panel’s background. By default, the panel uses the window’s backdrop color but it may
be instructed to use this background color.

Border is the color of the panel’s border.

Hilite is the color that is used to draw highlights on both the title and the panel. This color is usually white.
Shadow 1is the color used to draw the panel’s shadows

TextShadow is the color used to draw soft shadows on the title.

TextHeavyShadow is the color used to draw heavy shadows on the title.

Also see: GetPanelColors.

GetPanelColors
Get a panel’s colors.
pascal void GetPanelColors (short Panel, RGBColor *Text,

RGBColor *Background, RGBColor *Border, RGBColor *Hilite,
RGBColor *Shadow, RGBColor *TextShadow);

procedure GetPanelColors (Panel: INTEGER; var Text: RGBColor;
var Background: RGBColor; var Border: RGBColor;
var Hilite: RGBColor; var Shadow: RGBColor;
var TextShadow: RGBColor);

Panel specifies the panel number (from 1 to 511) in the current window whose colors are being retrieved. If the current
window doesn’t belong to your application, or if no windows are open, or if Panel specifies a panel that does not exist,
GetPanelColors returns color values from the standard color table.

Text is the color of the panel’s title.

Background is the color of the panel’s background. By default, the panel uses the window’s backdrop color but it may
be instructed to use this background color.

Border is the color of the panel’s border.
Hilite is the color that is used to draw highlights on both the title and the panel. This color is usually white.

Shadow 1is the color used to draw the panel’s shadows

350



12 Panels

TextShadow is the color used to draw soft shadows on the title.

TextHeavyShadow is the color used to draw heavy shadows on the title.

Also see: SetPanelColors.

Water’s Edge Software 351



Tools Plus

352



13 Menus

13 Menus

Tools Plus lets your application implement and support menus with considerably less effort than using the Macintosh
toolbox’s routines. The fully automated Apple menu (®) lets you launch, activate, and interact with desk accessories
without having to write any code. Tools Plus also integrates the edit menu’s Undo, Cut, Copy, Paste, and Clear
commands with editing fields, desk accessories and other applications so you don’t have to write any code to Cut,
Copy, Paste, or Clear text, or to undo/redo your last operation.

There are two different kinds of menus your application can use, pull-down menus and hierarchical menus, as
illustrated below. When implementing menus, your application should adhere to Macintosh User Interface Guidelines
as expressed throughout the series of Inside Macintosh manuals.

In this document, the term menu refers to the entire menu object; that is, [1] the entire pull-down menu and the name
that appears in the menu bar, or [2] an entire hierarchical menu. The term menu item or item refers to individual items
found within a menu. The item number is determined by counting from the top of the list, the first item being 1, the
second being 2, etc.

Bl | Text

Undo Font >
Size 4
Cut m_ »Plain %P
Copy Bold ¥B
Paste ~Align Left #L Frakic E |
Clear Align Middle 3#¥M| Underline U
Align Right %R [Oluitiinie) -
Justify #J | Bhadorm
Pull-Down menu Hierarchical menu

Menus can be created and maintained on an item by item basis within your application. You can also create an entire
menu from a ‘MENU’ resource by using the LoadMenu routine. The LoadMenuBar routine reads an ‘MBAR’ menu
bar resource that lists all the menus in a menu bar, and creates those menus.

Your application can create the Apple menu (#) with the AppleMenu routine. This routine creates the Apple menu,
inserts an optional “About...” item (first item) that is used to invoke your application’s “about box,” and populates the
menu with a list of desk accessories.

A pull-down menu is created by the Menu routine. First, your application specifies the menu’s name (which appears in
the menu bar) and a menu number that can be from 1 to 15. The menu number refers to that specific menu until the
menu is deleted. The Menu routine is then used to add ifems to a specific menu.

A hierarchical menu is also created by using the Menu routine. A name does not have to be specified for a hierarchical
menu because this type of menu does not appear in the menu bar. Hierarchical menu numbers can be from 16 to 200.
The menu number refers to that specific hierarchical menu until it is deleted. The Menu routine is then used to add
items to a specific hierarchical menu. You attach a hierarchical menu to an item in a pull-down menu or a hierarchical
menu by using the AttachMenu routine. When a hierarchical menu is attached to another menu, it is often called a
submenu. In this relationship where a menu has one or more submenus, the owner of the submenus is often called the
parent menu, and the submenus are sometimes referred to as offspring or child menus.

Menu items can also be inserted between others using the InsertMenultm routine. This lets your application maintain a
dynamic menu that may be used, for example, for a list of open document names. ResNamesToMenu inserts resource
names (such as fonts or sounds), sorted alphabetically, at a specified item.

Water’s Edge Software 353



Tools Plus

An entire menu can be deleted by using the RemoveMenu routine. This routine reclaims the memory used by the
menu. Individual items can also be deleted using this routine. You can delete all menus in a menu bar with the
RemoveMenus routine, or all menus and hierarchical menus with the RemoveAllMenus routine. Your application can
temporarily hide the menu bar then redisplay it with MenuBarDisplay.

Menu items can be renamed by using the Renameltem routine. This should be done judiciously, since changes to
menus and/or menu items may prove to be confusing to the user.

An entire menu can be enabled or disabled with the EnableMenu routine, as can individual menu items. When an
entire menu is disabled, it is dimmed along with all its associated items, and it cannot be selected. When an item is
disabled, it becomes dim and cannot be selected.

Changes made to the menu bar by adding, deleting, enabling or disabling pull-down menus (not individual items),
appear in the menu bar as soon as your application calls ProcessEvents, ProcessToolboxEvent, or
Process1EventWhileBusy. Menu bar changes you make from inside your event handler routine will be seen when your
event handler finishes executing. You can use the UpdateMenuBar routine if you want the changes to appear right
away, such as when your application is starting up and it may be several seconds before you call ProcessEvents.

Various other menu item-related features are supported, such as setting or removing “check marks” with the
CheckMenu routine. You can set or remove other mark