
Tools Plus
P R O F E S S I O N A L
LIBRARIES + FRAMEWORK

C / C++ and Pascal

System 6, 7 and Mac OS 8

User Manual

Tools Plus
P R O F E S S I O N A L
LIBRARIES + FRAMEWORK

Version 6

Water’s Edge Software
2441 Lakeshore Road West
Box 70022
Oakville, Ontario
Canada, L6L 6M9

Important Information for Evaluation Kit Registrants
A special edition of Tools Plus is distributed as an Evaluation Kit that can be obtained, free of charge, from user groups
and various electronic bulletin boards and the Internet. Users of the Tools Plus Evaluation Kit are bound by restrictive
terms and conditions that do not apply to registered Tools Plus developers who have purchased a license.

If you have obtained a Tools Plus Development Kit as a result of registering an Evaluation Kit, discontinue using the
evaluation kit and take advantage of the latest Tools Plus features. You must recompile your applications using the
licensed libraries that come with the Development Kit. Do not revert to using editions of Tools Plus that are distributed
as evaluation software.

Free Updates and Software Upgrades

Please see the Technical Support chapter at the end of this manual for important
information about receiving free software updates and free upgrades.

Copyright ©1989-2001 WaterÕs Edge Software

Tools Plusª, Tools Plus Professionalª, Tools Plus Proª, Tools Plus Academicª, and Tools Plus Liteª are
trademarks of WaterÕs Edge Software.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission
of WaterÕs Edge Software.

4th Dimension¨ is a registered trademarks of ACIUS
Adobe ,̈ Acrobat¨ and Photoshop¨ are trademarks of Adobe Systems Incorporated. Acrobat Reader copyright ©

1987-1997 Adobe Systems Incorporated.
Apple ̈and Lisa ̈and are registered trademarks of Apple Computer, Inc.
Finderª, Macintosh¨, MultiFinderª, QuickTimeª and ResEditª are trademarks of Apple Computer, Inc.

Power Macintoshª is a trademark of Apple Computer, Inc. used under license
MacPaint¨ and MacDraw¨ are registered trademark of Claris Corporation
Infinity Windoidª is a trademark of Infinity Systems
PowerPCª is a trademark of International Business Machines Corporation, used under license therefrom
Resorcerer¨ is a registered trademark of Mathem¾sthetics Inc.
CodeWarriorª is a trademark or Metrowerks Inc.
Microsoft¨ and Word¨ are registered trademark of Microsoft Corporation
Symantec Cª, Symantec C++ª, THINK Cª, THINK Pascalª and THINK Referenceª are trademarks of

Symantec Corporation
Eudoraª is a trademark of the University of Illinois Board of Trustees, licensed to Quallcomm Incorporated

Published in Canada.

Tools Plus libraries, framework, and user manual were designed and created by Steve Makohin and Steven Waters.

We express gratitude to Marcel Achim of Metrowerks for his work on the CodeWarrior compiler. Without his
assistance, dedication and responsiveness, Tools Plus for CodeWarrior would not be here today.

Thanks to Marlene Atcheson, Phil Calippe, Greg Galanos, Intellisoft Development Inc., ÒKevinÓ at Symantec, Trent
McLeod, Tony Minichillo, Herb Payerl, Diane Postill, Karen Postill, Rick Ruse, and Stan Witkowski. Thank you to
Ken Bereskin of Apple for his technical expertise in Macintosh programming in the early days, and to Les Titze for his
technical prowess and encouragement when Tools Plus was in its infancy.

A special thank you goes to Greg Kowal for his direction, insight and mentoring, and to Eugene Roman for his
business sense and his chutzpah. And of course, thank you to all Tools Plus developers and beta testers for making
Tools Plus a success!

This document was created on a Macintosh computer using Word 5.1a, MacPaint, MacDraw and Photoshop
applications. Tools Plus and its user manual were designed and created entirely on Macintosh computers. Information
in this manual is subject to change without notice.

Tools Plusª and SuperCDEFsª
Software License and Support Agreement (SLSA),

and Limited Warranty

This legal document is an agreement between WaterÕs Edge Software of 2441 Lakeshore Road West, #70022,
Oakville, Ontario, Canada, L6L 6M9, and you, the licensee, (herein referred to as ÒLICENSEEÓ). This legally binding
agreement takes effect when signed by WaterÕs Edge Software and the LICENSEE, or when you open the CD
wrapping, which ever comes first, and is in effect for the duration, and under the conditions stated herein. All parts of
this agreement, those being [i] Software License, [ii] Support Agreement, [iii] Limited Warranty, and
[iv]ÊAcknowledgment, are collectively referred to herein as the ÒSLSA.Ó

BY SIGNING THIS SLSA and/or OPENING THE CD PACKAGE, YOU ARE AGREEING TO BECOME
BOUND BY THE TERMS OF THIS SLSA, WHICH INCLUDES THE SOFTWARE LICENSE, SUPPORT
AGREEMENT, LIMITED WARRANTY, and ACKNOWLEDGMENT.

In order to preserve and protect its rights under applicable law, WaterÕs Edge Software does not sell any rights in its
SOFTWARE. Rather, WaterÕs Edge Software grants the right to use its SOFTWARE by means of an SLSA. WaterÕs
Edge Software specifically retains title to all WaterÕs Edge Software computer software.

SOFTWARE LICENSE
1. SCOPE OF LICENSE: This Software LicenseÕs scope pertains to the following products and items that are

contained on the Tools Plus Professional 6 CD-ROM:
[i] Tools Plus libraries, in compiled form

[ii] Tools Plus libraries, in source code form
[iii] Tools Plus interface files for Pascal, and header files for C/C++
[iv] Tools Plus framework source code
[v] SuperCDEFs control definition (ÔCDEFÕ) resources
[vi] SuperCDEFs source code

[vii] SuperCDEFs source code interface files
[viii] Tools Plus User Manual

[ix] SuperCDEFs User Manual
[x] Any documentation otherwise enclosed on the CD

2. TERMINOLOGY: A common terminology is used throughout this agreement as follows:

[i] Tools Plus and its related files, regardless of their form, and SuperCDEFs and its related files, regardless
of their form, are referred to herein collectively as ÒSOFTWAREÓ. This includes, but is not limited to
the following items from section 1: i, ii, iii, iv, v, vi, vii. This also includes all variations of Tools Plus
libraries, Tools Plus source code, SuperCDEFs ÔCDEFÕ resources, and SuperCDEFs source code, and the
interface and/or header files that are related to Tools Plus and/or SuperCDEFs, including variants of these
items that are modified by you, the LICENSEE, or by other LICENSEES as part of the WaterÕs Edge
Software Open Source Program, described herein.

[ii] A subset of the SOFTWARE is ÒSOURCE CODEÓ that is comprised of all variations of Tools Plus
source code, SuperCDEFs source code, and the interface and/or header files that are related to Tools Plus
and/or SuperCDEFs, including variants of these items that are modified by you, the LICENSEE, or by
other LICENSEES as part of the WaterÕs Edge Software Open Source Program, described herein. This
includes, but is not limited to the following items from section 1: ii, iii, iv, vi, vii.

[iii] The Tools Plus User Manual and the SuperCDEFs user manual, regardless of their form, that being
electronic, printed, or otherwise, are referred to herein collectively as ÒDOCUMENTATIONÓ. This
includes, but is not limited to the following items from section 1: viii, ix, x.

[iv] The term ÒdistributeÓ is used to denote when an entity is exposed, or allowed to be exposed to any
person or entity other than the LICENSEE.

3. GRANT OF LICENSE. In consideration of payment of the License fee, which is a part of the price you paid for
Tools Plus, and your agreement to abide by the terms and conditions of this SLSA, WaterÕs Edge Software, as
Licensor, grants you, the LICENSEE, a non-exclusive right to use and display a copy of the SOFTWARE on a single
COMPUTER (i.e., a single-user CPU) at a single location, so long as you comply with the terms of this SLSA. The
LICENSEE is also granted a non-exclusive right to use and display a copy of the DOCUMENTATION. WaterÕs Edge
Software reserves all rights not expressly granted to the LICENSEE.

4. OWNERSHIP OF SOFTWARE. As the LICENSEE, you own the magnetic disk, CD-ROM, or other physical
media on which the SOFTWARE is originally or subsequently recorded or fixed, but an express condition of this
License is that WaterÕs Edge Software retains title and ownership of the SOFTWARE and DOCUMENTATION,
regardless of the form or media in or on which the original and other copies may exist. This SLSA is not a sale of the
original SOFTWARE or DOCUMENTATION or any copy or of any variant of the SOFTWARE.

5. MODIFICATION RESTRICTIONS. You, the LICENSEE, may modify the SOURCE CODE providing that your
modifications are confined to changes that are compiled into the Tools Plus libraries, and/or are compiled into a
SuperCDEF ÔCDEFÕ resource or a functional equivalent thereof in newer versions of the Macintosh Operating System.
You may also modify the Tools Plus header files (C/C++) and interface files (Pascal) to reflect changes you make to
the SOURCE CODE. Only original Tools Plus source code, or variants thereof, may be compiled into Tools Plus
libraries. You may add new routines to Tools Plus libraries. You may modify the Tools Plus framework.

6. COPY RESTRICTIONS. The SOFTWARE and DOCUMENTATION are copyrighted, and are protected by
Canadian and United States copyright laws, and international treaty provisions. WaterÕs Edge Software retains these
copyrights, including copyrights to modified SOURCE CODE. The LICENSEE agrees to treat modified SOURCE
CODE in the same fashion as original SOURCE CODE from WaterÕs Edge Software.

(6.1) Unauthorized copying of SOFTWARE or DOCUMENTATION, including SOFTWARE that has been
modified, merged, or included with other software, is expressly forbidden unless otherwise stated in this SLSA. You
may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by
the terms of this SLSA.

(6.2) WaterÕs Edge Software grants you, the LICENSEE, the right to integrate compiled Tools Plus libraries with
source code produced by you in your development of executable applications and Òplug-insÓ using the SOFTWARE.
WaterÕs Edge Software also grants you the right to compile the SOFTWARE and to imbed the resulting object code
into executable applications and Òplug-inÓ products that you have developed, and the right to distribute such products
with such imbedded object code, without royalty to WaterÕs Edge Software, PROVIDED that you: (a)Êimbed the object
code in such a manner as to prevent its extraction from your products, or access from your products in a form that
would allow it to be imbedded in another executable application, or accessed by another application or Òplug-inÓ; (b)
agree to indemnify, hold harmless, and defend WaterÕs Edge Software from any claims or lawsuits, including
attorneyÕs fees, that may arise from the use or distribution of your products containing such imbedded object code.
Whether the imbedding of such object code complies with this SLSA shall be subject solely to the reasonable
determination of WaterÕs Edge Software. For the purpose of making any such determination, you agree to provide
WaterÕs Edge Software, at its request, and at not cost to WaterÕs Edge Software, a copy of any executable application
or Òplug-inÓ you have developed that contains object code compiled from this SOFTWARE.

(6.3) You may distribute SuperCDEFs ÔCDEFÕ resources, or derivatives thereof, only as part of an executable
application or Òplug-inÓ that you create.

(6.4) This SLSA expressly forbids the distribution of the SOFTWARE in a form that other developers may access,
which includes, but is not limited to libraries and/or ÔCDEFÕ resources that are based on the SOFTWARE. You may,
however, create an executable application or Òplug-inÓ that is used by developers, such as an application generator or
source code generator, providing that the resulting application, source code, or other produced item are not dependent
upon the SOFTWARE in order to perform its function.

(6.5) You, the LICENSEE, may print a single copy of the electronic user manual for your own use.
Except as specifically provided above, you shall not copy, modify, transfer, license, sublicense, rent, lease, sell,

convey, translate, convert to any programming language or format or decompile or disassemble the SOFTWARE, or
any portion of the SOFTWARE, nor assign or transfer the license or any interest herein.

7. USE RESTRICTIONS. As the LICENSEE, you may physically transfer the SOFTWARE from one computer to
another, provided that the SOFTWARE is used on only one computer at a time. You may not electronically transfer
the SOFTWARE from one computer to another over a network. You may not distribute, or allow to be distributed,
copies of the SOFTWARE or DOCUMENTATION to others. You may not modify, adapt, translate, reverse engineer,
decompile, disassemble, or create derivative works based on the SOFTWARE unless specifically provided in the
SLSA.

8. TRANSFER RESTRICTIONS. This SOFTWARE is licensed only to you, the LICENSEE, and may not be
transferred to anyone without the prior written consent of WaterÕs Edge Software. Any authorized transferee of the
SOFTWARE shall be bound by the terms and conditions of this SLSA. In no event may you transfer, assign, rent,
lease, sell or otherwise dispose of the SOFTWARE, on a temporary or permanent basis, except as expressly provided
herein.

9. COPYRIGHT NOTICE. Applications and Òplug-insÓ created with the SOFTWARE must prominently and legibly
display a copyright notice in their startup window and/or ÒAboutÉÓ box using a font that is no smaller than 9 points
shown in high-contrast colors. Any documentation relating to applications and/or Òplug-insÓ that are dependent upon
Tools Plus libraries, regardless of its form, must also display a WaterÕs Edge Software copyright notice. One of the
following notices must be used, or the LICENSEE must obtain permission in writing from WaterÕs Edge Software to
use an alternative notice.

(a) Tools Plusª libraries copyright © 1989-2001 WaterÕs Edge Software
(b) Created with Tools Plusª © 1989-2001 WaterÕs Edge Software
(c) Portions of this application © 1989-2001 WaterÕs Edge Software. All rights reserved.

In the case of SuperCDEFs, one of the following notices must be used or the LICENSEE must obtain permission in
writing from WaterÕs Edge Software to use an alternative notice

(a) SuperCDEFsª copyright © 1996-2001 WaterÕs Edge Software
(b) Custom controls copyright © 1996-2001 WaterÕs Edge Software
(c) Portions of this application © 1996-2001 WaterÕs Edge Software. All rights reserved.

You many not modify the embedded copyright notice in SuperCDEFs unless you change the look or feel of the
control. In such cases, you must replace the embedded copyright notice from WaterÕs Edge Software with one of your
own.

10. OPEN SOURCE PROGRAM: You, the LICENSEE, may work collaboratively with other developers who are
licensed under this SLSA, and whose standing is in good order. This collaborative work may include, but not be
limited to the exchange of source code, documentation, know-how, and other proprietary information. You may only
provide, exchange or solicit such information through channels that are officially sanctioned by WaterÕs Edge
Software.

11. NON-DISCLOSURE: The SOFTWARE and DOCUMENTATION include proprietary information and trade
secrets. You, the LICENSEE, agree to keep this information confidential, and to defend it from being distributed, or
from becoming known to anyone, with the exception of your participation in the Open Source Program as defined
herein. You agree to use whatever means are necessary, within reason, to ensure that this.

12. TERMINATION. This SLSA takes effect when it is signed by both the LICENSEE and by WaterÕs Edge
Software or when you open the CD wrapping, which ever comes first, and it remains in effect until it is terminated.
This SLSA will terminate automatically without notice from WaterÕs Edge Software if you, the LICENSEE, fail to
comply with any provision of the SLSA. Upon termination you shall destroy all copies of the SOFTWARE and
DOCUMENTATION, including modified copies and/or copies that are imbedded in other products, if any, or return
them, postage prepaid, to WaterÕs Edge Software.

(12.1) You, the LICENSEE, may voluntarily stop using the SOFTWARE and DOCUMENTATION on a permanent
basis providing that you destroy the SOFTWARE and DOCUMENTATION, including modified copies and/or copies
that are imbedded in other products, if any, or return them, postage prepaid, to WaterÕs Edge Software.

(12.2) In the event that you, the LICENSEE, voluntarily stop using the SOFTWARE and DOCUMENTATION on a
permanent basis, and/or if the SLSA is terminated, you must continue to indemnify, hold harmless, and defend
WaterÕs Edge Software from any claims or lawsuits, including attorneyÕs fees, that may arise from the use or
distribution of your products containing the SOFTWARE, even if those products are distributed outside of the terms of
this SLSA.

(12.3) You agree that violation of this SLSA constitutes great and irreparable damage to WaterÕs Edge Software, and
that you may be held liable for such damages, including punitive damages, and be prosecuted to the fullest extent of
the law.

SUPPORT AGREEMENT
In recognition that the LICENSEE has access to Tools Plus source code and SuperCDEFs source code, and that the

LICENSEE has the ability to modify and append the SOURCE CODE, and that interdependencies may exist between
portions of original, unmodified WaterÕs Edge Software SOURCE CODE and the LICENSEEÕs modifications and/or
additions, and with the understanding that the LICENSEEÕs efforts may negatively influence the SOFTWARE or
cause it to fail, WaterÕs Edge Software does not offer technical support for the SOFTWARE.

LIMITED WARRANTY
THE SOFTWARE AND DOCUMENTATION (INCLUDING INSTRUCTIONS FOR USE) ARE PROVIDED ÒAS

ISÓ WITHOUT WARRANTY OF ANY KIND. FURTHER, WATERÕS EDGE SOFTWARE DOES NOT
WARRANTY, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF USE, OF THE SOFTWARE OR DOCUMENTATION IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS
AND PERFORMANCE OF THE SOFTWARE IS ASSUMED BY YOU, THE LICENSEE. IF THE SOFTWARE OR
DOCUMENTATION ARE DEFECTIVE, YOU (AND NOT WATERÕS EDGE SOFTWARE OR ITS DEALERS,
DISTRIBUTORS, AGENTS, OR EMPLOYEES), ASSUME THE ENTIRE COST OF ALL NECESSARY
SERVICING, REPAIR, OR CORRECTION.

WaterÕs Edge Software warrants to the original LICENSEE that the CD-ROM on which the SOFTWARE is
recorded is free from defects in materials and workmanship under normal use and service for a period of ninety (90)
days from the date of shipment. WaterÕs Edge SoftwareÕs entire liability and your exclusive remedy as to the CD-ROM
shall be, at WaterÕs Edge SoftwareÕ option, either (a) return the purchase price or (b) replacement of the disk that does
not meet WaterÕs Edge Software Limited Warranty and which is returned to WaterÕs Edge Software postage prepaid. If
failure of this CD-ROM has resulted from accident, abuse, or misapplication, WaterÕs Edge Software shall have no

responsibility to replace the CD-ROM or provide a refund. In the event of replacement of the CD-ROM, the
replacement CD-ROM will be warranted for the remainder of the warranty period or thirty (30) days, whichever is the
longer.

The above is the only warranty of any kind, either expressed or implied, statutory or otherwise, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose that is made by WaterÕs Edge
Software on this product.

No oral or written information or advice given by WaterÕs Edge Software, its dealers, distributors, agents or
employees shall create a warranty or in any way increase the scope of this warranty, and you may not rely on any such
information or advice.

Neither WaterÕs Edge Software, nor anyone else who has been involved in the creation, production, or delivery of
the SOFTWARE or DOCUMENTATION shall be liable for any direct, indirect, consequential or incidental damages
(including damages for the loss of business profits, business interruption, loss of business information, and the like)
arising out of the use or inability to use such product even if WaterÕs Edge Software has been advised of the possibility
of such damages.

THIS WARRANTY GIVES YOU SPECIFIC RIGHTS. YOU MAY HAVE OTHER RIGHTS WHICH VARY
FROM STATE TO STATE (AND PROVINCE TO PROVINCE) AND CERTAIN LIMITATIONS CONTAINED IN
THIS WARRANTY MAY NOT APPLY TO YOU. WaterÕs Edge SoftwareÕs liability to you for actual damages from
any cause whatsoever, and regardless of the form (whether in contract, tort (including negligence), product liability or
otherwise), will be limited to $50.

ACKNOWLEDGMENT
You acknowledge that you have read the SLSA, understand it, and agree to be bound by its terms and conditions.

You also agree that the exclusive statement of agreement between the parties and supersede all proposals or prior oral
or written agreements, or any other communications between the parties relating to the subject matter of the SLSA.

Contents

WaterÕs Edge Software 9

Contents

1 Introduction to Tools Plus
Tools Plus Overview .. 27

Differences Between Tools Plus Packages 27
The (Optional) Tools Plus Framework.. 28
Visual Design Environment .. 28
Tools Plus User Manual Formats .. 28
Printing the User Manual .. 29

Registered Developer Benefits Period.. 29
An Ordinary ApplicationÕs Architecture (without Tools Plus) ... 30
A Tools Plus ApplicationÕs Architecture 32
Powerful Features Using Simpler, Higher-Level Coding 33
Event Processing is Virtually Eliminated.................................... 34
Apple Event Support is Built into Tools Plus 34
Supports Resource-Based and Dynamic Interface Design.......... 35
Accessing Tools Plus Libraries ... 35
Creating New Applications With Tools Plus 36
Using Tools Plus in an Existing Application 36

Range Checking.. 37
The Tools Plus Advantage.. 37
Who can benefit from Tools Plus... 39
What kind of applications can be written with Tools Plus 39
What is Tools Plus not suitable for .. 40
System Requirements ... 40
Tools Plus Performance.. 41
Special Considerations with Mac OS Versions 42
Assumptions made when this manual was written............................. 43
Conventions used throughout this manual ... 43
Software Updates.. 44
Evaluation Kit Registrants.. 44
For your information (recommended reading) 44
How to Get Started with Tools Plus ... 45
Stress Testing Applications .. 45

Spotlight and other Testing Tools ... 46
Creating and Editing Resources ... 46
The List Manager, List Boxes, Tables and Beyond 47
Tools Plus Features .. 48

2 Installing Tools Plus
Installing Tools Plus in CodeWarrior C (68K) 59

Adding Tools Plus to a CodeWarrior C (68K) Project 60
Adding Tools Plus to a CodeWarrior C (68K) Plug-In 60

Installing Tools Plus in CodeWarrior Pascal (68K) 62
Adding Tools Plus to a CodeWarrior Pascal (68K) Project 63
Adding Tools Plus to a CodeWarrior Pascal (68K) Plug-In 63

Installing Tools Plus in CodeWarrior C (PPC) 65
Adding Tools Plus to a CodeWarrior C (PPC) Project 66
Adding Tools Plus to a CodeWarrior C (PPC) Plug-In 66

Installing Tools Plus in CodeWarrior Pascal (PPC)........................... 67
Adding Tools Plus to a CodeWarrior Pascal (PPC) Project........ 68
Adding Tools Plus to a CodeWarrior Pascal (PPC) Plug-In....... 68

Installing Tools Plus in THINK C/C++ (68K) 5, 6 and 7 69
Adding Tools Plus to a THINK C (68K) Project 69

Tools Plus

10

Installing Tools Plus in Symantec C/C++ (68K) 8.0.5 or later 70
Adding Tools Plus to an SPM C/C++ (68K) Project 70

Installing Tools Plus in Symantec C/C++ (PPC) 8.6 or later 71
Adding Tools Plus to an SPM C/C++ (PPC) Project.................. 71

Installing Tools Plus in THINK Pascal (68K) 72
Adding Tools Plus to a THINK Pascal (68K) Project 72
After Compiling .. 73

Compiling the CodeWarrior C (68K) Demo Application.................. 74
Compiling the CodeWarrior Pascal (68K) Demo Application 75
Compiling the CodeWarrior C (PPC) Demo Application 76
Compiling the CodeWarrior Pascal (PPC) Demo Application 77
Compiling the THINK C (68K) 5, 6 or 7 Demo Application 79
Compiling the SPM C/C++ (68K) 8 Demo Application.................... 80
Compiling the SPM C/C++ (PPC) 8 Demo Application 81
Compiling the THINK Pascal (68K) Demo Application 82

3 Designing Your Application
Overview .. 83
High Level Structure of a Tools Plus Application 84
A Macintosh Event, in Brief .. 84
Macintosh Event Queue ... 84
Key Up Events ... 85
Tools Plus Events, and the Event Loop versus an Event Handler 85
The Event Handler Routine.. 86
Recursion in the Event Handler Routine.. 87
System 5 and 6Õs Finder/MultiFinder, and System 7 and higher 88

Finder .. 88
MultiFinder ... 88
System 7 and higher .. 89

The C Header file (ToolsPlus.h) .. 89
Pascal Strings versus C Strings ... 89
Using C and/or Pascal strings in Tools Plus parameters 89
Setting your prefixes ... 90

Appearance Manager ... 91
Multi-system compatibility with custom window & controls 91
Using the Appearance Manager .. 91

Embedding Controls .. 92
Dialogs and the Dialog Manager ... 92
Power Macintosh Performance .. 92
Off-screen GrafPorts and GWorlds.. 93
Writing Plug-Ins or External Code Modules 93
What to read next ... 96

4 Initialization
Initializing Tools Plus .. 97
Stack and heap ... 98
Other application initializing activities .. 99
Initialization Failure ... 104
Other Initialization ... 104
The Cursor.. 104
Deinitializing Tools Plus .. 105
Set maximum stack size in a 680x0 application 105
Change an applicationÕs maximum stack size 106
Setting the parameter range error action routine 106

Contents

WaterÕs Edge Software 11

5 Windows
Overview .. 109

Resource-Based Programming .. 109
Window Types .. 111
Title Bar, Close box, and Zoom box ... 111
Size Box .. 112
Color Backdrops and Background Themes 112
Maximum Number of Open Windows 112
Tool Bar and Floating Palettes .. 113
Standard Windows .. 113
Active Window ... 113
Work Window ... 114
Current Window .. 114
Editing Field Window ... 114
Modal Windows .. 115
Window Layers ... 115
Global and Local Co-ordinates ... 116
Objects in Windows .. 116
The ÔdftbÕ Resource - Font and Color Settings 116
Substituting Window ProcIDs .. 118
Live Window Dragging and Resizing....................................... 118
Special Considerations .. 118
Handling Windows.. 118

Opening a window.. 119
Appearance and Behavior Specification 120
Floating Palette, Custom WDEFs and Appearance Manager ... 122

Opening a dialog .. 127
Attach a dialog list to a window... 131
Appending a dialog list to a window .. 131
Setting defaults for fields created from edit text items 132
Setting defaults for fields created from static text items 132
Setting defaults for editing fields created by ÔCNTLÕ resources...... 132
Setting defaults for static text fields created by ÔCNTLÕ resources . 133
Setting defaults for list boxes created by ÔCNTLÕ resources 133
Setting defaults for pop-up menus created by ÔCNTLÕ resources 133
Opening a tool bar .. 134

Tool bar inside a window .. 134
Getting the first unused window number ... 135
Setting the backdrop color for new windows 135
Clearing the backdrop color for new windows 135
Setting the backdrop color for an open window 136
Setting the background theme for an open window 136
Setting the background theme for the next new window 137
Closing a window, tool bar, or palette.. 137
Changing a windowÕs size .. 138
Moving a window... 138
Hiding/showing a window.. 139
Activating a window .. 140
Remove keyboard focus from a window.. 140
Making a window current without activating it 141
Making the active window current ... 141
Changing a windowÕs title .. 141
Setting a windowÕs size limits .. 142
Setting the ÒstandardÓ and ÒuserÓ co-ordinates for zooming 142
Getting the ÒstandardÓ and ÒuserÓ co-ordinates for zooming........... 143
Setting a dialog itemÕs display rectangle .. 143
Getting a dialog itemÕs display rectangle ... 144
Setting font settings for new dialogs as they are created.................. 144

Tools Plus

12

Getting font settings used by new dialogs as they are created 144
Getting a windowÕs status information .. 145
Manually refreshing user interface elements 146
Determine the Nth window from the front 147
Getting your appÕs active window number 148
Getting your appÕs current window number 148
Getting your appÕs frontmost window number 148
Getting your appÕs tool bar number ... 149
Getting your appÕs frontmost floating paletteÕs number 149
Getting your appÕs frontmost standard window number.................. 149
Getting your appÕs work window number 150
Getting the window number of your appÕs active edit field 150
Getting the window number containing the keyboard focus 150
Determining if a window is open ... 151
Determining if a window is visible .. 151
Determining if a window is active ... 151
Determining a windowÕs type .. 152
Determining which object has the keyboard focus 152
Getting a windowÕs pointer .. 153
Auto-resizing subsequently created objects 153
Hiding/showing the Finder and other applications 153
Turn the live window dragging/resizing option on or off 154
Replace a window type throughout the application 154
The Infinity Windoid ... 155

6 Buttons
Overview .. 157

Button Types ... 157
Button States ... 157
Button Titles.. 158
Fonts.. 158
Colors .. 158
Default Button ... 158
Selecting Buttons and Command Keys..................................... 158
Substituting Button ProcIDs ... 158
Handling Buttons .. 159
Appearance Manager Controls ... 159

Push Button (CDEF 23) ... 160
Check Box (CDEF 23) ... 160
Radio Button (CDEF 23) ... 160
Bevel Button (CDEF 2) ... 160
Tabs (CDEF 8) ... 161
Disclosure Triangles (CDEF 4) ... 162
Clock (CDEF 15) ... 162
Group Box (CDEF 10) ... 162
Chasing Arrows (CDEF 7)... 163
Little Arrows (CDEF 6) ... 163
Static Text (CDEF 18) ... 163
Placard (CDEF 14)... 163
Visual Separator (CDEF 9).. 164
Image Well (CDEF 11).. 164
Pop-Up Arrow (CDEF 12) ... 164
Picture Control (CDEF 19) .. 164
Icon Control (CDEF 20) .. 165
Window Header (CDEF 21) .. 165
User Pane (CDEF 16) .. 165

Appearance Manager and Keyboard Focus 166
Creating a new button .. 166

Contents

WaterÕs Edge Software 13

Appearance and Behavior Specification 167
Custom Control Definitions (CDEFs)....................................... 168

Automatically embedding controls .. 171
Embedding a button into a button .. 172
Embedding a button into a scroll bar.. 172
Getting the first unused button number .. 173
Setting colors for new buttons as they are created 173
Resetting the colors for new buttons to the default 173
Deleting a button .. 174
Hiding/showing a button .. 174
Determining if a button is visible ... 175
Activating a button (giving it the keyboard focus) 175
Getting a buttonÕs co-ordinates .. 176
Enabling/Disabling a button ... 176
Determining if a button is enabled ... 177
Selecting/Deselecting a button ... 177
Determining if a button is selected... 177
Getting a buttonÕs minimum value limit .. 178
Setting a buttonÕs minimum value limit ... 178
Getting a buttonÕs maximum value limit .. 178
Setting a buttonÕs maximum value limit .. 179
Getting a buttonÕs current value ... 179
Setting a buttonÕs current value .. 179
Changing a buttonÕs title .. 180
Flashing a button (simulating selection) .. 180
Moving a button ... 180
Changing co-ordinates without moving the image 181
Changing a buttonÕs size .. 181
Changing a buttonÕs co-ordinates ... 181
Specifying how a button is automatically moved/resized 182
Setting a buttonÕs font, size and style settings.................................. 183
Getting a buttonÕs font, size and style settings 183
Setting a buttonÕs colors ... 184
Getting a buttonÕs colors .. 184
Setting a default button .. 185
Removing the Òdefault buttonÓ status from a window 185
Getting a buttonÕs control handle ... 185
Replace a button type throughout the application 186

7 Picture Buttons
Overview .. 187

Button Types ... 187
Button Behavior .. 187
Selection Effects .. 188
Disabling Effects ... 188
ButtonÕs Value and Stages .. 188
Handling Picture Buttons .. 189

Creating a new picture button .. 189
Resource IDs ... 190

Icon Resource IDs .. 190
3D SICN Buttons ... 191
PICT Resource IDs .. 191

Behavior and Appearance Specification 192
Rate of Repeating Events .. 197
Picture Buttons on Color Backgrounds..................................... 197

Getting the first unused picture button number 198
Deleting a picture button .. 199
Hiding/showing a picture button .. 199

Tools Plus

14

Determining if a picture button is visible ... 200
Getting a picture buttonÕs co-ordinates .. 200
Enabling/Disabling a picture button... 201
Determining if a picture button is enabled 201
Selecting/Deselecting a picture button ... 201
Determining if a picture button is selected....................................... 202
Getting a picture buttonÕs minimum value limit 202
Setting a picture buttonÕs minimum value limit 202
Getting a picture buttonÕs maximum value limit 203
Setting a picture buttonÕs maximum value limit 203
Getting a picture buttonÕs current value ... 203
Setting a picture buttonÕs current value ... 204
Setting a picture buttonÕs value and selection state 204
Setting a picture buttonÕs value change rate..................................... 205
Setting a picture buttonÕs value change speed 205
Flashing a picture button (simulating selection) 206
Moving a picture button ... 206
Changing co-ordinates without moving the image 206
Specifying how a picture button is automatically moved 207

8 Scroll Bars
Overview .. 209

Scroll Bar States.. 210
Colors .. 210
Text ... 210
Scroll Bar Speed ... 210
Substituting Scroll Bar ProcIDs.. 211
Handling Scroll Bars ... 211

Processing doScrollBar Events .. 211
Action routine .. 211

Appearance Manager Controls ... 212
Scroll Bar (CDEF 24) .. 213
Slider (CDEF 3) ... 213
Progress Indicator or ÒThermometerÓ (CDEF 5) 213
Little Arrows (CDEF 6) ... 213

Appearance Manager and Keyboard Focus 214
Creating a new scroll bar ... 214

Appearance and Behavior Specification 215
Custom Control Definitions (CDEFs)....................................... 216

Embedding a scroll bar into a button ... 218
Embedding a scroll bar into a scroll bar ... 218
Getting the first unused scroll bar number 219
Setting colors for new scroll bars as they are created 219
Resetting the colors for new scroll bars to the default 220
Deleting a scroll bar ... 220
Hiding/showing a scroll bar ... 221
Determining if a scroll bar is visible .. 221
Activating a scroll bar (giving it the keyboard focus)...................... 222
Getting a scroll barÕs co-ordinates ... 222
Enabling/Disabling a scroll bar .. 223
Determining if a scroll bar is enabled .. 223
Getting a scroll barÕs minimum value limit 223
Setting a scroll barÕs minimum value limit 224
Getting a scroll barÕs maximum value limit 224
Setting a scroll barÕs maximum value limit 224
Getting a scroll barÕs current value .. 224
Setting a scroll barÕs current value ... 225
Moving a scroll bar .. 225

Contents

WaterÕs Edge Software 15

Changing co-ordinates without moving the image 225
Changing a scroll barÕs size.. 226
Changing a scroll barÕs co-ordinates .. 226
Specifying how a scroll bar is automatically moved/resized 227
Setting a scroll barÕs font, size and style settings............................. 228
Getting a scroll barÕs font, size and style settings 228
Setting a scroll barÕs colors .. 229
Getting a scroll barÕs colors.. 229
Setting the line scrolling speed for new scroll bars 230
Setting the page scrolling speed for new scroll bars 230
Setting a scroll barÕs line scrolling speed ... 231
Setting a scroll barÕs page scrolling speed 231
Setting a scroll barÕs action routine .. 231
Getting info in a scroll barÕs action routine 233
Getting a scroll barÕs control handle .. 233

9 Editing Fields
Overview .. 235

The FieldÕs String .. 235
Dynamic String Handles ... 235
The Active Field .. 236
Editing Field Window ... 236
Activating a Field and Editing Text .. 236
Length Limited Fields ... 237
Clicking and Tabbing .. 237
Keyboard Focus on Tool Bars and Floating Palettes 238
Alignment of Text in a Field ... 239
Fonts .. 239
Colors .. 239
Disabled Fields .. 240
Filtering Characters ... 240
Word Wrap .. 240
User Interaction with Fields .. 241
Mac 512KE and Mac Plus keyboard with numeric pad 243
The Edit Menu .. 243
Large Fields and Buffers ... 244
Fields with Scroll Bars .. 244
Memory Management ... 245

Desk Scrap ... 245
TextEdit Scrap.. 246
Scrap ÒUndoÓ Text... 246
FieldÕs String .. 246
FieldÕs Edited Text... 246
Edited ÒUndoÓ Text ... 247
ÓLow MemoryÓ Protection .. 247
Tips for Conserving Memory... 247

Handling Fields ... 247
Special Handling of Fields .. 248
Appearance Manager and Keyboard Focus 248
Appearance Manager Controls .. 248

Edit Text (CDEF 17) .. 249
Static Text (CDEF 18) ... 249

Creating a Field Using a ÔCNTLÕ Resource 249
Allocating memory for a fieldÕs string ... 250
Creating a new field.. 250

Appearance and Behavior Specification 251
Single Line Fields.. 253

Embedding a field into a button ... 257

Tools Plus

16

Embedding a field into a scroll bar .. 257
Getting the first unused field number... 258
Deleting a field ... 258
Hiding/showing a field ... 259
Determining if a field is visible.. 259
Getting a fieldÕs co-ordinates ... 260
Setting a fieldÕs font, size and style settings 260
Getting a fieldÕs font, size and style settings.................................... 261
Setting a fieldÕs colors.. 261
Getting a fieldÕs colors ... 262
Activating a field (giving it the keyboard focus) 262
Getting a fieldÕs selection range ... 263
Setting a fieldÕs selection range ... 263
Deactivating a field .. 263
Enabling/Disabling a field ... 264
Determining if a field is enabled .. 264
Clicking in an inactive field or keyboard focus item 264
Detecting a Tab in an active field or keyboard focus item............... 265
Tabbing to the next/previous field or keyboard focus item 266
Getting the active fieldÕs edited text .. 267
Getting a handle to the active fieldÕs edited text 267
Getting the active fieldÕs edited text length 267
Getting a fieldÕs string.. 268
Getting a handle a fieldÕs string ... 268
Getting a fieldÕs string length ... 269
Determining if a field is empty .. 269
Saving the active fieldÕs edited text as the fieldÕs string.................. 269
Getting the window number of your appÕs active edit field 270
Getting the active fieldÕs number ... 270
Turning field length limiting on/off ... 270
Set field length limiting for an existing field 271
Turning string handle resizing on/off ... 271
Set appearance and behavior for disabled fields 271
Set appearance and behavior for a disabled field 273
Pasting into a field under your applicationÕs control 274
Moving a field .. 276
Changing co-ordinates without moving the image 276

Scrolling fields .. 276
Changing a fieldÕs size ... 277
Changing a fieldÕs co-ordinates ... 277
Specifying how a field is automatically moved/resized 278
Scrolling a field to its default position ... 279
Creating a new field filter... 279
Apply a filter to subsequently created editing fields........................ 280
Specify minimum free memory required after ÒundoÓ is set up 281
Specify minimum free memory for editing text 281
Specify Òlow memory while typingÓ threshold................................ 282
Getting a fieldÕs TextEdit handle ... 282

10 List Boxes
Overview .. 283

Auto-Positioning Options ... 284
Fonts.. 284
Colors .. 284
Appearance Manager Controls ... 284

List Box (CDEF 22) ... 285
Creating a List Box Using a ÔCNTLÕ Resource 285
Appearance Manager and Keyboard Focus 285

Contents

WaterÕs Edge Software 17

Special Considerations .. 285
Handling List Boxes .. 286

Creating a new list box ... 286
Appearance and Behavior Specification 287

Embedding a list box into a button... 290
Embedding a list box into a scroll bar .. 290
Getting the first unused list box number .. 291
Deleting a list box .. 291
Hiding/showing a list box .. 292
Determining if a list box is visible ... 292
Activating a list box (giving it the keyboard focus) 293
Getting a list boxÕs co-ordinates... 293
Adding a new line / replacing an existing line in a list box 294
Inserting resource names into a list box ... 295
Copy a set of strings to a list box ... 295
Getting a lineÕs text .. 296
Searching lines for specific text (alphabetic order) 296
Selecting/Deselecting a line ... 297
Determine if a line is selected .. 297
Determine the next selected line number ... 298
Inserting a blank line into a list box ... 298
Deleting a line .. 299
Determining if a list box is enabled.. 299
Setting a list boxÕs font, size and style settings 300
Getting a list boxÕs font, size and style settings 300
Setting a list boxÕs colors ... 301
Getting a list boxÕs colors... 301
Determining the number of lines in a list box 301
Turning a list boxÕs drawing on/off .. 302
Moving a list box .. 302
Changing co-ordinates without moving the image 303
Changing a list boxÕs size... 303
Changing a list boxÕs co-ordinates ... 303
Specifying how a list box is automatically moved/resized 304
Getting a list boxÕs list handle .. 305

11 Pop-Up Menus
Overview .. 307

Fonts .. 308
Colors .. 308
Command Keys & Hierarchical Pop-Up Menus....................... 309
Creating a Pop-Up Menu Using a ÔCNTLÕ Resource 309

Pure System Pop-Up Menu .. 309
Tools Plus Pop-Up Menu (CDEF 63) 309
Bevel Button Pop-Up Menu (CDEF 2) 310

Handling Pop-Up Menus .. 310
Creating a new pop-up menu.. 311

Appearance and Behavior ... 312
Pop-Up Menus on Color Backgrounds 314

Embedding a pop-up menu into a button ... 316
Embedding a pop-up menu into a scroll bar 317
Getting the first unused pop-up menu number 317
Attaching or detaching a hierarchical menu to a pop-up menu 318
Setting colors for new pop-up menus as they are created 318
Resetting the colors for new pop-up menus to the default 319
Adding, changing or renaming a pop-up menu item 319

Metacharacters .. 319
Inserting a pop-up menu item... 321

Tools Plus

18

Inserting resource names into a pop-up menu.................................. 321
Deleting a pop-up menu or pop-up menu item 322
Getting a pop-up menuÕs co-ordinates ... 323
Hiding/showing a pop-up menu ... 323
Determining if a pop-up menu is visible .. 324
Getting a pop-up menu itemÕs text ... 324
Renaming a pop-up menu item .. 325
Enabling or disabling a pop-up menu or pop-up menu item............ 325
Determining if a pop-up menu is enabled .. 326
Displaying or hiding the Check mark .. 326
Displaying or clearing special marks ... 326
Getting a pop-up menu itemÕs special mark..................................... 327
Setting a pop-up menu itemÕs icon... 327
Getting a pop-up menu itemÕs icon .. 328
Changing a pop-up menu itemÕs style.. 328
Determining the number of items in a pop-up menu 328
Determining the selected item in a pop-up menu............................. 329
Moving a pop-up menu .. 329
Changing co-ordinates without moving the image 329
Changing a pop-up menuÕs size ... 330
Changing a pop-up menuÕs co-ordinates ... 330
Specifying how a pop-up menu is automatically moved/resized 331
Setting a pop-up menuÕs font, size and style settings 331
Getting a pop-up menuÕs font, size and style settings...................... 332
Setting a pop-up menuÕs colors .. 332
Getting a pop-up menuÕs colors ... 333
Setting a pop-up menu itemÕs colors.. 333
Getting a pop-up menu itemÕs colors ... 334
Getting a pop-up menuÕs control or menu handle............................ 334

12 Panels
Overview .. 335

Color Tables .. 336
Creating a new panel .. 336

Appearance and Behavior Specification 337
Getting the first unused panel number ... 341
Setting the standard color tableÕs colors .. 342
Getting the standard color tableÕs colors.. 342
Setting the custom color tableÕs colors .. 343
Getting the custom color tableÕs colors.. 344
Deleting a panel ... 344
Hiding/showing a panel ... 345
Determining if a panel is visible .. 345
Getting a panelÕs co-ordinates.. 346
Moving a panel ... 346
Changing co-ordinates without moving the image 347
Changing a panelÕs size.. 347
Changing a panelÕs co-ordinates .. 347
Specifying how a panel is automatically moved/resized 348
Setting a panelÕs font, size and style settings 349
Getting a panelÕs font, size and style settings 349
Setting a panelÕs colors .. 350
Getting a panelÕs colors.. 350

Contents

WaterÕs Edge Software 19

13 Menus
Overview .. 353

Menus in Plug-Ins ... 354
Colors .. 354
Menus Accessed by MultiFinder and System 7 or higher 354
Edit Menu .. 355
Menus and Editing Fields.. 356
Apple Menu and Desk Accessories... 356
Menus and Desk Accessories .. 357
Help Menu and Applications Menu .. 357
Command Key Equivalents .. 358
Planning for Balloon Help .. 358
Handling Menus .. 358

Creating the Apple menu (ð) ... 359
Creating and renaming a menu or menu item 359

Metacharacters .. 360
Creating a menu using a ÔMENUÕ resource 361
Creating a set of menus using an ÔMBARÕ resource 362
Identify the Select All edit menu item.. 363
Getting the first unused menu number ... 363
Getting the first unused hierarchical menu number 363
Attaching or detaching a hierarchical menu..................................... 364
Inserting a menu item ... 364
Inserting resource names into a menu .. 365
Deleting a menu or menu item ... 366
Updating the menu bar (redrawing it) .. 367
Hiding/showing a menu bar.. 367
Getting default menu colors for your application 368
Setting default menu colors for your application 368
Getting a menuÕs colors .. 369
Setting a menuÕs colors .. 369
Getting a menu itemÕs colors.. 370
Setting a menu itemÕs colors .. 370
Getting a menu itemÕs text ... 371
Renaming a menu item... 371
Enabling or disabling a menu or menu item 372
Displaying or hiding the Check mark .. 372
Displaying or hiding special marks .. 373
Getting a menu itemÕs special mark ... 373
Setting a menu itemÕs Command-key equivalent 374
Getting a menu itemÕs Command-key equivalent 374
Setting a menu itemÕs icon ... 374
Getting a menu itemÕs icon .. 375
Changing a menu itemÕs style .. 375
Determining the number of items in a menu 376
Determining a menuÕs parent menu ... 376
Determining a menu itemÕs submenu... 377
Highlight or unhighlight a menu .. 377
Getting a menuÕs handle... 377

14 Cursors
Overview .. 379

Color Cursors .. 379
Automatic Cursor Changes ... 379
The Watch Cursor ... 380
Starting your application ... 380
The Cursor Table .. 381
Advanced Features .. 381

Tools Plus

20

Cursor Animation.. 382
Handling Cursors .. 383

Changing the cursorÕs shape .. 383
Resetting cursor shape according to window orientation................. 384
Setting the cursor animation sequence ... 384
Keeping cursor animation running ... 384
Creating a new cursor table .. 385
Getting the first unused cursor table number 385
Deleting a cursor table ... 385
Creating/replacing a cursor zone (using a rectangle) 386
Creating/replacing a cursor zone (using a region) 386
Getting the first unused cursor zone number 387
Deleting a cursor zone.. 387
Changing the cursor for a cursor table or zone 387
Getting a cursor zoneÕs bounding rectangle 388
Getting a cursor zoneÕs region ... 388
Indicate that cursor zone regions have been altered......................... 388
Making a window use a cursor table (or stop using one) 389
Determining which cursor zone contains a specified point 389
Determine which cursor zone contains the cursor 389
Enabling/disabling button clicks during a watch cursor 390

15 Balloon Help
Overview .. 391

Help Inheritance .. 392
Balloon Help for the Finder (ÔhfdrÕ resource) 392
Balloon Help for Menus (ÔhmnuÕ resource).............................. 392
Balloon Help for Objects in Windows...................................... 392

Using ÔhdlgÕ and/or ÔhrctÕ Resources in Dialogs or
Dialog Lists... 393

Manually Assigning Help Resources Data to a
User Interface Element ... 394

Manually Assigning Help Data Without Using Resources 395
hdlgÕ and ÔhmnuÕ Resource Settings ... 397
Efficiently Storing Numerous Help Messages.......................... 397
Balloon Help Performance Issues ... 397
Issues with THINK Pascal .. 398

Setting Help for a Button ... 399
Setting Help for a Picture Button ... 401
Setting Help for a Scroll Bar .. 401
Setting Help for a Field or Static Text ... 402
Setting Help for a List Box .. 402
Setting Help for a Pop-Up Menu ... 403
Setting Help for a Panel ... 404
Setting Help for a Cursor Table ... 404
Setting Help for a Cursor Zone .. 405
Setting Help for a non-Tools Plus Control 406
Deleting a non-Tools Plus control ... 406
Forcing Recalculation of Balloon Help ... 407

16 Event Management
Overview .. 409
Polling versus Dispatching ... 409
Task Switching ... 410
Macintosh Events ... 411
The Event Queue.. 411
Watch Cursor -- a busy system .. 412

Contents

WaterÕs Edge Software 21

Tools Plus Event Record .. 412
Event Record Fields ... 415
Event Modifiers .. 416

Event Modifiers Using C .. 417
Event Modifiers Using Pascal ... 418

Background Processing .. 418
The Event Handler Routine .. 419
The Window Event Handler Routine ... 420
Modal Event Handling ... 421
Filtering Events (the Event Filter Routine) 421
Serial Events ... 422
Tools Plus Event Codes .. 423
Translating Toolbox events to Tools Plus events............................. 424
Automatic Apple Event Support .. 426
Simulated Apple Event Support ... 427
Routines for Handling and Processing Events 429

Setting an event handler routine for a window 429
Setting an event handler routine for a window 429
Process events continuously .. 430
Process a single event while the application is busy................. 430
Process a single toolbox event .. 431
Set an Apple Event error ... 431
Determine number of files to be opened or printed 432
Retrieve file info for a file that needs to be opened or printed.. 432
Stop processing events, return control to application 433
Determine if Tools Plus is set to stop processing events 434
Scheduling background processing... 434
Determining if Òscheduling processingÓ is supported............... 435
Wait for subsequent clicks .. 435
Discontinuing multiple clicks or drags...................................... 435
Ignoring the first click of a multiple click sequence 436
Determining if your application is suspended........................... 436
Determine if Tools Plus is processing a series of events 437
Stop Tools Plus processing a series of events 437

Timers and Timer Events ... 438
How Tools Plus Generates Timer Events 439
Timer Accuracy... 439
Timer Resolution... 440
Timers and doNothing (null) Events ... 441
The Possibility of a Timer Overflow .. 441
Creating a new Timer .. 442

Deleting a timer .. 445
Responding to Events ... 446

doActivate ... 446
doAutoKey .. 447
doButton .. 448
doChgInField .. 449
doChgMonitorSettings .. 450
doChgWindow .. 450
doClick .. 451
doClickControl .. 454
doClickDesk .. 454
doClickToFocus .. 454
doDeactivate .. 455
doGoAway .. 456
doGrowWindow .. 457
doKeyDown .. 457
doKeyInControl .. 459

Tools Plus

22

doKeyUp ... 459
doListBox.. 460
doManualEvent ... 461
doMenu ... 462
doMoveCursor .. 463
doMoveWindow ... 463
doNothing ... 463
doOpenApplication ... 464
doOpenDocuments.. 465
doPictButton ... 466
doPopUpMenu .. 467
doPreRefresh ... 467
doPrintDocuments ... 469
doQuitApplication... 470
doRefresh .. 471
doResume.. 471
doScrollBar ... 472
doSuspend ... 473
doTimer ... 473
doZoomWindow ... 473

ÒField To EventÓ Cross reference .. 475

17 Color Drawing & Multiple Monitors
Overview .. 477

Using One Monitor ... 477
Using Multiple Monitors ... 477
Physical Monitors ... 479
Detecting Monitor and Screen Changes 479
Changing Screen Settings ... 479

Determining if Color QuickDraw is used .. 479
Determining the number of logical screens 480
Beginning color-dependent drawing on a window 480
Ending color-dependent drawing on a window 481
Determining the number of colors on a screen 481
Determining if the screen is set to draw in color 482
Test for changes in monitor settings .. 482
Determining the number of physical monitors 482
Determining the number of colors on a monitor 483
Determining if the monitor is set to draw in color 483
Get a handle to the monitorÕs Graphics Device 484
Determine the main monitor number ... 484
Determining if a rectangleÕs area is visible in a window 484
Determining if a region is visible in a window 485
Getting a windowÕs foreground color .. 485
Getting a windowÕs background color ... 486
Setting a windowÕs foreground color ... 486
Setting a windowÕs background color .. 486
Storing a colorÕs components in an RGB Color record 487
Erasing an area on a window ... 487
Erasing an area on a window ... 487
Calculating a disabled color ... 488
Resetting the current windowÕs pen to default values 489
Using the systemÕs highlight color ... 489
Drawing text on the highlight color ... 489
Highlighting a rectangle and preparing to draw text........................ 490
Highlighting a region and preparing to draw text 491
Getting the current windowÕs pen settings 491
Setting the current windowÕs pen settings 492

Contents

WaterÕs Edge Software 23

18 User Notification
Overview .. 493

Notifying the User ... 493
Define settings for notifying the user ... 494
Notifying the user that your application needs attention 495

19 Dynamic Alerts
Overview .. 497

Multitasking in Dynamic Alerts .. 497
Icons .. 498
Text.. 498
Buttons .. 498
RoutineÕs Value... 498
Automatic User Notification ... 498
Appearance Manager .. 499
Alert Samples .. 499

Displaying a dynamic alert ... 501
Custom Button Combinations ... 501
Advanced Techniques ... 502

Changing button titles on dynamic alerts ... 503
Getting preferences for dynamic alerts .. 503
Setting preferences for dynamic alerts ... 504
Allow/disallow doNothing events during alerts 505
Determine number of open dynamic alerts 505

20 Miscellaneous Routines
Overview .. 507
Drawing strings .. 507
Drawing text ... 509
Drawing a picture ... 509

PICT Resource IDs.. 510
Appearance and Behavior ... 510

Drawing a picture offset in its frame .. 513
Drawing an icon ... 514

Intelligent Icon Drawing ... 514
Icon Family ... 515
Icon Selection .. 515
Drawing the Icon, Selecting, Disabling, and Masking.............. 516
Creating Your Own Icons ... 516

Set the default appearance for disabled icons 518
Maintaining Indexed String (ÔSTR#Õ) Structures 519

Creating an indexed string structure.. 519
Counting the number of strings ... 520
Getting a string .. 520
Setting a string .. 520
Inserting or appending a new string .. 521
Deleting a string .. 521

BitMaps and PixMaps .. 522
Creating a bitmap .. 522
Drawing to a bitmap .. 522
Copying to a bitmap or to a window ... 523

Creating a BitMap or PixMap .. 523
Destroying a BitMap or PixMap .. 524
Converting a BitMap or PixMap to a region 525
Determining the System version .. 525
Determining the Tools Plus version ... 526
Play the System Error sound .. 527

Tools Plus

24

Wait for a specified time .. 527
Synchronizing to Vertical Retrace ... 528
Drawing ÒZoom LinesÓ .. 528
Drawing a standard Macintosh progress thermometer 530
Determining if Appearance Manager is available............................ 530
Determining if Appearance Manager routines are available............ 531
Determining if Appearance Manager is running.............................. 531
Set all bytes in a record to zero .. 532
Determine if two records are equal .. 532
Determining the minimum value of two numbers 533
Determining the maximum value of two numbers 533

21 Multiple Languages
Overview .. 535

Where do those words appear? ... 535
Changing the words .. 535
The STR# Resource .. 535

Changing the language ... 537

22 Other Macintosh Features
Overview .. 539

Alerts ... 539
Dialogs .. 539
Custom Controls ... 540
Lists ... 540

23 Memory
Overview .. 541

Testing Memory Requirements ... 541
Testing for Memory Availability .. 542
Editing Fields .. 543
Handle Blocks ... 543
The Style Table ... 544
Good memory habits ... 544

24 Font Heights
Font heights table ... 545

25 Special Routines
Use these routines with caution, or donÕt use them! 547

26 Completing Your Application
Overview .. 553
ApplicationÕs Icons .. 554

Icon Family ... 554
File Types, Creators, and the Application Signature 555

Signature (the Creator code) ... 555
Bundle .. 556
Version ... 556
mstr Resources ... 557
SIZEÕ Resource .. 558

Cloned SIZE resources ... 559

Contents

WaterÕs Edge Software 25

27 Technical Support
What does Technical Support do? .. 561
What doesnÕt Technical Support do? ... 561
Electronic Mail (Email) and Web Support 561
Mail Support ... 562
Fax Support .. 562
Telephone Support.. 562
Notification by Email ... 562
Updates and Upgrades by Email .. 562
Updates by the web .. 563
Mail updates ... 563
Tools Plus Developer Forum.. 563
Known Bug List ... 563
Bug Alert Service ... 563
Registered Developer Benefits Period.. 563
How to Submit Queries or Problem Reports 564

Index .. 567

Tools Plus

26

1 Introduction

WaterÕs Edge Software 27

1 Introduction to Tools Plus

Tools Plus Overview
The Tools Plus Libraries + framework lets Macintosh developers easily create professional looking applications using
Metrowerks CodeWarrior, Symantec (THINK) C/C++, or THINK Pascal compilers. Additionally, CodeWarrior users
can create plug-ins. Virtually any user interface element is created with a single line of simple code. Once created,
elements work with each other without the need for additional support code, thereby letting you eliminate thousands of
lines of source code. Over 80% of the effort is gone! Tools Plus can also bring Macintosh resources to life in ways that
the MacintoshÕs toolbox canÕt.

User interface elements, everything from a simple button to a sophisticated dialog, come to life with a single line of
code. Windows drag, zoom and resize. Buttons click. Pop-up menus pop. The Edit menu edits. Scroll bars scroll. In
spite of Tools PlusÕs power and robust features, it is easy to learn and easy to use making it ideal for novices,
intermediate developers, and experts alike.

Tools Plus supports and automates all standard user interface elements and seamlessly integrates support for popular
extras like floating palettes, a tool bar, the best picture buttons in the industry, tabs, sliders, a complete Ò3D lookÓ (with
or without the Appearance Manager) and much more.

Using Tools Plus simplifies your programming and accelerates development. Less than 200 core Tools Plus routines
replace the need for many hundreds of Mac toolbox routines, and tens of thousands of lines of source code. YouÕll
create applications in less time, with much less source code, with far fewer bugs, and with more features than if you
had used ordinary C/C++ or Pascal. The resulting executables are compact, lightning quick, and efficient.

Tools Plus libraries can be compiled into applications or plug-ins that run on any Macintosh (512KE or higher), Power
Macintosh or Mac OS compatible running on System 6 using Finder or MultiFinder, System 7, or Mac OS 8 and
higher. Tools Plus is royalty free. A single license lets you create an unlimited number of applications, and sell an
unlimited number of copies.

Differences Between Tools Plus Packages

Tools Plus is available in a number of packages, each being tailored to a specific audience:

¥ Tools Plus Pro: This is the complete Tools Plus developer kit with libraries for CodeWarrior C/C++ and Pascal,
Symantec C/C++, THINK C/C++, and THINK Pascal. 680x0 and PowerPC-native libraries are included. The
user manual is in electronic format only (PDF, also known as Adobe Acrobat format which produces the best
visual results and is suitable for printing, and eDoc format which requires the least resources and runs quickest).
Also included as an added bonus are SuperCDEFs world class-controls, custom color window WDEFs, and other
additional color resources. You must purchase this Software Development Kit in order to use it.

¥ Tools Plus Lite: Similar to Tools Plus Pro, except it has only CodeWarrior 680x0 libraries. Tools Plus Lite is
ideal for developers who want the power of Tools Plus with a minimal investment. Tools Plus Lite is available
through select channels for a limited time only. You can easily and economically upgrade to Tools Plus Pro.

¥ Tools Plus Academic: Similar to Tools Plus Pro, except that it does not include SuperCDEFs controls, and it
bears Òpersonal useÓ licensing restrictions. Tools Plus Academic is available only to students and members of
faculty of accredited academic institutions. You can easily and economically upgrade to Tools Plus Pro.

¥ Tools Plus Evaluation Kit: This is the only Tools Plus kit that is available free of charge. You can get it from
the WaterÕs Edge Software web site, the Internet, electronic bulletin boards, and other sources. It is designed to
give a developer the opportunity to try Tools Plus before buying it. It contains almost all of Tools Plus ProÕs
routines, and an electronic user manual in eDoc format only. SuperCDEFs are not included. The Evaluation KitÕs
Software License Agreement lets a developer try Tools Plus for thirty days, after which time he must either
purchase Tools Plus (Pro, Lite or Academic), or stop using the Evaluation Kit.

Tools Plus

28

The (Optional) Tools Plus Framework

The Tools Plus framework is included with Tools Plus libraries, but you donÕt have to use the framework because the
power of Tools Plus is in the libraries. They replace the need for complex toolbox coding. The Tools Plus development
kit also includes a framework that is essentially a ÒskeletonÓ for a fully functioning application. Realize that Tools Plus
libraries are fully enabled and complete without using our framework. You can easily design your own framework as
though you were doing Òmacro codingÓ because Tools Plus libraries do all the dirty work for you. Our framework is
just one of many approaches you can use to write an application when you have Tools Plus libraries at hand. This is
why we emphasize that using the Tools Plus framework is optional.

When you explore the Tools Plus framework, the surprising part will be how easily you can add ÒfleshÓ to the
framework, that is to add the features, look and feel that make your application unique. ThatÕs because Tools Plus
libraries have literally thousands of features and options that you can add to your application, simply by adding one
line of code. Our framework is an excellent starting point for most kinds of developers:

Novice programmers are provided with an example of a full application showing them how to structure their project
and how to create an application that not only has all basic functionality, but easily supports all Tools Plus features.
Programmers who are new to Macintosh can ease their transition from a UNIX or PC environment, and readily
apply their existing skills to the Macintosh with the assistance of Tools Plus libraries. For their convenience, we
provide the sample framework just so they donÕt have to start with a Òblank sheet of paper.Ó
New Tools Plus developers who already know how to program a Macintosh now have a jump start to help them get
going right away. Our framework makes it easy to harness the power of Tools Plus libraries and get results fast.

See the ÒFramework ExampleÓ folder for complete details about the sample framework.

Visual Design Environment

There are a number of rapid development tools that are made up of a Òvisual designerÓ paired with a code generator.
The appeal of these tools is that you can design your interface visually. Their drawback may have as significant an
impact on you because these code generators do just that: they generate generous volumes of complex toolbox code
that you will have to learn and maintain. Worse still, the code they generate often depends on an even larger, multi-
megabyte C++ class library, or on a rigidly structured set of source code modules.

Tools Plus takes a very different approach. We removed the burden from the Òvisual designerÓ to generate perfectly
executing, elegant, and maintainable source code, and put the emphasis on our libraries to Òdo the right thingÓ and to
Òdo them rightÓ with minimal instructions from the developer. All that is required from you is a small amount of truly
simple source code.

But the appeal of a visual designer is not lost on Tools Plus. Tools Plus libraries and its optional framework leverage
the power of your existing tools, specifically your resource editor, to enable you to visually design your applicationÕs
user interface. You can always upgrade or replace your user interface design environment (your resource editor) and
Tools Plus will make the best use of your design, thus giving you the best of both worlds. If you have a powerful
resource editor like Resorcerer from Mathem¾sthetics (see ÒCreating and Editing ResourcesÓ later in this chapter), you
can attain near-WYSIWYG (What You See Is What You Get) visual designing capabilities.

Imagine being able to create a fully operation window and all its user interface elements with one line of code
(LoadDialog(3, DialogID)), and being able to access any user interface element with an equally simple line of code
(SelectButton(12,on)). Remember: as soon as you create it, it works! ThatÕs why Tools Plus libraries and optional
framework, teamed with a resource editor, gives you an exceptional rapid-development arsenal.

Tools Plus User Manual Formats

The Tools Plus Pro, Tools Plus Academic and Tools Plus Lite software development kits (SDK) ship with two user
manuals, both of which are identical in content, but different in format only:

¥ An electronic user manual in eDoc format
¥ An electronic user manual in PDF, or Portable Document Format (Adobe Acrobat format)

 The Tools Plus Evaluation Kit, a free kit that lets you try Tools Plus before buying it, includes only an eDoc manual.

1 Introduction

WaterÕs Edge Software 29

Unlike a printed user manual whose page numbers start at 1 at the first chapter, the page numbers in the electronic user
manuals are numbered sequentially starting from the title page, which is identified as page one. This is done so that
you can reference the table of contents and index, and simply Ògo toÓ a required page number.

eDoc for Simplicity and Speed
The eDoc electronic user manual is designed for instant gratification, ease of use, and speed. The advantages that this
format presents are:

¥ You can view the manual by double clicking it. There is nothing to install first.
¥ You need much less disk space than with PDF (under 2 MB)
¥ Text searches are much faster than with PDF
¥ Displaying anything is faster than with PDF

With all these advantages, eDoc has a few disadvantages as well:
¥ If you print an eDoc manual, it does not look as good as PDF
¥ If a font that is required by the eDoc manual does not already exist on your system, a substitute font is used. This

may deliver suboptimal viewing and printing results.
¥ Some parts of the eDoc manual have been optimized for viewing on a monitor as opposed to printing. Their

lower resolution will not look as detailed when printed.
¥ eDocs can only be viewed on a Macintosh

PDF for Perfect Printing
The PDF electronic user manual is designed for ÒperfectÓ viewing and printing. The advantages that this format
presents are:

¥ The document contains all required fonts, high resolution images, and line art for the best possible printing
results.

¥ When viewed on a monitor, PDF files show all text as anti-aliased. Many people prefer this to standard text.
¥ PDF files can be viewed on Macintosh, Windowsª, OS/2ª and Unixª computers.
¥ All viewing detail is preserved, no matter how much you magnify the image.
¥ The PDF viewer has more sophisticated viewing and navigation services than eDoc.

PDF has several disadvantages as well:
¥ You must install viewing software on your hard disk before you can view or print a PDF document. All Tools

Plus SDKs include Adobe Acrobat Reader which consumes several megabytes of disk space.
¥ Viewing and searching PDF files is much slower than eDoc
¥ Some people donÕt like the anti-aliased text, preferring the crisper, standard Macintosh fonts.

All Tools Plus SDK CDs include Adobe Acrobat Reader, an application that lets you view and print PDF files. See the
ÒAcrobat ReaderÓ folder on your CD that includes instructions on how to install Acrobat Reader in a ÒRead MeÓ file.
We recommend that you install the ÒReader+SearchÓ variant of Acrobat for the greatest versatility. If you already have
an Acrobat Reader installed that is the same version or newer than the one on the Tools Plus CD, you do not need to
install Acrobat Reader.

Printing the User Manual

If you purchase Tools Plus, you may print one (1) copy of the user manual for your own use. You may not print
multiple copies, or allow multiple copies to be printed. Use the PDF version of the user manual for printing because it
delivers the best visual results, and it does not require the installation of any special fonts.

Registered Developer Benefits Period

As part of your Tools Plus licensing fee, WaterÕs Edge Software provides the following products and services to you
for one full year starting from your initial purchase, at no additional cost:

¥ Prompt, world-class technical support with no limit to the number of emails/calls
¥ Software updates (bug fixes and minor revisions)
¥ Software upgrades (major releases containing considerable new functionality and/or improvements to existing

services and features)

Tools Plus

30

¥ Access to the electronic Tools Plus Developer Forum where you can meet other Tools Plus developers and
leverage their expertise and experiences.

¥ Access to the online Tools Plus Known Bug List (a detailed list of all known bugs confirmed to date, their status,
work arounds, and what we are doing about them)

¥ Subscription to the Tools Plus Bug Alert Service. This service sends you an email as soon as a new bug is
discovered and confirmed in Tools Plus libraries + framework. The email details the impact of the bug, work
arounds, and what we are doing about it. This service is highly recommended for all developers!

¥ Subscription to Water's Edge Software's press releases, as well as internal communiqu�s that are intended only for
Tools Plus licensees. This service keeps you informed about what we are doing and the projects that are being
planned.

Your benefit period starts with your initial Tools Plus purchase, and continues for one full year. Software updates and
upgrades include delivery to you at no additional cost. Our goal is to have at least two substantial releases per year. We
automatically send you a reminder when it is time to renew your benefits period for an additional year. The reminder
includes complete details about your renewal.

An Ordinary ApplicationÕs Architecture (without Tools Plus)

Ordinary applications, those written without Tools Plus, have an architecture that can be represented by the model
shown in figure 1 on the following page. All of MacintoshÕs capabilities can be accessed through the routines in the
MacintoshÕs built-in toolbox and through the data structures that are created and maintained by those routines. An
ordinary application creates its interface and makes it work by using the toolboxÕs routines.

Numerous complexities arise because the application must also continuously manage the relationships between user
interface elements, and between elements and their environment, again by using toolbox routines. The Event Manager,
for example, can effect TextEdit, the Menu Manager, Window Manager, Dialog Manager, Control Manager, List
Manager, and others.

To further complicate matters, parts of the toolbox are available only on certain Macintosh models such as Color
QuickDraw that is available only on the Macintosh II series and newer computers. Similarly, parts of the toolbox are
available only on certain system versions, such as System 7Õs pop-up menu CDEF (Control DEFinition) and System
7.5Õs floating palette WDEF (Window DEFinition). Even identical Macintosh models running the same system version
can be quite different to the applicationÕs world just by attaching a second monitor to one of the Macs. All these
variations mean the programmer must do things differently depending on the Macintosh model, the system version and
computer configuration that is running his application, or he must account for all the possibilities if the application
might run on a variety of Macintosh models, system versions or configurations.

The final aspect of an ordinary application, although this is not readily apparent in the model in figure 1, is that the
entire Macintosh toolbox gives the application access to the MacintoshÕs capabilities on a low level, meaning that even
simple things like creating a color button can take dozens of lines of code, and making it work can take dozens or
hundreds of lines more. Complex tasks like make a floating palette work and function properly with all other user
interface elements can require over a thousand lines of source code.

Many features found in todayÕs popular Macintosh applications donÕt even exist in the toolbox. Although System 7.5
was the first to include a floating palette WDEF (Window DEFinition resource that gives your application the look of a
floating palette), there is nothing in the System 7.5 toolbox that makes the window behave like a floating palette. In an
ordinary application, the programmer must accomplish this himself using toolbox routines. The same applies to a tool
bar, picture buttons, and an editing field with scroll bars attached to it. When working with the toolbox, all work
involves low level coding, and low level coding means the developer must assemble a number of toolbox routines to
create just about anything that is useful.

1 Introduction

WaterÕs Edge Software 31

Ordinary Application
Q

ui
ck

D
ra

w

C
ol

or
 Q

ui
ck

D
ra

w

M
em

or
y

M
an

ag
er

R
es

ou
rc

e
M

an
ag

er

E
ve

nt
 M

an
ag

er

Sc
ra

p
M

an
ag

er

T
ex

tE
di

t

M
en

u
M

an
ag

er

W
in

do
w

 M
an

ag
er

D
ia

lo
g

M
an

ag
er

C
on

tr
ol

 M
an

ag
er

L
is

t M
an

ag
er

G
ra

ph
ic

s
D

ev
ic

es

N
ot

if
ic

at
io

n
M

an
ag

er

D
es

k
M

an
ag

er

m
or

e
M

ac
in

to
sh

 to
ol

bo
x

m
an

ag
er

sÉ

The Macintosh Toolbox

Figure 1 -- An ordinary applicationÕs architecture without Tools Plus. The application must interact correctly with the necessary
toolbox managers to create the applicationÕs user interface and to make it work. The application must also manage the relationships
between the toolboxÕs various managers.

To summarize some characteristics that are common in an ordinary application, that being one written without Tools
Plus:

¥ The developer uses the toolboxÕs routines to create his applicationÕs interface.
¥ The developer typically writes multiple lines of source code that access numerous toolbox routines to accomplish

even simple tasks, like creating a color button (i.e., create something usable by assembling a number of toolbox
routines and writing the necessary support code to make them work right).

¥ The developer uses the toolboxÕs routines to respond to low level Event Manager events, and writes source code
to decode the event data, determine its meaning, and apply events to the various parts of the interface, again by
using more toolbox routines.

¥ The developer writes code to maintain the relationships between various user interface elements and to account
for all user interaction and machine conditions.

¥ The developer accounts for variations between Macintosh models, variations between system versions, and
variations in Macintosh configurations within his applicationÕs code and his selective use of toolbox routines.

Various developer tools are available to address some of these chores, and weÕll compare them to Tools Plus later in
this section.

Tools Plus

32

A Tools Plus ApplicationÕs Architecture

Applications written with Tools Plus can be represented by the model shown below in figure 2. The shaded area at the
bottom of the model represents the Macintosh toolbox, just like in applications that donÕt use Tools Plus (as seen in
figure 1). The striking difference is that your application no longer has to deal with the toolbox directly. Instead, Tools
Plus provides a relatively small number of routines (just a few hundred) that are logically organized and designed to do
immediately usable things. As a result, you can create working user interface elements with a single line of code, and
those user elements automatically behave like they should regardless of the Macintosh model, system version, or
machine configuration that runs your application.

Tools Plus Application

Q
ui

ck
D

ra
w

C
ol

or
 Q

ui
ck

D
ra

w

M
em

or
y

M
an

ag
er

R
es

ou
rc

e
M

an
ag

er

E
ve

nt
 M

an
ag

er

Sc
ra

p
M

an
ag

er

T
ex

tE
di

t

M
en

u
M

an
ag

er

W
in

do
w

 M
an

ag
er

D
ia

lo
g

M
an

ag
er

C
on

tr
ol

 M
an

ag
er

L
is

t M
an

ag
er

G
ra

ph
ic

s
D

ev
ic

es

N
ot

if
ic

at
io

n
M

an
ag

er

D
es

k
M

an
ag

er

m
or

e
M

ac
in

to
sh

 to
ol

bo
x

m
an

ag
er

sÉ

The Macintosh Toolbox

Tools Plusª libraries

E
ve

nt
H

an
dl

in
g

W
in

do
w

s

B
ut

to
ns

Pi
ct

ur
e

B
ut

to
ns

Sc
ro

ll
B

ar
s

E
di

tin
g

Fi
el

ds

L
is

t
B

ox
es

Po
p-

U
p

M
en

us

Pa
ne

ls

M
en

us

C
ur

so
rs

D
ra

w
in

g
Fa

ci
lit

at
or

s

U
se

r
N

ot
if

ic
at

io
n

D
yn

am
ic

A

le
rt

s

M
is

c.
Fe

at
ur

es

Figure 2 -- An applicationÕs architecture when using Tools Plus. You create ready-to-use user interface elements and Tools Plus
makes them work. This results in a dramatic reduction in effort, source code volume, and code complexity.

To summarize some characteristics of an application that is written with Tools Plus:
¥ The developer uses a single Tools Plus routine to create virtually any element of his applicationÕs interface.
¥ Tools Plus makes user interface elements work, and automatically manages relationships between elements.
¥ Tools Plus virtually eliminates event management by applying events correctly to the various elements.
¥ Tools Plus accounts for variances in Macintosh models, system versions, and computer configurations.
¥ The developer experiences an approximate 80% to 95% reduction in development effort and source code volume.
¥ Applications run quickly and requires little memory or disk space.

1 Introduction

WaterÕs Edge Software 33

A developer who uses Tools Plus libraries while writing an application can focus his attention on creating his
application instead of tending to the mechanics involved in creating elements, making them work, establishing
relationships between elements, complex event processing, and variations between Macintosh models, system versions
and configurations. The result is a much more effective developer or development team.

The model in figure 2 also illustrates that Tools Plus does not prevent you from using the MacintoshÕs toolbox if you
choose to do so. You may decide that you want to add a new feature that does not exist in Tools Plus, or you may need
to access low level information. In these cases, you can use the MacintoshÕs toolbox routines as you normally do.
When using Tools Plus libraries, you can write your application using either Object Oriented Programming (OOP) or
procedural (traditional) coding techniques.

Powerful Features Using Simpler, Higher-Level Coding

Tools Plus doesnÕt just make programming easier by making a developer more efficient. It simplifies the Macintosh
programming experience by letting you program at a consistently higher level throughout your development, testing
and support cycle. Programming is substantialy simpler because Tools PlusÕs routines are ready to use, unlike the
routines found in the Macintosh toolbox that need to be organized into usable tasks or operations. All you need is a
single Tools Plus routine to create a user interface element, establish its relationships with other user elements, and
make it work.

A simple example of this is the Apple menu. With Tools Plus, you can give your application full reign over desk
accessories just by creating the Apple menu with the AppleMenu routine (one line of code). Tools Plus automatically
takes care of all activities pertaining to desk accessories, such as when the user selects a desk accessory from the Apple
menu, repositions the accessory by dragging it, clicks buttons or types in the accessory, copies and pastes text in the
desk accessory, and eventually closes it. All this is handled automatically by Tools Plus meaning you donÕt have to
write any code for it. Tools Plus also accounts for your application running on System 6Õs Finder and MultiFinder as
well as the full-time MultiFinder that runs on System 7.0 and later. All you need to know is that when you create the
Apple menu, it will work perfectly in all situations.

Another example of an immediately usable operation is Tools PlusÕs LoadMenuBar routine: it loads an ÔMBARÕ
resource, reads, loads and installs all the pull-down menus itemized in the ÔMBARÕ resource including an Apple menu,
a fully functioning Edit menu, and all other pull-down menus. It also loads, installs and attaches all hierarchical menus
that are attached to the pull-down menus. All this is accomplished with a single line of code. The best part is that you
donÕt need to write any code to make the menus work, including the Edit menuÕs Undo/Redo, Cut, Copy, Paste, Clear
and Select All items. They all work correctly as soon as they are created.

Tools PlusÕs features integrate with each other according to the User Interface guidelines found in Inside Macintosh.
An active editing field, for example, automatically intercepts and processes key-strokes from the keyboard. An editing
fieldÕs text can also be affected by the Edit menu, which lets the user Cut, Copy, Paste, and Clear the text, as well as
transfer text between your application and other applications and desk accessories via the clipboard. The Edit menu is
automatically updated by the userÕs actions in the active editing field: when an insertion point is in the field, the Edit
menuÕs ÒCutÓ and ÒCopyÓ commands are disabled, since no text is selected for cutting or copying. These relationships
between the Edit menu, and editing field and the user are all automatic in Tools Plus.

Tools Plus supports and automates all standard user interface elements and seamlessly integrates support for popular
extras like floating palettes, a tool bar, picture buttons, tabs, sliders, a complete Ò3D lookÓ and much more. It also
includes a wealth of features that are sought after by developers, such as cursor animation, zoom lines like those found
in the Finder, hiding the menu bar and/or the Finder and other applications, and automatic reconciliation with Macs
that lack Color QuickDraw. In almost all cases, a Tools Plus feature is implemented using one line of simple code.

Tools Plus lets you say ÒrunÓ using one word instead of painfully describing how to run using several carefully worded
and precise paragraphs. You can see how using Tools Plus frees you, the programmer, to do more important things like
writing applications instead of trying to make all the pieces work!

Tools Plus

34

Event Processing is Virtually Eliminated

Tools Plus practically eliminates the need for event processing code in your application. An entire chapter called
ÒEvent ManagementÓ is dedicated to this subject in this user manual, so only a brief overview is presented here. Unlike
traditional Macintosh applications that use the toolboxÕs GetNextEvent or WaitNextEvent routines to get a low level
event which then must be manually processed, a Tools Plus simply calls an Òevent handlerÓ routine (which you write)
whenever an event is available. Events are generated by user activity such as typing or mouse-clicks, and by system
activity like refreshing a window, or inserting a floppy disk. You can write a single event handler routine for your
entire application, and optionally write event handler routines that handle events for specific windows.

The big difference between using Tools Plus and the toolbox is that Tools Plus does everything it possibly can before
informing your application of an event. Many events are processed internally and are never reported to your
application, such as when the user types in an editing field. This is because the field automatically processes the typing
and there is no need to tell your application about it. Other events are reported to your application, such as when the
user selects a button or clicks a windowÕs close box.

Tools Plus also translates the MacintoshÕs events into something your application can use right away, so instead of
getting a generic, low level Òmouse downÓ event, your application gets a highly informative and very specific Tools
Plus event such as: the ÒSaveÓ button was selected in the ÒAdd CustomerÓ window (or button 4 was selected in
window 15).

The following example illustrates the difference between an ordinary C or Pascal program, and a program that is
written with Tools Plus. The left column represents the steps a traditional program has to take to detect and process a
very simple event, whereas the right column has the benefit of Tools Plus. Note that the left column is highly
simplified!

Ordinary C or Pascal Programming Programming with Tools Plus

1 Get an event 1 Tools Plus calls your event handler routine

2 Determine the type of event (a Òmouse-downÓ) = Button was selected (button 3 in window 15)
3 Determine its location (a windowÕs content region)
4 Determine where in the window (a ÒcontrolÓ)
5 Track the mouse in and out of the control
6 If the mouse button was released inside the controlÕs

region, report that the control was selected. Otherwise
ignore the entire event.

= Mouse-down event
in a control (a control handle is known)
in a window (a window pointer is known)

Of course, additional steps could be taken in traditional C, C++ or Pascal to obtain a window number and button
number, but this is possible at the expense of more programming and added complexity in your source code.

Tools Plus gets an event from the toolboxÕs event manager, automatically applies it correctly to your applicationÕs user
interface, and reports a highly informative and specific Tools Plus event to your application only if your application
needs to be informed of something. For developers with advanced event processing needs, Tools Plus optionally lets
your application get an event directly from the toolboxÕs Event Manager, inspect the event record, possibly alter it or
discard it, and even sythesize an event (i.e., a fake Òmouse downÓ), then pass that event to Tools Plus for processing.
This gives you everything from fully automatic event processing to manual event processing capabilities.

Apple Event Support is Built into Tools Plus

An application that is written with Tools Plus does not need to be Apple Event aware, but we strongly recommend that
you make it so, especially if your application will run on Mac OS 8.5 or later. Tools Plus automatically supports all
four required Apple Events: Òopen applicationÓ, Òopen documentsÓ, Òprint documentsÓ, and Òquit applicationÓ. See the
Event Management chapterÕs section named ÒAutomatic Apple Event SupportÓ for details.

1 Introduction

WaterÕs Edge Software 35

Supports Resource-Based and Dynamic Interface Design

Tools Plus lets you define your applicationÕs user interface in several ways. In all cases, Tools Plus dramatically
facilitates development by making user interface elements work as soon as they are created, and by providing powerful
routines that make it easy for your application to interact with those elements.

Dynamic Interface: As the name suggests, your application can create user interface elements completely under its
own control without you having to define resources. Virtually any element of your applicationÕs user interface can be
created with a single line of code. Creating your applicationÕs interface dynamically has the following advantages:

¥ The applicationÕs interface can be created based on external data. Your could, for example, write a system that
lets you store user interface definitions in a database then create those interface elements as required.

¥ New Macintosh developers may find it daunting to learn a resource editor and to create an application along a
dual path by defining resources and writing code to call those resources.

¥ Your applicationÕs source code has a complete definition of its user interface, so you donÕt have to refer to a
collection of resources for this information.

¥ Your application has an additional degree of security to protect it from power users who are familiar with a
resource editor. By having the user interface defined in your applicationÕs code instead of resources, power users
are less capable of altering the application.

¥ Reduced interaction with slow media like a floppy disk or a CD-ROM may increase performance.
¥ Some developers may prefer this approach over resource-based development.

Resource-Based Interface: You define elements of your user applicationÕs interface by creating resources using a
resource editor such as AppleÕs ResEdit. These resources can include menus (ÔMENUÕ resource), a menu bar
(ÔMBARÕ resource), dialogs (ÔDLOGÕ and ÔDITLÕ resource defining a window and its user interface elements), a
single control (ÔCNTLÕ resource), and other elements. Resource-based interface design has the following advantages:

¥ The user interface can be designed visually using an inexpensive resource editor such as AppleÕs ResEdit
¥ The user interface definition can be separated from your applicationÕs source code to allow the interface to be

changed without having to recompile your application
¥ It facilitates localization
¥ You can apply custom colors to windows and controls without writing any code
¥ Typically reduces the amount of source code you need to accomplish a task
¥ It can save memory

Tools Plus routines completely replace the need to use the toolboxÕs Dialog Manager thereby letting you avoid the
numerous complexities and short-comings that are typically encountered when trying to make your applicationÕs user
interface work and behave like a Macintosh should.

Combination: Sometimes it may be appropriate to create parts of your user interface dynamically while defining other
parts with resources. Tools Plus makes this easy because you use the same routines to interact with user interface
elements that are created dynamically as those that are created using resources. This differs significantly from other
systems in general, and from the Macintosh toolbox specifically, both of which require that you program in a different
manner depending on whether you define your interface by using resources or not.

Accessing Tools Plus Libraries

Tools Plus arrives as a set of compiled 680x0 libraries or as a single compiled Power Macintosh library. It also
includes a C/C++ header file or a Pascal interface file. You compile the Tools Plus libraries into your application, a
process that takes just seconds, then you access to the routines in the libraries by using the C/C++ header file or Pascal
interface file. As far as your application is concerned, Tools Plus routines can be seen as a replacement for many,
many toolbox routines.

Tools Plus

36

Creating New Applications With Tools Plus

If you are starting a new application using Tools Plus and you are already familiar with the Macintosh toolbox, then
using Tools Plus will feel very familiar. However, you will immediately notice that very little code is required to create
your user interface and make it work, and that your event management code almost disappears.

As with all projects, alway devote considerable energy to designing your system before you even think of coding it.
Include functional definitions and detailed designs on paper for all windows and menus. Clearly define how all user
interface elements work and how they relate to your systemÕs functionality. This up-front detailed design work will
save countless hours in modifications and corrections later on in your development cycle.

If it is practical for you to do so, define all your menus and dialogs as resources using a resource editor. A powerful
resource editor like Resorcerer lets you visually define complex dialogs with settings for font, font size, style and item
color information. When creating dialogs, define Ònon-standardÓ user interface elements, ones that the ordinary Dialog
Manager does not know about like Tools PlusÕs picture buttons and panels, as Òuser items.Ó Later, when your
application opens the dialog and creates its contents using a single line of code, your application can read those user
item co-ordinates and create the user interface elements using Tools Plus routines. Tools Plus lets you bring those
resources to life with a single line of code.

If it is not practical to define windows, dialogs and menus using resources, Tools Plus also provides powerful routines
to let you easily accomplish the same things completely under your applicationÕs control. In the case of dialogs, which
are simply windows containing user interface elements, you will need to use a system that lets you draw the interface
to scale and obtain object co-ordinates. Here are some popular solutions:

1 Use a resource editor to design your dialogs. When you select an item, the resource editor can provide the
objectÕs co-ordinates.

2 Draw your interface using a drawing application like MacDraw. DonÕt use a painting package like MacPaint
unless it lets you keeps objects as separate elements, even when they overlap. Drawing applications typically
have an option that lets you display object co-ordinates in pixels.

3 The least expensive solution, although also the least versitile, is to draw your interface on graph paper.

To translate your interface design to a working interface, use Tools Plus routines to create each element in the
interface. These routines require co-ordinates for each element, and you can provide those co-ordinates from your
design. Run your application and take a screen capture (1-Shift-3) of your dialog and print it. If you used a drawing
application to design your interface, display the original drawing on your screen and get a screen capture and print it.
Take the two screen captures, your original design drawn to scale and your actual application, overlay them, and put
them up to a window. You will immediately see where any elements are out by a pixel or two. Write down all the
corrections (i.e., shift this edge down two pixels) on your printed copy, then go back to your source code and alter your
co-ordinates by that amount.

The tutorials and demo application that are included with Tools Plus provide examples for creating and using just
about any user interface element.

Using Tools Plus in an Existing Application

Some developers may be put off by the prospect of modifying their existing applications to take advantage of Tools
PlusÕs wealth of features, professional appearance, and boost in developer effectiveness. Developers who have updated
fairly large applications to use Tools Plus were able to realize these advantages in only a few days, and in doing so,
they removed hundreds or thousands of lines of low-level code and they simplified their applications.

Tools Plus can use your existing resources, thus retaining your original interface design. The following steps update an
ordinary application to incorporate Tools Plus:

1 Use Tools Plus routines to create your menus and/or to use your menu resources (likely one line of code). See the
Menu chapter for details.

2 Use Tools Plus routines to create your windows and/or to use your dialog resources (likely one line of code per
window or dialog). See the Windows chapter for details.

3 Remove code that gets an event from the toolbox (GetNextEvent or WaitNextEvent routines).
4 Alter your event loop such that it is enclosed within a routine, thus becoming your event handler routine. See the

Event Management chapter for details on how to write an event handler routine. ItÕs nearly identical to traditional
event loop, just simpler.

1 Introduction

WaterÕs Edge Software 37

5 Update your event handler routine to respond to Tools PlusÕs highly informative and specific events instead of
low-level events from the Event Manager. The Event Management chapter details this.

6 Use powerful Tools Plus routines to interact with your user interface elements instead of using toolbox routines.

In each step you will remove reams of complex and obsolete source code that used to interact with the toolbox and its
variety of managers. You will replace that code with very few lines using Tools Plus routines. In most cases, many
lines of conventional code will be replaced with a single Tools Plus routine.

Resist the temptation to add new features as you initially update your application to use Tools Plus. Your first
objective is to make your application work as it has before, but with the advantages of simpler and less voluminous
source code. This is a typical trait of applications that use Tools Plus. When your application is working using Tools
Plus routines, you can then easily start adding Tools Plus features to your application to give it new capabilities and a
completely professional appearance.

Range Checking
Tools Plus has built-in parameter range checking that is always active, even when you turn off your compilerÕs range
checking option. This feature is available to both C and Pascal programmers. Although this feature adds about 1K of
code and requires a very slight amount of processing time, the benefits are well worth it when you consider the time
you will save during application development.

If your application passes a parameter to a Tools Plus routine with a value that is out of the required range, an alert is
displayed stating:

Error: Parameter passed to a Tools Plus routine is not within the legal range of values.

When this occurs, the offended Tools Plus routine is not executed. Instead, an alert is displayed with the above
message and a ÒContinueÓ button. Your application resumes executing, bypassing the offended routine, when the user
clicks the Continue button.

To facilitate debugging, you can install your own action routine that will be called instead of displaying the parameter
range alert. If you have a stop point in this routine, you can step out of the routine line by line and eventually return to
the offended Tools Plus routine. See the SetParamRangeErrProc routine for details on how to install your own action
routine.

The Tools Plus Advantage
There are many advantages to using Tools Plus when you are writing a Macintosh application:

Easy to learnÉ
YouÕll be creating professional quality applications soon after you open Tools Plus. With other tools, you may
well end up spending months learning complex class libraries or how to use a development environment that is
less than intuitive.

FlexibleÉ
Tools Plus does not demand that you adhere to a rigid framework or to cumbersome design constraints. It fits in
with your programming style, whether your code is procedural or object-oriented. Code generators and other
application frameworks impose their style and inherent restrictions upon you, forcing you to learn a new way of
programming and to adopt someone elseÕs style and preferences.

SimplerÉ
Programming with Tools Plus is a simplified experience throughout your applicationÕs development, testing and
maintenance cycle. Application generators are great for quickly creating the Òfirst cutÓ of your application. After
thatÕs done, they make you resort to low level coding throughout the remainder of your development, testing and
maintenance cycle. Your initial gains can easily be negated over the remainder of your project. Tools Plus
virtually eliminates low-level coding drudgery.

Tools Plus

38

Reduces codeÉ
A single Tools Plus routine is often equivalent to hundreds of lines of conventional code. Tools Plus lets you
eliminate (or never create) thousands of lines of source. Less code results in fewer bugs and much simpler,
maintainable source code. Class libraries can easily add 50,000 lines of code to your application.

ExpandableÉ
You can easily add new elements to your user interface after you create your program. Typically, all you need is
one line of code to create the item and a case for it in your event handler routine. Tools Plus takes care of making
the new element work correctly and manages its relationship with other user interface elements.

Non-obstructiveÉ
Tools Plus is designed to handle the vast majority of your applicationÕs user interface and event-related work. You
can easily add functionality that is beyond the scope of Tools Plus libraries, such as support for QuickTime and
other technologies that have not been invented yet.

Compiles quicklyÉ
Tools Plus is made up of a small number of libraries and files and takes just seconds to compile into your
application. Compare that with code generators that create dozens of source files that are dependent on dozens
(sometimes hundreds) of other files. It takes just a few seconds to compile Tools Plus libraries into your
application instead of ten minutes or more with large class libraries or a complex framework.

Compact and fast runningÉ
Tools Plus libraries require little memory or disk space. This helps you create applications that are compact and
efficient. You also get lightning performance that you would expect from hand-optimized code. These benefits are
passed onto your projects to help you produce commercial quality applications.

System IndependentÉ
Tools Plus routines work seamlessly with System 5 and System 6 (when running under Finder and MultiFinder),
and System 7 or higher. They also run on both 680x0 series and PowerPC processors in emulation and native
mode. They sense the presence or absence of Color QuickDraw and automatically account for the differences.
They require no special consideration for math co-processors. It is easy to write applications that are backward
compatible with older systems while giving them powerful features that are typically available only in newer ones.

ConsistentÉ
Tools Plus for PowerPC is identical to Tools Plus for 680x0 processors, thereby easing your transition to Power
Macintosh. The C/C++ header and Pascal interface are nearly identical helping you make the transition from
Pascal to C/C++ if you should choose to do so.

Portable and reusableÉ
You can move code between applications more easily because Tools Plus resolves the toolboxÕs complexity
within the our libraries instead of your code. A single Tools Plus routine can be equated to the complexity and
interdependencies existing in dozens of files in a class library, or thousands of lines of conventional code.

SafeÉ
Tools Plus routines are safer to use than Macintosh toolbox routines because they shield you from potential
pointer and handle dereferencing problems and from numerous logical errors. Your application accesses GUI
elements using numbers instead of pointers and handles (i.e., button 5 on window 18). All routines can be used on
any model Macintosh running on any system, so you donÕt have to make special allowances if the Mac running
your application has multiple monitors or doesnÕt have Color QuickDraw.

Self-managed interdependenciesÉ
Every element of Tools Plus is aware of all the other elements. They all work together harmoniously so when you
add a new user interface element to your application, it works as soon as it is created. This lets you concentrate on
writing your application instead of trying to get all the pieces to work, and to work properly with each other.

Event processing that makes senseÉ
The revolutionary Event Translator in Tools Plus reports usable occurrences in a comprehensive, immediately
accessible record. An example of this is telling your application Òthe Cancel button in the Search dialog was
selected.Ó This is much simpler than decoding event messages and tracking controls, handles and pointers, as
required when dealing with the toolbox directly. Tools Plus simply calls your event handler routine and tells it
everything it needs to know.

1 Introduction

WaterÕs Edge Software 39

Depth versus scopeÉ
Large class libraries often address many aspects of MacintoshÕs abilities. By comparison, Tools Plus focuses
firmly on the user interface and event processing. We offer a great depth in this area instead of having a broad
scope that may not handle any one thing extraordinarily well. Our approach lets us deliver user interface features
that are unparalleled by competing products. Our picture buttons are a prime example of power melded with
simplicity.

Broadens your horizonsÉ
Tools Plus lets you easily incorporate many aspects of the MacintoshÕs impeccable user interface that you may
otherwise have excluded due to their complexity. YouÕll find the unwieldy becomes possible, typically with a
single line of code.

Ever expandingÉ
Tools Plus libraries are constantly being expanded, enhanced and optimized based largely on our usersÕ requests,
so you benefit from innovations that are happening in a community of developers around the world. And even
though Tools Plus is always giving you more features and ease of use, it is always lean and fast running.

EconomicalÉ
There are no runtime costs for Tools Plus. That means registered users can distribute an unlimited number of
copies of an unlimited number of applications they have written with Tools Plus without having to pay additional
fees or royalties. We also offer free updates and significant discounts on major upgrades.

Well supportedÉ
Tools Plus starts with the best support there is: by delivering a product of outstanding quality. Our user manual is
frequently praised by our customers, and our technical support staff can quickly assist you wherever you may be
located.

Who can benefit from Tools Plus
Just about anybody writing an application on the Macintosh in C, C++, or Pascal can benefit from using Tools Plus. It
is useful to different people for different reasons:

¥ Novice programmers can start developing applications more readily and with greater confidence. The task of
programming is simplified to produce quicker results with fewer bugs. And you donÕt have to learn a resource
editor (such as AppleÕs ResEdit) before you start using Tools Plus.

¥ Seasoned programmers can use Tools Plus to develop an application in less time and with fewer bugs.

What kind of applications can be written with Tools Plus
Tools Plus does not limit you to writing certain kinds of applications, in that it does not preclude you from exercising
your technical or creative skills on the Macintosh. It merely helps simplify and manage the user interface and event
processing that is so prevalent in Macintosh programs. Varying programming needs are addressed by Tools Plus:

¥ Quick and Dirty applications can be written in less time. These programs can have all the features of finished
Macintosh applications, which makes them easier to work with.

¥ Full fledged applications that are suitable for shrink-wrapping can be created using Tools Plus.
¥ Many kinds of plug-ins (available only in Tools Plus for CodeWarrior).
¥ Just about any program can be written more quickly and with less effort by using Tools Plus.

Tools Plus

40

What is Tools Plus not suitable for
Tools Plus is intended for application developers. It was designed to be the event processing and translating engine
within an application, so Tools Plus definitely cannot be used to create any of the following:

¥ Drivers, control panels, system extensions (INITs)

¥ Some external code modules*

¥ CFM68K projects

¥ Desk accessories (you can still use Tools Plus to write an application that looks and feels like a desk accessory
while running under System 7 or later)

¥ It is absolutely useless for writing ÒfacelessÓ applications. Why use Tools Plus if your app has no user interface
at all?

* For technical developers who want to know why this is so, or for those astute individuals who are inclined to amaze us
with what they can accomplish with Tools Plus, here are some details:
¥ Normally, Tools Plus gets an event from the Event Manager by calling GetNextEvent or WaitNextEvent, then

processes it automatically. If you have an unusual requirement where you need to get an event directly from the
Event Manager, inspect it, possibly discard it, or even apply it elsewhere without letting Tools Plus process it, you
can do so. You can also call the Event Manager directly. In either case, you can pass that event to Tools Plus for
processing.

¥ Tools Plus wants to know about all windows and menus in your application. In the case of plug-ins, you must
create your plug-inÕs windows using Tools Plus routines, and you cannot create menus since the host application
has already created them. What you put inside your plug-inÕs windows is completely up to you, and Tools Plus has
plenty of routines to make it really easy.

¥ Some applications interfere with the MacintoshÕs natural processes. ACIÕs 4th Dimension, for example, makes
modal windows such as the dBoxProc window behave modelessly, as can be demonstrated by creating a dBoxProc
window using the toolboxÕs NewCWindow routine, then polling for events with the toolboxÕs WaitNextEvent
routine. If the host application ÒbreaksÓ part of the toolbox, then Tools Plus may not behave correctly as a plug-in
within that host application.

Tools Plus libraries must be compiled into your application and cannot reside in a shared library. This requirement is
for licensing purposes only to prevent other unlicensed developers from accessing Tools Plus libraries.

System Requirements
Computer
Tools Plus makes extensive use of ROM routines that are found only in the 128k ROMs (version 117) or higher.
Applications written with Tools Plus will run on the Macintosh 512KE (the ÒEÓ stands for enhanced with the new
ROMs) or higher. They will not run on a Lisa (also called a Macintosh XL), Macintosh 128K or a standard Macintosh
512K computer. These applications will also run on Power Macintoshes.

Compiler
Tools Plus can be used by programmers developing with:

CodeWarrior C/C++ (68K or PPC) from the CW6 CD or later, including CodeWarrior Pro
CodeWarrior Pascal (68K or PPC) from the CW6 CD or later, including CodeWarrior Pro
THINK C/C++ 5.0.4 or later (68K)
THINK C/C++ 6.0.1 or later (68K)
THINK C/C++ 7.0 or later (68K)
Symantec C/C++ 8.0.5 or later (68K, Symantec Project Manager, also called SPM)
Symantec C/C++ 8.6 or later (PPC, Symantec Project Manager, also called SPM)
THINK Pascal 4.0.2 or later (68K)

Note that Metrowerks ships a "Discover Programming" kit that includes a CodeWarrior IDE (Integrated Development
Environment) and instructional material. Tools Plus supports this kit. It is a cost-effective alternative for those who
cannot afford the full CodeWarrior IDE.

1 Introduction

WaterÕs Edge Software 41

Development Tools
Every Macintosh developer should have a copy of ResEdit, AppleÕs resource editor application. It is easy to use,
indispensable, and best of all, free from your Apple dealer. Always get the latest version (2.1.3 at this writing), since it
is always being upgraded and improved. Beginners can get by without ResEdit, but you wonÕt want to.

Power users will welcome a powerful resource editor like Resorcerer from Mathem¾sthetics. It lets you fully realize
the potential benefits of resource-based programming by letting you set color and styles for dialog items.

System
Applications created with Tools Plus can run under System 5, System 6 and System 7 or higher. We recommend you
use at least System 6 (optimally 6.0.8) or System 7 because Apple has fixed various bugs and many features have been
added to the newer versions of the system.

While developing applications using Tools Plus, you will still have to observe the requirements and limitations of your
development environment. THINK C 5.0 requires System 5.0 or higher. THINK Pascal 4.0 requires System 6.0.5 or
higher. CodeWarrior requires System 7 or higher. Consult your compilerÕs User Manual for details.

Memory
Applications created with Tools Plus can run with less than 200k, depending on the size and complexity of your
application. The overhead associated with Tools Plus is typically about 150k for 680x0 libraries and slightly higher for
PowerPC native libraries.

While developing applications using Tools Plus, you will still have to observe the requirements and limitations of your
development environment. THINK C 5.0 and THINK Pascal 4.0 both require 2MB of RAM when using SystemÊ7.
CodeWarrior requires 8MB. Consult your compilerÕs User Manual for details.

Disk Space
Tools Plus libraries and related files require only a few hundred K of disk space. When compiled, Tools Plus libraries
add about 100k to 150k to your 680x0 applicationÕs size, and slightly more to your PPC applicationÕs size (add both
680x0 and PPC for fat binary applications).

While developing applications using Tools Plus, you will still have to observe the requirements and limitations of your
development environment. THINK C 5.0 and THINK Pascal 4.0 both require about 2MB of disk space.

Finished Applications
Please be aware that you, as a programmer, have the capacity to write applications that have requirements far in excess
of Tools PlusÕs minimum system requirements. It is possible that you may choose to write a program that requires a
PowerPC processor, Mac 0S 8.5.1 or later, 300 megabytes of RAM, and a pair of 20 inch color monitors. Be aware
that your finished application will likely have needs that exceed Tools PlusÕs minimum requirements.

Tools Plus Performance
Tools Plus libraries are hand-tuned, lightning-quick performers. Magazine reviews have praised Tools Plus for being
smaller and faster than any competitor, but there are several things that can slow Tools Plus down:

¥ THINK Pascal development environment on a PowerPC: When running the THINK Pascal development
environment on a Power Macintosh, THINK Pascal takes a while to load up all of Tools PlusÕs libraries into
memory. This issue shows up on any sizable application, and not just those using Tools Plus. On a 100 MHz
PowerPC 603, the time between hitting the ÒRunÓ command and seeing your first window can be around 40
seconds. You can reduce this time by getting Connectix SpeedDoubler which accelerates 680x0 code running on
a PowerPC, including THINK Pascal, especially during the lengthy startup process. Alternatively, you can get a
fast Power Macintosh such as any G3, the slowest of which reduces the startup time to 5 seconds. Note that this
delay exists only in the development environment, and not in compiled applications.

¥ Symantec C++ 8.6 compiling PowerPC-native Tools Plus libraries: Symantec never overcame some inherent
design shortcomings that would allow to recompile Tools Plus source code to a native Symantec format. Instead,
they released a Metrowerks to Symantec library translator which isnÕt too quick. You will notice slow
performance during compilation the first time you compile an application or plug-in with Tools Plus libraries.
Subsequent recompiles will be quicker. The final application performs quickly, just like youÕd expect.

Tools Plus

42

¥ Background processing: If your application needs better performance during background processing (when
receiving null events), see the SetNullTime routine for more information on this. Also note that windows with
animated Appearance Manager controls, such as the Òchasing arrows,Ó clock control, active editing field, or the
busy Òbarber poleÓ progress indicator, will slow down background processing.

Special Considerations with Mac OS Versions
Over the years, Apple has introduced issues into the Mac OS that may affect your application or plug-in. It is
important for you to realize that these issues plague all Macintosh developers to some degree, and not just those who
use Tools Plus libraries + framework. As at the time of this publication, the following issues were still noted:

¥ Appearance Manager versions 1.0 through 1.0.1, shipped before Mac OS 8.5, contain deficiencies that do not
permit you to create some controls correctly, such as tabs and window headers. You should upgrade to
Appearance Manager 1.0.3 or later on System 7 or Mac OS 8 prior to 8.5. Mac OS 8.5 integrates the Appearance
Manager into the operating system, so you need not upgrade it.

¥ The Appearance Manager, when running under System 7.x, exhibits cosmetic issues such as menus lists whose
gray background turns to white when the mouse is moved off a selected item.

¥ Mac OS 8.5 has severe stability issues. You should upgrade to Mac OS 8.5.1 or later.
¥ In Mac OS 8.5 and later, the OS becomes unstable when applications running within the THINK Pascal

development environment quit or are reset. This instability will cause a crash or hang later. This does not affect
double-clickable applications that are created by THINK Pascal.

¥ Starting with Mac OS 8.5, the Memory Manager behaves somewhat differently than in prior system versions.
The implications are far reaching: bugs in your source code that Òran perfectlyÓ in prior system versions may now
cause problems, or vise versa. Use a memory testing application like QC (detailed later) to test your application
on an older system version than Mac OS 8.5, if possible.

¥ At the time of this publication, memory stress testing tools (QC, detailed later) confirmed that Tools Plus
libraries were ÒcleanÓ when running under Mac OS 8.1 or older. QC forces all memory errors that may
potentially occur, to be triggered during testing. These tests confirm that Tools Plus source code is not
performing illegal operations. These testing tools indicate that Mac OS 8.5 (and possibly later versions) are
performing invalid operations that may show up as crashes, hangs, or other anomalies. It is imperative to realize
that these issues are not related to Tools Plus.

¥ Mac OS 8.5 introduced user-changeable themes that change the appearance of the user interface (menus,
windows and controls all adopt a different look ranging from AppleÕs standard Platinum gray-scale theme, to the
outrageous ÒGizmoÓ theme). Although beta versions of themes were distributed only as part of the developer
program, Apple did not release final versions of themes with Mac OS 8.5. These beta themes did, however, make
their way onto the Internet and are being used by many users. Note that some of these beta themes, and possibly
subsequently released themes, may have bugs that can cause problems in your applications. The Drawing Board
theme, for example, causes Mac OS to become unstable when you change the keyboard focus between two list
box controls. Other such bugs may be lurking in themes. Realize this when you create your application or plug-
in, and make sure you document it for your users. If your application causes hangs or crashes, test the application
on AppleÕs default Platinum theme. It is a sure sign of a faulty theme if the problem disappears when your
application runs on another theme.

¥ At the time of this publication, inconsistencies were observed between themes. For example, the indicator on a
vertical slider moves up as its value increases, unlike a scroll bar. This is true in all themes except Drawing
Board. Beware that other inconsistencies may exist in themes. This is the fault of the themes, and not of the
applications and plug-ins that are using them.

1 Introduction

WaterÕs Edge Software 43

Assumptions made when this manual was written
Several assumptions have been made when writing this manual:

¥ You are already a C, C++ or Pascal programmer, or are learning to be one on your own. This manual does
not teach you how to program in C/C++ or Pascal, nor does it teach you how to use the MacintoshÕs
toolbox routines. It teaches you how to use Tools Plus.

¥ This manual makes no attempt to teach you how to use THINK C/C++, THINK Pascal, CodeWarrior
C/C++ or CodeWarrior Pascal. Please consult your User Manual in such matters, or contact the
manufacturer of your compiler.

¥ This manual makes no attempt to teach you how to use ResEdit, or any other application or tool that is part
of your development environment.

¥ You already know how to use the Macintosh, and are familiar with its terms such as clicking, dragging,
selecting, etc.

¥ This manual does not assume that all programmers and users are male. For the sake of easier reading and to
avoid awkward genderless grammar, the term ÒheÓ implies either gender within this manual.

Conventions used throughout this manual
1) Whenever examples of source code are provided, they appear in a different font as illustrated below.

pascal void WindowClose (short Window);

2) Any information that is exclusive to either C/C++ or Pascal is marked with the following symbols:

C Information following this symbol is exclusive to C/C++

Pascal Information following this symbol is exclusive to Pascal

3) Each Tools Plus routine is documented with both a C/C++ header and Pascal interface.

4) Source code examples are given in Pascal, just like Inside Macintosh. In situations where the C/C++ source code
differs (usually due to differences in record structure), an example is also provided in C.

5) The Pascal terms function and procedure are used throughout this manual. For the benefit of C programmers, a
function is a routine that returns a value. The following table provides an example:

C Pascal
Procedure pascal void DeleteListBox(short ListBox); procedure DeleteListBox(ListBox:INTEGER);
Function pascal short FirstWindowNumber(void); function FirstWindowNumber: integer;

6) Important information is highlighted with notes and warnings.

- Note: A note that may be interesting or useful (donÕt skip these)

+ Warning: A point you need to be cautious about.

7) This manual is not intended to replace Inside Macintosh or its equivalent. It does not detail the fundamentals of
Macintosh programming, such as screen versus window co-ordinate systems (local versus global), commonly used
structures (points, rectangles, grafPort, etc.), using the Macintosh toolbox, etc.

8) For the benefit of new programmers, portions of this manual address the basics of building a Macintosh
application, such as some differences between System 6Õs Finder and MultiFinder and how to complete a double-
clickable application.

Tools Plus

44

Software Updates
Whenever you receive an updated version of Tools Plus, replace your existing Tools Plus files with those supplied by
the update. This includes all the library files (ToolsPlus.Libx), ToolsPlus.h header and ToolsPlus.c source files if you
are a C/C++ programmer, and ToolsPlus.p interface file if you are a Pascal programmer. If your application uses
floating palettes, use the latest version of the Palette WDEF (Window definition resource). Do not mix files from
different versions of Tools Plus.

Registered Tools Plus users are entitled to take advantage of free updates and major upgrades. See the Technical
Support chapter for details pertaining to determining the latest version and information on how to get updates.

WaterÕs Edge Software is enhancing Tools Plus on an on-going basis by optimizing code and adding new features. We
will inform registered users of newly available updates either by mail or by electronic mail.

- Note: In order to ensure uninterrupted software update notification, please inform us if your mailing address or email
account changes.

Evaluation Kit Registrants
A special edition of Tools Plus is distributed as an Evaluation Kit that can be obtained, free of charge, from user
groups and various electronic bulletin boards and the Internet. Users of the Tools Plus Evaluation Kit are bound by
restrictive terms and conditions that do not apply to registered Tools Plus developers who have purchased a license. If
you have obtained a Tools Plus Development Kit as a result of registering an Evaluation Kit, discontinue using the
evaluation kit and take advantage of the latest Tools Plus features. You must recompile your applications using the
licensed libraries that come with the Development Kit.

+ Warning: Do not revert to using evaluation versions of Tools Plus. If you come across a newer version of Tools Plus
in an Evaluation Kit and you have not received your equivalent registered upgrade, please contact WaterÕs
Edge Software.

For your information (recommended reading)
For any Macintosh programmer, we suggest you either own or have access to the entire series of ÒInside MacintoshÓ
technical reference guides by Addison Wesley. They are the definitive Macintosh bible for programmers of any
caliber. TheyÕre worth their weight in midnight oil if you want to get into serious Macintosh programming.

Another indispensable tool is THINK Reference, an on-line reference manual for C or Pascal programmers. It
describes all the MacÕs data structures, variables, constants, functions and procedures. It also has valuable
programming tips.

To program a Macintosh, youÕll have to know the basics of the Macintosh toolbox. We recommend the following:
¥ Get familiar with QuickDraw by reading the relevant chapter in Inside Macintosh (or equivalent). This

section details drawing in the MacintoshÕs graphic environment.
¥ Get familiar with the Font Manager by reading the relevant chapter of Inside Macintosh (or equivalent). This

section deals with drawing text on the MacintoshÕs screen
¥ Have a working knowledge of the MacintoshÕs Memory Manager. This section deals with pointers, handles,

and memory fragmentation. Tools Plus manages itself nicely by eliminating memory fragmentation, but the
work you do outside Tools Plus should also be clean.

¥ The thing that differentiates a good Macintosh application from the rest of the world is that a user will find
the program easy to learn and use. These benefits can be attributed greatly to a consistent and well-designed
user interface. Learn the dos and donÕts of graphic user interface (GUI) design, then learn some more! Inside
Macintosh also introduces you to the MacintoshÕs GUI and its standards. Another good way of learning is to
get exposure to (and become familiar with) a wide range of Macintosh applications. YouÕll spot the good
ones and the not so good ones after a while!

1 Introduction

WaterÕs Edge Software 45

How to Get Started with Tools Plus
Tools Plus does a lot of things, but remember, it is not important to know everything about Tools Plus before you start
using it. HereÕs a quick way of getting started with Tools Plus:

1 Install Tools Plus.
2 Read the Designing Your Application chapter for some basic guidelines on designing your application.
3 Take a look at our demo application for some basic ideas.
4 Run through all the tutorials included on your Tools Plus disk.
5 Create a simple application that:

- creates pull-down menus
- has a main event handler

Play with it and get familiar with the basic functionality.
6 Expand your application to open a single window, and update your event handler to respond to events

related to windows (doRefresh and doGoAway). Play with the application and get comfortable with it.
7 Add a few buttons and update your event handler to respond to button events (doButton). Again, get a feel

for the application by playing around with it.
8 Add more GUI elements. Do one type of element at a time, like list boxes first then pop-up menus later.

Each time you add a new type of GUI element, update your event handler to account for the new GUI
elements and familiarize yourself with the growing application.

9 Add a second window and get a feel for how Tools Plus makes multiple windowÕs work. Update your event
handler to respond to doChgWindow events (a request by the user to activate another window).

10 Create a floating palette which is just another type of window, and notice how Tools Plus takes care of
making it behave like a palette.

11 Add a tool bar (again, just a specific type of window), and experience how Tools Plus keeps it all working
perfectly.

As a general rule, start with a very simple application, then incrementally add features while building your familiarity
with Tools Plus.

Stress Testing Applications
Many of the bugs you will encounter as an application developer will be due to memory-related issues: forgetting to
lock a handle when required, using a routine designed for an ordinary handle on a resource handle or vice versa,
writing to an invalid memory address, unanticipated memory movement, unanticipated resource purging, and so on.
Most of these problems appear intermittently making them difficult to reproduce and even harder to isolate, identify,
and resolve. Worse still, the cause of a bug may have occurred dozens or even thousands of lines earlier, and the
symptoms may appear only when part of your application tries to reference memory that has been corrupted by
previous operations.

If you donÕt already have stress testing tools, or if you are looking for a good one thatÕs affordable, look into QCª
from Onyx Technology. QC is a control panel that monitors the execution of a target application while you are testing
it. It alerts you when it notices improper or questionable behavior that may manifest as a bug immediately or later in
your applicationÕs execution. QC is priced at around $100 (US), and you can get it by email. Using QC during
development and testing will save you countless hours of Òhunt and destroyÓ debugging. It will also reduce your usersÕ
need for technical support due to enhanced application reliability and stability.

For more information about QC, please contact its creators at:

Onyx Technology
7811 27th West
Bradenton, FL 34209
USA

sales@onyx-tech.com
http://www.onyx-tech.com
Phone: 1-941-795-7801

Fax: 1-941-795-5901

Tools Plus

46

Spotlight and other Testing Tools

Be aware that application testing tools do not always tell you the whole story. Such is the case with Onyx
TechnologiesÕ Spotlight, a product that examines a running application and warns you, the developer, if the application
appears to be doing something improper. Tools Plus, like most other applications, does a number of perfectly legal
operations that Spotlight and similar products may misinterpret as potential problems. An example is our CursorShape
routine: when your application calls CursorShape, Tools Plus first tries to locate a color cursor (ÔcrsrÕ resource). It uses
the toolboxÕs GetCCursor routine that may fail if a color cursor is not found. This is where Spotlight may report a
warning even though Tools Plus does the right thing by checking to see if the color cursor was loaded, and if it wasnÕt,
CursorShape calls the toolboxÕs GetCursor routine and checks that cursor as well.

Similar things happen when Tools Plus tries to load other resources using GetResource, discovers they are not
available, then does the right thing and moves onward.

What this means to you, the developer, is that you should not assume that such warnings delivered by your testing
software are correct. We use similar testing and stressing tools as we develop Tools Plus libraries, so we discover
genuine problems and rectify them in our lab. You never see them. If your testing software can turn off warnings in
libraries or places where you do not have the source code, please make use of this option. This will reduce or eliminate
the number of false warnings you get.

If your testing software detects a memory leak or if you are really, really sure that a problem you have detected is
inside Tools Plus, please feel free to contact us and weÕll re-check and re-test our code to eliminate your worries.

Creating and Editing Resources
One of the many things that sets Macintosh apart from all other computers is the use of resources. For new Macintosh
developers who are not familiar with the concept, a resource is a uniquely identifiable structure of bytes that represents
a specific thing such as an icon or a picture. To use resources, the programmer calls a toolbox routine to get access to a
specific resource type and number, such as retrieving ÔICONÕ number 128. An advantage of resources is that the
MacintoshÕs built in Resource Manager takes care of storing resources in a resource file (likely as part of your
application) and retrieving them. Resources can also be used to create more complex things like menus or a dialog (a
window that is populated with user interface elements like buttons, scroll bars, fields, etc.)

Although Tools Plus lets you get away from resource-based programming to a great degree if you choose to, it also
facilitates resource-based programming by letting you bring resources to life with a single line of code, something the
Macintosh toolbox canÕt do. If you want to exploit resources to their greatest potential, we recommend getting a
powerful resource editor such as Resorcerer from Mathem¾sthetics. While AppleÕs ResEdit is free or almost free, it
lacks the basic ability to specify colors and styles in a dialog. It also lacks most of the features included in Resorcerer
that make it easier and safer to create, edit, organize, and maintain resources. Commercial developers and those who
want to get the most out of Macintosh resources will benefit from using Resorcerer.

For more information about Resorcerer, please contact its creators at:

Mathem¾sthetics, Inc.
PO Box 298
Boulder, CO 80306-0298
USA

resorcerer@mathemaesthetics.com
http://www.mathemaesthetics.com
Phone: 1-303-440-0707

Fax: 1-303-440-0504

1 Introduction

WaterÕs Edge Software 47

The List Manager, List Boxes, Tables and Beyond
Tools Plus automates list boxes and it has built-in work arounds for all known List Manager bugs. This lets you create
and interact with list boxes in a much simpler and more effective manner than using the toolboxÕs List Manager
routines. Even so, Tools Plus does not alleviate the characteristics that are inherent to the MacintoshÕs List Manager,
those being:

¥ Maximum limit of about 32,000 empty lines
¥ Maximum limit of about 32,000 bytes of data in all cells combined
¥ Uses a single font, style, and size for all lines throughout a list
¥ Can display only text
¥ Your applicationÕs user cannot edit list box text directly (your application can replace the content of a cell,

though)
¥ All columns are the same width (Tools Plus supports only a single column)

All these limitations seemed appropriate in 1984 when Macintosh was first released, but they may be too restrictive for
your application. One solution is to use a third-party ÔLDEFÕ which may get around some of the List Managers
inherent qualities. Tools Plus supports the use of third party ÔLDEFÕs, but their programming tends to bring you a lot
closer to traditional toolbox coding when dealing with the list box, without providing a clean break form the List
ManagerÕs inherent limitations.

If you need list or table functionality that is beyond that which is supported by the List Manager, please investigate
StoneTableª from StoneTablet Publishing. StoneTable provides comprehensive list and table features and services
ranging from a simple list with text and images, to hierarchical lists such as the one seen in the FinderÕs Òview by
name,Ó to near spreadsheet capabilities. It also integrates easily with Tools Plus, and it is in wide use in commercial
applications. We strongly recommend StoneTable for all your list and table needs.

For more information about StoneTable or to get a free demo, please contact its creators at:

stack@teleport.com
http://www.teleport.com/~stack
Phone/fax: 1-503-287-3424

Tools Plus

48

Tools Plus Features
The following is a partial list of Tools Plus features. Nearly all can be accomplished with a single Tools Plus routine.
Although some of these features may appear to be simple, their functional equivalent, when programmed in C or
Pascal without Tools Plus, often requires considerable programming effort and dozens (often hundreds) of lines of
code. Unlike object oriented class libraries that add thousands of lines of code to your application, Tools Plus reduces
the need for most of your user interface and event management code, often by as much as 80% to 95%.

The key advantages to every Tools Plus routine are:
¥ Virtually all features can be implemented with a single line of code
¥ They are consistent across all Systems and Macintosh models
¥ They are fully integrated with each other
¥ They adopt the Òset and forgetÓ principle of self-maintenance allowing you to easily create a user interface, then

forget about it. Your application responds to very specific events, such as: a Pop-up menu was selected in Window
5, Pop-Up Menu 3, Item 6.

Appearance Manager
¥ All Appearance Manager windows and controls are supported

¥ Help in making your application run with or without an Appearance Manager

¥ Numerous Appearance Manager benefits available even when an Appearance Manager is not available

Windows
¥ All standard window types are supported

¥ Referenced by a window number instead of a pointer (pointers can be used if required)

¥ Create windows dynamically in your application and/or use ÔWIND,Õ ÔDLOGÕ and ÔDITLÕ resources

¥ Full tool bar and floating palette services

¥ Movable modal dialog is fully supported, and is also available on pre-System 7 Macs

¥ Any window can be modal to prevent the use of menus or clicking outside the active window

¥ Optionally move and resize windows in real time instead of dragging a dotted gray outline

¥ Optional modal access to the Edit menu or any menu as specified by your application

¥ All Tools Plus user interface elements (such as buttons, editing fields, etc.) created in a window are
automatically maintainedÉ Tools Plus takes care of drawing them and making them work.

¥ Window positioning options when a new window is opened:
Ö centered on main monitor
Ö tiled (down and right of frontmost standard window, title bar is visible)
Ö window must be at least partially visible (in case its co-ordinates are remembered by a document, and it is

opened on a Mac with a monitor that is smaller than the documentÕs creator)
Ö entire window must be visible

¥ All user interface elements are correctly disabled/deselected when a window is deactivated and restored to their
original state when the window is activated

¥ Windows with title bars are moved automatically when the use drags them (Tools Plus ensures that windows are
not dragged completely off the screen or underneath the tool bar)

¥ Minimum/maximum size limits can also limit resizing to vertical or horizontal only

¥ Windows with a Òsize boxÓ are automatically sized when the user drags the box

¥ Windows with a Òzoom boxÓ in their title bar automatically zoom between a standard size/position and a user-
controlled size/position

¥ The windowÕs update region is protected to exclude Tools PlusÕs user interface elements so your application can
refresh a windowÕs contents without concern about accidentally overwriting buttons, scroll bars, etc.

¥ When a window needs to be refreshed, your application can redraw custom objects (such as a picture
background) before and/or after Tools Plus redraws its objects

¥ Your application can reposition, resize, or hide/show a window and still have Tools Plus maintain the user
interface correctly

1 Introduction

WaterÕs Edge Software 49

¥ Set/change backdrop color (defaults to white)

¥ Various routines help your application keep track of windows: frontmost, current, active, frontmost floating
palette, frontmost standard window, most recently used, containing active editing field, and more.

¥ Closing a window automatically releases the memory occupied by Tools Plus user interface elements (buttons,
scroll bars, etc.)

¥ The Finder and all other applications can be hidden as is seen in many installer application

¥ Globally substitute specific window procIDs to take advantage of system WDEFs if they are available (such as
floating palettes) or use custom WDEFs when these system resources are not available

Tool Bar
¥ Optional tool bar is created below the menu bar on your main monitor

¥ As easy to use as a regular window

¥ Always remains the front window and is always active

¥ Can contain any Tools Plus user interface element, including pop-up menus, editing fields and picture buttons

¥ Adjustable height (width is fixed at main monitorÕs width)

¥ Automatically hidden when your application is suspended under MultiFinder (System 5 and 6), or System 7 or
higher. When your application is activated, the tool bar is displayed again.

¥ Can optionally shift all your applicationÕs windows downward as the tool bar opens. This prevents windows
from being partially obscured by the tool bar. If this option is used, windows are shifted back up when the tool
bar is closed.

¥ If the tool barÕs size is changed by your application (to add or remove a data entry area, for example), all open
windows can optionally be shifted to accommodate the difference in tool bar size

¥ Windows cannot be dragged beneath the tool bar

Floating Palettes
¥ Floating palettes (often called ÒpalettesÓ or ÒwindoidsÓ) are supported

¥ As easy to use as a regular window

¥ You can use third-party window definitions (WDEFs) or write your own to get a specific look. Tools Plus takes
care of making the window behave like a floating palette.

¥ Always remain in front of standard windows (if any are open) and behind the tool bar (if there is one)

¥ Can contain any Tools Plus user interface element, including pop-up menus, editing fields and picture buttons

¥ Palettes are moved automatically when the user drags them (Tools Plus ensures that they are not dragged
completely off the screen or underneath the tool bar)

¥ When the user clicks on an object (such as a picture button) in floating palette, that palette is quickly brought to
the front and refreshed before the click is processed. This results in very responsive and professional looking
palettes.

¥ Automatically hidden when your application is suspended under MultiFinder (System 5 and 6), or System 7 or
higher. When your application is activated, the palettes are displayed again.

¥ Two styles of palettes are included with Tools Plus: one with a title bar along the top of the palette (with
optional title), and a second style that has a drag bar along the left side of the palette. The second style is well
suited for horizontally oriented palettes that need to be as small as possible (the drag bar takes little space).

Dialogs/Alerts
¥ Automates dialogs (ÔDLOGÕ and related resources) making them as easy to use as the rest of Tools Plus.

¥ The dialogÕs window and its user interface elements are immediately usable without the need for support code
or event management.

¥ The Edit menu works automatically on the active field allowing complete editing with full undo/redo services.

¥ Editing fields inherit all features found in Tools Plus fields including Òsingle lineÓ scrolling and progressive
scrolling.

¥ Create working Ònon-standardÓ dialog items, such as picture buttons, list boxes, fields with scroll bars, 3D
panels, each with a single line of code.

Tools Plus

50

¥ All user interface elements in a dialog (i.e., the window, buttons, scroll bars, list boxes, etc.) inherit the benefits
listed throughout this section.

¥ You can apply font family, size, style and color information to static text, fields and controls by including an
ÔictbÕ resource. Tools Plus uses those settings on all Macintosh models whereas the toolboxÕs Dialog Manager
ignores them on older Macs and displays all text, fields and controls using Chicago 12pt.

¥ Fixes a Dialog Manager bug so you can use shorter, non-redundant ÔictbÕ resources to save memory and disk
space.

¥ Dramatically simplifies your applicationÕs interaction with dialogs (simpler code, much less code).

¥ Alerts are supported by standard C or Pascal statements, however they can be easily simulated by attractive
Dynamic Alerts.

Buttons
¥ Buttons are referenced by a button number instead of a handle

¥ All 3 types of Macintosh buttons are supported: push button, radio button and check box

¥ Create buttons dynamically in your application and/or use ÔCNTLÕ resources

¥ Custom control definitions (CDEFs) can be used. Tools Plus makes them behave like a push button, check box
or radio button (it makes CDEFs work automatically).

¥ Can adopt a universal color scheme or be individually colored including individual backgrounds

¥ Set or get the font, size and style

¥ Enable/disable

¥ Select/deselect (check boxes and radio buttons only)

¥ Hide/shown

¥ Obscure (hide without affecting the windowÕs image)

¥ Delete or kill (delete without removing image)

¥ Move, resize, change co-ordinates or offset (change co-ordinates without altering image)

¥ Optional automatic move/resize as windowÕs size changes

¥ Default push button (a black outline is drawn around the button and it is automatically selected whenever the
user types Return or Enter)

¥ Optional selection using a command key

¥ Buttons are automatically disabled when their parent window is inactive and return to their normal state when
the window is reactivated.

¥ Each button can have its own font, font size, and style

¥ Optional double-click detection for radio buttons (can be interpreted to mean Òselect button and OKÓ)

¥ ÒFlashÓ a push button to make it appear as though it was clicked

¥ Globally substitute specific control procIDs to take advantage of system CDEFs if they are available (such as
the 3D buttons in Mac OS 8Õs Appearance Manager) or use custom CDEFs when these system resources are not
available (such as SuperCDEFs)

Picture Buttons
¥ Picture buttons are referenced by a button number instead of a handle

¥ Any icon or PICT can be transformed into a button (they can also contain complex sets of images)

¥ Enable/disable

¥ Select/deselect

¥ Hide/shown

¥ Obscure (hide without affecting the windowÕs image)

¥ Delete or kill (delete without removing image)

¥ Move or offset (change co-ordinates without altering image)

¥ Optional automatic move as windowÕs size changes

¥ Optional ÒvalueÓ with a minimum/maximum range (like a scroll bar)

1 Introduction

WaterÕs Edge Software 51

¥ Each buttonÕs appearance and behavior is defined by selecting from a number of choices with literally
thousands of combinations

¥ Picture buttons can be simple like click-sensitive icons, or they can be powerful and provide the appearance of
animation

¥ Converts a simple black and white SICN icon a into richly featured 3D color picture button

¥ Multiple stage picture buttons have a different appearance for each value in the buttonÕs range, such as an
Òon/offÓ button that has a value range from 0 to 1 and has the word ÒonÓ or ÒoffÓ displayed.

¥ Optional locking in ÒselectedÓ position (to behave like a radio button)

¥ ButtonÕs value can change automatically as user interacts with it and/or under your applicationÕs control

¥ ButtonÕs value can change in the following manner:
Ö constant speed
Ö accelerate at a slow, moderate, or rapid rate
Ö precise rate, such as 90° per second

¥ Optional repeating events generated as long as the mouse button is held down

¥ Optional polarization increases the value when clicked on one side and decrease when clicked on the other

¥ Multiple disabling effects (or alternate image)

¥ Multiple selection effects (or alternate image)

¥ Picture buttons are automatically disabled when their parent window is inactive and return to their normal state
when the window is reactivated.

¥ ÒFlashÓ a picture button to make it appear as though it was clicked

Scroll Bars
¥ Scroll bars are referenced by a scroll bar number instead of a handle

¥ Create scroll bars dynamically in your application and/or use ÔCNTLÕ resources

¥ Custom control definitions (CDEFs) can be used. Tools Plus makes them behave like a scroll bar (it makes
CDEFs work automatically).

¥ Can adopt a universal color scheme or be individually colored

¥ Set or get the font, size and style

¥ Enable/disable

¥ Hide/shown

¥ Obscure (hide without affecting the windowÕs image)

¥ Delete or kill (delete without removing image)

¥ Move, resize, change co-ordinates or offset (change co-ordinates without altering image)

¥ Optional automatic move/resize as windowÕs size changes

¥ Change value, minimum/maximum limit

¥ Minimum/maximum limits automatically adjusts if the value is set outside the range

¥ Optional limiting prevents value from exceeding minimum/maximum limit

¥ Optional throttling lets you control each scroll barÕs speed

¥ Optional Òlive scrollingÓ lets you easily scroll objects in real time as the scroll barÕs thumb is draggedÉ just
process events as you normally do without the need for complex ÒactionÓ routines

¥ You can easily install an action routine that is repeatedly called while the scroll bar is tracked and get details
about the scroll bar calling the routine

¥ Attach scroll bars to the windowÕs right and/or bottom edge to have them automatically repositioned and resized
when the window is resized

¥ Scroll bars are automatically ÒframedÓ (empty rectangle) when their parent window is inactive and they return
to their normal state when the window is reactivated

¥ Scroll bars can be disabled instead of being framed when their parent window is inactive and return to their
normal state when the window is reactivated

¥ Globally substitute specific control procIDs to take advantage of system CDEFs if they are available (such as

Tools Plus

52

the sliders in Mac OS 8Õs Appearance Manager) or use custom CDEFs when these system resources are not
available (such as SuperCDEFs)

Fields
¥ Easily created with a single line of code

¥ Editing fields are referenced by a field number instead of a handle

¥ Each field can manipulate and store up to 32K of text

¥ Optional vertical and/or horizontal scroll bars (scroll bars and text are always synchronized)

¥ Optional Òlive scrollingÓ lets you scroll the fieldÕs text in real time as the scroll barÕs thumb is dragged

¥ Apply text and background colors

¥ Set or get the font, size and style

¥ Enable/disable a field with a variety of visual options

¥ Disabling a field with no visual effects makes it a Òread onlyÓ field that canÕt be edited by the userÉ great for a
set of instructions in a scrolling display area

¥ Copy only field (user can copy text from the field, but cannot change it)

¥ Hide/shown

¥ Obscure (hide without affecting the windowÕs image)

¥ Delete or kill (delete without removing image)

¥ Move, resize, change co-ordinates or offset (change co-ordinates without altering image)

¥ Optional automatic move/resize as windowÕs size changes

¥ Each field can have its own font, font size and style

¥ Field height can be specified in pixels or lines

¥ User edits a copy of the fieldÕs text so your application can revert to the original text at any time

¥ Get/set a fieldÕs text

¥ Get a fieldÕs edited text (the text the user is editing and that has not been saved)

¥ Paste text into a field under application control

¥ Filters allow/disallow specified characters

¥ Optional shifting to upper case or lower case characters as letters are typed

¥ Optional length limiting allows the user to type only a certain number of characters (the fieldÕs length)

¥ Sophisticated selection and cursor control allows:
Ö shorten/extend a selection a single character at a time (shift-arrow)
Ö shorten/extend a selection a word at a time (shift-option-arrow)
Ö move cursor a word at a time (option-arrow)
Ö vertical cursor movement that remember the horizontal position (i.e., move up in a straight line)
Ö shift-click extends/shortens a selection
Ö double-click selects a word
Ö typed text is always in view
Ö view follows cursor

¥ Get/set start and end of current selection range

¥ Tab sensing with optional tab to next field or to previous field if shift-tab was typed

¥ Progressive drag-selection works in conjunction with automatic scrolling making it easy to select additional
characters that are out of view -- the further you move the cursor out of the field, the quicker it scrolls

¥ Text in single-line fields never disappears as it does with ordinary Macintosh fields -- it always scrolls reliably

¥ The Edit menu automatically interacts with the active editing field. The Undo, Cut, Copy, Paste, Clear (and
optionally Select All) items are automatically enabled/disabled appropriately (see Menus). Selected text is
automatically copied to and from the clipboard when using the Edit Menu. All Edit menu items are functional
when they are created.

¥ Automatic management of user interface complexities that arise when fields are included on standard windows,
floating palettes, and the tool bar

1 Introduction

WaterÕs Edge Software 53

¥ Choose between memory efficiency for small fields and speed for larger fields

¥ Advanced low-memory protection (continue without undo, not enough memory, low memory warnings, etc.)

¥ Selected characters are automatically deselected when the fieldÕs window is inactive and return to their normal
state when the window is reactivated

List Boxes
¥ Easily created with a single line of code

¥ List boxes are referenced by a list box number instead of a handle.

¥ Each list box can have its own font, font size, and style

¥ Custom list definitions (LDEFs) can be used. Tools Plus makes them work automatically.

¥ Add, change, delete lines as required (referenced by line number)

¥ Load a list box to capacity up to 30 times faster than using standard routines

¥ Set or get the font, size and style

¥ Set text and background colors

¥ Select/deselect lines

¥ Hide/shown

¥ Obscure (hide without affecting the windowÕs image)

¥ Delete or kill (delete without removing image)

¥ Move, resize, change co-ordinates or offset (change co-ordinates without altering image)

¥ Optional automatic move/resize as windowÕs size changes

¥ Various methods are available for selecting lines in a list box, such as: one line only, multiple lines, select as
you drag the mouse, and many more

¥ When you create a list box, the first selected line will always be in view (i.e. not scrolled out of view)

¥ Your application can determine if a specific line, or any lines are selected in a list box

¥ A sorted set of resource names (such as fonts or sounds) can be inserted into a list box with a single command

¥ List box height can be specified in pixels or lines

¥ List boxes are automatically disabled (the lines are deselected and the scroll bar is disabled) when their window
is inactive, and are enabled when the window is activated

Panels
¥ Produce group boxes or panels to give your application a professional appearance

¥ Easily created with a single line of code

¥ Optional flat or 3D title with inset or raised text

¥ Panels can be simple outlines or 3D (inset or raise)

¥ Optional rounded corners

¥ Each panel can have its own font, font size, and style

¥ Set or get the font, size and style

¥ Optionally deselect other buttons in the group when one is selected (ideal for radio buttons or CDEF groups)

¥ Memory efficient color map is shared by all panels in your application (programmer defined)

¥ Custom color map can optionally be adopted by panels as they are created

¥ Automatic mapping to lower color depths and/or black and white (optional override)

¥ Hide/shown

¥ Obscure (hide without affecting the windowÕs image)

¥ Delete or kill (delete without removing image)

¥ Move, resize, change co-ordinates or offset (change co-ordinates without altering image)

¥ Optional automatic move/resize as windowÕs size changes

Tools Plus

54

Menus
¥ Easily created with a single command

¥ Menus are referenced by a menu number instead of a handle

¥ Create menus dynamically in your application and/or use ÔMENUÕ and ÔMBARÕ resources

¥ A single routine can create all you applicationÕs pull down and hierarchical menus, including a working Apple
menu and fully functioning Edit menu

¥ Hierarchical menus are just as easy to create and maintain as regular pull-down menus

¥ Menu hierarchies are easily created by simply attaching a submenu to a menu item

¥ Prevents hierarchy errors such as:
Ö cyclical hierarchies
Ö submenus attached to multiple parents
Ö Command keys invoking an item in an orphan submenu (i.e., submenu with no parent), and more

¥ Prevents logical menu errors such as overwriting a submenu link with a command key

¥ Get/set default colors for the applicationÕs menus, for a specified menu, or a menu item

¥ Menus can be easily added, changed, deleted, renamed, appended, enabled/disabled, restyled, prefaced with a
symbol or icon, etc.

¥ Command key equivalents, icons, check marks, other special marks, and font styling are all supported

¥ Create a functioning Apple menu with a single command to give your application access to desk accessories
(also includes the ÒAboutÉÓ item that names your application)

¥ Access to the Help menu and Applications menu (System 7 or later) is as easy as any other menu

¥ Hide or show menu bar (automatically shows when application is suspended)

¥ When using the Finder in System 5 or System 6, menus are automatically enabled/disabled appropriately when
a desk accessory is active. Under MultiFinder and System 7 or higher, the menu bar is automatically replaced
with the desk accessoryÕs menu bar when the DA is active.

¥ The Edit menuÕs Undo, Cut, Copy, Paste, and Clear (and optionally Select All) items automatically perform
editing functions on the active field and in desk accessories. These menu items are automatically
enabled/disabled appropriately.

¥ The Edit menuÕs Undo item performs Undo/Redo operations on the active editing field. It automatically changes
to ÒUndo CutÓ, ÒUndo CopyÓ, ÒUndo PasteÓ, and ÒUndo TypingÓ as required. Selecting ÒUndoÉÓ changes the
item to ÒRedoÉÓ and automatically performs the correct action.

Pop-Up Menus
¥ Easily created with a single line of code

¥ Pop-up menus are referenced by a menu and item number instead of a handle

¥ Create pop-up menu within your application and/or use ÔMENUÕ resources

¥ Choose between Tools Plus style, SystemÕs CDEF, or 3D pop-up menu styles

¥ Identical across all system versions thereby providing System 7 (and higher) features to prior systems

¥ Optional pop-down menu has a fixed (unchanging) title inside the pop-up box, and the available items appear
beneath the controlÕs box

¥ Can adopt a universal color scheme or be individually colored including individual backgrounds

¥ Set or get the font, size and style

¥ Hierarchical pop-up menus

¥ Enable/disable

¥ Hide/shown

¥ Obscure (hide without affecting the windowÕs image)

¥ Delete or kill (delete without removing image)

¥ Move, resize, change co-ordinates or offset (change co-ordinates without altering image)

¥ Optional automatic move/resize as windowÕs size changes

¥ Supports Òdown arrowÓ suppression, multiple fonts, single item selection, and more

1 Introduction

WaterÕs Edge Software 55

¥ When displaying a pop-up menu using a font other than the System Font (such as Geneva 9pt), Tools PlusÕs
pop-up menus are unaffected by other applications that may use unorthodox programming techniques (such as a
famous word processor that resets other applicationsÕ pop-up menu font size).

¥ Optionally display the selected itemÕs icon in the pop-up menuÕs box

¥ Items in the menu can be added, changed, deleted, renamed, appended, enabled/disabled, restyled, prefaced with
a symbol or icon, etc.

¥ Icons, check marks, other special marks, and font styling are all supported

¥ Pop-up menus are automatically disabled when their parent window is inactive and return to their normal state
when the window is reactivated

Mouse
¥ Single, double, and triple clicks, as well as dragging is automatically detected and reported

¥ A cursor table can be used to detect if the mouse was clicked in specific areas (such as a picture or icon). This
feature effectively makes any object Òclick sensitive.Ó

Event Handling
¥ Tools Plus keeps all automatic processes running smoothly and calls your applicationÕs event handler routine if

something has occurred such as the user selecting a menu or clicking a button.

¥ Tools PlusÕs revolutionary Event Translator reports events in a highly informative, simple, concise, and ready-
to-use format instead of being cryptic and requiring message decoding. Example: the ÒSaveÓ button was
selected in the ÒAdd CustomerÓ window (button 4 was selected in window 15), or ÒMenu Item 16 was selected
in Menu 4.Ó This is much simpler than decoding event messages, tracking controls, and using handles and
pointers.

¥ Your application can filter, modify, process, discard, and even synthesize events before Tools Plus processes
them. ItÕs easy to write an event filter routine.

¥ Most events are processed entirely by Tools Plus such as typing in an active editing field or selecting its text, or
using the Edit menu on a field, or running desk accessories. It is completely automatic and requires no coding at
all.

¥ Tools Plus takes care of maintaining the user interface before it reports an event to your application. For
example, in a doRefresh event (refresh a window), all Tools Plus user interface elements (buttons, scroll bars,
editing fields, etc.) are redrawn automatically.

¥ Many events can be ignored if your application doesnÕt care about them, such as when the user drags or re-sizes
a window or if the text in a field is changed.

¥ Events that are not processed by Tools Plus are reported to your application, which can either ignore them or
process them as required. This allows advanced programmers to implement their own special features.

¥ Tools Plus includes special routine that keep event processing running even while your application is busy

Apple Events
¥ Tools Plus automatically supports all four required Apple Events: Òopen applicationÓ, Òopen documentsÓ, Òprint

documentsÓ, and Òquit applicationÓ.

¥ Your can easily override the default Apple Event Handlers in Tools Plus by installing your own Apple Event
Handler routines.

¥ Tools Plus also automatically handles a few esoteric Apple Events to account for changes in system font, small
system font, views font, and other thematic changes.

¥ All other Apple Events are dispatched to the Apple Event Handler routines you install. You decide which Apple
Events your application responds to and how.

Timers
¥ Generate timed events to time things such as animation, periodic updating of progress indicators, alarms, or just

about anything else.

¥ A Timer can be set up with a frequency (i.e., 8 events per second, 200 events per hour, etc) or a period (i.e., 11
seconds between events, 1 day between events)

Tools Plus

56

¥ Events can be Ò1-shotÓ (execute once only)

¥ Optionally synchronize an event to another event (great for flashing text or a strobing picture button)

¥ Route a Timer event to the applicationÕs event handler, a windowÕs event handler, or a Timer event handler.

¥ Includes a Timer index to tell your application where it should be, in case your processor is not quick enough to
generate events at the specified frequency.

Balloon Help
¥ Easily add Balloon Help to Tools Plus user interface elements and custom controls.

¥ Add Help to user interface elements in three ways:
Ö Using standard Macintosh Help resources in a dialog
Ö Use Help resources to dynamically assign Help to an object
Ö Dynamically set help for an object without using Help resources

¥ Help is associated with each Tools Plus user interface element, so if an element is moved, resized, hidden,
deleted or scrolled, its associated Help balloon is updated appropriately.

Opening/Printing Files at Application Startup
¥ For applications running on System 6 or older, and for 680x0 applications that are not Apple Event aware, Tools

Plus makes it easy to open or print documents at startup (i.e., if the user launches your application by double-
clicking its documents, or selecting documents and choosing the File menuÕs Print item).

¥ Tools Plus routines let you simply step through a list of documents for opening or printing without having to
write and install Apple Event handler routine, or mess around with complex Apple Event routines.

Clipboard
¥ The clipboard is automatically maintained when using the Edit menu on an editing field (the clipboard contains

copied text)

¥ Your application does not need to directly interact with the clipboard because the Edit menu takes care of
moving text between your application and the clipboard and vice versa

¥ The Edit menuÕs ÒUndoÓ operation restores the clipboard to its original state, so if you accidentally copy
something to the clipboard and undo the copying, the clipboardÕs original contents are automatically restored

Cursors
¥ The shape of the cursor can be changed with a single command

¥ Color cursors are fully supported

¥ The cursorÕs shape changes automatically depending on where it is on the screen (i.e., I-Beam inside a field,
different shape per cursor zone, an arrow outside the active window., etc.)

¥ A cursor table can be set up to automatically change the cursorÕs shape depending on its position in a window,
so it could become a ÒplusÓ cursor when located over a grid of cells (like in a spreadsheet application) and an
arrow elsewhere.

¥ When the wrist watch cursor is displayed, Tools Plus discards all mouse clicks and typing except 1-. (operator
halting a lengthy process)

¥ Optionally, your application can permit the clicking of a push button when the wrist watch cursor is displayed.
This is useful if you have a Cancel button displayed on a window during a lengthy process.

¥ Multiple cursor animation sequences (like the FinderÕs spinning wrist watch) are supported

¥ Your application is informed when the cursor moves into a new cursor zone in case you want to display a
message as the user points to something

Desk Accessories
¥ Access to desk accessories is made possible by creating the Apple menu with a single command

¥ The Edit menuÕs Undo, Cut, Copy, Paste, and Clear items interact automatically with desk accessories

¥ Desk accessories are handled automatically by Tools Plus (you donÕt have to program anything to use them)

1 Introduction

WaterÕs Edge Software 57

Dynamic Alerts
¥ Dynamic Alerts are alerts that are automatically sized in relation to the alertÕs contents -- they grow as big as

needed to always appear aesthetically pleasing, and buttons are sized to accommodate their text. ItÕs like having
hundreds of customized alert boxes available at your disposal without having to create any resources.

¥ Dynamic Alerts are created with a single command and do not require the use of resources

¥ Full control over the alertÕs background color, text color and font settings for the message, and buttonsÕ
procIDs, colors and text settings

¥ You can use various combinations of Yes, No, OK, and Cancel buttons, or define your own combinations. A
default button can be optionally specified.

¥ An icon can be optionally displayed and the alert can optionally beep when displayed

¥ Buttons can be selected using command keys (i.e., a ÒYesÓ button can be selected with 1-Y)

¥ Dynamic Alerts, unlike Macintosh alerts, are unaffected by screen savers

¥ Dynamic Alerts are always centered perfectly on the main monitor regardless of the monitorÕs size or the
number of monitors used

Custom Windows and Controls
¥ Third party WDEFs (window definitions) can be used for windows and CDEFs (control definitions) can be used

for buttons and scroll bars. Tools Plus makes them work automatically.

¥ Custom CDEFs that do not relate to buttons or scroll bars and require specific application processing can also be
used. Tools Plus hands events pertaining to those controls directly to your application.

Extras
¥ C/C++ programmers can use Pascal strings (the default), C and Pascal strings, or C strings exclusively as

parameters in Tools Plus routines.

¥ Multiple language support (English, French, German, etc.)

¥ Zoom lines, such as those displayed by the Finder when a document is opened, are available to make objects
appear to zoom out from the screen or zoom back down again.

¥ All icon types (cicn, icl8, icl4, ics8, ics4, ics#, SICN, ICON, and ICN#) are drawn with a single command.
Ö selected/unselected
Ö enabled/disabled
Ö drawn correctly across multiple monitors

¥ Indexed SICN drawing

¥ Macintosh-standard thermometer is system independent (identical to the FinderÕs)

¥ Numerous color text drawing routines

¥ Numerous picture drawing routines

¥ ÔSTR#Õ structure maintenance (create new structure, get, add, change and delete string)

¥ Create and destroy off-screen BitMap or PixMap

¥ System independent BitMap to region conversion

¥ Does the Mac running your application have an Appearance Manager?

¥ Is the Appearance Manager running? (i.e., not in ÒSystem 7 compatibilityÓ mode)

¥ Initialize a structure (set to zero)

¥ Compare two structures for equality

¥ System version

¥ Tools Plus version

Monitors
¥ Color, gray-scale and monochrome (black and white) monitors are supported, as are multiple-monitor setups

¥ Specialized routines facilitate color-dependent drawing and inform your application of its environment

¥ All Tools Plus objects are displayed correctly even when spanning multiple monitors

Tools Plus

58

¥ All objects support dynamic monitor resolution changes as made possible with todayÕs multi-scan monitors

¥ All objects support dynamic monitor setup changes as made possible with System 7.5 or later

Memory
¥ Memory fragmentation due to opening and closing windows is eliminated regardless of the number of windows

your application uses or has open at the same time

¥ Tools Plus is memory efficient requiring little of your applicationÕs memory for its own overhead

¥ Tools Plus does not fragment memory

Systems
¥ Tools Plus can be compiled into applications intended for System 5 and System 6 (Finder and MultiFinder),

System 7 and higher, and Power Macintosh (in 68040 emulation and/or native mode).

Custom CDEFs
¥ Custom CDEFs (buttons and other controls) are available from third parties and WaterÕs Edge Software. Tools

Plus can make them as easy to implement and use as regular buttons and scroll bars.

¥ The Tools Plus Developer Kit includes SuperCDEFs, the world-class controls for discerning developers that
give your applications a professional look. They include:
Ö replacement for standard Apple buttons with a white center in check box and radio buttons
Ö check box with an additional ÒundefinedÓ state
Ö check box with a programmer-defined icon in place of the ÒxÓ in the box
Ö variety of buttons including optional 3D bodies and/or 3D title (inset or raised text)
Ö thermometer with optional Òbusy stateÓ (the moving barber pole effect as seen in the Finder)
Ö variety of tabs including optional 3D bodies and/or 3D title (inset or raised text)
Ö variety of sliders including optional 3D bodies and/or 3D text for the scale (inset or raised text)

2 Installing Tools Plus

WaterÕs Edge Software 59

2 Installing Tools Plus

Installing Tools Plus in CodeWarrior C (68K)
C Tools Plus arrives a CD-ROM. To install Tools Plus on your hard disk, double-click the installer and select where you

want to save Tools Plus (you can move the files later). Tools Plus for CodeWarrior C/C++ is made up of the following
items:

ToolsPlus.Lib1 Libraries containing Tools Plus routines for 680x0 applications
ToolsPlus.Lib2
ToolsPlus.Lib3
ToolsPlus.Lib4
ToolsPlus.Lib5
ToolsPlus.Lib6
ToolsPlus.Lib7

ToolsPlus.Lib Single 32-bit (large code model) library containing Tools Plus routines for 680x0
applications. This one library is equivalent to the seven numbered libraries.

ToolsPlus Plug-In.Lib
Library containing Tools Plus routines. This A4-relative 32-bit (large code model) library
is equivalent to the seven numbered libraries. You use it only when creating 680x0 plug-
ins and external code modules (i.e., not applications).

ToolsPlus.CW6&7.68K.Lib
Library containing additional routines required only when writing 680x0 applications
compiled with CodeWarrior 6 and 7.

ToolsPlus.CW6&7.68K.A4.Lib
Library containing additional routines required only when writing 680x0 plug-ins and
external code modules (i.e., not applications) compiled with CodeWarrior 6 and 7.

ToolsPlus.h Header file for Tools Plus (includes defines, structures, and routinesÕ prototypes)

ToolsPlus.c Source code for routines that must be compiled as part of your application. These routines
will be compiled according to your projectÕs compiler settings for 680x0 processor and/or
math co-processor optimization.

Palette WDEF Optional resource file containing the WDEF resource (window definition) for floating
palettes. Found in the ÒOptional ResourcesÓ folder.

Demos Folder containing a demo application and its source code

Read Me Important, late breaking news that may not be included in this manual

This User Manual is also part of the Tools Plus package. CodeWarrior is very flexible as to where it looks for files, so
you can put Tools Plus libraries and support files just about anywhere on your disk as long as you define an access
path to those files in your projectÕs preferences. A good idea is to create a folder named ÒTools Plus (68K) C/C++Ó
(without the version number) in a convenient place on your hard disk. When you create a new project, set an access
path to this folder. Your projects will automatically use newer versions of Tools Plus as long as you place the new files
in this folder.

Drag the files containing the name ÒToolsPlusÓ into your Tools Plus folder. You can also put the WDEF and all your
other resources supplied with Tools Plus in the same folder for convenience.

Tools Plus

60

Adding Tools Plus to a CodeWarrior C (68K) Project
Your Tools Plus installation contains a folder named ÒStarter Files.Ó Inside this folder you will find prepared ÒTools
Plus readyÓ projects that are ready for you to use. You may also create your own projects. Projects using Tools Plus
typically contain the following files:

Seg # CodeWarrior Pro CodeWarrior 11
1 Mac OS.lib

MSL C.68K (2i).Lib
PASCAL.68K.Lib ÜNote!

Mac OS.lib
MSL C.68K(2i).Lib
PASCAL.68K.Lib ÜNote!

2 ToolsPlus.Lib1 ToolsPlus.Lib1
3 ToolsPlus.Lib2 ToolsPlus.Lib2
4 ToolsPlus.Lib3 ToolsPlus.Lib3
5 ToolsPlus.Lib4 ToolsPlus.Lib4
6 ToolsPlus.Lib5 ToolsPlus.Lib5
7 ToolsPlus.Lib6 ToolsPlus.Lib6
8 ToolsPlus.Lib7

ToolsPlus.c
ToolsPlus.Lib7
ToolsPlus.c

9 (your source code) (your source code)

Seg # CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6
1 Mac OS.lib

ANSI (2i) C.68K.Lib
PASCAL.68K.Lib ÜNote!
console.stubs.c

Mac OS.lib
ANSI (2i) C.68K.Lib
PASCAL.68K.Lib ÜNote!

Mac OS.lib
ANSI (2i) C.68K.Lib
P/RT.68K.lib ÜNote!

2 ToolsPlus.Lib1 ToolsPlus.Lib1 ToolsPlus.Lib1
3 ToolsPlus.Lib2 ToolsPlus.Lib2 ToolsPlus.Lib2
4 ToolsPlus.Lib3 ToolsPlus.Lib3 ToolsPlus.Lib3
5 ToolsPlus.Lib4 ToolsPlus.Lib4 ToolsPlus.Lib4
6 ToolsPlus.Lib5 ToolsPlus.Lib5 ToolsPlus.Lib5
7 ToolsPlus.Lib6 ToolsPlus.Lib6 ToolsPlus.Lib6
8 ToolsPlus.Lib7

ToolsPlus.c
ToolsPlus.Lib7
ToolsPlus.CW6&7.68K.Lib
ToolsPlus.c

ToolsPlus.Lib7
ToolsPlus.CW6&7.68K.Lib
ToolsPlus.c

9 (your source code) (your source code) (your source code)

Adding Tools Plus to a CodeWarrior C (68K) Plug-In

If you are writing a plug-in or an external code module, you need to use A4 libraries in both CodeWarrior and in Tools
Plus as indicated below:

Seg # CodeWarrior Pro CodeWarrior 11
1 Mac OS.lib

MSL C.68K (2i).A4. Lib
PASCAL.A4.68K.Lib ÜNote!
(your main source code)

Mac OS.lib
MSL C.68K(2i).A4.Lib
PASCAL.A4.68K.Lib ÜNote!
(your main source code)

2 ToolsPlus Plug-In.Lib
ToolsPlus.c

ToolsPlus Plug-In.Lib
ToolsPlus.c

3 (your additional source code) (your additional source code)

Seg # CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6
1 Mac OS.lib

ANSI (2i) C.A4.68K.Lib
PASCAL.A4.68K.Lib ÜNote!
console.stubs.c
(your main source code)

Mac OS.lib
ANSI (2i) C.A4.68K.Lib
PASCAL.A4.68K.Lib ÜNote!
(your main source code)

(not supported)

2 ToolsPlus Plug-In.Lib
ToolsPlus.c

ToolsPlus Plug-In.Lib
ToolsPlus.CW6&7.68K.A4.Lib
ToolsPlus.c

3 (your additional source code) (your additional source code)

- Note: The Pascal library is a component of your CodeWarrior Pascal compiler. It is also required by C/C++
applications.

2 Installing Tools Plus

WaterÕs Edge Software 61

+ Warning: Before CodeWarrior 9, applications using Tools Plus must use 2-byte integers. Make sure your Ò4-byte
intsÓ option is turned off in your projectÕs preferences (processor options). If your application needs 4-byte
integers, redeclare integers to be longs throughout your code.

+ Warning: The segments containing the Tools Plus libraries and the ToolsPlus.c file will be constantly accessed while
your 68K application is running. To reduce memory fragmentation, flag these segments as ÒPreloadÓ and
ÒLocked.Ó Do not unload the segments containing Tools Plus libraries. You can ensure that this doesnÕt
happen accidentally by flagging them as not ÒPurgeable.Ó

If your 68K application will be integrated into a fat binary application (both 680x0 and PowerPC code
in one application), do not flag your 68K segments as ÒPreload.Ó When your application is running the
PowerPC-native code, the 68K segments (ÔCODEÕ resources) are completely ignored, so preloading them
just takes up memory. If you do preload them and your application is running PowerPC-native code,
InitToolsPlus releases these code resources and frees up the memory they used to consume.

Tools Plus

62

Installing Tools Plus in CodeWarrior Pascal (68K)
Pascal Tools Plus arrives a CD-ROM. To install Tools Plus on your hard disk, double-click the installer and select where you

want to save Tools Plus (you can move the files later). Tools Plus for CodeWarrior Pascal is made up of the following
items:

ToolsPlus.Lib1 Libraries containing Tools Plus routines for 680x0 applications
ToolsPlus.Lib2
ToolsPlus.Lib3
ToolsPlus.Lib4
ToolsPlus.Lib5
ToolsPlus.Lib6
ToolsPlus.Lib7

ToolsPlus.Lib Single 32-bit (large code model) library containing Tools Plus routines for 680x0
applications. This one library is equivalent to the seven numbered libraries.

ToolsPlus Plug-In.Lib
Library containing Tools Plus routines. This A4-relative 32-bit (large code model) library
is equivalent to the seven numbered libraries. You use it only when creating 680x0 plug-
ins and external code modules (i.e., not applications).

ToolsPlus.CW6&7.68K.Lib
Library containing additional routines required only when writing 680x0 applications
compiled with CodeWarrior 6 and 7.

ToolsPlus.CW6&7.68K.A4.Lib
Library containing additional routines required only when writing 680x0 plug-ins and
external code modules (i.e., not applications) compiled with CodeWarrior 6 and 7.

ToolsPlus.p Pascal interface file to Tools Plus routines (includes constants and types). This file also
includes source code for routines that must be compiled as part of your application. These
routines will be compiled according to your projectÕs compiler settings for 680x0
processor and/or math co-processor optimization.

Palette WDEF Optional resource file containing the WDEF resource (window definition) for floating
palettes. Found in the ÒOptional ResourcesÓ folder.

Demos Folder containing a demo application and its source code

Read Me Important, late breaking news that may not be included in this manual

This User Manual is also part of the Tools Plus package. CodeWarrior is very flexible as to where it looks for files, so
you can put Tools Plus libraries and support files just about anywhere on your disk as long as you define an access
path to those files in your projectÕs preferences. A good idea is to create a folder named ÒTools Plus (68K) PascalÓ
(without the version number) in a convenient place on your hard disk. When you create a new project, set an access
path to this folder. Your projects will automatically use newer versions of Tools Plus as long as you place the new files
in this folder.

Drag the files containing the name ÒToolsPlusÓ into your Tools Plus folder. You can also put the WDEF and all your
other resources supplied with Tools Plus in the same folder for convenience.

+ Warning: Even if you are programming exclusively in Pascal, you may also need to install the CodeWarrior C/C++
compiler. If you are using CodeWarrior 8 or later and you are not using CodeWarriorÕs standard I/O
libraries (SIOUX), then you must include the Òconsole.stubs.cÓ file in your project. Our demo and tutorials
do this. The Òconsole.stubs.cÓ file is part of your CodeWarrior C/C++ setup, and you will also need to
install CodeWarriorÕs C/C++ compiler and linker because of this file. The same applies if you are writing
plug-ins in Pascal because one of the PowerPC ÒglueÓ files (PPCglue.c) is written in C and cannot be
translated into Pascal. These are MetrowerksÕ requirements. They are not specific to Tools Plus.

2 Installing Tools Plus

WaterÕs Edge Software 63

Adding Tools Plus to a CodeWarrior Pascal (68K) Project
Your Tools Plus installation contains a folder named ÒStarter Files.Ó Inside this folder you will find prepared ÒTools
Plus readyÓ projects that are ready for you to use. You may also create your own projects. Projects using Tools Plus
typically contain the following files:

Seg # CodeWarrior Pro CodeWarrior 11
1 Mac OS.lib

MSL C.68K (2i).Lib
PASCAL.68K.Lib

Mac OS.lib
MacIntf(UPI).68K.lib
MSL C.68K(2i).Lib
PASCAL.68K.Lib

2 ToolsPlus.Lib1 ToolsPlus.Lib1
3 ToolsPlus.Lib2 ToolsPlus.Lib2
4 ToolsPlus.Lib3 ToolsPlus.Lib3
5 ToolsPlus.Lib4 ToolsPlus.Lib4
6 ToolsPlus.Lib5 ToolsPlus.Lib5
7 ToolsPlus.Lib6 ToolsPlus.Lib6
8 ToolsPlus.Lib7

ToolsPlus.p
ToolsPlus.Lib7
ToolsPlus.p

9 (your source code) (your source code)

Seg # CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6
1 Mac OS.lib

MacIntf(UPI).68K.lib
ANSI (2i) C.68K.Lib
PASCAL.68K.Lib
console.stubs.c

Mac OS.lib
MacIntf(UPI).68K.lib
ANSI (2i) C.68K.Lib
PASCAL.68K.Lib

Pascal/Mac OS.lib
MacIntf(UPI).68K.lib
P/ANSI.68K.lib
P/RT.68K.lib

2 ToolsPlus.Lib1 ToolsPlus.Lib1 ToolsPlus.Lib1
3 ToolsPlus.Lib2 ToolsPlus.Lib2 ToolsPlus.Lib2
4 ToolsPlus.Lib3 ToolsPlus.Lib3 ToolsPlus.Lib3
5 ToolsPlus.Lib4 ToolsPlus.Lib4 ToolsPlus.Lib4
6 ToolsPlus.Lib5 ToolsPlus.Lib5 ToolsPlus.Lib5
7 ToolsPlus.Lib6 ToolsPlus.Lib6 ToolsPlus.Lib6
8 ToolsPlus.Lib7

ToolsPlus.p
ToolsPlus.Lib7
ToolsPlus.CW6&7.68K.Lib
ToolsPlus.p

ToolsPlus.Lib7
ToolsPlus.CW6&7.68K.Lib
ToolsPlus.p

9 (your source code) (your source code) (your source code)

Adding Tools Plus to a CodeWarrior Pascal (68K) Plug-In

If you are writing a plug-in or an external code module, you need to use A4 libraries in both CodeWarrior and in Tools
Plus as indicated below:

Seg # CodeWarrior Pro CodeWarrior 11
1 Mac OS.lib

MSL C.68K (2i).A4. Lib
PASCAL.A4.68K.Lib
PascalA4.p
(your main source code)

Mac OS.lib
MacIntf(UPI).68K.lib
MSL C.68K(2i).A4.Lib
PASCAL.A4.68K.Lib
PascalA4.p
(your main source code)

2 ToolsPlus Plug-In.Lib
ToolsPlus.p

ToolsPlus Plug-In.Lib
ToolsPlus.p

3 (your additional source code) (your additional source code)

Seg # CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6
1 Mac OS.lib

MacIntf(UPI).68K.lib
ANSI (2i) C.A4.68K.Lib
PASCAL.A4.68K.Lib
PascalA4.p
console.stubs.c
(your main source code)

Mac OS.lib
MacIntf(UPI).68K.lib
ANSI (2i) C.A4.68K.Lib
PASCAL.A4.68K.Lib
PascalA4.p
(your main source code)

(not supported)

2 ToolsPlus Plug-In.Lib
ToolsPlus.p

ToolsPlus Plug-In.Lib
ToolsPlus.CW6&7.68K.A4.Lib
ToolsPlus.p

3 (your additional source code) (your additional source code)

Tools Plus

64

+ Warning: The segments containing the Tools Plus libraries and the ToolsPlus.c file will be constantly accessed while
your 68K application is running. To reduce memory fragmentation, flag these segments as ÒPreloadÓ and
ÒLocked.Ó Do not unload the segments containing Tools Plus libraries. You can ensure that this doesnÕt
happen accidentally by flagging them as not ÒPurgeable.Ó

If your 68K application will be integrated into a fat binary application (both 680x0 and PowerPC code in
one application), do not flag your 68K segments as ÒPreload.Ó When your application is running the
PowerPC-native code, the 68K segments (ÔCODEÕ resources) are completely ignored, so preloading them
just takes up memory. If you do preload them and your application is running PowerPC-native code,
InitToolsPlus releases these code resources and frees up the memory they used to consume.

2 Installing Tools Plus

WaterÕs Edge Software 65

Installing Tools Plus in CodeWarrior C (PPC)
C Tools Plus arrives a CD-ROM.. To install Tools Plus on your hard disk, double-click the installer and select where you

want to save Tools Plus (you can move the files later). Tools Plus for CodeWarrior C/C++ is made up of the following
items:

ToolsPlus.Lib Library containing Tools Plus routines for PowerPC applications

ToolsPlus Plug-In.Lib
Library containing Tools Plus routines. You use it only when creating PowerPC plug-ins
and external code modules (i.e., not applications).

ToolsPlus.CW6&7.PPC.Lib
Library containing additional routines required only when writing PowerPC applications
compiled with CodeWarrior 6 and 7

ToolsPlus.h Header file for Tools Plus (includes defines, structures, and routinesÕ prototypes)

ToolsPlus.c Source code for routines that must be compiled as part of your application. These routines
are kept in a separate file only to provide consistency with Tools Plus for 680x0
processors.

Palette WDEF Optional resource file containing the WDEF resource (window definition) for floating
palettes. Found in the ÒOptional ResourcesÓ folder.

Demos Folder containing a demo application and its source code

Read Me Important, late breaking news that may not be included in this manual

This User Manual is also part of the Tools Plus package. CodeWarrior is very flexible as to where it looks for files, so
you can put Tools Plus libraries and support files just about anywhere on your disk as long as you define an access
path to those files in your projectÕs preferences. A good idea is to create a folder named ÒTools Plus (PPC) C/C++Ó
(without the version number) in a convenient place on your hard disk. When you create a new project, set an access
path to this folder. Your projects will automatically use newer versions of Tools Plus as long as you place the new files
in this folder.

Drag the files containing the name ÒToolsPlusÓ into your Tools Plus folder. You can also put the WDEF and all your
other resources supplied with Tools Plus in the same folder for convenience.

Tools Plus

66

Adding Tools Plus to a CodeWarrior C (PPC) Project
Your Tools Plus installation contains a folder named ÒStarter Files.Ó Inside this folder you will find prepared ÒTools
Plus readyÓ projects that are ready for you to use. You may also create your own projects. Projects using Tools Plus
typically contain the following files:

Grp CodeWarrior Pro CodeWarrior 11
1 MSL RuntimePPC.Lib

InterfaceLib
MSL C.PPC.Lib
PASCAL.PPC.lib ÜNote!
AppearanceLib ÜNote!

MWCRuntime.Lib
InterfaceLib
MSL C.PPC.Lib
PASCAL.PPC.lib ÜNote!
AppearanceLib ÜNote!

2 ToolsPlus.Lib
ToolsPlus.c

ToolsPlus.Lib
ToolsPlus.c

3 (your source code) (your source code)

Grp CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6
1 MWCRuntime.Lib

InterfaceLib
ANSI C.PPC.Lib
PASCAL.PPC.lib ÜNote!
AppearanceLib ÜNote!
console.stubs.c

MWCRuntime.Lib
InterfaceLib
ANSI C.PPC.Lib
PASCAL.PPC.lib ÜNote!
AppearanceLib ÜNote!

MWCRuntime.Lib
Interfacelib
ANSI C.PPC.Lib
P/Rt.PPC.lib ÜNote!
AppearanceLib ÜNote!

2 ToolsPlus.Lib
ToolsPlus.c

ToolsPlus.Lib
ToolsPlus.CW6&7.PPC.Lib
ToolsPlus.c

ToolsPlus.Lib
ToolsPlus.CW6&7.PPC.Lib
ToolsPlus.c

3 (your source code) (your source code) (your source code)

Adding Tools Plus to a CodeWarrior C (PPC) Plug-In
Grp CodeWarrior Pro CodeWarrior 11

1 InterfaceLib
MSL C.PPC.Lib
PASCAL.PPC.lib ÜNote!
AppearanceLib ÜNote!

InterfaceLib
MSL C.PPC.Lib
PASCAL.PPC.lib ÜNote!
AppearanceLib ÜNote!

2 ToolsPlus Plug-In.Lib
ToolsPlus.c

ToolsPlus Plug-In.Lib
ToolsPlus.c

3 PPCglue.c
(your source code)

PPCglue.c
(your source code)

Grp CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6
1 InterfaceLib

ANSI C.PPC.Lib
PASCAL.PPC.lib ÜNote!
AppearanceLib ÜNote!
console.stubs.c

InterfaceLib
ANSI C.PPC.Lib
PASCAL.PPC.lib ÜNote!
AppearanceLib ÜNote!

(not supported)

2 ToolsPlus Plug-In.Lib
ToolsPlus.c

ToolsPlus Plug-In.Lib
ToolsPlus.CW6&7.PPC.Lib
ToolsPlus.c

3 PPCglue.c
(your source code)

PPCglue.c
(your source code)

- Note: This is a component of your CodeWarrior Pascal compiler. It is also required by C/C++ applications.

- Note: Make sure the AppearanceLib is set to Òlink weakÓ to allow your Appearance-savvy app to run on a Macintosh
without an Appearance Manager.

2 Installing Tools Plus

WaterÕs Edge Software 67

Installing Tools Plus in CodeWarrior Pascal (PPC)
Pascal Tools Plus arrives a CD-ROM. To install Tools Plus on your hard disk, double-click the installer and select where you

want to save Tools Plus (you can move the files later). Tools Plus for CodeWarrior Pascal is made up of the following
items:

ToolsPlus.Lib Library containing Tools Plus routines for PowerPC applications

ToolsPlus Plug-In.Lib
Library containing Tools Plus routines. You use it only when creating PowerPC plug-ins
and external code modules (i.e., not applications).

ToolsPlus.CW6&7.PPC.Lib
Library containing additional routines required only when writing PowerPC applications
compiled with CodeWarrior 6 and 7

ToolsPlus.p Pascal interface file to Tools Plus routines (includes constants and types). This file also
includes source code for routines that must be compiled as part of your application. These
routines are kept in a separate file only to provide consistency with Tools Plus for 680x0
processors.

Palette WDEF Optional resource file containing the WDEF resource (window definition) for floating
palettes. Found in the ÒOptional ResourcesÓ folder.

Demos Folder containing a demo application and its source code

Read Me Important, late breaking news that may not be included in this manual

This User Manual is also part of the Tools Plus package. CodeWarrior is very flexible as to where it looks for files, so
you can put Tools Plus libraries and support files just about anywhere on your disk as long as you define an access
path to those files in your projectÕs preferences. A good idea is to create a folder named ÒTools Plus (PPC) PascalÓ
(without the version number) in a convenient place on your hard disk. When you create a new project, set an access
path to this folder. Your projects will automatically use newer versions of Tools Plus as long as you place the new files
in this folder.

Drag the files containing the name ÒToolsPlusÓ into your Tools Plus folder. You can also put the WDEF and all your
other resources supplied with Tools Plus in the same folder for convenience.

+ Warning: Even if you are programming exclusively in Pascal, you may also need to install the CodeWarrior C/C++
compiler. If you are using CodeWarrior 8 or later and you are not using CodeWarriorÕs standard I/O
libraries (SIOUX), then you must include the Òconsole.stubs.cÓ file in your project. Our demo and tutorials
do this. The Òconsole.stubs.cÓ file is part of your CodeWarrior C/C++ setup, and you will also need to
install CodeWarriorÕs C/C++ compiler and linker because of this file. The same applies if you are writing
plug-ins in Pascal because one of the PowerPC ÒglueÓ files (PPCglue.c) is written in C and cannot be
translated into Pascal. These are MetrowerksÕ requirements. They are not specific to Tools Plus.

Tools Plus

68

Adding Tools Plus to a CodeWarrior Pascal (PPC) Project
Your Tools Plus installation contains a folder named ÒStarter Files.Ó Inside this folder you will find prepared ÒTools
Plus readyÓ projects that are ready for you to use. You may also create your own projects. Projects using Tools Plus
typically contain the following files:

Grp CodeWarrior Pro CodeWarrior 11
1 MSL RuntimePPC.Lib

InterfaceLib
MSL C.PPC.Lib
PASCAL.PPC.lib
AppearanceLib ÜNote!

MWCRuntime.Lib
InterfaceLib
MacIntf(UPI).PPC.lib
MSL C.PPC.Lib
PASCAL.PPC.lib
AppearanceLib ÜNote!

2 ToolsPlus.Lib
ToolsPlus.p

ToolsPlus.Lib
ToolsPlus.p

3 (your source code) (your source code)

Grp CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6
1 MWCRuntime.Lib

InterfaceLib
MacIntf(UPI).PPC.lib
ANSI C.PPC.Lib
PASCAL.PPC.lib
AppearanceLib ÜNote!
console.stubs.c

MWCRuntime.Lib
InterfaceLib
MacIntf(UPI).PPC.lib
ANSI C.PPC.Lib
PASCAL.PPC.lib
AppearanceLib ÜNote!

MWPRuntime.Lib
InterfaceLib
MacIntf(UPI).PPC.lib
P/ANSI.PPC.Lib
P/Rt.PPC.lib
AppearanceLib ÜNote!

2 ToolsPlus.Lib
ToolsPlus.p

ToolsPlus.Lib
ToolsPlus.CW6&7.PPC.Lib
ToolsPlus.p

ToolsPlus.Lib
ToolsPlus.CW6&7.PPC.Lib
ToolsPlus.p

3 (your source code) (your source code) (your source code)

Adding Tools Plus to a CodeWarrior Pascal (PPC) Plug-In
Grp CodeWarrior Pro CodeWarrior 11

1 InterfaceLib
MSL C.PPC.Lib
PASCAL.PPC.lib
AppearanceLib ÜNote!

InterfaceLib
MacIntf(UPI).PPC.lib
MSL C.PPC.Lib
PASCAL.PPC.lib
AppearanceLib ÜNote!

2 ToolsPlus Plug-In.Lib
ToolsPlus.p

ToolsPlus Plug-In.Lib
ToolsPlus.p

3 PPCglue.c
(your source code)

PPCglue.c
(your source code)

Grp CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6
1 InterfaceLib

MacIntf(UPI).PPC.lib
ANSI C.PPC.Lib
PASCAL.PPC.lib
console.stubs.c

InterfaceLib
MacIntf(UPI).PPC.lib
ANSI C.PPC.Lib
PASCAL.PPC.lib

(not supported)

2 ToolsPlus Plug-In.Lib
ToolsPlus.p

ToolsPlus Plug-In.Lib
ToolsPlus.CW6&7.PPC.Lib
ToolsPlus.p

3 PPCglue.c
(your source code)

PPCglue.c
(your source code)

- Note: Make sure the AppearanceLib is set to Òlink weakÓ to allow your Appearance-savvy app to run on a Macintosh
without an Appearance Manager.

2 Installing Tools Plus

WaterÕs Edge Software 69

Installing Tools Plus in THINK C/C++ (68K) 5, 6 and 7
C Tools Plus arrives on a CD-ROM. To install Tools Plus on your hard disk, double-click the installer and select where

you want to save Tools Plus (you can move the files later). Tools Plus for THINK C/C++ is made up of the following
items:

ToolsPlus.Lib1 Libraries containing Tools Plus routines
through to

ToolsPlus.Lib7

ToolsPlus.h Header file for Tools Plus (includes defines, structures, and routinesÕ prototypes)

ToolsPlus.c Source code for routines that must be compiled as part of your application. These routines
will be compiled according to your projectÕs compiler settings for 680x0 processor and/or
math co-processor optimization.

Palette WDEF Optional resource file containing the WDEF resource (window definition) for floating
palettes. Found in the ÒOptional ResourcesÓ folder.

Demos Folder containing a demo application and its source code

Read Me Important, late breaking news that may not be included in this manual

This User Manual is also part of the Tools Plus package. Drag the ToolsPlus.Lib1 through ToolsPlus.Lib7 libraries into
the Mac Libraries folder, or wherever you keep your other libraries. Drag ToolsPlus.h into the Mac #includes folder,
or wherever you keep your other header files. You can drag the ToolsPlus.c file into your Mac Libraries folder, even
though it is not a library. Keeping it with the ToolsPlus.Lib1 through ToolsPlus.Lib7 libraries will help to remind you
to include ToolsPlus.c in your project.

Adding Tools Plus to a THINK C (68K) Project
Your Tools Plus installation contains a folder named ÒStarter Files.Ó Inside this folder you will find prepared ÒTools
Plus readyÓ projects that are ready for you to use. You may also create your own projects. Projects using Tools Plus
typically contain the following files:

Segment 1: MacTraps
MacTraps2

Segment 2: ANSI
Segment 3: ToolsPlus.Lib1
Segment 4: ToolsPlus.Lib2
Segment 5: ToolsPlus.Lib3
Segment 6: ToolsPlus.Lib4
Segment 7: ToolsPlus.Lib5
Segment 8: ToolsPlus.Lib6
Segment 9: ToolsPlus.c

ToolsPlus.Lib7
Segment 10: (your source code)

+ Warning: The segments containing the Tools Plus libraries and the ToolsPlus.c file will be constantly accessed while
your application is running. To reduce memory fragmentation, flag these segments as ÒPreloadÓ and
ÒLocked.Ó Do not unload the segments containing Tools Plus libraries. You can ensure that this doesnÕt
happen accidentally by flagging them as not ÒPurgeable.Ó

Tools Plus

70

Installing Tools Plus in Symantec C/C++ (68K) 8.0.5 or later
C Tools Plus arrives a CD-ROM. To install Tools Plus on your hard disk, double-click the installer and select where you

want to save Tools Plus (you can move the files later). Tools Plus for THINK C/C++ is made up of the following
items:

ToolsPlus.Lib1.o Libraries containing Tools Plus routines
through to

ToolsPlus.Lib7.o

QDGlobals.a.o Compatibility library for Symantec Project ManagerÕs (SPM) new MPW-style linker

ToolsPlus.h Header file for Tools Plus (includes defines, structures, and routinesÕ prototypes)

ToolsPlus.c Source code for routines that must be compiled as part of your application. These routines
will be compiled according to your projectÕs compiler settings for 680x0 processor and/or
math co-processor optimization.

Palette WDEF Optional resource file containing the WDEF resource (window definition) for floating
palettes. Found in the ÒOptional ResourcesÓ folder.

Demos Folder containing a demo application and its source code

Read Me Important, late breaking news that may not be included in this manual

This User Manual is also part of the Tools Plus package. Drag the ToolsPlus.Lib1.o through ToolsPlus.Lib7.o and
QDGlobals.a.o libraries into the Standard Libraries folder, and ToolsPlus.h into the Macintosh Libraries folder, or
where ever you keep your other header files. You can drag the ToolsPlus.c file into your Standard Libraries folder,
even though it is not a library. Keeping it with the ToolsPlus.Lib1.o through ToolsPlus.Lib7.o libraries will help to
remind you to include ToolsPlus.c in your project.

Adding Tools Plus to an SPM C/C++ (68K) Project
Your Tools Plus installation contains a folder named ÒStarter Files.Ó Inside this folder you will find prepared ÒTools
Plus readyÓ projects that are ready for you to use. You may also create your own projects. SPM projects using Tools
Plus typically contain the following files. Note that grouping is purely for convenience and tidiness.

YourApp.c (your source code)
YourProjName.p.lo (your projectÕs link order, created by SPM)

Libraries: <68Kansi-small.o>
<Interface.o>
<Mathlib.o>
<MPW68KRuntime.o>

Tools Plus QDGlobals.a.o
ToolsPlus.c
ToolsPlus.Lib1.o
ToolsPlus.Lib2.o
ToolsPlus.Lib3.o
ToolsPlus.Lib4.o
ToolsPlus.Lib5.o
ToolsPlus.Lib6.o
ToolsPlus.Lib7.o

Starting with release 5 of Symantec C/C++ 8 (version 8.0.5), Symantec has departed from its traditional use of the
THINK linker in SPM. SPM now uses an MPW linker which has some inherent differences that prevent it from being
able to use standard Symantec ÔPROJÕ files (the standard format of Tools Plus libraries). The Ò.oÓ Tools Plus files have
been compiled specifically for SPM.

The QDGlobals.a.o library lets your application access QuickDraw globals in the traditional manner (i.e., thePort)
instead of using the newer universal method (i.e., qd.thePort). QDGlobals.a.o must be linked first. You can change the
link order of your project by compiling your application and letting SPM create a link order file (YourProjectName.lo)
for your project. Open the link order file and move QDGlobals.a.o such that it appears on the first line.

2 Installing Tools Plus

WaterÕs Edge Software 71

Installing Tools Plus in Symantec C/C++ (PPC) 8.6 or later
C Tools Plus arrives a CD-ROM. To install Tools Plus on your hard disk, double-click the installer and select where you

want to save Tools Plus (you can move the files later). Tools Plus for Symantec C/C++ is made up of the following
items:

ToolsPlus.Lib Library containing Tools Plus routines for PowerPC applications

QDGlobals.c Gives your application access to QuickDraw globals

ToolsPlus.h Header file for Tools Plus (includes defines, structures, and routinesÕ prototypes)

ToolsPlus.c Source code for routines that must be compiled as part of your application. These routines
are kept in a separate file only to provide consistency with Tools Plus for 680x0
processors.

Palette WDEF Optional resource file containing the WDEF resource (window definition) for floating
palettes. Found in the ÒOptional ResourcesÓ folder.

Demos Folder containing a demo application and its source code

Read Me Important, late breaking news that may not be included in this manual

This User Manual is also part of the Tools Plus package. Symantec C++ is very flexible as to where it looks for files,
so you can put Tools Plus libraries and support files just about anywhere on your disk as long as you define an access
path to those files in your projectÕs preferences. A good idea is to create a folder named ÒTools Plus (PPC) C/C++Ó
(without the version number) in a convenient place on your hard disk. When you create a new project, set an access
path to this folder. Your projects will automatically use newer versions of Tools Plus as long as you place the new files
in this folder.

Drag the files containing the name ÒToolsPlusÓ into your Tools Plus folder. You can also put the WDEF and all your
other resources supplied with Tools Plus in the same folder for convenience.

Adding Tools Plus to an SPM C/C++ (PPC) Project
Your Tools Plus kit contains a folder named ÒStarter Files.Ó Inside this folder you will find prepared ÒTools Plus
readyÓ projects that are ready for you to use. You may also create your own projects. SPM projects using Tools Plus
typically contain the following files. Note that grouping is purely for convenience and tidiness.

Glue: <PPCMW_Compatibility.o>
Runtime: <InterfaceLib>

<MathLib>
<AppearanceLib> ÜNote!
<str.c>

Tools Plus ToolsPlus.c
ToolsPlus.Lib

Main: YourApp.c (your source code)
QDGlobals.c

Starting with release 6 of Symantec C/C++ 8 (version 8.6), the Symantec Project Manager can make use of
CodeWarrior libraries. This new capability is what lets us bring Tools Plus libraries to users of the Symantec PowerPC
compiler. Make sure that you have installed the ÒPPC .lib ConverterÓ in the Ò(Translators)Ó folder before you try to
compile any Tools Plus project. The PPCMW_Compatibility.o library provides the glue between Tools Plus libraries
and the routines found in SymantecÕs libraries. There is no perceivable performance penalty for using this glue.

- Note: Make sure the AppearanceLib is set to Òlink weakÓ to allow your Appearance-savvy app to run on a Macintosh
without an Appearance Manager.

Tools Plus

72

Installing Tools Plus in THINK Pascal (68K)
Pascal Tools Plus arrives a CD-ROM. To install Tools Plus on your hard disk, double-click the installer and select where you

want to save Tools Plus (you can move the files later). Tools Plus for THINK Pascal is made up of the following
items:

ToolsPlus.Lib1 Libraries containing Tools Plus routines
through to

ToolsPlus.Lib7

ToolsPlus.p Pascal interface file to Tools Plus routines (includes constants and types). This file also
includes source code for routines that must be compiled as part of your application. These
routines will be compiled according to your projectÕs compiler settings for 680x0
processor and/or math co-processor optimization.

Palette WDEF Optional resource file containing the WDEF resource (window definition) for floating
palettes. Found in the ÒOptional ResourcesÓ folder.

Demos Folder containing a demo application and its source code

Read Me Important, late breaking news that may not be included in this manual

This User Manual is also part of the Tools Plus package. Drag the ToolsPlus.Lib1 through ToolsPlus.Lib7 libraries into
the Libraries folder, and ToolsPlus.p into the Interface folder, or where ever you keep your other libraries and
interfaces.

Adding Tools Plus to a THINK Pascal (68K) Project
To add Tools Plus to a THINK Pascal project, first open your project, then use the Project menuÕs Add File command
to add the files ToolsPlus.Lib1 through ToolsPlus.Lib7 and ToolsPlus.p to your project. The following illustrations
explain the required placement of these files.

¬

¬

Build Order
Though libraries can be located anywhere in your build order, placing them
near the top (early in the compiling order) will organize your project a little
better.

The ToolsPlus.p interface has to be compiled before your source code makes
reference to it. Placing it immediately below the libraries is a good, safe place.

¬

¬

By Segment
Drag each of the Tools Plus libraries into their own segment.

For convenience, drag the ToolsPlus.p interface file into the segment
containing the last Tools Plus library.

2 Installing Tools Plus

WaterÕs Edge Software 73

After Compiling
So far, youÕve told THINK Pascal what files to use and the
order in which they should be compiled. When you compile
your project the first time, THINK Pascal loads the
specified libraries and integrates them into your project file,
and it compiles source files (including ToolsPlus.p) and
integrates them in your project file. After your first compile,
youÕll notice that THINK Pascal automatically added a
number of new items to your project file:

ÇToolsPlus.Lib1:1È
ÇToolsPlus.Lib2:1È

ß
ÇToolsPlus.Lib7:1È
Ç%_MethTablesÈ
Ç%_SelProcsÈ
Ç%_ProfilerÈ

The ÇToolsPlus.Lib1:1È through ÇToolsPlus.Lib7:1È items
contain the object code from the Tools Plus libraries, while
Ç%_MethTablesÈ, Ç%_SelProcsÈ and Ç%_ProfilerÈ items
are part of THINK PascalÕs overhead (consult your THINK
Pascal User Manual for details).

Drag ÇToolsPlus.Lib1:1È into the same segment as
ToolsPlus.Lib1, ÇToolsPlus.Lib2:1È into the same segment
as ToolsPlus.Lib2, and so on for all the libraries.

Drag Ç%_MethTablesÈ, Ç%_SelProcsÈ and Ç%_ProfilerÈ
to any segment that wonÕt be unloaded while your
application is running, such as the one containing the
Runtime.Lib library.

Even though the project window indicates that Segment 1 exceeds the 32K limit imposed on segments, the project will
compile and run. When you build your application, the smart linker will strip away unneeded code and significantly
reduce the size of this segment.

- Note: Tools Plus does not have a dependency on the Runtime.Lib library. Unless your application needs routines that
are found only in the full Runtime.Lib library, you can use the smaller mRuntime.Lib library instead.

+ Warning: The segments containing the Tools Plus libraries and the ToolsPlus.p file will be constantly accessed while
your application is running. To reduce memory fragmentation, flag these segments as ÒPreloadÓ and
ÒLocked.Ó Do not unload the segments containing Tools Plus libraries. You can ensure that this doesnÕt
happen accidentally by flagging them as not ÒPurgeable.Ó

Tools Plus

74

Compiling the Tools Plus demo

Compiling the CodeWarrior C (68K) Demo Application
The easiest way to compile the CodeWarrior C demo application included with Tools Plus is to have the following
files in the same folder:

Demo.m
Demo.p.rsrc
Demo.c

ToolsPlus.Lib1
ToolsPlus.Lib2
ToolsPlus.Lib3
ToolsPlus.Lib4
ToolsPlus.Lib5
ToolsPlus.Lib6
ToolsPlus.Lib7
ToolsPlus.CW6&7.68K.Lib

ToolsPlus.h
ToolsPlus.c
PascalStrHandles.c

Double-click the Demo.m project file to launch CodeWarrior C/C++, then run your project.

If you are creating a new project (instead of using the one included as part of Tools Plus), you first need to install
Tools Plus in your project file as described earlier in this chapter. Copy the files ÒDemo.mÓ, ÒDemo.p.rsrcÓ and
ÒPascalStrHandles.cÓ to the folder containing your project. Add the following files to your new project:

Seg # CodeWarrior Pro CodeWarrior 11
1 Mac OS.lib

MSL C.68K (2i).Lib
PASCAL.68K.Lib ÜNote!

Mac OS.lib
MSL C.68K(2i).Lib
PASCAL.68K.Lib ÜNote!

2 ToolsPlus.Lib1 ToolsPlus.Lib1
3 ToolsPlus.Lib2 ToolsPlus.Lib2
4 ToolsPlus.Lib3 ToolsPlus.Lib3
5 ToolsPlus.Lib4 ToolsPlus.Lib4
6 ToolsPlus.Lib5 ToolsPlus.Lib5
7 ToolsPlus.Lib6 ToolsPlus.Lib6
8 ToolsPlus.Lib7

ToolsPlus.c
ToolsPlus.Lib7
ToolsPlus.c

9 Demo.p.rsrc
Demo.c

Demo.p.rsrc
Demo.c

Seg # CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6
1 Mac OS.lib

ANSI (2i) C.68K.Lib
PASCAL.68K.Lib ÜNote!
console.stubs.c

Mac OS.lib
ANSI (2i) C.68K.Lib
PASCAL.68K.Lib ÜNote!

Mac OS.lib
ANSI (2i) C.68K.Lib
P/RT.68K.lib ÜNote!

2 ToolsPlus.Lib1 ToolsPlus.Lib1 ToolsPlus.Lib1
3 ToolsPlus.Lib2 ToolsPlus.Lib2 ToolsPlus.Lib2
4 ToolsPlus.Lib3 ToolsPlus.Lib3 ToolsPlus.Lib3
5 ToolsPlus.Lib4 ToolsPlus.Lib4 ToolsPlus.Lib4
6 ToolsPlus.Lib5 ToolsPlus.Lib5 ToolsPlus.Lib5
7 ToolsPlus.Lib6 ToolsPlus.Lib6 ToolsPlus.Lib6
8 ToolsPlus.Lib7

ToolsPlus.c
ToolsPlus.Lib7
ToolsPlus.CW6&7.68K.Lib
ToolsPlus.c

ToolsPlus.Lib7
ToolsPlus.CW6&7.68K.Lib
ToolsPlus.c

9 Demo.p.rsrc
Demo.c

Demo.p.rsrc
Demo.c

Demo.p.rsrc
Demo.c

- Note: This library is a component of your CodeWarrior Pascal compiler. It is also required by C/C++ applications.

You can now build your project and run your application.

2 Installing Tools Plus

WaterÕs Edge Software 75

Compiling the CodeWarrior Pascal (68K) Demo Application
The easiest way to compile the CodeWarrior Pascal demo application included with Tools Plus is to have the
following files in the same folder:

Demo.m
Demo.p.rsrc
Demo.p

ToolsPlus.Lib1
ToolsPlus.Lib2
ToolsPlus.Lib3
ToolsPlus.Lib4
ToolsPlus.Lib5
ToolsPlus.Lib6
ToolsPlus.Lib7
ToolsPlus.CW6&7.68K.Lib

ToolsPlus.p

Double-click the Demo.m project file to launch CodeWarrior Pascal, then run your project.

If you are creating a new project (instead of using the one included as part of Tools Plus), you first need to install
Tools Plus in your project file as described earlier in this chapter. Copy the files ÒDemo.mÓ and ÒDemo.p.rsrcÓ to the
folder containing your project. Add the following files to your new project:

Seg # CodeWarrior Pro CodeWarrior 11
1 Mac OS.lib

MSL C.68K (2i).Lib
PASCAL.68K.Lib

Mac OS.lib
MacIntf(UPI).68K.lib
MSL C.68K(2i).Lib
PASCAL.68K.Lib

2 ToolsPlus.Lib1 ToolsPlus.Lib1
3 ToolsPlus.Lib2 ToolsPlus.Lib2
4 ToolsPlus.Lib3 ToolsPlus.Lib3
5 ToolsPlus.Lib4 ToolsPlus.Lib4
6 ToolsPlus.Lib5 ToolsPlus.Lib5
7 ToolsPlus.Lib6 ToolsPlus.Lib6
8 ToolsPlus.Lib7

ToolsPlus.p
ToolsPlus.Lib7
ToolsPlus.p

9 Demo.p.rsrc
Demo.p

Demo.p.rsrc
Demo.p

Seg # CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6
1 Mac OS.lib

MacIntf(UPI).68K.lib
ANSI (2i) C.68K.Lib
PASCAL.68K.Lib
console.stubs.c

Mac OS.lib
MacIntf(UPI).68K.lib
ANSI (2i) C.68K.Lib
PASCAL.68K.Lib

Pascal/Mac OS.lib
MacIntf(UPI).68K.lib
P/ANSI.68K.lib
P/RT.68K.lib

2 ToolsPlus.Lib1 ToolsPlus.Lib1 ToolsPlus.Lib1
3 ToolsPlus.Lib2 ToolsPlus.Lib2 ToolsPlus.Lib2
4 ToolsPlus.Lib3 ToolsPlus.Lib3 ToolsPlus.Lib3
5 ToolsPlus.Lib4 ToolsPlus.Lib4 ToolsPlus.Lib4
6 ToolsPlus.Lib5 ToolsPlus.Lib5 ToolsPlus.Lib5
7 ToolsPlus.Lib6 ToolsPlus.Lib6 ToolsPlus.Lib6
8 ToolsPlus.Lib7

ToolsPlus.p
ToolsPlus.Lib7
ToolsPlus.CW6&7.68K.Lib
ToolsPlus.p

ToolsPlus.Lib7
ToolsPlus.CW6&7.68K.Lib
ToolsPlus.p

9 Demo.p.rsrc
Demo.p

Demo.p.rsrc
Demo.p

Demo.p.rsrc
Demo.p

You can now build your project and run your application.

Tools Plus

76

Compiling the CodeWarrior C (PPC) Demo Application
The easiest way to compile the CodeWarrior C demo application included with Tools Plus is to have the following
files in the same folder:

Demo.m
Demo.p.rsrc
Demo.c

ToolsPlus.Lib
ToolsPlus.CW6&7.PPC.Lib
ToolsPlus.h
ToolsPlus.c

PascalStrHandles.c

Double-click the Demo.m project file to launch CodeWarrior C/C++, then run your project.

If you are creating a new project (instead of using the one included as part of Tools Plus), you first need to install
Tools Plus in your project file as described earlier in this chapter. Copy the files ÒDemo.mÓ, ÒDemo.p.rsrcÓ and
ÒPascalStrHandles.cÓ to the folder containing your project. Add the following files to your new project:

Grp CodeWarrior Pro CodeWarrior 11
1 MSL RuntimePPC.Lib

InterfaceLib
MSL C.PPC.Lib
PASCAL.PPC.lib ÜNote!
AppearanceLib ÜNote!

MWCRuntime.Lib
InterfaceLib
MSL C.PPC.Lib
PASCAL.PPC.lib ÜNote!
AppearanceLib ÜNote!

2 ToolsPlus.Lib
ToolsPlus.c

ToolsPlus.Lib
ToolsPlus.c

3 Demo.p.rsrc
Demo.c

Demo.p.rsrc
Demo.c

Grp CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6
1 MWCRuntime.Lib

InterfaceLib
ANSI C.PPC.Lib
PASCAL.PPC.lib ÜNote!
AppearanceLib ÜNote!
console.stubs.c

MWCRuntime.Lib
InterfaceLib
ANSI C.PPC.Lib
PASCAL.PPC.lib ÜNote!
AppearanceLib ÜNote!

MWCRuntime.Lib
Interfacelib
ANSI C.PPC.Lib
P/Rt.PPC.lib ÜNote!
AppearanceLib ÜNote!

2 ToolsPlus.Lib
ToolsPlus.c

ToolsPlus.Lib
ToolsPlus.CW6&7.PPC.Lib
ToolsPlus.c

ToolsPlus.Lib
ToolsPlus.CW6&7.PPC.Lib
ToolsPlus.c

3 Demo.p.rsrc
Demo.c

Demo.p.rsrc
Demo.c

Demo.p.rsrc
Demo.c

- Note: This is a component of your CodeWarrior Pascal compiler. It is also required by C/C++ applications.

- Note: Make sure the AppearanceLib is set to Òlink weakÓ to allow your Appearance-savvy app to run on a Macintosh
without an Appearance Manager.

You can now build your project and run your application.

2 Installing Tools Plus

WaterÕs Edge Software 77

Compiling the CodeWarrior Pascal (PPC) Demo Application
The easiest way to compile the CodeWarrior Pascal demo application included with Tools Plus is to have the
following files in the same folder:

Demo.m
Demo.p.rsrc
Demo.p

ToolsPlus.Lib
ToolsPlus.CW6&7.PPC.Lib
ToolsPlus.p

Double-click the Demo.m project file to launch CodeWarrior Pascal, then run your project.

If you are creating a new project (instead of using the one included as part of Tools Plus), you first need to install
Tools Plus in your project file as described earlier in this chapter. Copy the files ÒDemo.mÓ and ÒDemo.p.rsrcÓ to the
folder containing your project. Add the following files to your new project:

Grp CodeWarrior Pro CodeWarrior 11
1 MSL RuntimePPC.Lib

InterfaceLib
MSL C.PPC.Lib
PASCAL.PPC.lib
AppearanceLib ÜNote!

MWCRuntime.Lib
InterfaceLib
MacIntf(UPI).PPC.lib
MSL C.PPC.Lib
PASCAL.PPC.lib
AppearanceLib ÜNote!

2 ToolsPlus.Lib
ToolsPlus.p

ToolsPlus.Lib
ToolsPlus.p

3 Demo.p.rsrc
Demo.p

Demo.p.rsrc
Demo.p

Grp CodeWarrior 8, 9, 10 CodeWarrior 7 CodeWarrior 6
1 MWCRuntime.Lib

InterfaceLib
MacIntf(UPI).PPC.lib
ANSI C.PPC.Lib
PASCAL.PPC.lib
AppearanceLib ÜNote!
console.stubs.c

MWCRuntime.Lib
InterfaceLib
MacIntf(UPI).PPC.lib
ANSI C.PPC.Lib
PASCAL.PPC.lib
AppearanceLib ÜNote!

MWPRuntime.Lib
InterfaceLib
MacIntf(UPI).PPC.lib
P/ANSI.PPC.Lib
P/Rt.PPC.lib
AppearanceLib ÜNote!

2 ToolsPlus.Lib
ToolsPlus.p

ToolsPlus.Lib
ToolsPlus.CW6&7.PPC.Lib
ToolsPlus.p

ToolsPlus.Lib
ToolsPlus.CW6&7.PPC.Lib
ToolsPlus.p

3 Demo.p.rsrc
Demo.p

Demo.p.rsrc
Demo.p

Demo.p.rsrc
Demo.p

- Note: Make sure the AppearanceLib is set to Òlink weakÓ to allow your Appearance-savvy app to run on a Macintosh
without an Appearance Manager.

You can now build your project and run your application.

Tools Plus

78

Errors when compiling the CodeWarrior demos (or applications):
At the time of this writing, WaterÕs Edge Software has made every effort to ensure that our demo application will
compile successfully the first time. Unfortunately, Apple (who produces the C/C++ headers and Pascal interfaces into
the MacintoshÕs toolbox) and Metrowerks development environments are undergoing ongoing revisions. As a result,
some inconsistencies may arise between compiler versions. Fortunately, these differences are simple to resolve.

Access Paths

When using Tools Plus for CodeWarrior C/C++ (680x0 or PowerMac), a Pascal runtime library is required. You may
have to change the Access Path (in your projectÕs preferences) to locate the required file. This applies to the demo
application as well as the project in the Òstarter filesÓ folder.

File Names

Metrowerks occasionally changes the names of their libraries. If your demo project (or starter project) canÕt locate a
file, remove the problem file from your project then add the equivalent, correctly named file. An Access Path to the
correctly named file will be created automatically if it is required.

Link Errors and Warnings

There are several situations where your application may get link errors or warnings. In all cases, it is because of human
error in either the files you have added to your project, or the way you have set up your project.

Link errorÉ 16-bit code reference to ÔRoutineNameÕ is out of range.
Make sure that your 680x0 project does not have a segment that exceeds 32K. Start by confirming that each Tools
Plus library is in its own segment, then recompile your project. If the problem persists, check your source code files
to make sure that no segment exceeds 32K, then recompile. As a last resort, check other libraries to make sure the
segments they are in do not exceed 32K. A simpler alternative is to compile your project using a ÒlargeÓ code model
(this is set in your projectÕs preferences) and use a single ÒlargeÓ Tools Plus library instead of multiple ÒsmallÓ Tools
Plus libraries. Your executable will be larger, but it makes compilation and memory management a little simpler.
Large (32-bit) libraries are available in the Tools Plus Developer Kit.

Link errorÉ ÔRoutineNameÕ referenced from ÔCallingRoutineÕ is undefined.
You have forgotten to include one or more libraries that are needed in your project. Check the instructions in this
chapter and add the necessary libraries to your project. If IdleControls is listed as one of the offending routines, then
you have intentionally or inadvertently specified that your application will be Appearance Manager-savvy. You can
rectify this by adding the AppearanceLib library to your PowerPC project if you want it to be Appearance Manager-
savvy, or change your application such that it does not use the Appearance Manager (details on how to do this are
provided in the ÒDesigning Your ApplicationÓ chapter).

Link warningÉ ignored ÔRoutineNameÕ (descriptor) in FileName, previously defined in SourceFileName
This happens if you include either a routine with the same name as one that has already been defined elsewhere, of if
you include multiple libraries that both contain the same routine name. If IdleControls appears as one of the
offending routines, then you have added the AppearanceLib library to your PowerPC project without telling Tools
Plus that your application is Appearance Manager-savvy. You can correct this problem by either removing the
AppearanceLib library from your project, or by informing Tools Plus that your application is Appearance Manager-
savvy (details on how to do this are provided in the ÒDesigning Your ApplicationÓ chapter).

2 Installing Tools Plus

WaterÕs Edge Software 79

Compiling the THINK C (68K) 5, 6 or 7 Demo Application
The easiest way to compile the THINK C (version 5, 6 or 7) demo application included with Tools Plus is to have the
following files in the same folder:

Demo.p
Demo.p.rsrc
Demo.c

ToolsPlus.Lib1
ToolsPlus.Lib2
ToolsPlus.Lib3
ToolsPlus.Lib4

ToolsPlus.Lib5
ToolsPlus.Lib6
ToolsPlus.Lib7

ToolsPlus.h
ToolsPlus.c
PascalStrHandles.c

Double-click the Demo.p project file to launch THINK C, then run your project.

Your project file keeps track of each fileÕs location as you add it to your project, so you may want to create a new
project file after you have put all the Tools Plus libraries and related files in their permanent folders. Create a new
project named ÒDemo.pÓ in the same folder as ÒDemo.p.rsrcÓ and ÒPascalStrHandles.cÓ. Add the following files to
your new project:

Segment 1: MacTraps
MacTraps2

Segment 2: ANSI
Segment 3: ToolsPlus.Lib1
Segment 4: ToolsPlus.Lib2
Segment 5: ToolsPlus.Lib3
Segment 6: ToolsPlus.Lib4
Segment 7: ToolsPlus.Lib5
Segment 8: ToolsPlus.Lib6
Segment 9: ToolsPlus.Lib7

ToolsPlus.c
Segment 10: Demo.c

You can now build your project and run your application.

- Note: Make sure you allocate sufficient memory to the debugger if you are going to run the Tools Plus demo
application with the debugger on. The Tools Plus demo was written as one large source file, making it easier to
compile and study, but making it hungry for debugger memory. Allocate at least 500K to the debugger. If you
donÕt have enough memory, turn the debugger off (Project menu, deselect ÒUse DebuggerÓ) when running the
demo.
Your applications will likely be written in a more intelligent fashion, abandoning one large source file in

favor of several smaller ones.

Errors when compiling the THINK C Demo:

Symantec C/C++ compilers have undergone a series of revisions and some inconsistencies have arisen between
compiler versions. Fortunately, these differences are simple to resolve. If your compiler gives you an error that states
Òargument to function ÔxÕ does not match prototype,Ó it indicates that Symantec has made a minor revision to that
functionÕs prototype (in the error message, ÔxÕ will be replaced by the functionÕs name). To correct this error, inspect
the offending line in the source file, which is likely a line like:

PenPat(&gray);

and revise it to match the prototype in the related header file. In the example above, the correction is as simple as
changing the line to:

PenPat(gray); /* Remove ampersand (&) from the variable */

If you have problems getting the demo compiled, see the ÒTechnical SupportÓ chapter for information on how to
contact WaterÕs Edge Software for assistance.

Tools Plus

80

Compiling the SPM C/C++ (68K) 8 Demo Application
The easiest way to compile the SPM C/C++ (version 8.0.5 or later) demo application included with Tools Plus is to
have the following files in the same folder:

Demo.p
Demo.p.lo
Demo.p.rsrc
Demo.c

ToolsPlus.Lib1.o
ToolsPlus.Lib2.o
ToolsPlus.Lib3.o
ToolsPlus.Lib4.o

ToolsPlus.Lib5.o
ToolsPlus.Lib6.o
ToolsPlus.Lib7.o
QDGlobals.a.o

ToolsPlus.h
ToolsPlus.c
PascalStrHandles.c

Double-click the Demo.p project file to launch SPM, then run your project.

Your project file keeps track of each fileÕs location as you add it to your project, so you may want to create a new
project file after you have put all the Tools Plus libraries and related files in their permanent folders. Create a new
project named ÒDemo.pÓ in the same folder as ÒDemo.p.rsrcÓ and ÒPascalStrHandles.cÓ. Add the following files to
your new project:

Libraries: <68Kansi-small.o>
<Interface.o>
<Mathlib.o>
<MPW68KRuntime.o>

Tools Plus: QDGlobals.a.o
ToolsPlus.c
ToolsPlus.Lib1.o
ToolsPlus.Lib2.o
ToolsPlus.Lib3.o
ToolsPlus.Lib4.o
ToolsPlus.Lib5.o
ToolsPlus.Lib6.o
ToolsPlus.Lib7.o

Main: Demo.c
You can now build your project and run your application.

- Note: Make sure you allocate sufficient memory to the debugger if you are going to run the Tools Plus demo
application with the debugger on. The Tools Plus demo was written as one large source file, making it easier to
compile and study, but making it hungry for debugger memory. Allocate at least 500K to the debugger. If you
donÕt have enough memory, turn the debugger off (Project menu, deselect ÒUse DebuggerÓ) when running the
demo.
Your applications will likely be written in a more intelligent fashion, abandoning one large source file in

favor of several smaller ones.

After Compiling:

You will almost certainly get link errors the first time you compile the demo application because the ÒQDGlobals.a.oÓ
library must be linked first in a Tools Plus application.

SPM automatically creates a link order file named Demo.p.lo and adds it to your project. Open the Demo.p.lo file and
move QDGlobals.a.o such that it appears on the first line. Save the changes in the Demo.p.lo file, then build your
application again. This time the project will link as expected and build the demo application.

2 Installing Tools Plus

WaterÕs Edge Software 81

Compiling the SPM C/C++ (PPC) 8 Demo Application
The easiest way to compile the SPM C/C++ (version 8.6 or later) demo application included with Tools Plus is to have
the following files in the same folder:

Demo.p
Demo.rsrc
Demo.c

ToolsPlus.Lib
QDGlobals.c

ToolsPlus.h
ToolsPlus.c
PascalStrHandles.c

Double-click the Demo.p project file to launch SPM, then run your project.

Your project file keeps track of each fileÕs location as you add it to your project, so you may want to create a new
project file after you have put all the Tools Plus libraries and related files in their permanent folders. Create a new
project named ÒDemo.pÓ in the same folder as ÒDemo.p.rsrcÓ and ÒPascalStrHandles.cÓ. Add the following files to
your new project:

Glue: <PPCMW_Compatibility.o>
Runtime: <InterfaceLib>

<MathLib>
<AppearanceLib> ÜNote!
<str.c>

Tools Plus: ToolsPlus.c
ToolsPlus.Lib

Main: Demo.c
QDGlobals.c
Demo.rsrc

- Note: Make sure the AppearanceLib is set to Òlink weakÓ to allow your Appearance-savvy app to run on a Macintosh
without an Appearance Manager.

You can now build your project and run your application.

Tools Plus

82

Compiling the THINK Pascal (68K) Demo Application
The easiest way to compile the THINK Pascal demo application included with Tools Plus is to have the following files
in the same folder:

Demo.p
Demo.p.rsrc
Demo.p

ToolsPlus.Lib1
ToolsPlus.Lib2
ToolsPlus.Lib3

ToolsPlus.Lib4
ToolsPlus.Lib5
ToolsPlus.Lib6

ToolsPlus.Lib7
ToolsPlus.p

Double-click the Demo.p project file to launch THINK Pascal, then run your project.

Your project file keeps track of each fileÕs location as you add it to your project, so you may want to create a new
project file after you have put all the Tools Plus libraries and related files in their permanent folders. Create a new
project named ÒDemo.pÓ in the same folder as ÒDemo.p.rsrcÓ. Add the following files to your new project:

Segment 1: Runtime.Lib
Interface.Lib

Segment 2: ToolsPlus.Lib1
Segment 3: ToolsPlus.Lib2
Segment 4: ToolsPlus.Lib3
Segment 5: ToolsPlus.Lib4
Segment 6: ToolsPlus.Lib5
Segment 7: ToolsPlus.Lib6
Segment 8: ToolsPlus.Lib7

ToolsPlus.p
Segment 9: Sound.p

Demo.p

You can now build your project. After the initial compile, you will notice THINK Pascal created some additional
entries in your project file:

ÇToolsPlus.Lib1:1È
ÇToolsPlus.Lib2:1È
ÇToolsPlus.Lib3:1È
ÇToolsPlus.Lib4:1È
ÇToolsPlus.Lib5:1È
ÇToolsPlus.Lib6:1È
ÇToolsPlus.Lib7:1È
Ç%_MethTablesÈ
Ç%_SelProcsÈ
Ç%_ProfilerÈ

The ÇToolsPlus.Lib1:1È through ÇToolsPlus.Lib7:1È items contain the object code from the Tools Plus libraries,
while Ç%_MethTablesÈ, Ç%_SelProcsÈ and Ç%_ProfilerÈ items are part of THINK PascalÕs overhead (consult your
THINK Pascal User Manual for details).

Drag ÇToolsPlus.Lib1:1È into the same segment as ToolsPlus.Lib1, ÇToolsPlus.Lib2:1È into the same segment as
ToolsPlus.Lib2, and so on for all the Tools Plus libraries.

Drag Ç%_MethTablesÈ, Ç%_SelProcsÈ and Ç%_ProfilerÈ to any segment that wonÕt be unloaded while your
application is running, such as the one containing the Runtime.Lib library.

Even though the project window indicates that Segment 1 exceeds the 32K limit imposed on segments, the project will
compile and run. When you build your application, the smart linker will strip away unneeded code and significantly
reduce the size of this segment.

3 Designing Your Application

WaterÕs Edge Software 83

3 Designing Your Application

Generally, applications that are written with Tools Plus follow the basic structure outlined below. It is also useful to
know this when you are writing plug-ins or external code modules which are detailed near the end of this chapter.

1. #include or uses statement: Your program must be made aware of Tools PlusÉ

C If your C source code file refers to any Tools Plus routines, defines, structures, or type definitions, it must
have an ÒincludeÓ statement, such as the one below, at the beginning of the file.

#include "ToolsPlus.h"

Place ToolsPlus.h as the last file in your #include section (if you donÕt care why, skip to the next
paragraph). The reason for this placement of ToolsPlus.h is that other headers may already exist or may be
subsequently created with routines whose formal parameters coincide with #defines in Tools Plus.
Another benefit is that Tools Plus makes your application more tolerant to changes made in AppleÕs
interfaces. For example, Apple redefined inUpButton to kInUpButtonControlPart. ToolsPlus.h defines
inUpButton to the original Apple value, so your source code will continue to work with the original
inUpButton or with the newer kInUpButtonControlPart.

As an alternative to adding #include "ToolsPlus.h" to each of your source files, you can add the
#include statement to your projectÕs prefix thereby giving each source file access to the Tools Plus header.
ÒThe C Header FileÓ section later in this chapter provides details on how to do this.

Pascal If your Pascal source code file refers to any Tools Plus routines, constants, records, or types, it must have
a ÒusesÓ statement, such as the one below, at the beginning of the file. The uses statement may include
other items as well.

uses ToolsPlus

2. Global Variables: Declare a global variable of TPEventRecord type. A good name for this variable is Event,
since itÕs used to get events from Tools Plus. If you want to keep your applicationÕs global variable memory to a
minimum, you can use the TPEventPointer type, which is a pointer to a Tools Plus event record.

3. Initialization: Your application will start by initializing the various managers in the MacintoshÕs toolbox, then
initializing Tools Plus. See the Initialization chapter for details.

4. Initial Conditions: Your application creates its initial conditions for operation. This includes displaying windows,
opening files, etc. These are the things your application has to do before responding to any events.

5. Main Event Handler: This is where your application responds to events. Events are generated as a result of the
userÕs actions (typing, clicking, etc.) as well as system actions (refresh a window, inserting a disk, etc.). Typically,
after setting up the initial conditions as described above, your application wonÕt do anything unless itÕs in direct
response to an event. You write an event handler routine that responds to events, and Tools Plus calls this routine
when it has an event. An example of a applicationÕs main event handler routine is provided later in this chapter.
To start processing events, your application calls the ProcessEvents routine.

6. Quitting: After the user quits your application, certain house cleaning should be done, such as updating and
closing files. At the very least, the wrist watch cursor should be displayed to let the user know that the Macintosh
is busy while it returns to The Finder.

If you have written Macintosh applications before, then Tools Plus will be a simple transition. You can take an
identical approach to your original programming style except:

¥ You no longer need to call the toolboxÕs GetNextEvent or WaitNextEvent routines to get an event.
¥ You no longer need an event loop. Instead, you just write an event handler routine that looks like one cycle of an

event loop inside. Tools Plus will call your routine when it has an event that needs to be processed.
¥ You use Tools Plus routines to create and maintain your user interface instead of most of the Macintosh toolboxÕs

routines.

Tools Plus

84

High Level Structure of a Tools Plus Application
At a very high level, all applications that are written with Tools Plus will have a structure that is similar to the
following pseudo-code:

if InitToolsPlus(É) then If Tools Plus libraries were initializedÉ
 if MyStartupCode then If your applicationÕs startup code executed without errorsÉ
 ProcessEvents Process events until the user wants to quit. Tools Plus calls your event handlers.

While your application is processing events, at some point it will receive a request to quit, usually coming from the
user selecting the File menuÕs Quit command, or by way of a Òquit applicationÓ Apple Event. When such a request is
made, your application should call a routine that does the following type of work:

¥ Close unchanged documents
¥ For every changed document, ask the user if he wants to save changes before quitting (provide the options for

saving changes, not saving changes, and canceling the quitting process). If the user has not cancelled quittingÉ
¥ Save preference files
¥ Close remaining windows
¥ Deallocate dynamic objects like handles, pointers and UPPs
¥ Call the QuitToolsPlus routine. This instructs the ProcessEvents routine to stop processing events.

In applications (not plug-ins), you donÕt have to close all windows and deallocate dynamic objects before your
application quits because MacOS does this automatically. ItÕs just a good housekeeping habit.

A Macintosh Event, in Brief
The following is a very brief synopsis of the Toolbox Event Manager, as described in Inside Macintosh. The Toolbox
Event Manager is the link between your application and its user. Whenever the user types a key on the keyboard or
numeric keypad, presses the mouse button, or inserts a disk in the disk drive, your application is made aware of this by
means of an event.

In addition to monitoring the userÕs actions, the Toolbox Event Manager also reports other types of events that serve to
inform your application as to Òwhat is happening.Ó Such an event is reported when a partially obscured window is
uncovered and its contents need to be redrawn.

The Toolbox Event Manager reports only Òbare-boneÓ events. When a Òmouse-downÓ event occurs, the Event
Manager reports the clickÕs location in the screenÕs global co-ordinates, and the time of the click. ItÕs up to your
application to determine which window, and which object in the window was clicked. For those who want to pursue
this further, read about the Event Manager in Inside Macintosh.

Fortunately, Tools Plus events are easier to use, and are described later in this manual.

Macintosh Event Queue
As events are generated, they are placed in an event queue. When your application is ready to process them, the oldest
event is processed first. This journaling mechanism lets the Macintosh remember a series of rapidly occurring events
and store them until your application is ready to process them.

Events have a certain priority, meaning that some events will be reported before others regardless of when they
actually occurred. Their priority is as follows:

1. Activate/deactivate a window
2. Mouse-down/up, key down/up, disk insert, network driver, application-defined events (first in first out)
3. Auto-key (key pressed and held, causing it to repeat)
4. Update a window (refresh a window in front-to-back order)

The priority of events insures that illogical events are not reported. For example, the user may click twice in a
windowÕs Òclose awayÓ box before your application gets around to processing the event. The first click will signal
your application to close the window. The second click will not be reported as a click in a non-existent (closed)
window. The clickÕs location will be analyzed after the window is closed, and reported accordingly.

3 Designing Your Application

WaterÕs Edge Software 85

+ Warning: The event queue can store a maximum of 20 events. If your application is so busy that it lets more than 20
events accumulate in the queue, the oldest events will be discarded to make room for the new ones. This
may have negative consequences for your application.

Key Up Events
Although events are detailed in Inside Macintosh, and later in this manual in the Event Management chapter, you
should be aware that key-up events are ignored by default. If your application needs to be informed when a key is
released, the following statement should appear in your application immediately following InitToolsPlus:

SetEventMask(EveryEvent);

This SetEventMask statement tells the Event Manager to report key-up events as well as all others to your application.
Reporting key-up events may cause problems in Finder (not MultiFinder) in System 5.x and 6.x since some desk
accessories may not expect key up events.

+ Warning: Your application shouldnÕt set the event mask to prevent any events other than key-up events.

Tools Plus Events, and the Event Loop versus an Event Handler
Tools Plus events are a lot easier to use than the MacintoshÕs toolbox Event ManagerÕs events. You donÕt need to get
events, and you donÕt need an event loop. Instead, you write a simple event handler routine that looks like one cycle of
an event loop, and Tools Plus calls this routine when it has an event that needs to be processed by your application.
The event reported to your event handler routine is already translated into something that is immediately usable. The
Event Management chapter details these events.

In a traditional application (below left), the programmer writes an Òevent loopÓ that gets an event, applies it to the
application, tests to see if the user has quit the application, then loops back to get another event. The task of applying
the event to the application becomes increasingly complex as the user interfaceÕs complexity grows, and as the number
of windows increase. While the event loop approach worked well when Macintosh was introduced in 1984, at a time
when graphic user interfaces were simple, it has proved to be lacking in todayÕs state-of-the art applications.

Get an event

Application
startup

Did
user quit
the app?

Apply event to
application

NoÉ

Application
shut down

YesÉ

Event
Loop

Application
Event Handler

Process Events

Application
startup

Application
shut down

Window #n
Event Handler

Window #2
Event Handler

Window #1
Event Handler

Shared Window
Event Handler

Traditional application Tools Plus application with
with an event loop event handler routines

Tools Plus

86

In Tools Plus, you create an event handler routine that receives Tools Plus events as they need to be processed. You
must create a default event handler, also called the application event handler because it receives all events that are not
handled by any specialized event handlers. You make Tools Plus aware of the default event handler with the
InitToolsPlus routine (see the Initialization chapter for details). You can optionally create an event handler for one or
more windows. Events that are specific to a window, such as clicking a button or refreshing the window, are sent to the
windowÕs event handler. Although creating an event handler routine and associating it with a window is highly
recommended, it is not essential. See the SetWindowEventHandler routine in the Event Management chapter for
details on how to assign an event handler routine to a window.

When you design an event handler routine for a window, keep in mind that you can use the same routine to handle
events in multiple windows of the same kind. For example, if you are creating a ÒSearchÉÓ dialog, one event handler
routine can be used for a dozen concurrently open search dialogs because they all look and behave the same way.

The Event Handler Routine
In a Tools Plus application, you write an event handler routine to respond to events. Like an event loop, your
applicationÕs main event handler routine is the central hub of your application. A typical event handler has a structure
that is similar to the example below. Each window can have its own event handler routine to handle events that are
specific to that window. For now, donÕt concern yourself with the contents of the ÒEventÓ record. All aspects of event
management are explained by the Event Management chapter of this manual.

pascal void MainEventHandler (Ptr CustomDataPtr)
 {
 switch (Event.What) /*Respond to each type of eventÉ */
 {
 case doActivate: /*User wants to activate the windowÉ */
 MyActivateRoutine();
 break;
 case doRefresh: /*Window needs to be refreshedÉ */
 MyRefreshRoutine();
 break;
 case doGoAway: /*User clicked window's close box */
 MyCloseRoutine();
 break;
 case doButton: /*User clicked a buttonÉ */
 switch (Event.Button.Num) /*Respond to specific type of buttonÉ */
 {
 case kOKbutton: /*User clicked OK buttonÉ */
 myOKroutine(); /* */
 break;
 case kCancelButton: /*User clicked Cancel button */
 myCancelRoutine(); /* */
 break;
 /*cases for other buttons*/
 }
 break;
 case doMenu: /*User selected a menuÉ */
 MyMenuRoutine();
 break;
 case doNothing: /*No event available. If your app does any */
 MyBackgroundRoutine(); /* background processing, execute one Òcycle.Ó */
 break;

 /*cases for other events*/
 default: /*Ignore events that are not listed in the cases */
 break;
 }
 }

There are two big differences between an event handler routine as a traditional event loop: (1) a traditional event loop
is always testing for a condition that indicates that the user has quit your application, and (2) a polling routine such as
the toolboxÕs WaitNextEvent or Tools PlusÕs obsolete PollSystem routine, gets an event and returns with a value that
indicates if it got an event (true) or not (false). The following pseudo-code shows a traditional event loop:

3 Designing Your Application

WaterÕs Edge Software 87

while not done do Keep getting and processing events until the user quits
 if WaitNextEvent(myEvent) then If you obtained an eventÉ
 ProcessTheEvent Process the event (a case for each event)
 else Otherwise, if an event was not obtainedÉ
 CallBackgroundProcess Execute one cycle of the background process

In the example above, you can think of the ProcessTheEvent routine as an event handler that is called upon to process
an event (although Tools Plus events are much easier to work with than traditional toolbox events). As you can see,
your event handler routine simply responds to an event. One thing to note is that Tools Plus does not differentiate
between ÒhavingÓ an event and Ònot havingÓ an event, like a polling routine does. In Tools Plus, your event handler
routine is called if any event is available, including a null event (i.e., when WaitNextEvent returns with a value of
false). The doNothing case in your applicationÕs main event handler routine takes care of null events, and is equivalent
to Ònot havingÓ an event.

When reviewing an example of event handler routines in this manual, keep in mind that this is only an example, and
not a Tools Plus prerequisite. You will probably write a main event handler that is more suitable to your own style of
programming and to your applicationÕs unique requirements. Your application can also have an event handler for any
or all of its windows. See the Event Management chapter for details about event handler routines.

Recursion in the Event Handler Routine
Tools PlusÕs use of an event handler routine instead of a traditional event loop lends itself to simpler and more
structured coding. It also introduces one potential hazard that does not exist in an event loop. In situations where your
event handler code takes a while to execute, you will hopefully decide to make your application a good citizen and
share the processor with other applications during this lengthy process. Tools Plus provides the
Process1EventWhileBusy routine to handle this by reading an event from the MacintoshÕs Event Manager, processing
it internally, and then calling your event handler routine.

The issue that arises is that your application will call Process1EventWhileBusy from within the event handler routine,
and Process1EventWhileBusy will likely call your event handler routine to process an event. It is important that you
write your event handler routine with awareness of this possibility, and make provisions accordingly. In the case where
your application calls the Process1EventWhileBusy, ask yourself Òwhat should this code do if my event handler gets
called while this code is executing?Ó In many cases, your lengthy code will be running in response to a doNothing
(idle) event, so itÕs a simple matter of calling Process1EventWhileBusy and telling it to ignore doNothing events, thus
preventing the calling code from being reexecuted. In more complex cases, you may need to set a flag that says ÒIÕm
running already, so donÕt reexecute me.Ó You could accomplish this as follows:

¥ Create a global boolean named alreadyRunning, and set it to false
¥ Before you start executing the lengthy process, test to determine if it is already running, as shown in the following

pseudo-code:
if not alreadyRunning then
 alreadyRunning = true;
 repeat
 do_something;
 Process1EventWhileBusy(true);
 until length_task_is_done;
 alreadyRunning = false;
end;

It is fairly easy to avoid problematic situations by exercising a little forethought. Another consideration to keep in
mind when calling Process1EventWhileBusy, is that the user can interact with the user interface by doing such things
as selecting a pull-down menu, activating another window, or clicking a button. Doing so will certainly resulting in
calling your event handler routine (which just called Process1EventWhileBusy). You can avoid this situation by
having your application display a wrist watch cursor, thereby preventing user interaction with other user interface
elements. Most developers will not want to use this inelegant option, opting instead to prevent recursion in a friendly
manner. For example, if a pull-down menu is used to start a lengthy process such as a sort, and your application calls
Process1EventWhileBusy during this process, an easy way to prevent recursion of that code is to disable the triggering
pull-down menu item until the sort is completed.

Tools Plus

88

System 5 and 6Õs Finder/MultiFinder, and System 7 and higher
There are some subtle differences between applications that run under Finder (System 5 and 6) and MultiFinder
(System 5 and 6) and System 7 and higher. Fortunately, Tools Plus runs under Finder, MultiFinder, and System 7 and
higher with minimal consideration on your part. Please note that there is a distinction between Finder and MultiFinder
when reading this manual. There are entire chapters dedicated to the Finder and MultiFinder in other books, as well as
in THINK Reference. Here is an overview.

Finder
Prior to System 5, the Macintosh had only the Finder to present and maintain its desk top metaphor. Finder lets you run
only one application at a time, so your application has access to all the memory the Macintosh has available. Desk
accessories (DAs) share the same heap memory with your application, and their windows can be intermingled with
windows in your application.

When the user opens or activates a desk accessory, Tools Plus automatically modifies your menus to disable all menus
and menu items that donÕt pertain to the desk accessory: only the File menuÕs Quit item is enabled, as are the Edit
menuÕs Undo, Cut, Copy, Paste and Clear items. When the desk accessory is closed or your applicationÕs window is
activated, the menus are automatically restored to their normal settings.

If your application has a tool bar and/or floating palettes, Tools Plus automatically creates a ÒDesk Accessory LayerÓ
in which all desk accessory windows are kept together to prevent their intermingling with your applicationÕs windows.
This is done to prevent the confusing condition that arises when the foremost window is a floating palette or tool bar
(belonging to your application), behind which is a desk accessory, followed by another window belonging to your
application. To the user, it may appear that the paletteÕs operations apply to the desk accessory.

Programming for the Finder is the simplest case, since you can consider your application to be always active and the
only application running.

MultiFinder
With the advent of System 5, MultiFinder made cooperative multitasking a reality on the Macintosh. Cooperative, or
ÒswitchedÓ multitasking as it is often called, lets several applications run simultaneously by cycling amongst all the
tasks. The term ÒcooperativeÓ is used because each application must cooperate with all others by relinquishing control
to give the others some processing time.

Under MultiFinder, the user can launch and run several applications. MultiFinder itself is an application that is always
running, busily presenting and maintaining the desk top metaphor. When an application is launched, it is allocated a
finite amount of memory that is specified by its SIZE resource.

Only one application can be active (the frontmost window) at a time under MultiFinder, even though, potentially, you
may be able to see dozens of windows from multiple applications simultaneously. Therefore, the active application is
temporarily ÒsuspendedÓ when another application (or desk accessory) is activated. Please note that suspended
applications can also receive events and processing time. Some of the SIZE resourceÕs settings specify how your
application behaves when it is suspended or resumed.

Tools Plus takes care of task switching. This includes ÒminorÓ switches in which your application gets some
processing cycles then allows other applications to do the same, and ÒmajorÓ switches in which your application is
either activated or deactivated. The Event Management chapter covers this topic in detail.

Desk accessories are handled slightly differently under MultiFinder in that they donÕt share memory with your
application. Instead, they inhabit the ÒDA layer.Ó The DA layer is like a single application in which all desk accessory
windows exist. Whenever the user clicks a desk accessory, the DA layer is activated. Tools Plus takes care of
interaction with desk accessories automatically. Whenever a desk accessory is activated, the menu bar is replaced with
the DA layerÕs menu bar, and your applicationÕs tool bar and floating palettes are hidden. Your applicationÕs menu bar
is restored when your application is activated, and the tool bar and floating palettes are displayed.

3 Designing Your Application

WaterÕs Edge Software 89

System 7 and higher
Programming for System 7 and higher is identical to programming for MultiFinder. Each desk accessory, however,
behaves like a separate application. Tools Plus takes care of this automatically.

+ Warning: All MultiFinder and System 7 (and higher) compatible applications must have a SIZE resource. The
Completing Your Application chapter details the requirements of the SIZE resource. THINK Pascal users
must create their own SIZE resource whereas THINK C/C++ and CodeWarrior users only need to
correctly set the settings within their compiler, and it will add the SIZE resource to your application. It is
best to always include a SIZE resource in your application.

The C Header file (ToolsPlus.h)
C When the Macintosh was originally created, Apple made a strong commitment to Pascal as the Òlanguage of choiceÓ

for Macintosh programming. Therefore, the MacintoshÕs toolbox was designed to work with Pascal calling
conventions and Pascal strings.

Fortunately, C allows you to access the Macintosh toolboxÕs Pascal functions and procedures from C by declaring
prototypes as having Pascal calling conventions:

pascal void WindowTitle (short Window, Str255 Title);

Pascal Strings versus C Strings

The one thing you should pay particular attention to is Pascal strings. In Pascal, a string is a constant or variable that is
from 1 to 255 bytes in length, prefixed with an additional length byte (byte zero). Pascal strings, unlike C strings, are
not null terminated. The Str255 structure is available in C to accommodate Pascal-style length-prefixed strings. It is
defined in the Types.h header file as:

typedef unsigned char Str255[256];

When you populate a Pascal string, remember to prefix the stringÕs text with Ò\pÓ to indicate that it is a Pascal string.
The example below illustrates this:

WindowTitle (18, "\pCustomer Inquiry");

You can use the P2CStr and C2PStr routines (defined in the pascal.h header file) to convert Pascal strings to C strings,
and C strings to Pascal strings.

Using C and/or Pascal strings in Tools Plus parameters

By default, Tools Plus assumes that you will use only Pascal strings for parameters in Tools Plus routines. This is
consistent with the Macintosh toolbox. C/C++ programmers have the option of using Pascal strings only, C strings
only, or a mix of either as desired when calling Tools Plus routines. Furthermore, you can make the decision to use
Pascal and/or C strings on a per-project basis, or you can set it once and apply those settings to all your projects.

The ToolsPlus.h header and the ToolsPlus.c source file both recognize two #defines that describe how you want to use
C strings in parameters to Tools Plus routines:

TOOLSPLUS_ALLOWS_CSTRINGS When set to 1, Tools Plus routines that have a string parameter
optionally accept a C string in place of a Pascal string

TOOLSPLUS_USES_ONLY_CSTRINGS When set to 1, Tools Plus routines that have a string parameter accept
only a C string (Pascal strings are not accepted)

Tools Plus

90

If you want toÉ Do the followingÉ
Use Pascal strings only
in all Tools Plus projects

No changes required (this is the default)

Use C and/or Pascal strings
in all Tools Plus projects

(1) In the ToolsPlus.h file, un-comment the following line:
 #define TOOLSPLUS_ALLOWS_CSTRINGS 1

(2) When you want to use a C string as a parameter in a Tools
Plus routine, use the routine name in lower case letters
(e.g., use alertbox instead of AlertBox)

Use C strings only
in all Tools Plus projects

(1) In the ToolsPlus.h file, un-comment the following line:
 #define TOOLSPLUS_USES_ONLY_CSTRINGS 1

(2) Use Tools Plus routines as you normally do, except with C
strings in place of Pascal strings.

Use Pascal strings only
on a per-project basis

No changes required

Use C and/or Pascal strings
on a per-project basis

(1) Add the following line to your prefixes*:
 #define TOOLSPLUS_ALLOWS_CSTRINGS 1

(2) When you want to use a C string in a parameter in a Tools
Plus routine, use the routine name in lower case letters
(e.g., use alertbox instead of AlertBox)

Using C strings only
on a per-project basis

(1) Add the following line to your prefixes*:
 #define TOOLSPLUS_USES_ONLY_CSTRINGS 1

(2) Use Tools Plus routines as you normally do, except with C
strings in place of Pascal strings.

*Setting your prefixes

CodeWarrior uses a file to store prefixes (information that is processed at the beginning of each source file). You can
set the name of your projectÕs prefix file in your projectÕs Preferences under the Edit menu. The C/C++ Language
preferences panel defaults to a prefix file named ÒMacHeaders.hÓ. Create a prefix file in the same folder as your
project and enter its name in the C/C++ Language preferences panel. A good name would be ÒMyProject.prefixÓ or
something similar. Typically, your prefix file will contain the following two lines:

#include <MacHeaders.h>
#include "ToolsPlus.h" // OptionalÉ may be in your source file instead

If you want your CodeWarrior project to use C strings only as parameters in Tools Plus routines, insert a line just
before the #include "Tools Plus" that reads:

#define TOOLSPLUS_USES_ONLY_CSTRINGS 1

Symantec C/C++ stores its prefixes as part of the project. The Edit menuÕs Options lets you set your prefixes (a
THINK C or Symantec C++ sub-option may be available). Typically, your prefix file will contain the following two
lines:

#include <MacHeaders.h>
#include "ToolsPlus.h" // OptionalÉ may be in your source file instead

If you want your Symantec C/C++ project to use C strings only as parameters in Tools Plus routines, insert a line just
before the #include "Tools Plus" that reads:

#define TOOLSPLUS_USES_ONLY_CSTRINGS 1

Remember, these prefix changes are required only if you want to specify the use of C and/or Pascal strings on a per-
project basis. If you want to use a specific setting for all your projects (such as C strings only), modify the required
single line in the ToolsPlus.h header file.

3 Designing Your Application

WaterÕs Edge Software 91

Appearance Manager
Applications written with Tools Plus will run under Mac OS 8 and its Appearance Manager. Tools Plus also provides
services that facilitate the development of applications that can run on Macs with the Appearance Manager or without,
in the Appearance ManagerÕs ÒSystem 7 compatibilityÓ mode (a user interface that looks like System 7) or in its gray
scale theme taking advantage of AppleÕs new windows and controls. In most cases, negligible effort is required to
accomplish this compatibility.

Multi-system compatibility with custom window & controls

Even though the Appearance Manager includes great looking windows, floating palettes, 3D buttons, tabs, sliders and
other controls, your application will likely need to use custom WDEFs (window definitions) and CDEFs (control
definitions) to get similar level of polish when your application runs on a Mac without the Appearance Manager. A
floating palette like the attractive Infinity Windoid (included in the Tools Plus Developer Kit) is the most commonly
used WDEF. CDEFs that are in the highest demand are 3D buttons, tabs, and sliders, like those found in SuperCDEFs
(also included in the Tools Plus Developer Kit).

When you create your application, assign your CDEFs and WDEFs resource IDs that do not conflict with AppleÕs
standard resources. Assigning resource IDs of 128 or higher to your custom definitions is a good idea. Write your
entire application such that it uses the custom resources throughout. You accomplish this by using custom procIDs
instead of AppleÕs standard procIDs wherever you want to use a custom window or button. ProcIDs are explained in
this manual in the chapters detailing windows, buttons and scroll bars. If you are creating your window layouts using
dialogs (ÔDLOGÕ resources), create controls (ÔCNTLÕ resources) in place of standard push buttons, radio buttons and
check boxes because controls let you specify a procID that is different from AppleÕs standard procIDs.

When you have your application working with the custom WDEFs and CDEFs, modify your applicationÕs
initialization routine shortly after using InitToolsPlus. Tools PlusÕs UsingAppearanceManager routine lets your
application know if it is running with the benefit of the Appearance Manager. If it is, then AppleÕs standard window
and control procIDs will be mapped to the Appearance ManagerÕs 3D windows and controls. The following sample
code shows how you can replace your custom window and control procIDs with AppleÕs standard procIDs through
your application:
if UsingAppearanceManager then

begin
ReplaceWindowProcID(ordPaletteProc, 1985);
ReplaceWindowProcID(ordPaletteProc + 2, 1993);
ReplaceControlProcID(myCheckBoxProc, checkBoxProc);
ReplaceControlProcID(myRadioButProc, radioButProc);

end;

Using the Appearance Manager

Your application can take advantage of the extended set of user interface elements and services that are offered only in
the Appearance Manager. This manual does not detail the Appearance Manager, but it does explain how to prepare
your Tools Plus application to use the Appearance Manager, and later, how to make use of many of the new user
interface elements. For complete information about the Appearance Manager, please obtain an Appearance Manager
SDK (Software Developer Kit) from Apple, or refer to the most recent edition of Inside Macintosh.

Tools Plus 680x0 libraries automatically have access to the Appearance Manager if it exists on the Macintosh that is
running your application. This means that all Tools Plus routines that can take advantage of the Appearance Manager
will do so if one is available. All of Tools PlusÕs PowerPC components are set up to default to the same behavior. In all
projects generating PowerPC code, you must add the AppearanceLib library into your project, and set the
AppearanceLib library to Òimport weakÓ (this lets your Appearance-savvy PowerPC application launch on a Mac that
doesnÕt have an Appearance Manager). Your application can use Tools PlusÕs HasAppearanceManager routine to
determine if the Appearance Manager is available. The files you need to support the Appearance Manager should be
included with your compiler. They are AppearanceLib (PowerPC stub), Appearance.h (C/C++ header) or
Appearance.p (Pascal interface). If these files were not shipped with your compiler, you can get them from Apple.

Tools Plus

92

If you donÕt have the Appearance Manager files you need to compile your PowerPC application, make sure you do not
include the AppearanceLib library in your project. You will also need to remove (or comment out) one line of code in
your ToolsPlus.h header file or your ToolsPlus.p interface file, as indicated below:

C #define USE_APPEARANCE_MANAGER 0

Pascal {$SETC USE_APPEARANCE_MANAGER := false}

Embedding Controls

The Appearance Manager introduces a concept of control embedding in which a control becomes a container for one
or more other controls. An example of this is a tab control which looks like a panel with multiple tabs across the top,
like a paper file folder. Each tab control will likely have one logical ÒlayerÓ of controls corresponding to each tab at
the top of the control. To accomplish this, you create the tab control, then create a Òuser paneÓ control (which is
invisible) and imbed it into the tab control. The tab control now owns the user pane control. Next, create all the
controls for the one layer that corresponds to a single tab. Each of these controls falls upon the user pane control, and
are automatically embedded into the user pane. The user pane control now owns, say, two list boxes and three check
boxes. When you hide a user pane control, all its subcontrols are hidden automatically. This way, you can hide an
entire layer of controls with a single routine. Similarly, if you disable the tab control, all the controls contained therein
are automatically disabled. At the time of this writing, the following controls are containers that can own other
controls: tab control, group box control, placard control, window header control, and the user pane control. Apple may
create new controls later than can be container controls.

Tools Plus provides the following routines for embedding: SetAutoEmbed, EmbedButtonInButton,
EmbedButtonInScrollBar, EmbedScrollBarInButton, and EmbedScrollBarInScrollBar.

- Note: For complete information on Appearance Manager concepts, the Appearance ManagerÕs features, and how to
best use the Appearance ManagerÕs new controls, please read the documentation pertaining to the Appearance
Manager. It is available from Apple or in the latest issue of Inside Macintosh. This manual does not duplicate
that material.

Dialogs and the Dialog Manager
When designing an application that uses Tools Plus libraries, avoid the toolboxÕs Dialog Manager routines. You may
still use alerts, however. The Dialog Manager is effective at creating simple windows, but it quickly reaches its limits
when trying to implement the diversity or complexity of features available on most windows seen in todayÕs
commercial software. By comparison to Tools Plus, the Dialog Manager is also much more difficult and cumbersome
to use.

Tools Plus performs numerous tasks behind the scenes to ensure that all elements of your user interface work together
seamlessly, and when the Dialog Manager is introduced into the equation, the simplicity and elegance of Tools Plus
can be easily overshadowed by the Dialog ManagerÕs idiosyncrasies.

As a rule, use Tools Plus windows instead of using the Dialog ManagerÕs modal or modeless dialogs. Tools Plus also
includes routines that let you use standard resources such as ÔDLOGÕ, ÔDITLÕ, ÔWINDÕ, ÔMENUÕ (etc.) in your
application. This gives you all the advantages of Tools Plus without inheriting any of the disadvantages of the
awkward and limiting Dialog Manager.

Power Macintosh Performance
Tools Plus libraries are available in native Power Macintosh format, meaning they have been compiled specifically to
take advantage of the enhanced performance offered by a PowerPC processor. You may notice, however, that parts of
your application do not experience any performance improvements, and in some cases, native Power Macintosh
applications may actually be slower than their 680x0 counterparts.

One of the reasons for this is that significant portions of the Power MacintoshÕs System 7 toolbox (written by Apple)
are made up of 680x0 code, and are therefore emulated by the PowerPC processor. This phenomenon is similar to

3 Designing Your Application

WaterÕs Edge Software 93

running a standard Macintosh application on a Power Macintosh: it works, but itÕs not quick. In early versions of
System 7, much of QuickDraw was being emulated on PowerPCÕs resulting in unflattering graphics performance.

We urge you to write your applications using standard Macintosh toolbox calls in spite of the short-term performance
degradation. Doing so will help to ensure that your applications continue to run on newer Power Macintoshes, and on
new PowerPC processors that will be created in the future. In System 7.6, for example, the Resource Manager was
rewritten and became fully PowerPC native, and Mac OS 8 was rewritten to be entirely PowerPC native. This provided
additional performance without having to make any changes to your applications.

Writing your own work-arounds may result in an immediate performance improvement while sacrificing compatibility
with future Power Macintoshes, or not taking advantage of improvements that will be available as the Power Mac
toolbox matures.

Off-screen GrafPorts and GWorlds
If your application creates off-screen grafPorts or GWorlds, which is the case for printing and animation, you can
reduce many risks by making sure your grafPort is a valid window when using Tools Plus routines. This is very easy to
do with the following code:

1. Before you work on your off-screen grafPort, do the following (shown in C. Pascal coders exclude the
ampersand):

GetPort(&savedPort); /*Store current grafPort */
SetPort(myOffscreenPort); /*Make your off-screen port current */

2. Perform the necessary work on your off-screen grafPort.

3. When you are finished working on your off-screen grafPort, and before you resume using Tools Plus routines,
do the following:

SetPort(savedPort); /*Restore the original grafPort */

Writing Plug-Ins or External Code Modules
Some applications such as AdobeÕs Photoshop support externally written code modules typically called Òplug-ins.Ó
They let a developer create a Òmini applicationÓ that augments the host applicationÕs feature set, such as adding an
image processor or filter to a graphics application. Within this user manual, we use the term plug-in as a generic term
for an external code module. Tools Plus for CodeWarrior can be used to write plug-ins. Other Tools Plus libraries can
not.

The host application for which you are writing your plug-in determines how your plug-in is structured. Plug-ins are
typically structured in one of two ways:

¥ The host application surrenders control to the plug-in which does all its work including getting and processing
events. When the plug-in quits, control is returned to the host application. The plug-in is seen as the ÒmasterÓ
while it is running because it gets and distributes events. It may even give events to the host application for
processing such as when the host applicationÕs windows need updating. We call this a Òplug-in masterÓ structure.

¥ The host application loads the plug-in then gives it commands such as ÒinitializeÓ or Òprocess this toolbox event.Ó
The plug-in does nothing other than respond to commands because the host application gets and distributes events.
We call this a Òhost masterÓ structure.

Before you start writing your plug-in, you first need to obtain a Òplug-in development kitÓ and/or documentation from
the host applicationÕs author. The kit teaches you how to write plug-ins for that application and it will likely include
libraries containing routines to let your plug-in communicate with the host application. Hopefully, it will include
information about compiling your source code into a plug-in, and how to make the plug-in accessible to the host
application. After you become familiar and comfortable with this information, you can move on to using Tools Plus to
write your plug-in.

Tools Plus

94

A plug-in written with Tools Plus sees only its own windows and not those belonging to the host application. Think of
the plug-in as a stand-alone application and you will understand how Tools Plus is working. Plug-ins can open as
many modal windows as they want because the plug-in runs, for all practical purposes, as an application that is always
active. Plug-ins that have a Òhost masterÓ structure can also open a modeless window providing that it is the plug-inÕs
sole window, but this introduces additional complexities as detailed later.

Tools Plus Plug-In Libraries
The Tools Plus library used in plug-ins, namely ÒToolsPlus Plug-In.LibÓ, is functionally equivalent with the regular
Tools Plus libraries except in the following ways:

¥ The plug-in cannot initialize the Macintosh toolbox. This is a safeguard to prevent double initialization.
¥ The plug-in cannot allocate more master handle blocks (MoreMasters) because they canÕt be deallocated later.
¥ The plug-in has indirect access to the host applicationÕs pull-down menus. The Edit menu, for example, is always

referenced as menu number 2 (using the mEditMenu constant), regardless of the ÔMENUÕ resource ID used by the
host application to create the Edit menu.

¥ The plug-inÕs ability to alter the host applicationÕs pull-down menus is limited (i.e., no adding or deleting).

680x0 Plug-Ins
The plug-inÕs ÒmainÓ routine should be as small as possible, as it will have to fit closely along with several
CodeWarrior libraries that were compiled using the small code model (16-bit) addressing. Compile your project with
the Òmulti-segmentÓ option on. Newer CodeWarrior compilers offer an Òextended resourceÓ option that should be on.
Compile your project using the smart code model (mixed 16-bit and 32-bit), or large code model (32-bit). All these
options combined let you create a plug-in that exceeds the 32K code limit for single segment 16-bit code resources.

680x0 plug-ins, like ÔCODEÕ resources, reference their globals by using the A4 register instead of the A5 register that
is used by applications. To account for this, your plug-in needs to execute the following code immediately upon
entering its ÒmainÓ routine:

C/C++ plug-ins:
long oldA4 = SetCurrentA4();
RememberA4();

Pascal plug-ins (oldA4 is declared as a longint):
oldA4 := SetCurrentA4;
RememberA4;

Just before your plug-in leaves its ÒmainÓ routine, it must execute the following code:
SetA4(oldA4);

PowerPC Plug-Ins
A PowerPC plug-in is easier to create than a 680x0 plug-in because its project file does not need special CodeWarrior
libraries (although it does need to used a special ÒToolsPlus Plug-In.LibÓ library), and your code does not have to
interact with the A4 register. You also donÕt need to be concerned with the size of your ÒmainÓ routine or its placement
in proximity to CodeWarrior libraries.

Writing The Plug-In
Your plug-in should be written as a routine that will be called by the host application. The name of this main routine
and its parameter list are defined in the plug-inÕs documentation (available from the host applicationÕs author). Your
plug-inÕs main routine can call other routines that are defined in your plug-in, Tools Plus, the Macintosh toolbox, or
even the host application providing you have the C/C++ headers and/or Pascal interfaces to those routines. Inside your
plug-inÕs main routine, it will have one of two generic structures, a Òplug-in masterÓ or a Òhost master.Ó

3 Designing Your Application

WaterÕs Edge Software 95

Example of a ÒPlug-In MasterÓ Structure
1. The host application calls your plug-in (host loses control to your module)

2. Your plug-in must initialize itself by doing the following:
¥ 680x0 plug-ins conduct A4 preparation
¥ Initialize Tools Plus using InitToolsPlus
¥ Initialize your plug-inÕs variables
¥ Allocate your plug-inÕs dynamic objects

3. Your plug-in opens a modal window, such as a dBoxProc or a movableBoxProc, and populates the window with
the required user-interface elements using Tools Plus routines. Do not create any menus or alter the hostÕs menus.

4. Your plug-in calls the ProcessEvents routine which starts Tools PlusÕs cycle of getting events, applying them to
your plug-in, and calling your event handler routine to respond to events. In more complex cases, your plug-in can
inspect an event before Tools Plus processes it. This is done in an event filter routine which is detailed in the
Event Management chapter of this manual.

5. When the user quits your plug-in, your plug-in must deinitialize itself by doing the following:
¥ Deinitialize Tools Plus (DeinitToolsPlus). This closes any open windows and deallocates dynamic objects.
¥ Deallocate the plug-ins dynamic objects
¥ 680x0 plug-ins calls the toolboxÕs SetA4 routine.

6. Your plug-in terminates and the host application regains control.

Example of a ÒHost MasterÓ Structure
Your plug-inÕs ÒmainÓ routine needs a case for each command that can be invoked by the host application. Here are
some examples of commands that can be issued by the host application and how your plug-in would respond to them:

Initialize: Your plug-in initializes itself by doing the followingÉ
¥ Initialize Tools Plus using InitToolsPlus
¥ Allocate your plug-inÕs dynamic objects
¥ Initialize your plug-inÕs global variables

Deinitialize (or quit): Your plug-in deinitializes itself by doing the followingÉ
¥ Deallocate your plug-inÕs dynamic objects
¥ Deinitialize Tools Plus using DeinitToolsPlus

Process an event: Your plug-in processes the supplied toolbox event (detailed in the Event Management chapter)É
ProcessToolboxEvent(&theEvent);

Deactivate modeless window: Your plug-in tells Tools Plus to become Òsuspended,Ó thereby deactivate the window by
doing the followingÉ

¥ Define a variable of EventRecord type
¥ Set the ÒwhatÓ field to osEvt (15) and the ÒmessageÓ field to $01000000
¥ Call the same code you do in response to the Òprocess an eventÓ command (above)

Activate modeless window: Your plug-in tells Tools Plus to Òresume,Ó thereby activate the window by doing the
followingÉ

¥ Define a variable of EventRecord type
¥ Set the ÒwhatÓ field to osEvt (15) and the ÒmessageÓ field to $01000001
¥ Call the same code you do in response to the Òprocess an eventÓ command (above)

doManualEvent in a Plug-In
Most applications can ignore Tools PlusÕs doManualEvent event, but chances are that your plug-in will need to
respond to them. Whenever Tools Plus detects an event in a foreign window, that being one that was not created with a
Tools Plus routine, it reports it to your plug-in as a doManualEvent event. Your host applicationÕs windows fall into
this category. The most common occurrence of this is when your host application needs to have a window refreshed, in
which case the raw toolbox event record within Tools PlusÕs event record will report an update event and a pointer to
the target window.

Tools Plus

96

Be certain that your plug-in responds appropriately to this situation by informing the host application that one of its
windows needs to be updated. If your plug-in does not do this, it will stop receiving doNothing events (null events)
while the Window Manager frantically reports the need to update the target window.

- Note: Plug-in specifics vary from one host application to another. WaterÕs Edge Software can assist you with queries
and information about Tools Plus, but we donÕt have expertise for all the possible host applications that support
plug-ins.

What to read next
A synopsis of each chapter can be found at the beginning of each section of this manual. Familiarize yourself with the
basic concepts in all the remaining sections before you start programming. You may then want to learn about the
intricacies of each Tools Plus routine.

Devote considerable attention to the chapter on Event Management. It explains task switching, and details each kind of
event that can be reported by Tools Plus, as well as how to respond to those events. You will be better equipped to
design your application when you know what to expect in your event handler routine.

The Special Routines section lists Macintosh Toolbox routines that require special attention, in that they should be
used with caution, or not at all. Using some of these routines will interfere with Tools PlusÕs normal operations,
whereas other routines are obsolete by Tools PlusÕs wealth of services and features.

The section on Completing Your Application is not news to Macintosh programming veterans. It is there for the
benefit of new developers to help them finish their application and make it a double-clickable program. The SIZE
resource and its required settings are detailed there.

4 Initialization

WaterÕs Edge Software 97

4 Initialization

All Macintosh applications begin with very similar code that is needed to initialize the Macintosh toolboxÕs various
managers. This code must be executed at the beginning of your application before doing anything else. You can
optionally have Tools Plus do this for you in the InitToolsPlus routine.

C InitGraf(&qd.thePort); /* Initialize Macintosh toolboxÉ */
InitFonts(); /* (can be done by InitToolsPlus) */
InitWindows(); /* */
InitMenus(); /* */
TEInit(); /* */
InitDialogs(0L); /* */
SetApplLimit(value of A7 - stack size); /*Set stack size (details later) */

/*Initialize Tools PlusÉ */
if (InitToolsPlus(&Event, &MyEventHandler, &MyEventFilter, 10, 5, initTE32KBuffer,

initUseColor)){

See the InitToolsPlus routine for details on initializing Tools Plus.

Pascal InitGraf(@qd.thePort); {Initialize Macintosh toolboxÉ }
InitFonts; { (can be done by InitToolsPlus) }
InitWindows; { }
InitMenus; { }
TEInit; { }
InitDialogs(nil); { }
SetApplLimit(value of A7 - stack size); {Set stack size (details later). }

{Initialize Tools PlusÉ }
if InitToolsPlus(@Event, @MyEventHandler, @MyEventFilter, 10, 5, initTE32KBuffer,

initUseColor) then

See the InitToolsPlus routine for details on initializing Tools Plus.

THINK Pascal performs all initialization automatically providing you leave the ÒInitializationÓ compiler
directive on (this is the default). All you need to do is initialize Tools Plus with InitToolsPlus at the
beginning of your application. THINK PascalÕs automatic initialization finishes off by doing the following
additional tasks:

MaxApplZone;
for i := 1 to 10 do
 MoreMasters;

If you turn the Initialization directive off by adding {$I-} before your begin statement in your main
program, you will have to initialize the various toolbox managers yourself or let InitToolsPlus do it for
you.

- Note: THINK Pascal users as well as older versions of SymantecÕs C/C++ donÕt use the new C/C++ Universal
Headers and Universal Pascal Interfaces (UPIs), so you will need to use thePort in place of qd.thePort
in the InitGraf routine.

Your application initializes Tools Plus libraries with the InitToolsPlus routine. Call InitToolsPlus as early as possible
since InitToolsPlus creates unrelocatable objects in memory (pointers), and doing so at the the start of your application
eliminates memory fragmentation. In 680x0 applications, InitToolsPlus also loads all the ÔCODEÕ segments containing
Tools Plus libraries into memory where they remain as long as your application is running.

Tools Plus

98

Stack and heap
If you are already familiar with the stack and the heap in your application, you can skip this section and just review the
Set68KStackSize and ChangeStackSize routines at the end of this chapter. This section is a very condensed description
of the stack and heap. Most applications will not need to concern themselves with these details.

The total amount of memory that is available to your application is shared by objects your application creates and
controls, and by things that happen automatically when your application is running.

ApplicationÕs total memory

high memory

low memory

Stack (variable)

ß

Application overhead (fixed)

Ý

Heap limit
(maximum stack size)

Heap
(variable up to heap limit)

When your application is first launched, QuickDraw globals and
other fixed application overhead is allocated high in memory.
These are things that are fixed in sized and are automatically
maintained by the various toolbox managers.

Your applicationÕs stack is also automatically maintained, but it is
affected by things that are happening in your application. The stack
is a Òlast in first outÓ (LIFO) queue and contains temporary
information only like local variables and return addresses. When a
routine is called, the stack temporarily grows by a certain amount.
The stack is reduced by the same amount when the routine returns
control to the caller. Routines that have lots of local data (such as
Str255 local variables) and recursive routines consume more stack
space. The stack starts from high memory and grows downward.

The heap contains your executable code, resources that are loaded
into memory, and other dynamically allocated objects. The heap is
populated starting from low memory and grows upward as
required. You can think of this as your applicationÕs memory.

MacintoshÕs Memory Manager allows the heap to grow up to a specified limit that is set when your application is
launched. The heap limit is commonly referred to as the stack size because this limit not only defines the maximum
size to which the heap can grow, but it also defines the maximum size of the stack before a collision occurs between
the stack and the heap.

It is important that you define a large enough stack space because although the heap wonÕt grow beyond the heap limit,
the stack grows as required and may collide with the heap. If this happens, objects in your heap can become corrupted.
The Memory Manager has a collision sniffer that causes a system error 28 when the stack moves into application heap.
Unfortunately, the sniffer only checks the stack sixty times a second and can miss quick stack transgressions.

All Power Macintosh compilers and THINK Pascal let you set your stack size (and heap limit) from your development
environment. The 680x0 THINK C/C++ compilers and the 680x0 CodeWarrior compilers do not have this facility
built into the development environment, so you can use the Tools Plus routines Set68KStackSize or ChangeStackSize.

Although the Memory Manager allows the heap to grow upward to the heap limit, InitToolsPlus calls the toolboxÕs
MaxApplZone routine thus forcing the heap to grow to its maximum size. This is a good practice because it makes the
most use of the available memory, reduces memory fragmentation, and reduces purging and subsequent reloading of
purgeable objects in the heap. This approach also makes stack collisions with the heap show up while your application
is still under development where you can remedy the problem.

- Note: Most applications will do perfectly well with the default heap limit setting. If you suspect your applicationÕs
stack is getting close to the limit during stand-alone execution, use the toolboxÕs StackSpace routine during
development to determine the amount of unused space available to the stack, then increase the stack space if
required.

4 Initialization

WaterÕs Edge Software 99

Other application initializing activities
After your application has initialized the Macintosh toolbox (optionally done by InitToolsPlus), and it has initialized
Tools Plus (using the InitToolsPlus routine), it may need to carry out a number of other activities that are associated
with starting up an application, such as:

¥ Opening preferences and settings files
¥ Searching directories for optional files
¥ Creating temporary work files
¥ Allocating dynamic objects (using pointers and handles)
¥ ÒPersonalizingÓ your application the first time it is run (the user must enter their name and a serial number)
¥ User name and password

Be careful to avoid calling any event processing routines during your applicationÕs initialization code because doing so
may inadvertently process the Òopen applicationÓ, Òopen documentsÓ or Òprint documentsÓ Apple Events before your
application is ready to deal with them. The Tools Plus routines to avoid during your startup code are
Process1EventWhileBusy, ProcessToolboxEvent, AlertBox and AlertBox3. If you must call any of these routines,
youÕll need a global Òapplication is ready to process eventsÓ flag that is set to true only when your applicationÕs
initialization is complete, and your main event handlerÕs and window event handlersÕ code is bypassed if the flag is not
set.

..

InitToolsPlus
Initialize Tools Plus.

C pascal Boolean InitToolsPlus (Ptr Event, ProcPtr MyEventHandler,
ProcPtr MyEventFilter, short MoreHandles, short MaxWindows,
short TEBufferSize, long InitSpec);

Pascal function InitToolsPlus (Event: PTR; MyEventHandler ProcPtr;
MyEventFilter ProcPtr; MoreHandles: INTEGER; MaxWindows:
INTEGER; TEBufferSize: INTEGER; InitSpec: LONGINT): BOOLEAN;

This routine initializes variables and records that are required by Tools Plus. It must be called once at the beginning of
your program.

Event is the address of your global Tools Plus event record. Tools Plus populates this record with event information
whenever Tools Plus reports an event to your application. You should define a global Tools Plus event record (of
TPEventRecord type) for your application, then use this record throughout your application. In C/C++ applications, the
address of your event record is passed as &Event, assuming that the global variable is named ÒEvent.Ó In Pascal it is
passed as @Event.

MyEventHandler is the address of your applicationÕs main (default) event handler routine. Tools Plus calls this routine
to respond to Tools Plus events. In C/C++, simply enter your event handler routine name. In Pascal, preface your
routine name with Ò@Ó to pass the address. Internally, InitToolsPlus allocates and uses a UPP if required. The UPP is
deallocated when DeinitToolsPlus is called. Your event handler routine has the following C/C++ prototype or Pascal
interface:

C pascal void MyEventHandler (Ptr CustomDataPtr)
{
}

Pascal procedure MyEventHandler (CustomDataPtr: Ptr);
begin
end;

Tools Plus always passes a nil custom data pointer. See the Event Management chapter for details on how to write
your event handler routine.

Tools Plus

100

MyEventFilter is the address of your applicationÕs event filter routine. Use nil if your application does not have an
event filter routine. Tools Plus calls this routine to process a toolbox event before it is passed to Tools Plus for
processing. In C/C++, simply enter your event filter routine name. In Pascal, preface your routine name with Ò@Ó to
pass the address. Internally, InitToolsPlus allocates and uses a UPP if required. The UPP is deallocated when
DeinitToolsPlus is called. Your event filter routine has the following C/C++ prototype or Pascal interface:

C pascal Boolean MyEventFilter (EventRecord *theEvent)
 {
 /* Inspect and possibly modify the toolbox event record */

 return(1); /*Should Tools Plus process the event? */
 }

Pascal function MyEventFilter (var theEvent: EventRecord): Boolean;
 begin
 {Inspect and possibly modify the toolbox event record}

 MyEventFilter := true; {Should Tools Plus process the event? }
 end;

See the Event Management chapter for details on how to write your event filter routine.

MoreHandles specifies the number of additional ÒHandle BlocksÓ that are created during initialization. THINK C, and
CodeWarrior compilers donÕt automatically create any handle blocks, while THINK Pascal automatically creates 11
blocks, each containing 64 handles and consuming 512 bytes per block. The number of additional blocks created
during Tools Plus initialization is specified by MoreHandles, which can have a value between 0 and 128. In THINK
Pascal, the default number of blocks is usually enough, so you will specify 0. In THINK C and CodeWarrior
compilers, a dozen blocks is usually enough.

MaxWindows declares the maximum number of windows that may be simultaneously open in your application. This
number should be kept to a realistic minimum, since a small amount of memory (less than 300 bytes x MaxWindows)
is consumed, regardless if a window is ever opened or not. InitToolsPlus allocates one window record for each
window specified by MaxWindows, plus one additional window that is used exclusively by Tools Plus. This
preallocation of window records is done in order to eliminate memory fragmentation. It is a small price to pay, in
terms of memory consumption, to prevent memory fragmentation, and it carries no negative side effects.

Although Tools Plus supports up to 250 windows, Mac OS slows down progressively as more windows are opened.
The realistic limit, due to Mac OS performance and to the userÕs adverse experience in managing too many windows,
is somewhere around thirty open windows. If you allow a limit of 50 windows, the user will perceive this to be an
ÒunlimitedÓ number of windows.

TEBufferSize specifies the size of text editing buffers (maintained by Tools Plus) used for cutting, copying, pasting,
and storing copies of text for the Undo/Redo feature. Use a value of 255 to 32767, which represents the largest field
you will have in your application. When you reduce this figure, you can conserve as much as 128K of your
applicationÕs memory, but you limit the size of text that is copied or pasted. For example, if you set TEBufferSize to
255, only the first 255 characters of the clipboard are pasted into your applicationÕs fields. Conversely, you can select
several hundred characters of text typed into your applicationÕs field, and when you select the Edit menuÕs Copy
command, only the first 255 characters are copied to the clipboard. The constants initTEStr255Buffer and
initTE32KBuffer are provided for your convenience. If you are unsure what value to give, use initTE32KBuffer and
allocate plenty of memory to your application.

InitSpec specifies various Tools Plus initialization options. The value for this 4-byte long integer can be specified by
adding a set of constants to obtain the desired result.

Optionally choose only one of the following Color QuickDraw optionsÉ
initUseColor Use Color QuickDraw if it is available on the Macintosh running your

application. If your application is running on a Macintosh SE or higher with a
color or gray-scale monitor, Tools Plus will take advantage of the available
colors or shades of gray. Tools Plus will still run perfectly if Color QuickDraw
is unavailable. Tools Plus uses Color QuickDraw by default, so you can omit
this option.

4 Initialization

WaterÕs Edge Software 101

initIgnoreColor Ignore Color QuickDraw. All drawing is done in black and white. This option
saves memory and simulates your application running on a Macintosh without
Color QuickDraw. Note that Tools Plus does not patch the system, and in some
cases the system may draw some objects, like highlights in list boxes and
editing fields, using color.

Optionally choose only one of the following TextEdit scrap optionsÉ
initUseTEScrap Tools Plus creates and maintains a local TextEdit1 scrap. This is more costly in

terms of memory (often 32K or more), and is necessary only if your application
has editing fields created by anything other than Tools Plus. At initialization,
Tools Plus copies the desk scrap2 to the TextEdit scrap.

initIgnoreTEScrap Tools Plus does not create a local TextEdit scrap. Instead, it works directly with
the desk scrap. This option can save you about 32K of application memory,
providing you use only Tools Plus fields or no editing fields at all.

Optionally choose only one of the following desk scrap optionsÉ
initDontUnloadDeskScrap Do not unload the desk scrap to disk when initializing Tools Plus. If this option

is excluded, InitToolsPlus first determines if the amount of free memory is
dangerously low (which can happen if a particularly large object was copied to
The Clipboard by another application). If memory is low (around 90K or less at
startup), the desk scrap is copied to disk thereby freeing up that memory in your
application.

initUnloadDeskScrap Always unload the desk scrap to disk when initializing Tools Plus, even if there
is ample memory. This option makes your application more memory
conservative. Before your application quits, remember to load the scrap back
using LoadScrap.

Optionally choose any of the following optionsÉ
initFasterWinDrag When the user clicks on an inactive windowÕs title bar to both activate it and

drag it to a new position, Tools Plus normally activates the window, refreshes it
if required, then lets the user drag it. Add this option if you need faster
performance, and windows will refresh after the user finishes dragging them.

initMacToolbox The InitToolsPlus routine initializes the MacintoshÕs toolbox before it does
anything else. Toolbox initialization is performed by calling the following
routines as described at the beginning of this chapter:

InitGraf(@qd.thePort);
InitFonts;
InitWindows;
InitMenus;
TEInit;
InitDialogs(nil);

If you use this option, make sure that you do not initialize the toolbox in your
own code. THINK Pascal initializes the toolbox automatically by default (you
can turn automatic initialization off by adding {$I-} just before the begin
statement in your main program).

initInheritHelp If a user interface element does not have the required Balloon Help message,
Tools Plus should search the parent object for the Help message. The default is
to exclude this option so that if a Help message is missing for an object, no
Help message is displayed. See the Balloon Help chapterÕs ÒHelp InheritanceÓ
section for details.

initReleaseResources When this option is used, Tools Plus calls ReleaseResource for any purgeable
and unlocked resources that it uses, such as icons and pictures. This keeps

1 The TextEdit scrap is a local copy of the desk scrap. It contains only text data, ignoring images and other kinds of data. Text scrap is necessary
only if your application uses editing fields that are not created by Tools Plus.

2 Desk (or System) scrap is equivalent to The Clipboard in that it is used to transfer text, images, or other kinds of data between applications and
desk accessories.

Tools Plus

102

memory as free as possible but may result in reduced performance, especially
when large resources are used in conjunction with slow media like floppies or
CD-ROMs.

By default, Tools Plus does not purge resources from memory. This results
in better performance because the first time a resource is accessed, it is loaded
from disk into memory and it stays there until there is a memory shortage. In
that case, when a new resource is loaded from disk, one or more old resources
are purged from memory and will be automatically loaded from disk the next
time they are accessed. The only negative impact to the default behavior is that
more master pointers (see InitToolsPlus) are required to permanently reference
all accessed resources.

initAutoSaveFieldString Automatically save the user-edited text in an active editing field before it is
deactivated. This option makes for much simpler coding, but it does not give
your application the opportunity to validate fieldsÕ contents on a field-by-field
basis. Instead, your application can edit the fieldsÕ contents in a batch when the
user clicks the OK button to process the entire window.

initAutoFocusChanges Automatically let the user tab to the next/previous active editing field, and
automatically process the userÕs click to an inactive (but enabled) editing field.
The same applies to other user interface elements that accept the keyboard
focus. This option makes for much simpler coding, but it does not give your
application the opportunity to validate fieldsÕ contents on a field-by-field basis.
When this option is used, the initAutoSaveFieldString option is automatically
used too to ensure that user-edited text in active editing fields is saved and
therefore not inadvertently lost.

initAppearanceManagerSavvy
This option works only if the Appearance Manager is available, otherwise it is
ignored. When you use this option, Tools Plus automatically substitutes
standard user interface elements for their equivalent elements in the
Appearance Manager. This lets you design your application for Macs that donÕt
have an Appearance Manager, and have the same application make use of the
Appearance ManagerÕs 3D user interface elements if they are available. The
controls that are affected by this option are:

¥ standard push buttons (pushButProc)
¥ check boxes (checkBoxProc)
¥ radio buttons (radioButProc)
¥ scroll bars (scrollBarProc).

All variants for these controls are also converted to the Appearance ManagerÕs
controls. The windows that are affected by this option are:

¥ standard document window (noGrowDocProc) with or without zoom box
¥ growable document window (documentProc) with or without zoom box
¥ standard modal dialog window (dBoxProc)
¥ plain dialog window (plainDBox)
¥ alternate, or shadowed dialog window (altDBoxProc)
¥ movable modal dialog window (movableBoxProc)
¥ dynamic alerts assume an appropriate Appearance Manager theme

The menu bar and all menus, including the lists in pop-up menus, all use the
Appearance ManagerÕs 3D menu definition. List boxes use the Appearance
ManagerÕs 3D scroll bars.

This option must be used if you want your list boxes, fields and pop-up
menus to take advantage of the Appearance ManagerÕs new controls.

initPureAppearanceManager
This option removes a number of inconsistencies between non-Appearance-
Savvy and Appearance-Savvy applications, specifically:

¥ Custom colors are not applied to pull-down menus because the
Appearance ManagerÕs theme takes care of all coloring

¥ Custom colors are not applied to pop-up menus because the Appearance

4 Initialization

WaterÕs Edge Software 103

ManagerÕs theme takes care of all coloring
¥ Custom colors are not applied to any controls because the Appearance

ManagerÕs theme takes care of all coloring
¥ On dialogs, Ôicon items are translated into non-selectable icon controls

that dim on an inactive window.
¥ On dialogs, ÔpictureÕ items are translated into non-selectable picture

controls that dim on an inactive window.
If the initPureAppearanceManager option is used, it automatically turns on the
initAppearanceManagerSavvy option.

initAllWindowsHaveBackgroundTheme
This option works only if the Appearance Manager is available, otherwise it is
ignored. When this option is used all windows you create using Tools Plus
routines are assigned an appropriate background theme. Alternatively, you can
assign background themes to individual windows.

Optionally choose only one of the following Live Window dragging and resizing optionsÉ
initLiveWindowDrag *Drag and resize windows in real time. By default (when this option is not

used), a dotted outline tracks the window while the mouse button is down, then,
when the user releases the mouse button, the window is moved or resized. This
option looks best on faster Macintoshes like G3s.

initLiveWindowDrag040 *Drag and resize windows in real time if your application is running on a
Macintosh with an Õ040 processor of faster. By default (when this option is not
used), a dotted outline tracks the window while the mouse button is down, then,
when the user releases the mouse button, the window is moved or resized. This
option looks best on faster Macintoshes like G3s.

initLiveWindowDragPPC *Drag and resize windows in real time if your application is running on a
Macintosh with a PowerPC processor of faster. By default (when this option is
not used), a dotted outline tracks the window while the mouse button is down,
then, when the user releases the mouse button, the window is moved or resized.
This option looks best on faster Macintoshes like G3s.

*See the SetLiveWindowDragging routine in the Windows chapter to turn live window dragging on or off under
your applicationÕs control.

InitToolsPlus returns a value of true if initialization was successful, otherwise false is returned.

There are a number of other Tools Plus routines that can help your application ascertain its runtime environment, such
as SystemVersion (what is the system version on the Mac that is running your application), HasAppearanceManager
(is an Appearance Manager available), and HasAppearanceManagerRoutines (is an Appearance Manager available and
does your application have access to its routines). You may want to take a few moments to peruse the Miscellaneous
Routines chapter to see what is available.

- Note: The initAppearanceManagerSavvy option may interfere with some visual aspects of your development
environment while you are programming with an Appearance Manager running, and with System Wide
Platinum Appearance turned off. This does not occur in the final application. In THINK Pascal, for example,
standard Mac OS controls, windows and menus will sometimes or partially take on the Appearance ManagerÕs
theme. Make sure that your application calls DeinitToolsPlus before quitting to help eliminate this. Keep in
mind that this anomaly does not occur in the final double-clickable application.

+ Warning: By default, THINK Pascal automatically initialized the Macintosh toolbox and allocates 11 master handle
blocks as detailed at the beginning of this chapter. Do not include the initMacToolbox option in the
InitToolsPlus routine unless you have instructed THINK Pascal not to automatically initialize the toolbox
by including {$I-} just before the begin statement in your main program. Initializing the toolbox twice
will certainly cause errors and crashes.

Tools Plus

104

Initialization Failure
InitToolsPlus will fail initialization for only two possible reasons: [1] a severe memory shortage exists, under which
Tools Plus cannot allocate sufficient memory for the additional handles or for its own structures, or [2] your
application is trying to run on a Macintosh with ROMs older than version 117. Those are the old 64k ROMs found in
the Macintosh 128K, Macintosh 512K, and Lisa (Macintosh XL). This will not occur in the Macintosh 512KE
(enhanced), or higher. Tools Plus will display an appropriate alert if the wrong ROMs are used.

If initialization fails, do not attempt to use any Tools Plus routines.

Other Initialization
InitToolsPlus also performs other initializing tasks that your application would normally have to do:

¥ All events are automatically flushed (cleared) from the event queue, such as keystrokes which may have
been typed from The Finder.

¥ The Òrandom number seedÓ is initialized to ensure that your application does not generate an identical
pseudo-random numeric sequence each time it runs.

¥ MaxApplZone is called to expand the applicationÕs heap zone to its limit.

The Cursor
The cursor is displayed as a wrist-watch when your application is launched by The Finder, and will remain as such
until it is changed by your application. Note, however, that Tools Plus behaves as though a normal cursor is displayed
in that it does not filter out clicks and typing (such as when your application sets the cursor to a wrist-watch).

CONST {Color QuickDrawÉ }
initUseColor = $00000000; {Use Color QuickDraw if available }
initIgnoreColor = $00000001; {Don't use Color QuickDraw }

{TextEdit ScrapÉ }
initUseTEScrap = $00000002; {Use TextEdit scrap }
initIgnoreTEScrap = $00000000; {Don't use TextEdit scrap }
initDontUnloadDeskScrap = $00000004; {Don't unload desk scrap }
initUnloadDeskScrap = $00000008; {Unload desk scrap to disk }

initFasterWinDrag = $00000020; {When activating a window, drag before }
{ refreshing for faster performance. }

initInheritHelp = $01000000; {Inherit Help messages from parent object }
initReleaseResources = $02000000; {Release resources when done }
initPureAppearanceManager = $08000000; {Adhere to 'pure' Appearance Manager }

{ principles (no color controls or menus) }
initAutoSaveFieldString = $00000080; {Automatically save edited text when a }

{ field is deactivated. }
initAutoFocusChanges = $00000400; {Automatically tab or click to the new }

{ keyboard focus. }
initAppearanceManagerSavvy = $20000000; {Convert standard ProcIDs to Appearance }

{ Manager's procIDs. }
initAllWindowsHaveBackgroundTheme = $10000000; {Fill Appearance-savvy windows with }

{ background theme. }

initMacToolbox = $80000000; {Initialize Mac toolbox (InitGraf etc.) }

initLiveWindowDrag = $00002000; {Drag/resize windows in real timeÉ }
initLiveWindowDrag040 = $00001000; { Éonly if running on an 040 or better }
initLiveWindowDragPPC = $00000800; { Éonly if running on a PowerMac }

{TextEdit and Undo/Redo buffer size: }
initTEStr255Buffer = 255; {255 characters }
initTE32KBuffer = 32767; {32K characters (maximum) }

..

4 Initialization

WaterÕs Edge Software 105

DeinitToolsPlus
Deinitialize Tools Plus.

C pascal void DeinitToolsPlus (void);

Pascal procedure DeinitToolsPlus;

Under rare circumstances, you may want to ÒdeinitializeÓ Tools Plus, that being to deallocate objects that were
dynamically allocated in your applicationÕs heap when Tools Plus was initialized. An example of when you would use
DeinitToolsPlus is if you are writing a plug-in using Tools Plus. The normal sequence of operations is as follows:

1 The host application (i.e., Photoshop) calls a plug-in that is written with Tools Plus.
2 As the plug-in is loaded, it consumes some stack space for its global variables including Tools PlusÕs

globals that consume about 2K.
3 The plug-in calls InitToolsPlus which dynamically allocates some structures that are used globally

throughout Tools Plus.
4 The plug-in opens a modal window and creates its user interface.
5 The plug-in processes events until the user dismisses the dialog.
6 The user dismisses the plug-inÕs dialog.
7 The plug-in closes the window.
8 The plug-in calls DeinitToolsPlus to deallocate Tools PlusÕs dynamically allocated structures and leave the

applicationÕs heap in the same condition it was found before InitToolsPlus was called.

The next time Photoshop calls the plug-in, the same series of steps are executed.

DeinitToolsPlus starts off by disposing of any color cursor information you may be using. It then closes all Tools Plus
windows, thereby deleting all the objects in the windows and reclaiming their memory. The window records that were
created by InitToolsPlus are then deallocated. Next, all cursor tables are deleted along with their zones, then finally the
remaining Tools Plus dynamic objects are deallocated.

Pull-down menus and hierarchical menus are not deleted by DeinitToolsPlus because in all likelihood, they were
created by the host application that calls your plug-in. Use the Tools Plus routines RemoveMenus or RemoveAllMenus
if you want to delete menus and reclaim their memory.

Applications that use DeinitToolsPlus will likely pass a value of zero (0) in the MoreHandles parameter when calling
InitToolsPlus. This is because the MoreHandles parameter specifies the number of master pointer blocks that are
allocated by InitToolsPlus. There is no way to deallocate these master pointer blocks, so itÕs best not to create a new
set each time that InitToolsPlus is called.

Normally, you never have to call DeinitToolsPlus because when an application quits, it destroys all the objects that
existed in the applicationÕs heap, and Tools PlusÕs dynamically allocated objects are automatically destroyed along
with your application.

..

Set68KStackSize
Set the maximum stack size in a 680x0 application.

C pascal void Set68KStackSize (long Bytes);

Pascal procedure Set68KStackSize (Bytes: LONGINT);

Power Macintosh compilers and THINK Pascal let you specify your applicationÕs stack size within your development
environment. The remaining compilers default to a (usually) safe limit. You can use Set68KStackSize to define the
stackÕs maximum size and thereby prevent the heap from growing beyond that point. This routine does not do anything
when compiled into a native Power Macintosh application because all Power Macintosh compilers let you define this
setting from within your development environment.

Tools Plus

106

Bytes indicates the maximum size of your applicationÕs stack in bytes.

Use Set68KStackSize at the end of your toolbox initialization, likely instead of the toolboxÕs more complex
SetApplLimit routine. Set68KStackSize must be executed before InitToolsPlus. You donÕt need to call MaxApplZone
because it is called by InitToolsPlus. Most applications will not need to use this routine.

..

ChangeStackSize
Change the maximum stack size in an application.

C pascal void ChangeStackSize (long Bytes);

Pascal procedure ChangeStackSize (Bytes: LONGINT);

This routine increases or decreases the stackÕs maximum limit by the indicated number of Bytes. Positive numbers
increase the stackÕs maximum size while negative numbers decrease it. Your application can use ChangeStackSize if
you know that your application will temporarily need to increase the stackÕs size, likely due to calling a recursive
function or a function with lots of local data. Most applications will not need to use this routine.

+ Warning: There is no guarantee that you will be successful in increasing the stack size. The heap may be very full or
it may contain locked or unrelocatable objects that prevent it from being reduced in size, and thereby
preventing the safe advance of the stack. Call the toolboxÕs StackSpace immediately after calling
ChangeStackSize to determine how much memory is available for the stack to grow.

..

SetParamRangeErrProc
Set the parameter range error action routine.

C pascal void SetParamRangeErrProc (ProcPtr userRoutine);

Pascal procedure SetParamRangeErrProc (userRoutine: ProcPtr);

By default, when you call a Tools Plus routine with a parameter that is out of range, such as attempting to open
window number 11 after you have initialized Tools Plus to allow a maximum of only 10 windows, Tools Plus delivers
an alert that states ÒError: Parameter passed to a Tools Plus routine is not within the legal range of values.Ó To
facilitate debugging, you can install your own action routine that will be called instead of displaying the parameter
range alert. If you have a stop point in this routine, you can step out of the routine line by line and eventually return to
the offended Tools Plus routine.

UserRoutine is the address of an action proc that is called by Tools Plus instead of displaying the parameter range
alert.

If you decide to use this routine, do so shortly after initializing Tools Plus to eliminate memory fragmentation. Tools
Plus takes care of allocating and deallocating UPPs as required in PowerPC applications and plug-ins. This is how you
set the parameter error action routine in C/C++:

SetParamRangeErrProc(myActionProc);

In Pascal, a similar statement is used except the Ò@Ó symbol indicates the address of a routine:

SetParamRangeErrProc(@myActionProc);

4 Initialization

WaterÕs Edge Software 107

The parameter error action routine is written as a Pascal procedure that has no parameters. Here is an example of how
your routine should be written:

C pascal void myParamErrHandlerProc (void)
 {
 // Your code goes here
 }

Pascal procedure myParamErrHandlerProc;
 begin
 {Your code goes here}
 end;

..

Tools Plus

108

5 Windows

WaterÕs Edge Software 109

5 Windows

Windows opened by Tools Plus are identical to those opened by conventional Macintosh toolbox routines, except that
they and the objects on them inherit the benefit of being automatically maintained by Tools Plus. Some additional
features can also be found in Tools Plus windows that arenÕt available in ordinary Macintosh windows.

Before you can use a window, you must first open it with the WindowOpen routine. Each window is referenced by a
unique window number. This number is specified when the window is opened, and refers to the specific window until
that window is closed. After a window is opened, your application can create objects in it such as buttons, lists, scroll
bars, editing fields, etc. These items are detailed later in this manual. Windows and the user interface elements in them
can be created dynamically within your application, or in the traditional manner by using resource templates (detailed
later).

Your application can also have a tool bar located just below the menu bar. It is created with the ToolBarOpen routine.
From a programming perspective, a tool bar is treated just like any other window.

At any time, your application can obtain information about a windowÕs location, size, and status with the
WindowStatus routine.

Routines that should be used infrequently include WindowMove which lets your application reposition a window,
WindowSize which lets your application resize a window, and WindowDisplay which is used to hide and show
(unhide) a window. In all cases, Tools Plus correctly maintains your applicationÕs user interface to accommodate the
changes brought about by these routines.

You can use Tools PlusÕs windows instead of creating alerts and dialogs with ResEdit. Tools Plus provides the
functionality that real alerts and dialogs can, plus it provides additional benefits such as letting you easily incorporate
pop-up menus, list boxes, and alternate fonts. Tools Plus also provides routines to let you create your interface using
resources if you prefer. See the section on Dynamic Alerts for details on Tools Plus alerts.

When a window is no longer required, it is closed by the WindowClose routine, which releases the memory used by
the windowÕs buttons (including radio buttons and check boxes), picture buttons, scroll bars, editing fields, pop-up
menus, list boxes, and custom controls.

- Note: Much of the MacintoshÕs power lies in QuickDraw, the part of the toolbox that allows Macintosh programmers
to perform highly complex graphic operations quickly and easily. There is an entire chapter in Inside
Macintosh dedicated to QuickDraw that is compulsory reading for all Macintosh programmers. The chapter on
the Font Manager explains how to display text on a window.

Resource-Based Programming
Tools Plus lets you define user interface elements both in your applicationÕs source code (dynamically), and by using
resources like the toolboxÕs Dialog Manager (resource-based). The clear advantage that Tools Plus provides over the
Dialog Manager is that it greatly simplifies resource-based programming. While creating user interface elements
dynamically is sometimes a preferred method of programming, resource-based programming has some inherent
advantages too:

¥ The user interface can be designed visually using an inexpensive resource editor such as AppleÕs ResEdit
¥ The user interface definition can be separated from your applicationÕs source code, thus allowing you to make

changes to the interface without having to recompile your application
¥ It facilitates localization
¥ You can apply custom colors to windows and controls without writing any code
¥ You can accomplish more using less source code
¥ It can save memory

Tools Plus

110

Tools Plus routines completely replace the need to use the toolboxÕs Dialog Manager because they let you use resource
templates to create windows, dialogs (windows with user interface elements), menus, and other GUI objects. Once
these elements are created, Tools Plus automatically makes them work. This lets you avoid the Dialog ManagerÕs
numerous complexities and short-comings that are typically encountered when trying to make your applicationÕs user
interface work and behave like a Macintosh should.

While Tools PlusÕs WindowOpen routine opens a window using parameters supplied by your applicationÕs code,
LoadWindow opens a window using a ÔWINDÕ resource that specifies the windowÕs type, co-ordinates, title, and
positioning options. Similarly, the LoadDialog routine opens a window using a ÔDLOGÕ (dialog) resource, then
populates the window with user interface elements that are defined in a related ÔDITLÕ (dialog item list) resource.

In many cases, you will be able to open a completely functioning dialog with a single call to the LoadDialog routine.
For situations where you want to prepare a window in some way before populating it with the dialogÕs items, the
LoadDialogList routine loads a ÔDITLÕ (dialog item list) resource, attaches it to an already open window, and creates
the user interface elements defined in the dialog item list.

The GetDialogItemRect routine reads a dialogÕs item list and retrieves an itemÕs display rectangle. This is most often
utilized in dialog Òuser itemsÓ that provide co-ordinates for list boxes, pop-up menus and other user interface elements
that are not automatically created by LoadDialog. Your application uses GetDialogItemRect to retrieve a dialog itemÕs
display rectangle, then it uses that rectangle to create the appropriate GUI element. SetDialogItemRect changes the
itemÕs display rectangle.

GetDialogFontInfo and SetDialogFontInfo retrieve and set the font, font size and font style used in a dialog window.
By default, a dialog displays its text using Chicago 12pt. When you change these settings, new dialogs adopt these font
settings and display their static text and editing fields using these settings.

Tools Plus completely circumvents the Dialog Manager when you use resources to create your applicationÕs user
interface. Instead, it uses its own processes to create and maintain the user interface elements defined by resources.
Using Tools Plus instead of the Dialog ManagerÕs routines gives you the following advantages:

¥ You can still use resources to design and create your user interface, just like the Dialog Manager.
¥ All system versions and Macintosh models can take advantage of the latest resource structures. The Dialog

Manager offers some features only on Macs running Color QuickDraw, and yet others only on Macs running
System 7.

¥ ItÕs easy to create complex and attractive dialogs.
¥ Your dialogs have all the advantages of windows and interface elements that are created with Tools Plus routines.
¥ All elements in a dialog work automatically as soon as they are created.
¥ ItÕs much easier for your application to interact with Tools Plus's user interface elements than to use complex and

awkward Dialog Manager routines.
¥ Tools Plus reports mouse-down ÒhitsÓ in dialog items if those items donÕt automatically work when Tools Plus

creates them. For example, if you define a user item to create your own custom object, Tools Plus's doClick event
will tell you when a mouse-down event occurs in that user item. Other user interface elements, like buttons, list
boxes and pop-up menus, work automatically just like they do in a standard Tools Plus window.

Designing Dialogs

It is almost certain that your existing resources will work perfectly with Tools Plus, and that you will be able to create
new dialog-related resources using the same process you have in the past. Here are some tips to ensure that the process
goes smoothly. See the LoadDialog routine for more details.

1 YouÕll need a powerful resource editor such as Resorcerer to exploit dialogs to their fullest potential.
2 If you want to draw text over a background object like a picture, have the picture as a lower numbered dialog

item so it draws first. Set the text to draw in srcOr mode and donÕt set a background color for the control.
3 Static text items can be drawn using srcCopy (text over solid background) or srcOr mode (text over existing

objects), also known as drawing with a transparent background. You can edit static text items using Tools Plus's
ÒfieldÓ routines providing the static text item uses the srcCopy text transfer mode (the default).

4 You can use ÒshortÓ format ÔictbÕ resources to save memory and disk space. Tools Plus corrects a Dialog
Manager bug that requires all dialog items to have a separate color table entry. In Tools Plus, items that use
identical color and style settings can share the same entry in an ÔictbÕ structure.

5 Windows

WaterÕs Edge Software 111

5 If you need to change a dialog windowÕs font or color settings, itÕs a good idea to call GetDialogFontInfo before
you make the changes, and call SetDialogFontInfo after the changes are done. This insures that dialog items
using the default color and/or text settings will be drawn correctly instead of using the most recent settings.

6 Be careful not to use resource IDs that coincide with those in the System file or your development environment.
7 In Tools Plus, the Appearance ManagerÕs controls are supported as controls (ÔCNTLÕ resources) in a dialog

(ÔDLOGÕ resource), just like all other controls. See this manualÕs chapters on Buttons and Scroll Bars for more
information on how to implement specific controls that are part of the Appearance Manager.

8 You can design your dialogs using standard push buttons, check boxes, and radio buttons, and have those
controls remapped to their equivalent Appearance Manager controls by using the ReplaceControlProcID routine.
This can be done for you automatically when you initialize your application using the InitToolsPlus routine.

9 Controls that are created using any of the dialog related routines (AppendDialogList, LoadDialog,
LoadDialogList, LoadSpecDialog, and LoadSpecDialogBehind) are AutoEmbedded if the Appearance
ManagerÕs routines are available to your application.

Window Types
Various ÒtypesÓ of windows (including a tool bar and palettes) can be created, some of which have title bars and some
which resemble alert or dialog boxes. Details are provided in the WindowOpen and ToolBarOpen routines.

Title Bar, Close box, and Zoom box
close zoom
box box

¯ ¯

­
size
box

Any window that contains a title bar can have a Òclose box.Ó Also, a document window
type can be resized by the user by either clicking on the Òzoom boxÓ or dragging the Òsize
box.Ó The close box, when clicked by the user, instructs your application to close the
window.

A window containing a zoom box has two different states: [1] the standard state, and
[2]Êthe user state. The user can change the windowÕs size and/or location, thereby
defining the user state. When the zoom box is clicked, the window automatically
ÒzoomsÓ back to the standard state (which can be defined by your application). Clicking
the zoom box again reverts to the user state. (Floating palettes canÕt have a zoom box).

Tools Plus

112

Your application can define the minimum and maximum size of a window with SetWindowSizeLimits. It can also
define the size and position the window assumes when the zoom box is clicked by using the SetWindowZoom routine.
GetWindowZoom is used to retrieve the windowÕs current size and location, as well as the size and location that is
assumed when the zoom box is clicked.

Any window with a title bar can be re-positioned by dragging it with the mouse. An inactive window can be dragged
without being activated by holding the 1 key down during the drag. A windowÕs title can be changed by the
WindowTitle routine.

Size Box
A size box is a square located in the bottom right corner of a document window. The user can change a windowÕs size
by dragging the size box. By default, the window can be sized horizontally to any width from a minimum 120 pixels to
the full width of the screen. Vertically, the window can be sized to any height from a minimum of 68 pixels to the full
height of the screen (excluding the height of the menu bar). When the window is opened, the default sizing limits for
the window are automatically adjusted to the windowÕs size. For example, the minimum size will never be larger than
the windowÕs dimensions, and the maximum size will never be smaller than the windowÕs dimensions. These sizing
limits can be changed by the SetWindowSizeLimits routine.

Color Backdrops and Background Themes
Each window has a backdrop color that is used when a part of the window is revealed and requires refreshing. The
backdrop color is also used to fill an objectÕs region when an object is deleted. By default, the windowÕs backdrop is
white. You can set the backdrop color for new windows using the BackdropColor routine. As new windows are
opened, they adopt the specified backdrop color. The NoBackdropColor routine resets the color for new windows to
the default white.

Color backdrops are particularly useful in tool bars and floating palettes because, as these specialized windows are
opened, the user wonÕt see a flash of white while the window is being populated, thus creating an illusion of greater
speed.

You can also use the Appearance Manager to draw its background in all or selected windows. An option in the
InitToolsPlus routine lets you apply an Appearance Manager background (which is different depending on the window
type) to all windows. Alternatively, each Tools Plus routine that opens a window lets you optionally apply the
Appearance Manager background to that window. You can also apply a background that is usually associated with a
different type of window by using the SetBackgroundTheme routine or the SetNextWindowBackgroundTheme
routine. You cannot change the backdrop color after you assign a background theme to a window.

Maximum Number of Open Windows
The maximum number of windows that can be opened simultaneously is specified in the InitToolsPlus routine. See the
InitToolsPlus routine (Initialization chapter) for details about specifying the maximum number of windows your
application even needs to have open.

5 Windows

WaterÕs Edge Software 113

Tool Bar and Floating Palettes
Your application can incorporate floating palettes that are always active and ÒfloatÓ above your applicationÕs standard
windows. It is best to have floating palettes look different from standard windows to provide the user with a visual cue
as to its behavior. This is done by using a special window definition (WDEF) resource that you include in your
application. The WDEF makes the window look different while Tools Plus takes care of making any window behave
like a floating palette.

From a programming perspective, the tool bar and floating palettes are just another kind of window. The tool bar is
created with the ToolBarOpen routine, whereas floating palettes are opened with the WindowOpen routine (just like
ordinary windows). Tools Plus takes care of making them behave properly by ensuring that they are always active and
that they stay in front of standard windows.

The tool bar and all open floating palettes in your application are active as long as your application is active. When it is
suspended under MultiFinder or System 7 or higher, the tool bar and floating palettes are automatically hidden. The
user can make use of the controls located in the tool bar and floating palettes at any time. The actions invoked by those
controls usually apply to the frontmost window that is not a tool bar or floating palette. Your application can determine
the frontmost floating palette with the FirstPaletteNumber routine.

When your application creates a tool bar, it is always created just below the menu bar across the entire width of the
main monitor. If the user changes the main monitorÕs size or resolution, the Tools Plus automatically resizes the tool
bar to the width of the main monitor.

Even though Tools Plus makes it easy to add a tool bar and floating palettes to your application, you should have an
awareness of what Tools Plus does to make them work. This information is detailed in this chapter.

Standard Windows
In Tools Plus, a standard window is any window in your application that is not a tool bar or floating palette. If your
application does not use a tool bar or floating palettes, then all your windows are standard windows. Your application
can determine the frontmost standard window by using the FirstStdWindowNumber routine.

Active Window
The active window is the window that is acted upon whenever the user types, gives commands, or does whatever is
appropriate within the application being used. Almost invariably, this is your applicationÕs frontmost window when
your application is active (i.e., when it is not suspended under MultiFinder or System 7 or higher). Note that the active
window may be a desk accessory when running Finder under System 5 or 6. Since desk accessories are handled
automatically by Tools Plus, you only need to be concerned about your own windows.

In Macintosh toolbox terms, the active window is represented by the global WindowPtr constant FrontWindow.
Although this information is explained in detail in Inside Macintosh, the basic rule is only one window is active, and
itÕs the frontmost one. Your application can activate a window by using ActivateWindow, and it can determine the
active windowÕs number by using the ActiveWindowNumber routine.

The use of a tool bar or floating palettes introduces additional considerations because your application can now have
multiple active windows (explained in the Window Layers model later in this chapter). The frontmost ÒstandardÓ
window (not a tool bar or floating palette) still remains the only active standard window. Additionally, the tool bar and
all floating palettes are also active.

Activating the toolbar has no effect on the frontmost standard window or any of the floating palettes. Activating a
floating palette simply brings it to the front of other floating palettes, without deactivating any windows. Activating an
inactive standard window deactivates the frontmost standard window, and brings the newly activated standard window
to the front of the standard windows.

Tools Plus automatically maintains the relationship between standard windows, the tool bar, and floating palette, and
makes sure windows are activated and deactivated appropriately.

Tools Plus

114

Work Window
With the introduction of the tool bar and floating palettes, your application can simultaneously have multiple active
windows (the tool bar, all open floating palettes, and the frontmost standard window). This brings up the question: in
which window is the user working at the moment? The concept of a work window is established solely to answer that
question. Tools Plus automatically keeps track of the window that has most recently been the target of user activity.

Your application has only one work window, which can be determined by using the WorkWindowNumber routine. A
window gains the Òwork windowÓ status under any of the following conditions:

¥ the user clicks in a window, or any object in a window
¥ a window is opened as modal (because the next action must take place within that window)
¥ a standard window is opened (and therefore activated), and the previous work window was an active standard

window
¥ the work window is closed or hidden, in which case the following window becomes the work window:

frontmost standard window (if any are open), or
frontmost floating palette (if any are open), or
the tool bar (if it is open)

¥ a window is activated
Your application can treat a work window like an active window, in that it is an eligible target for the userÕs activity. If
your application does not use a tool bar or floating palettes, the work window is the same as the active window, and
you only need to concern yourself with the concepts of an active window and a current window.

Current Window
The current window is the target of actions that occur within your application such as creating buttons or editing
fields. Usually, the current window is the same as the active window, however there are times when it is desirable to
affect a window without activating it. An example of this is when a window needs to be refreshed. This occurs when a
window is obscured by another object on the screen. When the window is no longer obscured, the newly revealed
section must be re-drawn or Òrefreshed.Ó

The CurrentWindow routine can be used to make any of your applicationÕs windows the ÒcurrentÓ window. When
work on the window is completed, itÕs good form to make the active window (or work window in the case where a tool
bar and/or floating palettes are used) current. This is done with the CurrentWindowReset routine. Your application can
also determine the current windowÕs number by using CurrentWindowNumber. In Macintosh toolbox terms, the
current windowÕs WindowPtr is represented by the global variable thePort, which is the current grafPort, and can be
determined with the GetPort routine.

Editing Field Window
The Editing Field Window is the one window in your application containing the active editing field (the field either
has a flashing insertion point, or its selected text is highlighted). Tools Plus automatically keeps track of which
window contains your applicationÕs active editing field.

If your application does not use a tool bar or floating palettes, this window will likely be the active window (if it has an
editing field). If your application uses a tool bar and/or floating palettes, potentially any active window (tool bar, any
floating palette, or the active standard window) can contain the active editing field. See the Editing Fields chapter for
details on editing fields and the Editing Field Window.

5 Windows

WaterÕs Edge Software 115

Modal Windows
When a window is modal, clicking the mouse outside the window results in a beep. This means that all interaction is
restricted to the modal window until that window is closed. Pull-down menus canÕt be selected, nor can their 1-key
equivalents. Modal windows are always opened in front of all other windows (including the tool bar and floating
palettes).

When using MultiFinder or System 7 or higher, modal windows behave differently: they can be modal for the current
application, or for all applications. The standard dialog box (of dBoxProc type) keeps you in the current application by
preventing you from switching to the Finder or other applications, or by launching a new application. All other modal
windows, however, allow you to switch to the Finder or other applications (by clicking on one of their objects), and to
launch a new application (by double-clicking it or one of its files). They do not, however, let you select menu items or
click other windows within the same application. This is consistent with System 7Õs movable modal dialog that is
displayed while copying a file.

Your applicationÕs tool bar cannot be modal, nor can any of the floating palettes.

Window Layers
Normally, the MacintoshÕs Window Manager maintains your applicationÕs windows in such a way that the frontmost
window is active when your application is active. When your application is suspended (under MultiFinder or
SystemÊ7), all windows are inactive. Tools Plus preserves the Window ManagerÕs handling of windows (providing
your application does not have a tool bar or floating palettes). When a tool bar or floating palette is introduced in your
application, Tools Plus automatically ensures that all windows behave as described in the model below.

In System 5 and 6Õs Finder, only one application can be running at a time. Additionally, desk accessories can be
running, and their windows can intermingle with your applicationÕs windows. If your application has a tool bar and/or
floating palettes, Tools Plus automatically creates a ÒDesk Accessory LayerÓ in which all desk accessory windows are
kept together to prevent their intermingling with your applicationÕs windows. This is done to prevent the confusing
condition that arises when the frontmost window is a floating palette or tool bar (belonging to your application),
behind which is a desk accessory, followed by another window belonging to your application. To the user, it may
(erroneously) appear that the paletteÕs operations apply to the desk accessory.

The following model describes how Tools Plus maintains the order of windows:

Front
(nearest to user)

Modal Windows ¥ Modal windows open at the front of this layer
¥ Multiple modal windows can be open simultaneously
¥ Frontmost modal window is only accessible window overriding all others

Tool Bar ¥ Always active (only one tool bar can be open)
¥ Inaccessible if a modal window is open
¥ Automatically hidden when your application is suspended

Floating Palettes ¥ Floating palettes open at the front of this layer
¥ Always active
¥ Multiple floating palettes can be open simultaneously
¥ Inaccessible if a modal window is open
¥ Automatically hidden when your application is suspended

Standard Windows ¥ Standard (modeless, non-tool bar non-floating palette) windows open at the front
 of this layer
¥ Only the frontmost window in this layer is active
¥ Multiple standard windows can be open simultaneously
¥ When running under System 5 or 6Õs Finder, desk accessory windows may
 appear in this layer, providing a tool bar or floating palette is not open
¥ Inaccessible if a modal window is open

Window Layer Model

Tools Plus

116

Global and Local Co-ordinates
There are two co-ordinate systems that are used when creating Tools Plus user interface elements: global and local.
Global co-ordinates are relative to the main monitor where the upper left corner is point 0,0. Local co-ordinates are
relative to the current window where the windowÕs upper left corner is point 0,0. The co-ordinate numbers increase
when moving right or down, and decrease when moving left or up.

The Macintosh toolbox has a global variable called screenBits.bounds that is a rectangle defining the boundary of the
MacintoshÕs main monitor in global co-ordinates. You may want to use this variable to help you define a windowÕs
maximum size, and zooming co-ordinates.

Details regarding global and local co-ordinates and screenBits.bounds can be found in Inside Macintosh.

Objects in Windows
Tools Plus automatically maintains the relationships between windows, user interface elements you place on those
windows, and the rest of the Macintosh environment. Simply put, Tools Plus makes your user interface work. The user
interface elements that are directly maintained by Tools Plus are:

¥ windows (modal and modeless), tool bar, floating palettes and dynamic alerts
¥ standard Macintosh buttons
¥ custom CDEFs that behave like a push button, check box or radio button
¥ scroll bars
¥ custom CDEFs that behave like scroll bars
¥ picture buttons
¥ list boxes
¥ editing fields
¥ pop-up menus
¥ cursor and cursor zones

Additionally, Tools Plus provides routines that facilitate drawing in windows, such as various picture and text drawing
routines. User interface elements placed in windows can automatically move and/or resize as their windowÕs size
changes (see AutoMoveSize for details).

The ÔdftbÕ Resource - Font and Color Settings
The ÔdftbÕ (dialog font table) resource was first introduced with the Appearance Manager in Mac OS 8, but Tools Plus
supports it on all systems with or without the Appearance Manager. The ÔdftbÕ contains one record for each user
interface element in your dialog item list (ÔDITLÕ resource). Each record can set font and color information for any
user interface element. In Tools Plus, the ÔdctbÕ resource works with or without an ÔictbÕ resource. If you have both
resources in a dialog, Tools Plus merges the setting in both the ÔdctbÕ resource and the ÔictbÕ resource and applies them
to the dialogÕs elements. In situations where both resources set an item (i.e., the ÔictbÕ resource indicates that Geneva 9
should be used while the ÔdftbÕ resource indicates Monaco 10), individual settings in the ÔdftbÕ resource override
equivalent settings in the ÔictbÕ resource.

The format of the ÔdftbÕ resource contains one or more records, each of which corresponds to a single item in your
dialog item list. Each record in the ÔdftbÕ resource has one of two formats: (1) a ÒskipÓ command indicating that there
are not settings (and no data) for a specific user interface element, and (2) a record that contains all the possible
settings for any user interface element. If your resource editor can not automatically create and maintain the ÔdftbÕ
resource and to keep it synchronized with your ÔDITLÕ resource, Tools Plus includes a resource template for the ÔdftbÕ
resource. See the ÒOptional ResourcesÓ folder for the ÔdftbÕ resources and copy it into your resource editor application.
The ÔdftbÕ resourceÕs data is as follows:

5 Windows

WaterÕs Edge Software 117

Byte
Offset

Length
(Bytes)

Bit
Num Description

0 2 Version (always 0)
2 2 Font Styles: Number of records in this resource (should be one record for each item in

the related ÔDITLÕ resource)
The follow items represent a single variable length record for a single item in the ÔDITLÕ resourceÉ

4 2 Entry Type: 0 = no data available (skip), 1 = data available
Fields following this record exist only when Entry Type =1.

6 2 15-10 (reserved)
9 Use font name: Set to 1 if itemÕs font is set using a font name instead of a font

number.
8 Add font size: Set to 1 if itemÕs font size is calculated using the windowÕs font size

plus a specified point value.
7 (reserved)
6 Use justification: Set to 1 if itemÕs text justification is set (any editing field only)
5 Use mode: Set to 1 if itemÕs text transfer mode is set (static text items only)
4 Use background color: Set to 1 if itemÕs background color is set (edit text items,

static text items, editing fields, static text field, and some controls)
6 2 3 Use foreground color: Set to 1 if itemÕs foreground color is set (edit text items, static

text items, editing fields, static text field, and some controls)
2 Use size: Set to 1 if itemÕs font size if set to an exact value, such as 10pt.
1 Use face: Set to 1 if itemÕs font style is set
0 Use font: Set to 1 if itemÕs font is set using a font number

8 2 Font number: Font number set for item
10 2 Font size: Font size in points set for item. If ÒAdd Font SizeÓ bit is set, this value

indicates the number of points that are added to the windowÕs font size to determine
itemÕs font size.

12 2 15-7 (reserved)
6 Extended: Set to 1 if itemÕs fontÕs style includes the ÒextendedÓ attribute
5 Condensed: Set to 1 if itemÕs fontÕs style includes the ÒcondensedÓ attribute
4 Shadow: Set to 1 if itemÕs fontÕs style includes the ÒshadowÓ attribute
3 Outline: Set to 1 if itemÕs fontÕs style includes the ÒoutlineÓ attribute
2 Underline: Set to 1 if itemÕs fontÕs style includes the ÒunderlineÓ attribute
1 Italic: Set to 1 if itemÕs fontÕs style includes the ÒitalicÓ attribute
0 Bold: Set to 1 if itemÕs fontÕs style includes the ÒboldÓ attribute

14 2 Text mode: ItemÕs text transfer mode (static text items only)
srcCopy = 0 (static text item is implemented as a static text field)
srcOr = 1
srcXor = 2
srcBic = 3
notSrcCopy = 4
notSrcOr = 5
notSrcXor = 6
notSrcBic = 7

16 2 Justification: ItemÕs text justification (editing fields only)
teJustLeft = 0
teJustCenter = 1
teJustRight = -1

18 6 Foreground color: ItemÕs foreground color (edit text items, static text items, editing
fields, static text field, and some controls)

24 6 Background color: ItemÕs background color (edit text items, static text items, editing
fields, static text field, and some controls)

30 1-256 Font name: Font name used to set itemÕs font. This Pascal string is truncated to the
number of valid characters plus a length byte. The record length varies because of this
field.

Tools Plus

118

Substituting Window ProcIDs
Certain system resources may or may not be available to your application depending on the system version of the
Macintosh that is running your application. A perfect example of this is the Òutility window,Ó normally called a
floating palette, which is part of the Appearance Manager in Mac OS 8 or later, and the unattractive floating palette
which most developers choose to avoid that is available in System 7.5 or later. With Tools Plus, you can design and
write your application to use a custom window definition (WDEF resource) for a floating palette. Then at the
beginning of your application it can determine the MacÕs capabilities, specifically if the Appearance Manager is
running to make the Òutility windowÓ available to your application. If this is the case, your application can easily
substitute the use of the custom floating palette WDEF with the Appearance ManagerÕs utility window throughout
your application.

Two routines in the ÒMiscellaneous RoutinesÓ chapter of this manual help facilitate determining the capabilities of the
Macintosh that is running your application: HasAppearanceManager and UsingAppearanceManager. You can also use
the toolboxÕs Gestalt routines to determine whether other features are available or not. Tools Plus's
ReplaceWindowProcID routine is used to replace a specific window procID with another procID throughout your
application, thereby substituting the use of one type of window with another.

Live Window Dragging and Resizing
The default Mac OS behavior for dragging and resizing windows displays a dotted outline that tracks the windowÕs
eventual position or size for as long as the user holds the mouse button down. When the user releases the mouse
button, the window snaps to its new position or size. This convention was originally adopted solely because of the
limited processing capabilities of early Macintosh computers. Since mid 1998, AppleÕs entry-level computers have
been more than capable of overcoming these limitations.

Tools Plus optionally lets the user move and resize windows in real time. With this option turned on, the change in the
windowÕs location or size is seen immediately and continuously as the user drags a windowÕs title bar or resizes the
window by dragging the grow box. This option looks best on faster Macintoshes, like those equipped with a G3
processor or better, because the target window and those behind it may need to be refreshed frequently and rapidly.
Faster Macintoshes, those equipped with a G3 processor or better, will provide fluid motion like that experienced on
Windows NT workstations.

The InitToolsPlus routine has options to turn on real time window dragging and resizing unconditionally, or only if a
specific processor is used. For greater flexibility, the SetLiveWindowDragging routine lets your application turn this
feature on or off under its own conditions.

Special Considerations
In Mac OS 8.5 and later, certain themes may crash your system if you open a window that is too small, or too far off
screen for the themeÕs liking. If opening a window crashes your system or application, try making the window larger,
and it you are creating the window off screen, change its co-ordinates so that they are not as far off the screen. The
same applies for resizing or repositioning a window.

Handling Windows
Much of the control exercised over windows is performed by your application. By default, your application responds
to window events in its main event handler routine. You can optionally have a separate event handler routine for each
window. Tools Plus constantly inquires about any requests the system may have. Some of these requests must be acted
upon, such as refreshing a window. Other requests may be interpreted by your application, such as the user clicking in
a windowÕs close box, or clicking in another window. These facets are all detailed in the Event Management chapter.
Tools Plus automatically handles such chores as sizing, dragging, and zooming windows.

When working with windows, it is important to remember that many Tools Plus routines (such as creating buttons and
editing fields) apply to the current window.

5 Windows

WaterÕs Edge Software 119

The Macintosh toolboxÕs FrontWindow routine becomes less useful now that the frontmost window can be a tool bar
or any of the floating palettes (instead of the frontmost standard window). Fortunately, Tools Plus provides routines to
determine the frontmost floating palette, and frontmost standard window.

If your application is drawing in color, or if it needs to know about the details of a monitor such as the number of
colors displayed or its size, see the Color Drawing & Multiple Monitors chapter later in this manual.

..

WindowOpen
Open a new window and make it the active and current window.

C pascal void WindowOpen (short Window, short left, short top, short right,
short bottom, const Str255 Title, long Spec, Boolean goAwayFlag,
Boolean modalFlag);

Pascal procedure WindowOpen (Window, left, top, right, bottom: INTEGER;
Title: STRING; Spec: LONGINT; goAwayFlag, modalFlag: BOOLEAN);

Windows are opened as per the Window Layer model described earlier in this chapter. To summarize:
¥ a modal window opens in front of all other windows, and it is the sole active window
¥ a floating palette opens in front of the floating palette layer, and it is active
¥ a standard window opens in front of the standard window layer, and it is active if a modal window is not open.

The window adopts a backdrop color as set by the BackdropColor routine (default is white). The windowÕs
background color (as obtained by GetBackRGB) is initially set to the backdrop color when the window is opened.

Window specifies the window number that is opened. Once a window is opened, it is referenced by this window
number. If a window using the same window number is already open, it is closed, then a new window is opened as
specified by the parameters in the WindowOpen routine, thereby re-using the window number. The newly opened
window becomes ÒactiveÓ (frontmost and highlighted as such) and ÒcurrentÓ (action pertaining to graphics, text,
buttons, scroll bars, etc. occurs in this window). Tools Plus allows up to 250 windows to be open simultaneously,
however, you may choose to reduce this limit when using InitToolsPlus to initialize Tools Plus.

Left, top, right, and bottom define a rectangle in global co-ordinates that specifies the windowÕs size and location.
These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-hand corner
(right,bottom). Some useful things to remember about sizing your window are:

¥ The co-ordinates you specify define the usable area. The windowÕs title bar, outline and shadow are drawn
outside these co-ordinates.

¥ If a document window has a right and/or bottom scroll bar (documentProc type), 15 pixels of the usable
area are used up by the width of the scroll bar.

¥ Windows with a title bar use an additional 19 pixels above the windowÕs top co-ordinate to draw the title
bar.

¥ The menu bar takes up 20 pixels, so no window should have a top co-ordinate which is less than 20.
If the tool bar is open, and it was created with the tbOffsetNewWindows option, this windowÕs co-ordinates are shifted
downwards by an amount that is equal to the tool barÕs height.

Title is the windowÕs title. Note that some windows do not have a title. In this case, the title parameter may be passed
as a null string (ÔÕ).

Spec specifies a windowÕs appearance and behavior. It is a combination of a window procID plus various Tools Plus
options detailed later in this section.

The goAwayFlag indicates if a Òclose boxÓ is available in the windowÕs title bar. Close boxes are only drawn in the
documentProc, noGrowDocProc, rDocProc, paletteProc, altPaletteProc, and ordPaletteProc windows. The two
constants that can be used for this flag are GoAway and NoGoAway.

The modalFlag indicates if the window is ÒmodalÓ or not. When a modal window is open, clicking outside the window
results in a beep. This means that all interaction is restricted to the modal window until that window is closed. The two
constants that can be used for this flag are Modal and NotModal. Floating palettes cannot be modal.

Tools Plus

120

Appearance and Behavior Specification

Spec specifies a windowÕs appearance and behavior. It is a combination of a window procID plus various Tools Plus
options. The value for this 4-byte long integer can be specified by adding a set of constants to obtain the desired result.
For example, a document window with a zoom box would have a spec of documentProc + ZoomBox. The constants
defining the available options are as follows:

Choose only one of the following procIDsÉ
documentProc Standard Apple document window with a grow box. Used for windows

that need to be resized by the user.

noGrowDocProc Standard Apple document window without a grow box. Used for
windows that are either fixed size or resized under the applicationÕs
control.

rDocProc Standard Apple Òdesk accessoryÓ window.

movableBoxProc Standard Apple Òmovable modal dialogÓ window available on System
7 or later. When running on System 6 or older, a noGrowDocProc
window is used instead but it exhibits movable modal behavior.

dBoxProc Standard Apple modal dialog. Before System 7, this window physically
prevents access to anything outside the window. In System 7 and later
you can optionally have access to menus.

plainDBox Standard Apple plain dialog. Usually used for splash screens. If made
modal, it still allows the user to switch to another application.

altDBoxProc Standard Apple drop-shadow dialog. If made modal, it still allows the
user to switch to another application.

paletteProc Tools Plus floating palette with drag bar across the top. You must
include the Tools Plus floating palette WDEF (or equivalent) in your
application, and the resource ID must be 2000.

ordPaletteProc Window that looks like a floating palette but behaves like a standard
window. Seldom used. You must include the Tools Plus floating palette
WDEF (or equivalent) in your application, and the resource ID must be
2000.

altPaletteProc Tools Plus floating palette with drag bar across the left side. You must
include the Tools Plus floating palette WDEF (or equivalent) in your
application, and the resource ID must be 2000.

(your own procID)
+ wPalette

You can use your own WDEF or those created by third parties to create standard
windows that look different from AppleÕs, or to create floating palettes. See the note on
custom WDEFs later in this section for calculation of the procID. Add the wPalette
constant to your procID if you want your window to behave like a floating palette.

5 Windows

WaterÕs Edge Software 121

Optionally choose only one of the following auto-position optionsÉ
wCenter Center the window on the main monitor. Useful for alerts and progress indicators like a

thermometer.

wTile Tile the window in relation to the frontmost standard window. If no
standard windows are open, the window opens in the top-left corner on
the main monitor. This option is usually detrimental when opening a
floating palette or modal window.

wNoOffScreen Ensures that the window is at least partially visible when it is opened thereby allowing
the user to drag it to an optimum position. If your application opens windows based on a
stored location (likely kept in a preferences file or in the document), the window might be
completely off the screen if the document is opened on a Mac with a monitor smaller than
the documentÕs creator. This option alleviates that problem. If you add this option to a
window without a title bar (dBoxProc, plainDBox or altDBoxProc), it is positioned
entirely on the screen because the user canÕt drag it to a better position.

Co-ordinates
specified by your

program

WindowÕs co-ordinates altered by
adding wNoOffScreen to the ProcID.
The user can now see the title bar and
drag the window to a better position.

­

®

wAllOnScreen Tools Plus does the necessary calculations to make sure the entire window is visible. If
the window is too large to fit on the screen, it is positioned such that the windowÕs bottom
and/or right side may extend beyond the screenÕs edges (the top left-hand corner will be
visible). This is a variation of the wNoOffScreen option above. If you add this option to a
window without a title bar (dBoxProc, plainDBox or altDBoxProc), it is positioned
entirely on the screen because the user canÕt drag it to a better position.

Co-ordinates
specified by your

program

WindowÕs co-ordinates altered by adding
wAllOnScreen to the ProcID. The entire
window is now visible.

­­

Optionally choose only one of the following menu access optionsÉ
wAllowEditMenu Allow a modal window to access the Edit menu. By default, when a modal window is

opened, pull-down menus are automatically disabled and the user is prevented from
accessing them (they hear a beep when they click on the menu bar). This option
temporarily disables all menus except for Edit. In the Edit menu, the Undo, Cut, Copy,
Paste and Clear items are enabled and disabled automatically as per the active editing
field on the modal window. When the modal window is closed, the pull-down menus are
restored to their original settings as set by your application. This option has no effect on
modeless windows. If you are writing a plug-in, use this option only if the hostÕs Edit
menu follows the standards defined in the Menus chapter of this user manual.

wAllowMenus Allow a modal window to access all menus. By default, when a modal window is opened,
pull-down menus are automatically disabled and the user is prevented from accessing
them (they hear a beep when they click on the menu bar). This option gives the user
access to all pull-down menus as specified by your application (Tools Plus does not
automatically enable or disable the menus). This option has no effect on modeless
windows. It is safest not to use this option if you are writing a plug-in.

Tools Plus

122

Note: In applications running under System 5 or System 6, the dBoxProc window is truly
modal, and effectively prevents the user from accessing pull-down menus
regardless of the menu accessing options described above.

Optionally choose any of the following optionsÉ
wDimEditMenu Disable the Edit menuÕs standard editing items (Undo, Cut, Copy, Paste, Clear and Select

All) as the window is opened. This is useful when opening a window that has no editing
fields, or one that has fields but none are active by default. If you are writing a plug-in,
use this option only if the hostÕs Edit menu follows the standards defined in the Menus
chapter of this user manual.

ZoomBox Include a Òzoom boxÓ in either the documentProc or noGrowDocProc type windows.
Floating palettes cannot have a zoom box.

wRefresh Generate a doRefresh event as the window is opened. DoRefresh events are not discarded
if you open numerous windows before getting your next event. By default, windows do
not generate doRefresh events as they are opened.

wManualUpdate You prefer to manually use the BeginUpdate and EndUpdate routines when this window
needs to be refreshed. By default, Tools Plus automatically restricts drawing to only the
part of the window that needs refreshing when your application gets a doPreRefresh of
doRefresh event. See the doPreRefresh and doRefresh events for details.

wUnprotectedRefresh
By default, user interface elements are protected (cannot be overwritten) when your
application draws to a window in response to a doRefresh event. This option turns off the
protection to allow your application to draw anywhere on the window.

wNoZoomLines Suppress Òzoom linesÓ when the user clicks a windowÕs zoom box and zooms between a
standard state and a user state. Use this option if you need the fastest possible speed for
making a transition between the standard state and the user state.

wBackgroundTheme
Include the Appearance ManagerÕs background theme in this window. You cannot set the
windowÕs content color when a background theme is used. Alternatively, you can use the
SetBackgroundTheme routine which lets you set a brush that may not normally be
associated with a specific type of window. This option is ignored if the Appearance
Manager is not available.

wHidden Open the window as ÒhiddenÓ (i.e., it is accessible to your application but invisible to the
user).

Floating Palette, Custom WDEFs and Appearance Manager
If your application uses floating palettes or custom windows, you need to include a special window definition (WDEF
resource) in your applicationÕs resource fork. Tools Plus provides the required WDEF for floating palettes, and you
can find it in the ÒPalette WDEFÓ file in the ÒOptional ResourcesÓ folder on the Tools Plus disk. Add this WDEF
resource to your projectÕs resource file before you compile your application.

You can write your own WDEF or you can use third-party WDEFs. As per Macintosh standards, a windowÕs procID is
comprised from the following formula: WDEF resource ID x 16 + variant code. When you add the wPalette constant
to the windowÕs procID, Tools Plus makes the window behave like a floating palette. Appearance Manager

If your application is running on a Macintosh that has an Appearance Manager, then it automatically has access to a
number of additional window types (WDEFs). Consult your Appearance Manager SDK (Software Developer Kit) for
details. It is easiest to program your application using standard windows, then as your application starts up it can check
to see if the Appearance Manager is available. If the Appearance Manager is available, use the ReplaceWindowProcID
routine to replace standard window procIDs with those in the Appearance Manager. You can do this automatically in
the InitToolsPlus routine.

5 Windows

WaterÕs Edge Software 123

- Note: When using third party WDEFs (like the Infinity Windoid), make sure you carefully read the documentation
that accompanies the WDEF. Your WDEF will likely have variant codes that differ from those expected by the
Tools Plus, so you will likely not be able to use the Tools Plus constants ordPaletteProc, paletteProc or
altPaletteProc.

CONST {Window definition IDs (ProcIDs): }
documentProc = 0; {Standard document window with size box }
dBoxProc = 1; {Alert box or modal dialog box }
plainDBox = 2; {Plain box (usually modal) }
altDBoxProc = 3; {Plain box with shadow (usually modal) }
noGrowDocProc = 4; {Document window without size box }
movableBoxProc = 5; {Movable dialog }
rDocProc = 16; {Round corner window (desk accessories) }

kWindowDocumentProc = 1024; {ProcIDs for Appearance Manager's windowsÉ }
kWindowGrowDocumentProc = 1025; { }
kWindowVertZoomDocumentProc = 1026; { }
kWindowVertZoomGrowDocumentProc = 1027; { }
kWindowHorizZoomDocumentProc = 1028; { }
kWindowHorizZoomGrowDocumentProc = 1029; { }
kWindowFullZoomDocumentProc = 1030; { }
kWindowFullZoomGrowDocumentProc = 1031; { }

kWindowPlainDialogProc = 1040; {ProcIDs for Appearance Manager's dialogsÉ }
kWindowShadowDialogProc = 1041; { }
kWindowModalDialogProc = 1042; { }
kWindowMovableModalDialogProc = 1043; { }
kWindowAlertProc = 1044; { }
kWindowMovableAlertProc = 1045; { }

kWindowFloatProc = 1057; {ProcIDs for Appearance Manager's top-title }
kWindowFloatGrowProc = 1059; { floating windowsÉ }
kWindowFloatVertZoomProc = 1061; { }
kWindowFloatVertZoomGrowProc = 1063; { }
kWindowFloatHorizZoomProc = 1065; { }
kWindowFloatHorizZoomGrowProc = 1067; { }
kWindowFloatFullZoomProc = 1069; { }
kWindowFloatFullZoomGrowProc = 1071; { }

kWindowFloatSideProcID = 1073; {ProcIDs for Appearance Manager's side-title }
kWindowFloatSideGrowProcID = 1075; { floating windowsÉ }
kWindowFloatSideVertZoomProcID = 1077; { }
kWindowFloatSideVertZoomGrowProcID = 1079; { }
kWindowFloatSideHorizZoomProcID = 1081; { }
kWindowFloatSideHorizZoomGrowProcID = 1083; { }
kWindowFloatSideFullZoomProcID = 1085; { }
kWindowFloatSideFullZoomGrowProcID = 1087; { }

{Add to the procID for these features: }
ZoomBox = 8; {Zoom box }
wCenter = $00010000; {Auto-centering, orÉ }
wTile = $00020000; {Auto-tiling }
wRefresh = $00040000; {Generate a refresh event right away }
wNoOffScreen = $00080000; {Prevent from being off-screen (auto move) }
wAllOnScreen = $00100000; {Entire window must be on screen (auto move) }
wNoZoomLines = $01000000; {Suppress "zoom lines" when zooming }
wHidden = $02000000; {Window is opened hidden }
wBackgroundTheme = $04000000; {Use Appearance Manager's background theme }
wPalette = $80000000; {Window behaves like palette }

{Alternate (custom) procIDs: }
ordPaletteProc = 32000; {window that looks like a floating palette }
paletteProc = 32000 + wPalette; {Tools Plus's Floating Palette window }
altPaletteProc = 32002 + wPalette; {Tools Plus's palette with drag bar on left }

{Add to modal window procID for: }
wAllowEditMenu = $40000000; {Allow access to Edit menu only or }
wAllowMenus = $20000000; {Allow access to all menus }
wDimEditMenu = $10000000; {Disable Edit menu's items }

{"Close box availability" indicators: }
GoAway = true; {Create "close" box }
NoGoAway = false; {Do not create "close" box }

{"Modal window" indicators: }
Modal = true; {Window is modal }
NotModal = false; {Window is modeless }

Tools Plus

124

+ Warning: When you open a window, make sure that the co-ordinates are such that at least part of the windowÕs title
bar is visible to let the user reposition the window. Alternatively, add either of the wNoOffScreen or
wAllOnScreen constants to the windowÕs spec parameter. If you are using a tool bar, make sure you open
your window lower to ensure that its title bar is not hidden by the tool bar, or let the ToolBarOpen routine
do this for you automatically.

- Note: Although it is programatically possible, you should not open or close windows when a modal window is active.
The only exception to this is the use of another modal window.

Programming Tips:
1 Open a window with the wRefresh constant added to the windowÕs spec parameter, then populate it with

Tools Plus objects (buttons, list boxes, etc.). This produces a doRefresh event, which in turn calls upon your
window updating routine to draw the remaining lines and text. The advantage to this is that all of Tools Plus's
objects are protected (and therefore canÕt be overwritten) when your window drawing routine does its work.

2 If your application follows the first tip (above), your window refreshing routine can paint the window with a
color or pattern, then draw text and/or lines on top.

3 You can make a window appear to open faster by creating a hidden window, creating the necessary Tools
Plus objects, then displaying the window. When the window is displayed, a doPreRefresh event is generated
giving your application an opportunity to draw a background then Tools Plus draws its objects. Lastly, a
doRefresh event is generated letting your application perform any drawing after Tools Plus has drawn its
objects. This process takes longer to complete than just opening a window and populating it, but from a userÕs
perspective, they experience a momentary pause then the window quickly materializes as opposed to being
drawn piece by piece more slowly. Remember, it takes longer to create an object than to redraw it.

4 If your application stores a windowÕs co-ordinates (in a document or a preferences file), be aware that
someone may try to open the document on a Mac with a monitor that is smaller than the one used by the
documentÕs creator. By adding either the wNoOffScreen or wAllOnScreen constant to the windowÕs spec
parameter, the window opens where the user can see it. Your application can then respond to a
doMoveWindow (window was moved) event by storing the windowÕs new location. If the user does not move
the window, your application retains the windowÕs original co-ordinates. Later, when the document is opened
on the creatorÕs Mac (with a larger monitor), the window is in its original position.

5 Although the Tools Plus WDEF is quite memory efficient, you may want to use the ÒInfinity WindoidÓ
instead (itÕs a third party floating palette WDEF included with Tools Plus disks). The Infinity Windoid
supports color to give you commercial quality palettes.

Also see: ToolBarOpen, WindowOpenRect, LoadWindow and BackdropColor.

..

WindowOpenRect
Open a new window and make it the ÒactiveÓ and ÒcurrentÓ window.

C pascal void WindowOpenRect (short Window, const Rect *Bounds,
const Str255 Title, long Spec, Boolean goAwayFlag,
Boolean modalFlag);

Pascal procedure WindowOpenRect (Window: INTEGER; Bounds: RECT; Title: STRING;
Spec: LONGINT; goAwayFlag, modalFlag: BOOLEAN);

WindowOpenRect is identical to the WindowOpen routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

..

5 Windows

WaterÕs Edge Software 125

WindowOpenRectBehind
Open a new window behind another window.

C pascal void WindowOpenRectBehind (short Window, const Rect *Bounds,
const Str255 Title, long Spec, Boolean goAwayFlag,
Boolean modalFlag, short BehindWindow);

Pascal procedure WindowOpenRectBehind (Window: INTEGER; Bounds: RECT; Title: STRING;
Spec: LONGINT; goAwayFlag, modalFlag: BOOLEAN;
BehindWindow: INTEGER);

WindowOpenRectBehind is identical to the WindowOpenRect routine, except that it places the new window behind a
specified window, or at the back of a window layer.

BehindWindow specifies the number of an open and visible Tools Plus window behind which the new window is
created. This window must be in the same window layer as the new window, meaning that a floating palette can only
open behind another floating palette, and a standard window can only open behind another standard window. A value
of -1 opens the new window at the front of its layer. This produces the same result as using WindowOpenRect. A value
of 0 opens the new window at the back of its layer to make it the rear-most floating palette or standard window.

If the window specified by BehindWindow is not a floating palette or a standard modeless window, or if the window is
hidden or closed, WindowOpenRectBehind creates the new window at the front of its layer as though you had used
WindowOpenRect.

..

LoadWindow
Open a window using a ÔWINDÕ resource.

C pascal void LoadWindow (short Window, short ResID);

Pascal procedure LoadWindow (Window, ResID: INTEGER);

LoadWindow opens a window by calling the NewWindow routine and supplying it with values from a ÔWINDÕ
resource, commonly called a window template. This is a good way to create a window that requires a custom color
table.

Window specifies the window number that is opened (1 to 250, or the limit you specified in InitToolsPlus). Once a
window is opened, it is referenced by this window number. If a window using the same window number is already
open, it is closed, then a new window is opened as specified by the parameters in the ÔWINDÕ resource, thereby re-
using the window number.

ResID is the ÔWINDÕ resource ID number that is used to create the window. If the window has a ÔwctbÕ color table
resource, it must use the same ID number. Any resource ID number can be used, but numbers 128 or higher are safest
as stated in Inside Macintosh.

Since System 7, the Window Manager has had very specific needs for window color tables, and Inside Macintosh
warns you against creating your own. Tools Plus protects you from color table inconsistencies by creating a window
color table that matches the default color table, then updating or appending that table with entries you supply in the
ÔwctbÕ resource. This lets you supply a custom WDEF with an expanded color table, and it also ensures that you donÕt
accidentally damage the window color table as required by Mac OS.

When creating windows using ÔWINDÕ resources, flag your ÔWINDÕ and ÔwctbÕ resources as purgeable to save
memory. Tools Plus makes a copy of their data.

Tools Plus

126

Auto Position Options

The ÔWINDÕ resource can contain an optional 2-byte window positioning field. In ResEdit, you can access this field by
selecting the required ÔWINDÕ resource, then using the Resource menuÕs ÒOpen Using TemplateÉÓ command.
Choose a ÔWINDÕ template and you will see the ÒAuto PositionÓ field. You specify how you want to position the
window by entering a specific value in the ÔWINDÕ resourceÕs ÒAuto PositionÓ field, detailed below. There are several
terms used in the description of auto positioning options, and they are defined as follows:

center Centered both vertically and horizontally relative to either a screen or another window. If the
window being centered relative to another window is wider than the window that preceded it, it
is pinned to the relative windowÕs left edge.

stagger This is similar to Tools Plus's tiling. Each staggered window is offset by 10 pixels horizontally
and vertically.

alert position Centered horizontally and placed in the Òalert positionÓ vertically, that is with one fifth of the
window or screen above the new window and the rest below.

parent window The front most, standard window. You can determine the parent window using the
FirstStdWindowNumber routine.

Use one of the following values in the ÔWINDÕ resourceÕs ÒAuto PositionÓ field to specify how the window is
positioned:

$0000 Use co-ordinates specified in the ÔWINDÕ resource
$280A Center on main screen
$300A Place in alert position on main screen
$380A Stagger on main screen
$A80A Center on parent window
$B00A Place in alert position on parent window
$B80A Stagger relative to parent window
$680A Center on parent windowÕs screen
$700A Place in alert position on part windowÕs screen
$780A Stagger on parent windowÕs screen

Also see: WindowOpen, LoadSpecWindow and LoadDialog.

..

LoadSpecWindow
Open a window using a ÔWINDÕ resource.

C pascal void LoadSpecWindow (short Window, long Spec, short ResID);

Pascal procedure LoadSpecWindow (Window: INTEGER; Spec: LONGINT; ResID: INTEGER);

LoadSpecWindow is identical to the LoadWindow routine, except that it requires the additional Spec parameter to give
you control over all the appearance and behavior options offered by Tools Plus. See the WindowOpen routine for
details about the Spec parameter.

..

5 Windows

WaterÕs Edge Software 127

LoadSpecWindowBehind
Open a window using a ÔWINDÕ resource behind another window.

C pascal void LoadSpecWindowBehind (short Window, long Spec, short ResID,
short BehindWindow);

Pascal procedure LoadSpecWindowBehind (Window: INTEGER; Spec: LONGINT;
ResID, BehindWindow: INTEGER);

LoadSpecWindowBehind is identical to the LoadSpecWindow routine, except that it places the new window behind a
specified window, or at the back of a window layer.

BehindWindow specifies the number of an open and visible Tools Plus window behind which the new window is
created. This window must be in the same window layer as the new window, meaning that a floating palette can only
open behind another floating palette, and a standard window can only open behind another standard window. A value
of -1 opens the new window at the front of its layer. This produces the same result as using LoadSpecWindow. A value
of 0 opens the new window at the back of its layer to make it the rear-most floating palette or standard window.

If the window specified by BehindWindow is not a floating palette or a standard modeless window, or if the window is
hidden or closed, LoadSpecWindowBehind creates the new window at the front of its layer as though you had used
LoadSpecWindow.

..

LoadDialog
Open a dialog (window with user interface elements) using a ÔDLOGÕ resource.

C pascal void LoadDialog (short Window, short ResID);

Pascal procedure LoadDialog (Window, ResID: INTEGER);

LoadDialog opens a window by calling the NewWindow routine using the parameters supplied by a ÔDLOGÕ resource,
commonly called a dialog template. The window is populated with user interface items as specified by a related
ÔDITLÕ (dialog item list) resource.

Window specifies the window number that is opened (1 to 250, or the limit you specify in InitToolsPlus). Once a
window is opened, it is referenced by this window number. If a window using the same window number is already
open, it is closed, then a new window is opened as specified by the parameters in the ÔDLOGÕ resource, thereby re-
using the window number.

ResID is the ÔDLOGÕ resource ID number that is used to create the window. If the dialog has a ÔdctbÕ color table
resource, it must use the same ID number. Any resource ID number can be used, but numbers 128 or higher are safest
as stated in Inside Macintosh.

Since System 7, the Window Manager has had very specific needs for window color tables, and Inside Macintosh
warns you against creating your own. Tools Plus protects you from color table inconsistencies by creating a window
color table that matches the default color table, then updating or appending that table with entries you supply in the
ÔdctbÕ resource. This lets you supply a custom WDEF with an expanded color table, and it also ensures that you donÕt
accidentally damage the window color table as required by Mac OS.

When creating windows using ÔDLOGÕ and/or ÔDITLÕ resources, the following tips will help you make the most of
programming with resources:
¥ The dialog can be automatically position just like a ÔWINDÕ resource. See LoadWindow for details on how to add

auto-positioning options to your ÔDLOGÕ resource.
¥ Flag your ÔDLOGÕ, ÔDITLÕ and ÔdctbÕ resources as purgeable to save memory. Tools Plus makes a copy of their

data.

Tools Plus

128

¥ Item numbers are assigned sequentially for dialog items starting at one (1). Tools Plus user interface elements share
the same numbers. The following is an example of how your dialogÕs items are translated to Tools Plus user
interface elements:

Item # ÔDITLÕ Item Tools Plus Item
1 Static Text (srcCopy) Field #1 (static)
2 Static Text (other than srcCopy)
3 Field Field #3
4 Field Field #4
5 Check Box Button #5
6 Radio Button Button #6
7 Radio Button Button #7
8 Push Button Button #8
9 User Item
10 Field Field #10

¥ If item number 1 is a push button, it becomes the default button and a default frame is drawn around it.
¥ When a ÔDITLÕ resource (dialog item list) uses ÔCNTLÕ resources (control templates), Tools Plus makes some

assumptions about how to translate the information that is supplied by the ÔCNTLÕ resource into a Tools Plus user
interface element. Complete details on how to populate the ÔCNTLÕ resource can be found in this user manual in
the chapters that cover Buttons, Scroll Bars, Editing Fields, List Boxes and Pop-Up Menus.
Note that in the table below, the rightmost column describes how the control is implemented in Tools Plus. If you
see ÒButton: TabsÓ, this means that the control is implemented as a ÒbuttonÓ in Tools Plus, that is, you use button
related routines to access the control, and Tools Plus reports events related to this control as a doButton event. The
control actually appears as the Appearance ManagerÕs ÒTab Control.Ó Similarly, controls that are implemented in
Tools Plus as Òscroll barsÓ may actually be sliders or other Òscroll bar likeÓ controls.

CDEF ID ProcIDs Control is Implemented in Tools Plus as aÉ
0 0 to 15 Button
1 16 to 31 Scroll Bar
2 32 to 47 Button: Bevel Button (If ÒvalueÓ parameter is zero. Available only in

Appearance Manager).
Pop-Up Menu using a Bevel Button body (If ÒvalueÓ parameter specifies a

non-zero menu resource ID. Available only in Appearance Manager).
3 48 to 63 Scroll Bar: Slider (available only in Appearance Manager)
4 64 to 79 Button: Disclosure Triangles (available only in Appearance Manager)
5 80 to 95 Scroll Bar: Progress Indicator (available only in Appearance Manager)
6 96, 98-111 Button: Little Arrows (available only in Appearance Manager)

Used for stepping through values.
97 Scroll Bar: Little Arrows (available only in Appearance Manager)

Used for stepping through values when clicked, and scrolling through
values when held.

7 112 to 127 Button: Chasing Arrows (available only in Appearance Manager)
8 128 to 143 Button: Tabs (available only in Appearance Manager 1.0.1 or later)
9 144 to 159 Button: Visual Separator (available only in Appearance Manager)

10 160 to 175 Button: Group Box (available only in Appearance Manager)
11 176 to 191 Button: Image Well (available only in Appearance Manager)
12 192 to 207 Button: Pop-Up Arrows (available only in Appearance Manager)
13 208 to 223 Button: (reserved by Apple for future consideration)
14 224 to 239 Button: Placard (available only in Appearance Manager)
15 240 to 255 Button: Clock Control (available only in Appearance Manager)
16 256 to 271 Button: User Pane (available only in Appearance Manager)
17 272 to 287 Editing field (available only in Appearance Manager)

5 Windows

WaterÕs Edge Software 129

CDEF ID ProcIDs Control is Implemented in Tools Plus as aÉ
18 288 to 303 Button: Static Text (if SetDialogCNTLStaticTextSpec is set to -1)

(available only in Appearance Manager)
Static Text field (if SetDialogCNTLStaticTextSpec is not set to -1)

(available only in Appearance Manager)
19 304 to 319 Button: Picture Button (available only in Appearance Manager)
20 320 to 335 Button: Icon Control (available only in Appearance Manager)
21 336 to 351 Button: Window Header (available only in Appearance Manager 1.0.2 or

later)
22 352 to 367 List Box (remember to include an ÔldesÕ resource in your application if you

want to create an Appearance Manager list box control)
23 368 to 383 Button: 3D Button (available only in Appearance Manager)
24 384 to 399 Scroll Bar: 3D Scroll Bar (available only in Appearance Manager)

25 to 62 400 to 1007 Button: (reserved by Apple for future consideration)
63 1008 to 1023 Pop-Up Menu (if SetDialogCNTLPopUpSpec is not set to -1)

Button: Pop-up menu (if SetDialogCNTLPopUpSpec is set to -1)
64-127 1024 to 2047 Button: (reserved by Apple for future consideration)

128-1023 2048 to 16383 Button (third party button CDEF IDs should be in this range)
1024-
2047

16384 to
32767

Scroll Bar (if control does not have a title). Third party scroll bar or slider
CDEF IDs should be in this range.
Button (if control has a title)

¥ See the following routines later in this chapter for options on translating ÔCNTLÕ resources to Tools Plus user
interface elements: SetDialogCNTLEditTextSpec, SetDialogCNTLStaticTextSpec, SetDialogCNTLListBoxSpec,
and SetDialogCNTLPopUpSpec.

¥ See the following routines later in this chapter for options on translating Edit Text items to Tools Plus editing
fields, and for translating Static Text items to Tools Plus static fields: SetDialogEditTextSpec and
SetDialogStaticTextSpec.

¥ When a dialog is opened, its font, font size and style settings are set to the values specified by the
SetDialogFontInfo routine. By default, the font is Chicago 12pt.

¥ Edit Text items are translated into editing fields using the windowÕs current font settings as defined by the
SetDialogFontInfo routine. Tools Plus creates fields using the NewDialogField routine, and they remember their
font settings even when the windowÕs font settings are changed. These fields are very similar to plain Dialog
Manager fields. The attributes that are automatically assigned to each field are as follows (see the NewField routine
for details). You can override these settings using the SetDialogEditTextSpec routine.

handle = nil A text handle is automatically allocated to store the fieldÕs text.
left aligned The fieldÕs text is left aligned.
not filtered No text filter is applied to the field.
teSystemBody Use Appearance ManagerÕs Edit Text control if available. Dim field when it is disabled or on

an inactive window.
teUseWFont Use windowÕs font settings.
teBoxCR A box is drawn around the field and line breaks are allowed unless the field is one line high.
teCstring The fieldÕs string is stored as a C string to allow up to 32767 characters.
teTabSelectAll Select all text in field when user tabs into the field.
teBuffered The field is buffered with its own TextEdit record to increase performance when dealing with

large volumes of text.
¥ Static text items that use an unspecified text transfer mode, or any modes other than srcCopy (source copy), are

drawn by Tools Plus when the window is populated and when the window needs to be refreshed. These items are
inaccessible to your application.

¥ If you want to alter static text items programatically and your dialog has an ÔictbÕ resource or ÔdctbÕ resource, the
static text item must use the srcCopy (source copy) text transfer mode. When this is done, Tools Plus creates the
static text item as a static text field thereby letting you use Tools Plus's field routines to easily manipulate the static
text item. This also gives the static text field the ability to dim when it is on an inactive window. The attributes that
are automatically assigned to the static text field are as follows (see the NewField routine for details). You can
override these settings using the SetDialogStaticTextSpec routine.

Tools Plus

130

handle = nil A text handle is automatically allocated to store the fieldÕs text
left aligned The fieldÕs text is left aligned
not filtered No text filter is applied to the field
teSystemBody Use Appearance ManagerÕs Edit Text control if available. Dim field when it is disabled or on

an inactive window.
teStaticText Create a static text field.
teUseWFont Use windowÕs font settings.
teAllowCR Allow line breaks in the text.
teBackdrop Use windowÕs backdrop color for text background.

¥ Icons are displayed using the DrawIcon routine. The advantage this provides is that the perfect icon is displayed
regardless of the monitorÕs settings (ÔcicnÕ, Ôicl8Õ, Ôicl4Õ, etc.), and a mask is used if available. Although ResEdit
only displays ÔICONÕ icons when you are designing your dialog, Tools Plus displays any icon when your dialog is
displayed, including ÔcicnÕ, and large and small color and black and white icons. Note that ResEdit has a bug where
it changes your resource ID number for an icon in the dialogÕs item list if an ÔICONÕ resource does not exist with
that ID, and if the item order is renumbered. If you initialize Tools Plus with the initPureAppearanceManager
option, icons are translated into non-selectable icon controls that dim on inactive windows.

¥ Pictures are displayed using the DrawPict routine. The picture is scaled to the itemÕs display rectangle. If you need
more sophisticated picture drawing such as using multiple pictures depending on monitor settings, clipping an
image or using the pictureÕs rectangle, define the picture in your dialog as a user item and draw the picture using
the DrawPict routine when the dialog is created and when it needs to be refreshed. If you initialize Tools Plus with
the initPureAppearanceManager option, pictures are translated into non-selectable picture controls that dim on
inactive windows.

¥ If you need to create a user interface element that is not a standard item in a dialog item list, such as a list box, pop-
up menu or a panel, define the itemÕs co-ordinates in the dialog item list as a user item. After you create the dialog,
use the GetDialogItemRect routine to obtain the display rectangle for that item, then create the element using a
Tools Plus routine such as NewListBoxRect.

Also see: LoadWindow and LoadSpecDialog.

..

LoadSpecDialog
Open a dialog (window with user interface elements) using a ÔDLOGÕ resource.

C pascal void LoadSpecDialog (short Window, long Spec, short ResID);

Pascal procedure LoadSpecDialog (Window: INTEGER; Spec: LONGINT; ResID: INTEGER);

LoadSpecDialog is identical to the LoadDialog routine, except that it requires the additional Spec parameter to give
you control over all the appearance and behavior options offered by Tools Plus. See the NewWindow routine for
details about the Spec parameter.

..

5 Windows

WaterÕs Edge Software 131

LoadSpecDialogBehind
Open a dialog using a ÔDLOGÕ resource behind another window.

C pascal void LoadSpecDialogBehind (short Window, long Spec, short ResID,
short BehindWindow);

Pascal procedure LoadSpecDialogBehind (Window: INTEGER; Spec: LONGINT;
ResID, BehindWindow: INTEGER);

LoadSpecDialogBehind is identical to the LoadSpecDialog routine, except that it places the new window behind a
specified window, or at the back of a window layer.

BehindWindow specifies the number of an open and visible Tools Plus window behind which the new window is
created. This window must be in the same window layer as the new window, meaning that a floating palette can only
open behind another floating palette, and a standard window can only open behind another standard window. A value
of -1 opens the new window at the front of its layer. This produces the same result as using LoadSpecDialog. A value
of 0 opens the new window at the back of its layer to make it the rear-most floating palette or standard window.

If the window specified by BehindWindow is not a floating palette or a standard modeless window, or if the window is
hidden or closed, LoadSpecDialogBehind creates the new window at the front of its layer as though you had used
LoadSpecDialog.

..

LoadDialogList
Attach a dialog item list (ÔDITLÕ resource) to an open window.

C pascal void LoadDialogList (short Window, short ResID);

Pascal procedure LoadDialogList (Window: INTEGER; ResID: INTEGER);

LoadDialogList reads a ÔDITLÕ (dialog item list) resource, attaches it to an open window, then populates the window
with the items in the list. You use this routine if you want to open a window and prepare it in some way before
populating it with the user interface elements defined in a dialog item list.

Window specifies the window number that will have the item list attached. If the specified window is not open,
LoadDialogList does nothing. If the window already has an item list attached, the old list and the items in it are deleted
before the new one is attached. If the window is not open, LoadDialogList does nothing.

ResID is the ÔDITLÕ (dialog item list) resource ID number that is used to create the dialogÕs items. If the ÔDITLÕ
resource does not exist, LoadDialogList does nothing. Flag your ÔDITLÕ resource as purgeable since Tools Plus makes
a copy of its data.

Also see: LoadDialog and AppendDialogList.

..

AppendDialogList
Append a dialog item list (ÔDITLÕ resource) to a dialog.

C pascal void AppendDialogList (short Window, short ResID);

Pascal procedure AppendDialogList (Window: INTEGER; ResID: INTEGER);

AppendDialogList is similar to LoadDialogList in that it reads a ÔDITLÕ (dialog item list) resource, and attaches it to
the current window. Unlike the LoadDialogList routine, this routine appends the new items to the end of an existing
dialog list in the current window instead of deleting it like LoadDialogList.

Tools Plus

132

Window specifies the window number that will have the item list appended. If the specified window is not open,
AppendDialogList does nothing. If the window already has an item list, the new list is appended to the end of the
existing list. If the window is not open, AppendDialogList does nothing.

ResID is the ÔDITLÕ (dialog item list) resource ID number that is used to create the new dialog items. If the ÔDITLÕ
resource does not exist, LoadDialogList does nothing. Note that the item numbers will not be the same as those you
see in ResEdit because they are being added to the end of an existing item list. The item number of the first item in the
new ÔDITLÕ list is the current number of items plus one. Flag your ÔDITLÕ resource as purgeable since Tools Plus
makes a copy of its data.

Also see: LoadDialog and LoadDialogList.

..

SetDialogEditTextSpec
Set appearance and behavior specifications for editing fields that are created by dialogs as Edit Text items.

C pascal void SetDialogEditTextSpec (long Spec);

Pascal procedure SetDialogEditTextSpec (Spec: LONGINT);

Spec is the appearance and behavior specification that is used to create an editing field from an Edit Text item in a
dialog. A list of possible values can be found in the NewField description.

When a window is opened, it takes a copy of the Spec parameter and uses it for all edit text items created in that
window. This excluded editing fields that are created by ÔCNTLÕ resources.

..

SetDialogStaticTextSpec
Set appearance and behavior specifications for static text fields that are created by dialogs as Static Text items.

C pascal void SetDialogStaticTextSpec (long Spec);

Pascal procedure SetDialogStaticTextSpec (Spec: LONGINT);

Spec is the appearance and behavior specification that is used to create a static text field from a Static Text item in a
dialog. A list of possible values can be found in the NewField description.

When a window is opened, it takes a copy of the Spec parameter and uses it for all static text items created in that
window. This excluded static text fields that are created by ÔCNTLÕ resources.

..

SetDialogCNTLEditTextSpec
Set the appearance and behavior specifications for editing fields that are created in dialogs using ÔCNTLÕ resources.

C pascal void SetDialogCNTLEditTextSpec (long Spec);

Pascal procedure SetDialogCNTLEditTextSpec (Spec: LONGINT);

Spec is the appearance and behavior specification that is used to create an editing field from a ÔCNTLÕ resource in a
dialog. See the Fields chapter for details about creating editing fields using ÔCNTLÕ resources. A list of possible values
can be found in the NewField description.

When a window is opened, it takes a copy of the Spec parameter and uses it for all editing fields created in that
window from ÔCNTLÕ resources. The Spec value can be overridden for a single item by its ÔCNTLÕ resource.

5 Windows

WaterÕs Edge Software 133

SetDialogCNTLStaticTextSpec
Set the appearance and behavior specifications for static text fields that are created in dialogs using ÔCNTLÕ resources.

C pascal void SetDialogCNTLStaticTextSpec (long Spec);

Pascal procedure SetDialogCNTLStaticTextSpec (Spec: LONGINT);

Spec is the appearance and behavior specification that is used to create a static text field from a ÔCNTLÕ resource in a
dialog. See the Fields chapter for details about creating static text fields using ÔCNTLÕ resources. A list of possible
values can be found in the NewField description. A value of -1 indicates that ÔCNTLÕ resources referencing CDEF ID
18 (the static text control) are implemented as ÒbuttonsÓ instead of static text fields when the Appearance Manager is
available. This may offer greater control to the programmer, but with less ease of use.

When a window is opened, it takes a copy of the Spec parameter and uses it for all static text items created in that
window from ÔCNTLÕ resources. The Spec value can be overridden for a single static text item by its ÔCNTLÕ resource.

..

SetDialogCNTLListBoxSpec
Set the appearance and behavior specifications for list boxes that are created in dialogs using ÔCNTLÕ resources.

C pascal void SetDialogCNTLListBoxSpec (long Spec);

Pascal procedure SetDialogCNTLListBoxSpec (Spec: LONGINT);

Spec is the appearance and behavior specification that is used to create a list box from a ÔCNTLÕ resource in a dialog.
See the List Boxes chapter for details about creating list boxes using ÔCNTLÕ resources. A list of possible values can
be found in the NewListBox description.

When a window is opened, it takes a copy of the Spec parameter and uses it for all list boxes created in that window
from ÔCNTLÕ resources. The Spec value can be overridden for a single list box by its ÔCNTLÕ resource.

..

SetDialogCNTLPopUpSpec
Set the appearance and behavior specifications for pop-up menus that are created in dialogs using ÔCNTLÕ resources.

C pascal void SetDialogCNTLPopUpSpec (long Spec);

Pascal procedure SetDialogCNTLPopUpSpec (Spec: LONGINT);

Spec is the appearance and behavior specification that is used to create a pop-up menu from a ÔCNTLÕ resource in a
dialog. See the Pop-Up Menus chapter for details about creating pop-up menus using ÔCNTLÕ resources. A list of
possible values can be found in the NewPopUp description. A value of -1 indicates that ÔCNTLÕ resources referencing
CDEF ID 63 (the pop-up menu) are implemented as ÒbuttonsÓ instead of pop-up menus. This offers greater control to
the programmer, but considerably less ease of use.

When a window is opened, it takes a copy of the Spec parameter and uses it for all pop-up menus created in that
window from ÔCNTLÕ resources. The Spec value can be overridden for a single pop-up menu by its ÔCNTLÕ resource.

..

Tools Plus

134

ToolBarOpen
Open a tool bar and make it the ÒcurrentÓ window.

C pascal void ToolBarOpen (short Window, short Height, long Spec);

Pascal procedure ToolBarOpen (Window: INTEGER; Height: INTEGER; Spec: LONGINT);

ToolBarOpen is used to open your applicationÕs tool bar beneath the menu bar on your main monitor. Your application
can have only one tool bar.

Window specifies the tool barÕs window number (just like an ordinary window). Once the tool bar is opened, it is
referenced by this window number. If a window using the same window number is already open, it is closed, then a
new tool bar is opened as specified by the parameters in the ToolBarOpen routine, thereby re-using the window
number. The newly opened tool bar is always Òactive,Ó and it becomes ÒcurrentÓ (action pertaining to graphics, text,
buttons, scroll bars, etc. occurs in this window). Tools Plus allows up to 250 windows to be open simultaneously,
however, you may choose to reduce this limit when using InitToolsPlus to initialize Tools Plus. If a tool bar is open
and you try to open another toolbar using a different window number, ToolBarOpen does nothing.

Height specifies the tool barÕs height. A 1-pixel window frame is drawn just below the tool bar. The tool barÕs height
can be up to 70 pixels, but applicationÕs typically have tool bars that seldom exceed 30 pixels.

The tool barÕs Spec influences the behavior of other windows in your application. Two constants are available to assist
in the implementation of a tool bar, either or both of which can be used to specify a tool bar spec parameter. If you
decide not to use either of the available options, specify a Spec of 0.

tbShiftWindows Shift all open windows downward by an amount that is equal to the menu barÕs
height to prevent windows from being obscured by the tool bar. When the tool bar is
closed, the windows are shifted up by the identical amount.

tbOffsetNewWindows If new windows are opened while the tool bar is open, offset their co-ordinates
downward by an amount that is equal to the menu barÕs height to prevent windows
from being obscured by the tool bar. This option lets you use a standard set of
window locations and have them automatically offset depending on whether the tool
bar is open or not.

Tool bars are typically colored a medium gray on color or gray-scale monitors, so you may want to declare a global
variable of type RGBColor (appropriately named ToolBarGray) that has the red, green and blue components set to
52,428. You can set a tool bar windowÕs backdrop color to ToolBarGray.

Tool bar inside a window

If you want to include a tool bar inside a window, do the following steps when the window is first opened and in
response to a doPreRefresh event:
procedure DrawToolBar;
 var
 ToolBarRect: rect; {Tool bar's rectangle inside a window }
 ToolBarColor: RGBColor; {Tool bar's color }
 begin
 SetRect(ToolBarRect, -1, -1, 10000, 40); {Tool bar is 40 pixels high. Left, top and }

{ right side are out of view (no border seen) }
 SetRGB(ToolBarColor, 52428, 52428, 52428); {Set tool bar's color (best as a global var) }
 PenColorNormal; {Pen: 1x1, black on white }
 SetBackRGB(ToolBarColor); {If Color QuickDraw used, set background to the }

{ tool bar's color. Maps to white on a }
{ monochrome monitor. }

 EraseRect(ToolBarRect); {Erase tool bar using background color }
 FrameRect(ToolBarRect); {Frame tool bar using foreground color (black) }
 end;

CONST {Tool Bar options: }
tbShiftWindows =$01; {Shift windows down when tool bar opens }
tbOffsetNewWindows =$02; {Offset future windows when they open }

..

5 Windows

WaterÕs Edge Software 135

GetFreeWindowNum
Get the first unused window number.

C pascal short GetFreeWindowNum (void);

Pascal function GetFreeWindowNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own window
number, GetFreeWindowNum returns the first unused (free) window number. Using this routine, you can assign an
unused window number to a variable, then use that variable throughout your application without concern for the true
window number.

If the maximum number of windows has already been opened (no new ones can be created), GetFreeWindowNum
returns a value of zero (0).

..

BackdropColor
Set the backdrop color for new windows as they are opened.

C pascal void BackdropColor (const RGBColor *Color);

Pascal procedure BackdropColor (Color: RGBColor);

By default, windows adopt a white backdrop when they are opened, however, each window can have its own unique
backdrop color. When you use the BackdropColor routine, new windows will adopt the specified backdrop color as
they are opened.

Color is the color that is adopted as a backdrop by windows that are opened after using this routine.

If you want to reset this color to the default white, you can use the NoBackdropColor routine.

Also see: SetBackdropColor and NoBackdropColor.

Programming Tips:
1 Use pale, neutral colors for the best looking windows. A light gray is often the best.

2 A tool bar or floating palette appears to come up faster if you give it a backdrop that is medium gray, which is
typically the color of its buttons.

..

NoBackdropColor
Reset the backdrop color to white for new windows as they are opened.

C pascal void NoBackdropColor (void);

Pascal procedure NoBackdropColor;

By default, windows adopt a white backdrop when they are opened, however, each window can have its own unique
backdrop color as set by the BackdropColor routine. NoBackdropColor causes new windows to adopt the default white
backdrop as they are opened. This is the equivalent to using BackdropColor(White).

Also see: BackdropColor.

..

Tools Plus

136

SetBackdropColor
Set the backdrop color for an open window.

C pascal void SetBackdropColor (short Window, const RGBColor *Color);

Pascal procedure SetBackdropColor (Window: INTEGER; Color: RGBColor);

This routine is similar to the BackdropColor routine in that it sets a windowÕs backdrop color, however
SetBackdropColor can be used to change a windowÕs backdrop color at any time. The windowÕs content is erased with
the new backdrop color and the window is invalidated to force all objects to be refreshed on the new backdrop.

Window specifies the window number that is affected. If the specified window is not open or if Color QuickDraw is
not used, SetBackdropColor does nothing.

Color is the windowÕs new backdrop color.

Also see: BackdropColor.

..

SetBackgroundTheme
Set the background theme for an open window.

C pascal void SetBackgroundTheme (short Window, short ActiveBrush,
short InactiveBrush);

Pascal procedure SetBackgroundTheme (Window, ActiveBrush, InactiveBrush: INTEGER);

This routine should be used to set a windowÕs background brush (the color or pattern of the theme that is being used by
the Appearance Manager) to a brush that is different from the windowÕs default brush. Such is the case in a document
window because the Appearance Manager fills the window with white and you may want to use a brush that is
normally associated with a modeless dialog. Do not change brushes after a window is open and displayed (not hidden)
because this may look confusing to the user, and an unsightly flash may be seen as the window changes brushes. You
can easily set a window to use its default brush when the window opens by adding the appropriate option in the spec
parameter of the routine that opens the window. SetBackgroundTheme does nothing if the Appearance Manager is not
available.

Once a theme is applied to a windowÕs background, you cannot remove it nor set the windowÕs backdrop color. You
can only change to another background brush using the SetBackgroundTheme routine.

Window specifies the window number that is affected. If the specified window is not open or if the Appearance
Manager is not available, SetBackgroundTheme does nothing.

ActiveBrush is the background brush that is used when the window is active. If an invalid brush is specified,
SetBackgroundTheme does nothing.

InactiveBrush is the background brush that is used when the window is inactive. If an invalid brush is specified,
SetBackgroundTheme does nothing.

Also see: SetNextWindowBackgroundTheme

CONST {Appearance Manager's brushes: }
kThemeActiveDialogBackgroundBrush = 1; { }
kThemeInactiveDialogBackgroundBrush = 2; { }
kThemeActiveAlertBackgroundBrush = 3; { }
kThemeInactiveAlertBackgroundBrush = 4; { }
kThemeActiveModelessDialogBackgroundBrush = 5; { }
kThemeInactiveModelessDialogBackgroundBrush = 6; { }
kThemeActiveUtilityWindowBackgroundBrush = 7; { }
kThemeInactiveUtilityWindowBackgroundBrush = 8; { }
kThemeListViewSortColumnBackgroundBrush = 9; { }

5 Windows

WaterÕs Edge Software 137

kThemeListViewBackgroundBrush = 10; { }
kThemeIconLabelBackgroundBrush = 11; { }
kThemeListViewSeparatorBrush = 12; { }
kThemeChasingArrowsBrush = 13; { }
kThemeDragHiliteBrush = 14; { }
kThemeDocumentWindowBackgroundBrush = 15; { }
kThemeFinderWindowBackgroundBrush = 16; { }

..

SetNextWindowBackgroundTheme
Set the background theme for the next window that is opened.

C pascal void SetNextWindowBackgroundTheme (short ActiveBrush,
short InactiveBrush);

Pascal procedure SetNextWindowBackgroundTheme (ActiveBrush, InactiveBrush: INTEGER);

This routine is similar to the SetBackgroundTheme, except that it sets the background theme only for the next window
that is opened. Use this routine just before you open a window if you want to create a window that has a non-standard
background theme. A good example of this is if you want to create a non-growing document window
(noGrowDocProc), but you want it to have a medium gray backdrop in AppleÕs Platinum theme, or an equivalent tone
in other themes. The kThemeActiveModelessDialogBackgroundBrush (brush number 5) has this characteristic, so you
would call SetNextWindowBackgroundTheme(5,5) just before you open the new window.

Also see: SetBackgroundTheme

..

WindowClose
Close an open window, tool bar or floating palette.

C pascal void WindowClose (short Window);

Pascal procedure WindowClose (Window: INTEGER);

The WindowClose routine closes a window that was opened by WindowOpen, or a tool bar that was opened with
ToolBarOpen. If a standard window is being closed, the window immediately behind the newly closed window (if one
exists) becomes active and current.

Window specifies the window number that is closed. If the specified window is not open, WindowClose does nothing.

When a window is closed, it automatically deletes the user interface elements on that window and in doing so, releases
the memory consumed by them. Specifically, those elements are buttons, picture buttons, pop-up menus, scroll bars,
editing fields, list boxes, panels and custom controls. Fields that have automatically allocated a string handle deallocate
that handle as they are deleted when the window is closed. Cursor tables are not deleted because they can be shared by
multiple windows. Field filters are also not deleted since any filter can be used by numerous fields spread across
multiple windows.

If the affected window contains an active editing field, that field is automatically deactivated before the window is
closed. The impact to your application is that you must save the fieldÕs edited text (with the SaveFieldString routine)
before closing the window. If you want to validate the fieldÕs edited text before saving it, see the GetEditString
routine.

When working with windows that are opened and closed frequently, you can take advantage of the WindowDisplay
routine which hides and displays a window. This is particularly useful when used on a tool bar or a floating palette
because a hidden window remembers the settings of all the objects on the window (picture buttons, check boxes and
radio buttons, editing fields, etc.) as well as the windowÕs location. When the window is displayed again, it is identical
in position and appearance as when it was hidden.

Tools Plus

138

WindowSize
Change a windowÕs size or a tool barÕs height.

C pascal void WindowSize (short Window, short Width, short Height,
Boolean Update);

Pascal procedure WindowSize (Window, Width, Height: INTEGER; Update: BOOLEAN);

The WindowSize routine is used to change a windowÕs width and/or height without changing its position on the
screen. In most situations, windows that need resizing are best accommodated by the documentProc procID which
provides a grow box in the bottom right corner of the window, and optionally a zoom box in the title bar. Some
applications, however, need a window that presents an ÒexpandedÓ view. An example of this is the MacintoshÕs Alarm
Clock desk accessory which expands to let the user change the time, calendar and alarm timer. Your application should
change a windowÕs size only in response to some action taken by the user. This routine does not resize windows that
are collapsed with System 7Õs WindowShade or in Mac OS 8 due to an OS bug that redraws the window structure
improperly.

Window specifies the window number that is resized. If the specified window is not open, WindowSize does nothing.

Width and Height specify the windowÕs new dimensions in pixels. These dimensions relate to those specified by the
WindowOpen routine, that is, they represent the content region or usable area of the window (the windowÕs frame,
shadow, and title bar are all created outside of these co-ordinates). The tool barÕs width cannot be changed, and its
height cannot exceed 70 pixels. All other windowsÕ new dimensions are automatically adjusted to keep them within
the windowÕs size limits which are set with SetWindowSizeLimits. If you specify zero (0) for either of these
dimensions, it specifies that the dimension (height or width) should not be changed (i.e., WindowSize(1, 80, 0, true)
changes window 1Õs width to 80 pixels and leaves the height unchanged).

Update specifies if the newly exposed area is added to the windowÕs update region (thereby producing a doRefresh
event). If you specify true, the newly exposed area is added to the windowÕs update region. If you specify false, your
application will handle the newly exposed area.

..

WindowMove
Move a window to another location on the screen.

C pascal void WindowMove (short Window, short hGlobal, short vGlobal,
long Spec);

Pascal procedure WindowMove (Window: INTEGER; hGlobal: INTEGER; vGlobal: INTEGER;
Spec: LONGINT);

WindowMove repositions a window on the screen without changing its size. Do not use WindowMove in place of
having the user move a window to a new location by dragging the title bar. Windows should only be moved in
response to a userÕs action, such as selecting an ÒArrange WindowsÓ menu item that arranges all open windows in a
specified manner (grid or tile, for example).

Window specifies the window number that is moved. If the specified window is not open, WindowMove does nothing.

HGlobal and vGlobal specify the windowÕs new location in global co-ordinates. These dimensions relate to the top left
corner specified by the WindowOpen routine, that is, they represent the top left corner of the content region or usable
area of the window (the windowÕs frame, shadow, and title bar are all created outside of these co-ordinates). The tool
bar cannot be moved.

5 Windows

WaterÕs Edge Software 139

Spec specifies optional behavior that can take place while moving the window. The value for this 4-byte long integer
can be specified by adding a set of constants to obtain the desired result. The options are:

wAnimateMove Show Òzoom linesÓ that move from the windowÕs original position to the windowÕs
new position (see the ZoomLines routine for details).

wOffsetForToolBar Offset the specified vertical co-ordinate downward by the tool barÕs height (if a tool
bar is open).

CONST {Window moving options: }
wAnimateMove = $01; {Animate with Zoom Lines }
wOffsetForToolBar = $02; {Offset co-ords by tool bar's height }

..

WindowDisplay
Hide or show a window, floating palette, or tool bar.

C pascal void WindowDisplay (short Window, Boolean Show);

Pascal procedure WindowDisplay (Window: INTEGER; Show: BOOLEAN);

From a userÕs perspective, a window that is ÒhiddenÓ by your application is actually being closed. If a standard
window is hidden, the standard window behind it is activated. When a window is displayed (unhidden), it appears as
though the window was opened, in that it appears at the front of its layer and becomes ÒactiveÓ and Òcurrent.Ó Your
application should hide and show windows in response to a userÕs action, such as selecting a ÒHide Tool BarÓ menu
item. Tools Plus automatically hides the tool bar and all floating palettes when your application is suspended under
MultiFinder or System 7 or higher, and displays them when your application is activated.

Window specifies the window number that is hidden or shown.

Show indicates if the window is being hidden or displayed. The two constants that can be used for this flag are wShow
and wHide.

When working with windows that are opened and closed frequently, you can take advantage of WindowDisplay
instead of closing the window and opening it and having to recreate its contents. This is particularly useful when used
on a tool bar or a floating palette because a hidden window remembers the settings of all the objects on the window
(picture buttons, check boxes and radio buttons, editing fields, etc.) as well as the windowÕs location. When the
window is displayed again, it is identical in position and appearance as when it was hidden.

When a window is hidden, it does not release any memory consumed by its associated user interface elements such as
buttons (including radio buttons and check boxes), picture buttons, pop-up menus, scroll bars, editing fields, list boxes,
and custom controls. If a window is being hidden and it contains an active editing field, that field is automatically
deactivated before the window is hidden. The impact to your application is that you must save the fieldÕs edited text
(with the SaveFieldString routine) before hiding the window. If you want to validate the fieldÕs edited text before
saving it, see the GetEditString routine.

CONST {Window displaying options: }
wShow = true; {Display (unhide) }
wHide = false; {Hide window }

Programming Tips:
1 Before you hide a window, realize that the user thinks the window is being closed (even though it may only

be temporary). DonÕt leave the window in an ÒunsettledÓ state when your are hiding it. Make sure that all
editing fields are validated and processed.

..

Tools Plus

140

WindowDisplayBehind
Hide or show a window, floating palette, or tool bar. When showing a window, show it behind another window.

C pascal void WindowDisplayBehind (short Window, Boolean Show,
short BehindWindow);

Pascal procedure WindowDisplayBehind (Window: INTEGER; Show: BOOLEAN;
BehindWindow: INTEGER);

WindowDisplayBehind is identical to the WindowDisplay routine, except when showing a window, this routine shows
it behind a specified window, or at the back of a window layer.

BehindWindow specifies the number of an open and visible Tools Plus window behind which the new window is
shown. This parameter is ignored when hiding a window. The BehindWindow must be in the same window layer as
the window that is being displayed, meaning that a floating palette can only display behind another floating palette,
and a standard window can only display behind another standard window. A value of -1 displays the window at the
front of its layer. This produces the same result as using WindowDisplay. A value of 0 displays the window at the back
of its layer to make it the rear-most floating palette or standard window.

If the window specified by BehindWindow is not a floating palette or a standard modeless window, or if the window is
hidden or closed, WindowDisplayBehind displays the window at the front of its layer as though you had used
WindowDisplay.

..

ActivateWindow
Activate a window.

C pascal void ActivateWindow (short Window);

Pascal procedure ActivateWindow (Window: INTEGER);

Window specifies the window number that is activated. The specified window is brought forward and becomes
ÒactiveÓ and Òcurrent.Ó This window is also considered to be the ÒworkÓ window. If the window is hidden or not open,
ActivateWindow does nothing. You cannot activate a modal window.

If the tool bar is activated, it simply becomes the current window (because the tool bar is always active). If a floating
palette is activated, it is brought to the front of the floating palette layer without deactivating any windows. When a
standard window is activated, it is brought to the front of the standard window layer, and the previously active standard
window is deactivated.

A window is normally activated only in response to a doChgWindow event that is reported to your event handler
routine. Another possible use of ActivateWindow is if your application has a ÒWindowÓ menu that lets the user
activate a window from a menu. DonÕt mysteriously activate an inactive window.

..

ClearFocus
Remove the keyboard focus from a window.

C pascal void ClearFocus (short Window);

Pascal procedure ClearFocus (Window: INTEGER);

Window specifies the window number whose keyboard focus is being removed. If the window is hidden or not open,
ClearFocus does nothing. If the keyboard focus is an editing field, the field is automatically deactivated.

5 Windows

WaterÕs Edge Software 141

CurrentWindow
Make a window the current window without activating it.

C pascal void CurrentWindow (short Window);

Pascal procedure CurrentWindow (Window: INTEGER);

Subsequent window related operations such as drawing, and creating fields, buttons, scroll bars, etc., occur in the
specified window without making it the ÒactiveÓ window. This routine is used to redirect your applicationÕs actions to
a window other than the active one.

Window specifies the window number in which subsequent window related operations occur. If the specified window
is not open, CurrentWindow does nothing.

The CurrentWindowReset routine resets window operations back to the ÒactiveÓ window making the active window
current too. You should get into the habit of leaving the active window current. It makes debugging much simpler.

..

CurrentWindowReset
Reset the ÒcurrentÓ window to be the same as the ÒactiveÓ window.

C pascal void CurrentWindowReset (void);

Pascal procedure CurrentWindowReset;

Subsequent window related operations such as drawing, and creating fields, buttons, scroll bars, etc., occur in the
ÒactiveÓ window. This routine nullifies the effect of the CurrentWindow routine making the ÒactiveÓ window current
also. If your application uses a tool bar and/or floating palettes, then the work window becomes current.

..

WindowTitle
Change a windowÕs title.

C pascal void WindowTitle (short Window, const Str255 Title);

Pascal procedure WindowTitle (Window: INTEGER; Title: STRING);

The WindowTitle routine changes the title for an open window, regardless if it is active or not. You can only see the
change on windows that have a title bar (documentProc, noGrowDocProc, rDocProc, paletteProc and ordPaletteProc).
You wonÕt see any change on windows that do not display titles (dBoxProc, plainDBox, altDBoxProc, altPaletteProc,
and the tool bar).

Window specifies the window number in which the title is to be changed. The specified window does not have to be
the ÒactiveÓ window, however, the window must be opened to display the title. Hidden windows display the new title
once they become visible. If the window is not open, WindowTitle does nothing.

Title contains the windowÕs new title.

- Note: When printing to a LaserWriter or any other printer that supports Print Monitor (or other spoolers), a temporary
spool file is created. The Print Manager uses the active windowÕs name to name the spool file (the fileÕs name
appears in the Print MonitorÕs queue to indicate the documents that are waiting to be printed). Before you do
any printing, use WindowTitle to set the active windowÕs title to the name you want your spool file to be. This
applies even if you are using a modal dialog (which may not have a title bar) while printing.

..

Tools Plus

142

SetWindowSizeLimits
Set a windowÕs size limits that determine the minimum and maximum size allowable when using the Òsize boxÓ or
Òzoom box.Ó

C pascal void SetWindowSizeLimits (short minHoriz, short minVert,
short maxHoriz, short maxVert);

Pascal procedure SetWindowSizeLimits (minHoriz, minVert, maxHoriz,
maxVert: INTEGER);

MinHoriz specifies the minimum width (in pixels) the window may attain when being sized.

MinVert specifies the minimum height (in pixels) the window may attain when being sized.

MaxHoriz specifies the maximum width (in pixels) the window may attain when being sized.

MaxVert specifies the maximum height (in pixels) the window may attain when being sized.

SetWindowSizeLimits affects only the current window. If the current window is not a Tools Plus window,
SetWindowSizeLimits does nothing. The minimum and maximum limits imposed on a window are automatically
adjusted (if necessary) to ensure that the windowÕs current size does not exceed the adjusted limits. For example, if the
minHoriz limit is set to 100 pixels and the window is currently 90 pixels wide (10 pixels smaller than the specified
minimum width), minHoriz is adjusted to 90 pixels. The same applies if the maximum limit is exceeded by the
windowÕs current dimensions.

By setting these limits, it is possible to allow a window to be sized horizontally or vertically only.

..

SetWindowZoom
Set a windowÕs standard co-ordinates and user co-ordinates that are in effect when the windowÕs Òzoom boxÓ is
clicked.

C pascal void SetWindowZoom (const Rect *userRect, const Rect *stdRect);

Pascal procedure SetWindowZoom (userRect, stdRect: RECT);

A window containing a zoom box has two different states: [1] the standard state, and [2] the user state. The user can
change the windowÕs size and/or location, thereby defining the user state. When the zoom box is clicked, the window
ÒzoomsÓ back to the standard state (which, by default, is the windowÕs co-ordinates when it was first opened). Clicking
the zoom box again reverts to the user state.

Sometimes it is desirable to have the standard state and/or user state something other than the windowÕs initial co-
ordinates. SetWindowZoom sets either or both of these. The windowÕs current co-ordinates become the user state. It is
good form to call SetWindowZoom immediately after opening a window.

UserRect defines a rectangle in global co-ordinates that determines the windowÕs user co-ordinates. If the current
window is not a Tools Plus window, if the current window has no zoom box, or if an empty rectangle is specified, the
user co-ordinates are not set.

StdRect defines a rectangle in global co-ordinates that determines the windowÕs standard co-ordinates. If the current
window is not a Tools Plus window, if the current window has no zoom box, or if an empty rectangle is specified, the
standard co-ordinates are not set.

If the tool bar is open, and it was created with the tbOffsetNewWindows option, this windowÕs co-ordinates for
userRect and stdRect are shifted downwards by an amount that is equal to the tool barÕs height.

+ Warning: When you set the user and standard co-ordinates, make sure that they are such that at least part of the
windowÕs title bar is visible to allow the window to be dragging back into view (donÕt zoom to an Òoff-
screenÓ window). Ideally, the zoom box should always be visible.

5 Windows

WaterÕs Edge Software 143

GetWindowZoom
Get a windowÕs standard state and user state for zooming.

C pascal void GetWindowZoom (Rect *userRect, Rect *stdRect);

Pascal procedure GetWindowZoom (var userRect, stdRect: RECT);

A window containing a zoom box has two different states: [1] the standard state, and [2] the user state. The user can
change the windowÕs size and/or location, thereby defining the user state. When the zoom box is clicked, the window
ÒzoomsÓ back to the standard state (which, by default, is the windowÕs co-ordinates when it was first opened). Clicking
the zoom box again reverts to the user state.

UserRect defines the windowÕs user state in the screenÕs global co-ordinates.

StdRect defines the windowÕs standard state in the screenÕs global co-ordinates.

If the tool bar is open, and it was created with the tbOffsetNewWindows option, this windowÕs userRect and stdRect
are shifted upwards by an amount that is equal to the tool barÕs height (i.e., they are shifted up as though there was no
tool bar).

GetWindowZoom gets the values for the current window. If the current window is not a Tools Plus window, or if the
current window has no zoom box, the userRect and stdRect rectangles are undefined. This routine is useful if you want
to save both states as part of the document. When the document is opened, a window could be created using the
userRect co-ordinates, and the user and standard state can be set by using the SetWindowZoom routine.

..

SetDialogItemRect
Set a dialog itemÕs display rectangle.

C pascal void SetDialogItemRect (short Item, const Rect *ItemRect);

Pascal procedure SetDialogItemRect (Item: INTEGER; ItemRect: RECT);

SetDialogItemRect sets the display rectangle for a dialog item in the current window. The current window must be a
Òdialog,Ó that is, a window that has been opened using LoadDialog or LoadSpecDialog. You can also populate a
window with a dialog item list by using the LoadDialogList routine. See the LoadDialog routine for details about
creating a dialog and its elements.

Item specifies the item number whose display rectangle is being changed. This number relates to the item numbers you
see displayed while editing a ÔDLOGÕ (dialog) resource or ÔDITLÕ (dialog item list) resource in ResEdit.

ItemRect is the specified itemÕs new display rectangle. If the current window does not have a dialog list, or if the item
you specify does not exist in the item list, SetDialogItemRect does nothing.

This routine is useful only for changing the co-ordinates of static text items, icons, or pictures in a dialog, usually to
ÒhideÓ them by moving their co-ordinates out of the visible part of the window. The change is visible next time the
dialog is refreshed because the item is drawn at its new co-ordinates. SetDialogItemRect changes the itemÕs co-
ordinates and does nothing else, so you may want to erase the item at its old co-ordinates using the toolboxÕs
EraseRect routine, and invalidate the area using the toolboxÕs InvalRect routine to force other objects within the area to
be redrawn. After the itemÕs co-ordinates are changed, use InvalRect at the new co-ordinates to force the item to be
redrawn in its new position.

Tools Plus provides routines that let you move and/or resize any user interface element.

..

Tools Plus

144

GetDialogItemRect
Get a dialog itemÕs display rectangle.

C pascal void GetDialogItemRect (short Item, Rect *ItemRect);

Pascal procedure GetDialogItemRect (Item: INTEGER; var ItemRect: RECT);

GetDialogItemRect obtains the display rectangle for a dialog item in the current window. The current window must be
a Òdialog,Ó that is a window that has been opened using LoadDialog or LoadSpecDialog. You can also populate a
window with a dialog item list by using the LoadDialogList routine. See the LoadDialog routine for details about
creating a dialog and its elements.

Item specifies the item number whose display rectangle is being retrieved. This number relates to the item numbers
you see displayed while editing a ÔDLOGÕ (dialog) resource or ÔDITLÕ (dialog item list) resource in ResEdit.

ItemRect is the specified itemÕs display rectangle. ItemRect returns as an empty rectangle (with all co-ordinates set to
zero) if the current window was not created by Tools Plus, if the current window does not have a dialog list, or if the
item you specify does not exist in the item list.

..

SetDialogFontInfo
Set the font settings for new dialogs as they are created.

C pascal void SetDialogFontInfo (short theFont, short theSize, Style theStyle);

Pascal procedure SetDialogFontInfo (theFont, theSize: INTEGER; theStyle: STYLE);

When new dialogs are created, by default they use the systemÕs font (Chicago 12pt plain). SetDialogFontInfo lets you
specify new default font settings that are adopted by dialogs as they are opened. GetDialogFontInfo lets you retrieve
these settings.

TheFont specifies the font that is used by new dialogs. The default is Chicago, which is represented by the systemFont
constant.

TheSize specifies the fontÕs size. The default is 0, which represents the default font size used by the system font, or
12pt in this case.

TheStyle specifies the style(s) in which the font is displayed. Special character constants defined by the Font Manager
are bold, italic, underline and shadow. C programmers use the font managerÕs constants to specify a composite style,
such as SetDialogFontInfo(geneva, 9, bold + outline) for bold and outlined, or SetDialogFontInfo(geneva, 9, 0) for
plain text. Pascal programmers use the font managerÕs constants to specify a set, such as SetDialogFontInfo(geneva, 9,
[bold, outline]) for bold and outlined, or SetDialogFontInfo(geneva, 9, []) for plain text.

..

GetDialogFontInfo
Get the font settings used by new dialogs as they are created.

C pascal void GetDialogFontInfo (short *theFont, short *theSize,
Style *theStyle);

Pascal procedure GetDialogFontInfo (var theFont: INTEGER; var theSize: INTEGER;
var theStyle: STYLE);

When new dialogs are created, by default they use the systemÕs font (Chicago 12pt plain). GetDialogFontInfo lets you
obtain the default font settings that are adopted by dialogs as they are opened.

5 Windows

WaterÕs Edge Software 145

TheFont specifies the font that is used by new dialogs.

TheSize specifies the fontÕs size.

TheStyle specifies the style(s) in which the font is displayed. Special character constants defined by the Font Manager
are bold, italic, underline and shadow. C programmers use the font managerÕs constants to specify a composite style,
such as Òbold + outlineÓ for bold and outlined, or Ò0Ó for plain text. Pascal programmers use the font managerÕs
constants to specify a set, such as [bold, outline] for bold and outlined, [] for plain text.

..

WindowStatus
Get a windowÕs status information.

C pascal void WindowStatus (short Window, TPWindowStatus *Status);

Pascal procedure WindowStatus (Window: INTEGER; var Status: TPWindowStatus);

The WindowStatus routine returns the status of any Tools Plus window, whether it is open or closed, displayed or
hidden.

Window is the window number of a Tools Plus window. Window must be less than or equal to MaxWindows as
defined by InitToolsPlus. If it is not, the Status record is initialized to ÒfalseÓ and 0 values. MaxWindows defines the
maximum number of Tools Plus windows that may be open at any time.

The Status record contains information about the Tools Plus window indicated by the Window value. The record is
defined as such:

C struct TPWindowStatus {
short Kind; /*Window kind: Tool Bar, Palette, or Standard */
Boolean Open; /*Is the window open? */
Boolean Visible; /*Is the window visible (not hidden)? */
Boolean Active; /*Is the window active? */
Boolean Collapsed; /*Is the window collapsed (by WindowShade) */
Boolean Front; /*Is the frontmost Tools Plus window? */
Boolean Current; /*Is the current window? */
Boolean WorkWindow; /*Is the work window? */
Boolean EditFieldWindow; /*Does the window have app's active field? */
short ActiveField; /*Window's active field number */
Rect StrucRect; /*Structure rect (global). Incl border & title bar */
Rect ContRect; /*Content rect (global). Working area only. */
};

typedef struct TPWindowStatus TPWindowStatus;

Pascal TPWindowStatus = record { }
Kind: integer; {Window kind: Tool Bar, Palette, or Standard }
Open: boolean; {Is the window open? }
Visible: boolean; {Is the window visible (not hidden)? }
Active: boolean; {Is the window active? }
Collapsed: boolean; {Is the window collapsed (by WindowShade) }
Front: boolean; {Is the frontmost Tools Plus window? }
Current: boolean; {Is the current window? }
WorkWindow: boolean; {Is the work window? }
EditFieldWindow: boolean; {Does the window have the app's active field? }
ActiveField: integer; {Window's active field number }
StrucRect: rect; {Structure rect (global). Includes border & title bar }
ContRect: rect; {Content rect (global). Working area only. }

end;

Kind indicates the kind of window being referenced. The various kinds of windows are:
wNoKind = 0 Window is not open
wToolBarKind = 1 Tool Bar
wFloatingKind = 2 Floating palette
wStandardKind = 3 Standard window

Open indicates if the referenced window is open.

Tools Plus

146

Visible indicates if the referenced window is visible or not. The term ÒvisibleÓ refers to being programatically
unhidden. It does not mean Òobscured by other windows or objects.Ó

Active indicates if the referenced window is active. A Tools Plus window will not be active under any of the following
conditions:

¥ the window is not open
¥ the referenced window is a standard window, but not the frontmost standard window
¥ the active window is a desk accessory (System 5/6Õs Finder only)

Collapsed indicates if the referenced window has been collapsed such that only its title bar is visible. Collapsing a
window is available as a control panel called ÒWindow ShadeÓ in System 7, and as part of Mac OS 8. A collapsed
window is visible to the user as a title bar only, even though the objects in the window still exist and are completely
functional. For example, typing the Enter key will invoke the default button in an active collapsed window. A
collapsed window cannot be resized using the WindowSize routine due to a bug in System software that does not
redraw the window correctly.

Front indicates if the referenced window is the frontmost window in your application. If your application is not using a
tool bar or floating palettes, the frontmost window is active unless:

¥ a desk accessory is active
¥ another application or the Finder is active (under MultiFinder or System 7 or higher)

Current indicates if the referenced window is the current window. If your application does not use a tool bar or
floating palettes, current and active will be the same unless you used the CurrentWindow routine to change the current
window number.

WorkWindow indicates if the referenced window is the work window. This is the same as active if your application
does not use a tool bar or floating palettes.

EditFieldWindow indicates if the referenced window contains your applicationÕs active editing field (see the Editing
Fields chapter for details).

ActiveField specifies the active editing field number for the referenced window. For standard windows, this field
becomes active when the window is active. For the tool bar and floating palettes, this field is active while the
application is active.

StrucRect is the windowÕs structure rectangle in global co-ordinates. This includes the windowÕs frame, shadow, and
title bar.

ContRect is the windowÕs content rectangle in global co-ordinates. This is the windowÕs usable area excluding the
windowÕs frame, shadow, and title bar.

CONST {Kinds of windows: }
wNoKind = 0; {Not open }
wToolBarKind = 1; {Tool Bar }
wFloatingKind = 2; {Floating Palette }
wStandardKind = 3; {Standard Window }

..

RefreshToolsPlusInWindow
Refresh Tools Plus user interface elements in a window.

C pascal void RefreshToolsPlusInWindow (short Window);

Pascal procedure RefreshToolsPlusInWindow (Window: INTEGER);

Window specifies the affected window number.

This routine refreshes Tools Plus user interface elements within the specified windowÕs update region. Your
application will typically never need to use this routine because it is automatically executed if itÕs required when your
event handler routine is told to refresh a window. You may decide to use this routine in the following example:

¥ Display an alert indicating an error

5 Windows

WaterÕs Edge Software 147

¥ User dismisses the alert but your application must do some processing before it leaves the event handler
routine.

¥ If your application draws anything in the window, draw those items from within a BeginUpdate/EndUpdate
block.

When RefreshToolsPlusInWindow returns control to your application, the windowÕs update region excludes the areas
occupied by Tools Plus's user interface elements. This lets your application do additional drawing inside a
BeginUpdate/EndUpdate block without worrying about overwriting any Tools Plus items. The interior of a panel is not
affected in this way to permit your application to draw inside the panel if required.

..

RefreshDrawingInWindow
Refresh elements that are drawn by your application in a window.

C pascal void RefreshDrawingInWindow (short Window);

Pascal procedure RefreshDrawingInWindow (Window: INTEGER);

Window specifies the affected window number.

This routine refreshes the application-drawn elements in a window by issuing a doPreRefresh event followed by a
doRefresh event to a windowÕs event handler. Your application will likely call RefreshDrawingInWindow if it creates
the windowÕs interface elements dynamically . A typical sequence is as follows:

¥ Open window
¥ Create user interface elements such as buttons, sliders, list boxes, etc.
¥ Call RefreshDrawingInWindow

..

GetWindowInOrder
Determine the Nth window from the front.

C pascal short GetWindowInOrder (short Position);

Pascal function GetWindowInOrder (Position: INTEGER): INTEGER;

The GetWindowInOrder routine can be used to determine the front to back order of Tools Plus windows. This is useful
if you ever want to place a new window behind a specific window.

Position specifies the relative front-to-back position of the window you want to query. For example, 1 indicates the
frontmost window, 2 indicates the second window from the font. In all cases, windows belonging to other applications
or processes and desk accessories are ignored, as are hidden or closed windows. Only open and non-hidden windows
that were opened with Tools Plus routines are counted, even if their co-ordinates are off-screen and they cannot be
seen by the user. The relative position includes a tool bar, floating palettes and modal windows too.

The routineÕs value returns with a Tools Plus window number. If the specified position is less than one, or if it exceeds
the total number of windows that are currently open in your application, GetWindowInOrder returns with a value of
zero.

..

Tools Plus

148

ActiveWindowNumber
Get the window number of the active window (or work window number if a tool bar and/or floating palettes are used).

C pascal short ActiveWindowNumber (void);

Pascal function ActiveWindowNumber: INTEGER;

This routine returns the window number of the active window when your application is the active application. If your
application does not have a tool bar or floating palettes, this is the frontmost window. When a tool bar and/or floating
palettes are used, ActiveWindowNumber returns the work window number. A value of zero (0) is returned if any of
the following conditions occurs:

¥ no windows are open
¥ the active window is a desk accessory
¥ another application or the Finder is active (under MultiFinder or System 7 or higher)

Note that ActiveWindowNumber returns the same value regardless if your application is active or not. You can
use the combination of ActiveWindowNumber and ApplicationSuspended to determine if the user sees this
window as active or not.

Also see: CurrentWindowNumber, FirstWindowNumber, FirstStdWindowNumber, FirstPaletteNumber and
WorkWindowNumber.

..

CurrentWindowNumber
Get the window number of the current window.

C pascal short CurrentWindowNumber (void);

Pascal function CurrentWindowNumber: INTEGER;

This routine returns the window number of the current window. If your application does not have a tool bar or floating
palettes, this window is the same as the active window unless you used the CurrentWindow routine to change the
current window. A value of zero (0) is returned if any of the following conditions occurs:

¥ no windows are open
¥ the current window is a desk accessory
¥ another application or the Finder is current (under MultiFinder or System 7 or higher)

Also see: ActiveWindowNumber and FirstWindowNumber.

..

FirstWindowNumber
Get the window number of your applicationÕs frontmost window.

C pascal short FirstWindowNumber (void);

Pascal function FirstWindowNumber: INTEGER;

This routine is typically used to determine the frontmost window in order to close it or apply some equally universal
operation to that window. If your application does not have a tool bar or floating palettes, this is your applicationÕs
frontmost window. If your application has a tool bar or floating palettes, FirstWindowNumber returns the number of
the window that satisfies any of the following conditions (in ascending order of priority):

¥ the frontmost modal window (it is a standard window)
¥ the frontmost floating palette (if one is open and visible)
¥ the frontmost modeless standard window (if one is open and visible)

5 Windows

WaterÕs Edge Software 149

FirstWindowNumber always ignores the tool bar.

A value of zero (0) is returned if no windows are open. Note that the frontmost window in your application will not be
the active window under any of the following conditions:

¥ a desk accessory is active
¥ another application or the Finder is active (under MultiFinder or System 7 or higher)

Also see: CurrentWindowNumber, FirstWindowNumber, FirstStdWindowNumber, FirstPaletteNumber and
WorkWindowNumber.

..

ToolBarNumber
Get the window number of your applicationÕs tool bar.

C pascal short ToolBarNumber (void);

Pascal function ToolBarNumber: INTEGER;

This routine returns the window number of your applicationÕs tool bar. If your application does not have a tool bar, or
if the tool bar has been hidden, ToolBarNumber returns a value of zero (0). You can use this routine in place of a
global variable to determine if an event pertains to the tool bar.

..

FirstPaletteNumber
Get the window number of your applicationÕs frontmost floating palette.

C pascal short FirstPaletteNumber (void);

Pascal function FirstPaletteNumber: INTEGER;

This routine returns the window number of your applicationÕs frontmost visible floating palette. If your application
does not have floating palettes, or if they are all hidden, FirstPaletteNumber returns a value of zero (0).

..

FirstStdWindowNumber
Get the window number of your applicationÕs frontmost standard window.

C pascal short FirstStdWindowNumber (void);

Pascal function FirstStdWindowNumber: INTEGER;

This routine returns the window number of your applicationÕs frontmost visible standard window. If your application
does not have standard windows, or if they are all hidden, FirstStdWindowNumber returns a value of zero (0). Note
that this window may be modal.

..

Tools Plus

150

WorkWindowNumber
Get the window number of your applicationÕs work window.

C pascal short WorkWindowNumber (void);

Pascal function WorkWindowNumber: INTEGER;

This routine returns the window number of your applicationÕs work window. Your application has only one such
window which gains its Òwork windowÓ status under any of the following conditions:

¥ the user clicks in a window, or any object in a window
¥ a window is opened as modal (because the next action must take place within that window)
¥ a standard window is opened (and therefore activated), and the previous work window was an active standard

window
¥ the work window is closed or hidden, in which case the following will become the work window:

frontmost standard window (if any are open), or
frontmost floating palette (if any are open), or
the tool bar (if it is open)

¥ a window is activated

Your application can treat a work window like an active window, in that it is an eligible target for the userÕs activity. If
your application does not use a tool bar or floating palettes, the work window is the same as the active window.

..

EditFldWindowNumber
Get the window number of the window containing your applicationÕs active editing field.

C pascal short EditFldWindowNumber (void);

Pascal function EditFldWindowNumber: INTEGER;

This routine returns the window number of the window containing the active editing field in your application. If your
application does not have a tool bar or floating palettes, this window will either be the active window (frontmost), or it
will be zero (0) when there is no active field. When a tool bar and/or floating palettes are used, this window can
potentially be any of the active windows (tool bar, any floating palette, or the active standard window). See the Editing
Fields chapter for details.

..

FocusWindowNumber
Get the window number of the window containing your applicationÕs keyboard focus.

C pascal short FocusWindowNumber (void);

Pascal function FocusWindowNumber: INTEGER;

This routine returns the window number of the window containing the your applicationÕs keyboard focus. If your
application does not have a tool bar or floating palettes, this window will either be the active window (frontmost), or it
will be zero (0) when there is no control bearing the keyboard focus. When a tool bar and/or floating palettes are used,
this window can potentially be any of the active windows (tool bar, any floating palette, or the active standard
window). See the Editing Fields chapter for details.

..

5 Windows

WaterÕs Edge Software 151

WindowIsOpen
Determine if a window is open.

C pascal Boolean WindowIsOpen (short Window);

Pascal function WindowIsOpen (Window: INTEGER): BOOLEAN;

Window is the window number of a Tools Plus window. Window must be less than or equal to MaxWindows as
defined by InitToolsPlus.

The routineÕs value returns true if the window is open, and false if the window is not open. Note that an open window
may have been hidden by your application, and therefore not be visible.

..

WindowIsVisible
Determine if a window is visible (not hidden).

C pascal Boolean WindowIsVisible (short Window);

Pascal function WindowIsVisible (Window: INTEGER): BOOLEAN;

Window is the window number of a Tools Plus window. Window must be less than or equal to MaxWindows as
defined by InitToolsPlus.

The routineÕs value returns true if the window is open and visible, and false if the window is not open or not visible.
The term ÒvisibleÓ refers to being programatically unhidden. It does not mean Òobscured by other windows or objects.Ó

..

WindowIsActive
Determine if a window is active.

C pascal Boolean WindowIsActive (short Window);

Pascal function WindowIsActive (Window: INTEGER): BOOLEAN;

Window is the window number of a Tools Plus window. Window must be less than or equal to MaxWindows as
defined by InitToolsPlus.

The routineÕs value returns true if the window is open (not hidden) and active. Only the frontmost standard (not a tool
bar or floating palette) window is active, and only when your application is active. The tool bar and floating palettes
are always active when they are open and not hidden. The only exception to this is when a modal window is open, in
which case the tool bar and floating palettes are temporarily inactive until the modal window is closed.

..

Tools Plus

152

WindowKind
Determine a windowÕs type.

C pascal short WindowKind (short Window);

Pascal function WindowKind (Window: INTEGER): INTEGER;

Window is the window number of a Tools Plus window. Window must be less than or equal to MaxWindows as
defined by InitToolsPlus. The window may be hidden.

The routine returns with a value that corresponds to the type of window being referenced. The four constants that can
be used to evaluate a windowÕs type are wNoKind (window is not open), wToolBarKind, wFloatingKind, and
wStandardKind.

CONST {Kinds of windows: }
wNoKind = 0; {Not open }
wToolBarKind = 1; {Tool Bar }
wFloatingKind = 2; {Floating Palette }
wStandardKind = 3; {Standard Window }

..

GetFocusInfo
Determine the object with the keyboard focus in a window.

C pascal void GetFocusInfo (short Window, short *ObjectNum, short *ObjectKind);

Pascal procedure GetFocusInfo (Window: INTEGER; var ObjectNum: INTEGER;
var ObjectKind: INTEGER);

Window is the window number of a Tools Plus window. Window must be less than or equal to MaxWindows as
defined by InitToolsPlus. The window may be hidden.

ObjectNum returns with the number of the object that has the keyboard focus in the specified window, such as editing
field number 22 or button number 5. If the specified window is not open or if it does not have an object with the
keyboard focus, ObjectNum returns with a value of zero (0).

ObjectKind returns with a value that tell your application the kind of object that has the keyboard focus. If the
specified window is not open or if it does not have an object with the keyboard focus, ObjectKind returns with a value
of zero (0). The five constants that can be used to evaluate the kind of keyboard focus object are listed below.

CONST {Kinds of objects with keyboard focus: }
kNoFocusKind = 0; {No object with keyboard focus }
kButtonFocusKind = 1; {Button (or item implemented as button) }
kScrollBarFocusKind = 2; {Scroll bar (or item implemented as scroll bar) }
kListBoxFocusKind = 3; {List box }
kFieldFocusKind = 4; {Editing field }

..

5 Windows

WaterÕs Edge Software 153

WindowPointer
Get the pointer to a Tools Plus window.

C pascal WindowPtr WindowPointer (short Window);

Pascal function WindowPointer (Window: INTEGER): WindowPtr;

This routine returns a window pointer to a standard toolbox WindowRecord that is used by a Tools Plus window,
regardless if that window is open or not.

Window is the window number of a Tools Plus window. Window must be less than or equal to MaxWindows as
defined by InitToolsPlus. If it is not, nil is returned.

..

AutoMoveSize
Automatically move and/or resize subsequently created objects as their windowÕs size changes.

C pascal void AutoMoveSize (Boolean left Boolean top, Boolean right,
Boolean bottom);

Pascal procedure AutoMoveSize (left, top, right, bottom: BOOLEAN);

AutoMoveSize sets four global parameters that can optionally be adopted by objects as they are created. The four
parameters indicate if a subsequently created objectÕs left, top, right and/or bottom are automatically adjusted when
their parent windowÕs size changes. These settings optionally apply to objects created on any window.

left Does the objectÕs left side track the windowÕs right edge?
top Does the objectÕs top track the windowÕs bottom edge?
right Does the objectÕs right side track the windowÕs right edge?
bottom Does the objectÕs bottom track the windowÕs bottom edge?

As each object is created, an optional constant (like the buttonÕs bAutoMoveSize) is added to the objectÕs spec to make
it assume AutoMoveSizeÕs settings. For example, AutoMoveSize lets you specify that the right and bottom edge of
subsequently created objects are automatically resized without having to do so for each object.

If you prefer, you can specify the automatic resizing setting for an individual object instead of doing so for a group of
subsequently created objects. For example, AutoMoveSizeButton lets you set these parameters for a specific button.
Equivalent routines are available for all user interface elements that appear on windows.

+ Warning: Make sure that you resize objects in a way that makes sense. DonÕt allow a window to shrink down to a
size where objects become unusable or disappear altogether.

..

FinderDisplay
Hide or show the Finder and other applications.

C pascal void FinderDisplay (Boolean Show);

Pascal procedure FinderDisplay (Show: BOOLEAN);

Some applications, typically installers, hide the Finder (desk top) and other applications while they are doing their
work. This effect shows the user an empty desk top, one that is void of all items including disk drives while the active
application is doing its work. FinderDisplay performs this function but in doing so, provides only the desired visual
effect. It does not prompt the user to quit other applications that may be running nor does it instruct those applications
to quit. As a fail-safe precaution, the Finder and other applications are redisplayed when your application is suspended.

Tools Plus

154

They return to their state set by your application when your application is activated.

Show indicates if the Finder and other applications are being hidden or displayed. The two constants that can be used
for this flag are on and off.

+ Warning: Some development environments may act up if you try stepping through your program while the Finder
and other applications are hidden.

..

SetLiveWindowDragging
Turn the live window dragging/resizing option on or off.

C pascal void SetLiveWindowDragging (Boolean LiveDrag);

Pascal procedure SetLiveWindowDragging (LiveDrag: BOOLEAN);

This routine lets your application globally enable or disable the live window dragging/resizing option. The
InitToolsPlus routine can optionally enable this feature unconditionally, or when your application is running on a
specific processor. For additional flexibility, your application can turn this feature on or off using this routine based on
its own criteria. You may consider letting your applicationÕs user set this option in a Preferences dialog.

LiveDrag specifies if the option is turned on or off. The constants on and off can be used for this purpose.

..

ReplaceWindowProcID
Replace a window type throughout the application. The use of one procID is replaced with another.

C pascal void ReplaceWindowProcID (short OriginalProcID,
short ReplacementProcID);

Pascal procedure ReplaceWindowProcID (OriginalProcID, ReplacementProcID: INTEGER);

This routine lets your application globally replace the use of one procID with another. The replacement takes effect in
windows that are opened after this routine is used.

OriginalProcID is the procID that is specified in your applicationÕs source code and in various resources such as
ÔDLOGÕ and ÔWIND.Õ

ReplacementProcID is the procID that replaces OriginalProcID when the window is opened. When a window is
opened in which the procID has a value that matches OriginalProcID, the procID is replaced with the value specified
by ReplacementProcID.

As an example, you can program your application to make use of the Òutility windowÓ (floating palette) that is
available when Mac OS 8Õs Appearance Manager is running. Early in your application following InitToolsPlus, your
application can determine if the Appearance Manager is running by using the UsingAppearanceManager routine. If it
is not, then your application can call ReplaceWindowProcID to replace the utility windowÕs procID with a procID for
a custom floating palette WDEF, such as the Infinity Windoid. This allows you to use the systemÕs standard floating
palette if it is available, otherwise you can use a custom floating palette.

ReplaceWindowProcID can be used to specify numerous window procID substitutions for your application. Tools Plus
accumulates all the substitutions in a dynamic list and uses that list whenever a window is opened. You can remove an
entry from the list by specifying a ReplacementProcID with the same value as OriginalProcID.

..

5 Windows

WaterÕs Edge Software 155

The Infinity Windoid
Tools Plus includes an efficient, versatile floating palette with the Tools Plus disk (in the ÒOptional ResourcesÓ folder).
We also include a highly refined third-party floating palette window definition from Infinity Systems. The Infinity
Windoid (WDEF) features a color drag bar and zoom box options, just like other commercial applications.

WaterÕs Edge Software is merely furnishing a third-party add-on for your benefit (at no cost), and we are in no way
related to Infinity Systems. We can say, however, that Infinity has come up with a great looking palette WDEF! So
good, that we feel it compliments Tools Plus.

Please read the related documentation for full details on warranty, copyright, and support questions. To contact the
creators of the Infinity Windoid, please send all enquiries to:

Troy Gaul
Infinity Systems
19850 Portal Plaza
Cupertino, CA 95014
USA

America Online: TGaul
Internet: TGaul@aol.com

Tools Plus

156

6 Buttons

WaterÕs Edge Software 157

6 Buttons

Tools Plus supports the use of buttons on any Tools Plus window. Buttons are created on the current window by the
NewButton routine. Each button is referenced by a unique button number, which can be from 1 to 511. This number is
specified when the button is created, and refers to the specific button until that button is deleted. Note that the button
number is related to its associated window. This means that two different windows can each have a button numbered
Ò1Ó without interfering with each other. Whenever a button is clicked by the user, Tools Plus calls your event handler
routine and reports the button number as well as its window number. You can also create a button from a ÔCNTLÕ
resource by using the LoadButton routine.

Buttons can be moved to a new location with MoveButton and have their width and/or height changed with
SizeButton. MoveSizeButton combines both tasks by letting you specify new co-ordinates for the button.

When a button is no longer required, it is deleted by the DeleteButton routine, which releases the memory used by that
button. This is done automatically if a window is closed. Buttons can be renamed by using the ButtonTitle routine, and
hidden or displayed with the ButtonDisplay routine.

Tools Plus also supports the use of custom CDEFs as buttons, as well as the extended set of controls that are part of the
Appearance Manager which first appeared in Mac OS 8. Many of these controls are implemented as buttons and are
detailed in this section. See the chapter on Scroll Bars for details on the remaining Appearance Manager controls.

Button Types
All three standard Macintosh button types are supported by Tools Plus. The push-button is always used to Òdo
something now,Ó such as confirming or canceling a process. Check boxes and radio buttons are variations on a similar
theme: they can be either selected or deselected by clicking on them. The check box contains an ÒxÓ when checked,
whereas the radio button contains a dot. The difference between these two buttons is that radio buttons are logically
grouped by your application such that only one button is selected within the group. When the user selects a radio
button, your application de-selects the other buttons in the group. Radio buttons can be automatically deselected by
being placed in a panel.

You can also use custom control (CDEF) resources in your application and Tools Plus will make them behave like a
push-button, check box or radio button. Other controls that are available only in the Appearance Manager are details
later in this section.

Button States
All three button types can be either enabled or disabled by using the EnableButton routine. When a button is disabled,
it becomes dim and cannot be selected by the user. Check boxes and radio buttons can be either selected or de-selected
by using the SelectButton routine.

When a window is inactive, all the associated buttons are automatically disabled and cannot be selected. When the
window is activated, the buttons are automatically returned to their normal state as set by your application.

disabled disabled disabled

enabled & checked (no change) enabled & checked enabled & checked

Tools Plus

158

Button Titles
A buttonÕs title can be changed by the ButtonTitle routine, however this should be done judiciously since this can be
confusing to the user. A buttonÕs title is centered in a push button, and left aligned in a check box or radio button.

Fonts
All buttons default to using the Chicago 12pt font. When a button is created, it can optionally adopt and remember the
windowÕs current font, size and style settings (as set by the TextFont, TextSize, and TextFace routines) by including
the bUseWFont option. The windowÕs settings can then be changed without affecting the button. Unlike regular
buttons, Tools Plus buttons can each have a different font. You can use the GetButtonFontSettings and
SetButtonFontSettings routines to get and set the buttonÕs font, size and style settings.

Colors
By default, new buttons have a black frame and text, and a background that matches their parent windowÕs backdrop
color (which is white by default). Optionally, each button can adopt unique color settings as it is created. The colors
for the various button parts are defined by the ButtonColors routine, and are optionally adopted by buttons as they are
created. ButtonsÕ colors can be changed afterwards using the SetButtonColors routine. Conversely, the
GetButtonColors routine retrieves a buttonÕs color settings.

When designing applications, always design them in black and white then apply color (if required) to add value to your
application. DonÕt add color just because you can. In the case of color buttons, test your color selection thoroughly on
a monitor set to 8, 4, and 2-bit color and gray scale, and black and white to ensure that your colors and window
backdrop color map to usable colors. Note that some controls ignore color settings.

Default Button
One push button on each window can be designated to be the ÒdefaultÓ button by the SetDefaultButton routine. This
routine draws an outline around the button as shown below. If the Return or Enter key is pressed, Tools Plus responds
as if the default button had been clicked. The buttonÕs default status can be cleared by the NoDefaultButton routine. A
default button cannot be created on a tool bar or floating palette.

When the user is working in an editing field, only the Enter key invokes the default push button. This is done to avoid
confusion between fields that can and cannot accept the Return key as a carriage return in the field.

Selecting Buttons and Command Keys
Normally, a button is selected when the user clicks on it. You can optionally make a button selectable by using a
command key. When you add bCmdKey to the buttonÕs spec, the button can be selected by typing the command key in
conjunction with the first character of the buttonÕs title. Additionally, 1-. (command-period) and the Escape key select
a button whose title is ÒCancelÓ (or a language-dependent equivalent).

Substituting Button ProcIDs
Certain system resources may or may not be available to your application depending on the system version of the
Macintosh that is running your application. A good example of this is the 3D buttons that are part of the Appearance
Manager in Mac OS 8 or later. With Tools Plus, you can design and write your application to use a custom button
definition (CDEF resource) to provide 3D buttons in your application, such as those in SuperCDEFs. Then at the

6 Buttons

WaterÕs Edge Software 159

beginning of your application it can determine the MacÕs capabilities, specifically if the Appearance Manager is
running to make the systemÕs 3D buttons available to your application. If this is the case, your application can easily
substitute the use of the custom 3D button CDEF with the Appearance ManagerÕs 3D button throughout your
application.

Two routines in the Miscellaneous Routines chapter of this manual help facilitate determining the capabilities of the
Macintosh that is running your application: HasAppearanceManager and UsingAppearanceManager. You can also use
the toolboxÕs Gestalt routines to determine whether other features are available or not. Tools PlusÕs
ReplaceControlProcID is used to replace a specific button procID with another procID throughout your application,
thereby substituting the use of one type of button with another.

Handling Buttons
Your application specifies if check boxes or radio buttons are selected or not. It also specifies if a button is enabled or
disabled. When a window in inactive, Tools Plus disables all buttons on that window. When the window is activated
again, all the buttons regain their correct status as specified by your application.

Tools Plus constantly inquires about any events that have occurred, including clicking on buttons. If a button is
selected (i.e., the user presses the mouse button down and releases it within the buttonÕs region), Tools Plus reports it
by calling your event handler routine. This also applies if the user presses the Enter or Return key when a window has
a default button. In the case of check boxes or radio buttons, your application must then select or de-select the button
appropriately.

If you place radio buttons in a panel, you can optionally have them behave as a radio button group so that when a
button is selected, the other buttons in the group are automatically deselected. Otherwise Tools Plus doesnÕt know how
your buttons are grouped and your application must select/deselect related buttons appropriately.

+ Warning: If you have obtained a handle to a button, do not change any of the fields in the buttonÕs record.

Appearance Manager Controls
The Appearance Manager, first introduced in mid 1997 with Mac OS 8, gives your application a number of 3D
controls in addition to the ordinary push button, check box, radio button, and scroll bar that were originally supplied by
Apple when Macintosh debuted in 1984. All the new Appearance Manager controls are implemented as CDEFs, but
unlike third party CDEF resources that must be installed in your application when it is built, the Appearance
ManagerÕs controls are available to your application without having to install them. They are available from the
system, just like regular system controls, if the Macintosh running your application has an Appearance Manager.

Your application can access the Appearance ManagerÕs 3D push buttons, check boxes, radio buttons and scroll bars
without any special programming. In fact, you can replace the standard controls throughout your application with the
equivalent Appearance Manager controls as a default behavior when you initialize Tools Plus libraries with the
InitToolsPlus routine. However, if you want to make use of other Appearance Manager controls and features, you need
to make your application ÒAppearance Manager aware.Ó 680x0 applications are automatically Appearance Manager
aware. To make your PowerPC application Appearance Manager aware, see the Designing Your Application chapter
of this manual for details in the ÒUsing the Appearance ManagerÓ section.

Many of the Appearance ManagerÕs controls are considerably more complex than the standard controls, and
understandably so because they offer considerably more features. Many controls place special significance on their
initial values when they are created, specifically the controlÕs minimum limit, maximum limit and current value (these
items equate to the contrlMin, contrlMax and contrlValue fields of the Control ManagerÕs ControlRecord record).
Constants for these controls and all their options appear in the Appearance.h (C/C++ header) and Appearance.p (Pascal
interface) files, as well as in Controls.h and Controls.p files.

See the chapters on Scroll Bars, Editing Fields, List Boxes and Pop-Up Menus in this user manual for additional
Appearance Manager controls.

- Note: For complete information on Appearance Manager concepts, the Appearance ManagerÕs features, and how to
best use the Appearance ManagerÕs new controls, please read the documentation pertaining to the Appearance

Tools Plus

160

Manager. It is available from Apple or in the latest issue of Inside Macintosh. This manual does not duplicate
that material.

Push Button (CDEF 23)

This push button works identically to a standard pushButProc push button.

CONST
kControlPushButtonProc = 368; {Push button ProcID }
kControlPushButLeftIconProc = 374; {Push-button with left-side icon }
kControlPushButRightIconProc = 375; {Push-button with right-side icon }

When either of the icon push buttons are created, the controlÕs maximum limit is used to
specify the ÔcicnÕ resource ID that is drawn in the push button.

Enabled

Pressed

With Icon

Check Box (CDEF 23)

This check box works similarly to a standard checkBoxProc check box, except that it also has a
ÒmixedÓ mode in addition to being selected or unselected.

CONST
kControlCheckBoxProc = 369; {Check box ProcID }
kControlCheckBoxMixedValue = 2; {Button's value for "mixed" mode }

Off

On

Mixed

Radio Button (CDEF 23)

This radio button works similarly to a standard radioButProc radio button, except that it also
has a ÒmixedÓ mode in addition to being selected or unselected.

CONST
kControlRadioButtonProc = 370; {Radio button ProcID }
kControlCheckBoxMixedValue = 2; {Button's value for "mixed" mode }

Off

On

Mixed

Bevel Button (CDEF 2)

The bevel button is the most versatile control offered by the Appearance Manager. It allows
you to specify the buttonÕs appearance, its content (picture, icon, etc.), and its behavior (push
button, toggle, or sticky). See the Pop-Up Menus chapter for information about implementing
the bevel button control as a pop-up menu.

All these capabilities are invoked by correctly setting the controlÕs variant code, minimum
limit, maximum limit, and value.

Parameter ParameterÕs value is used forÉ

Variant Code Bit 3 = Use windowÕs font
Bit 2 = Pop-up arrowÕs direction
Bits 0-1 = Bevel size

Min Limit High byte = Behavior
Low byte = Type of content

Value Always 0 (zero)
Max Limit Resource ID for resource-based content types

If you use an icon suite, remember to include a mask icon (ICN# or ics#).

Small, Medium and
Large Bevel Buttons

On

Off

6 Buttons

WaterÕs Edge Software 161

CONST
{Bevel Button ProcIDs: }

kControlBevelButtonSmallBevelProc = 32; {Small bevel }
kControlBevelButtonNormalBevelProc = 33; {Standard size bevel }
kControlBevelButtonLargeBevelProc = 34; {Large bevel }

{Behaviors (in min. limit): }
kControlBehaviorPushbutton = $0000; {Push button }
kControlBehaviorToggles = $0100; {Click on/off }
kControlBehaviorSticky = $0200; {Instant on }
kControlBehaviorOffsetContents = $8000; {Contents offset 1 pixel down }

{ and right when clicked. }

{Content (in min. limit): }
kControlContentTextOnly = 0; {Button contains only text }
kControlContentIconSuiteRes = 1; {Image us an icon suite }
kControlContentCIconRes = 2; {Image is a 'cicn' icon }
kControlContentPictRes = 3; {Image is a 'PICT' }
kControlContentIconRef = 132; {Image is an 'ICON' }

Tabs (CDEF 8)

A tab control is a single control that has a number of parts (the tabs) that can be individually
selected by the user. From a userÕs perspective, each tab part is used in a similar way to a radio
button in a group: click one choice to select it and to deselect the others. The titles and icons for
each of the tab parts can be set in two ways: by setting the controlÕs title, or if you are creating
the tab control using a ÔCNTLÕ resource, by including a Ôtab#Õ resource with the same resource
ID as the ÔCNTLÕ resource.

The title you provide for the control is broken into separate parts for each tab by using a
vertical bar (the Ò|Ó key, or shift-\) between parts. If one or more numbers precede the title, then
that number is used to specify the ÔcicnÕ icon resource that appears in that tab part. The
following example shows you a sample title for a tab control:

601Disks|602Folders|Files|605

In this example, four tab parts are created as follows:
#1 ÔcicnÕ icon ID 601, title = ÒDisksÓ
#2 ÔcicnÕ icon ID 602, title = ÒFoldersÓ
#3 no icon, title = ÒFilesÓ
#4 ÔcicnÕ icon ID 605, no title

If you are creating a tab control using a ÔCNTLÕ resource, you may find it easier to create a
Ôtab#Õ resource with the same ID as the ÔCNTLÕ resource. The Ôtab#Õ resource specifies the
number of tab parts, each icon ID (0 = no icon) and title. If your resource editor does not
support Ôtab#Õ resources, check the ÒOptional ResourcesÓ folder in Tools Plus for a folder
named ÒOptional Resource TemplatesÓ. There, you will find a file named ÒAppearance
Manager TemplatesÓ that contains the ÔTMPLÕ resource that is needed to create a Ôtab#Õ
resource. Just copy this ÔTMPLÕ resource into your resource editor application to give it the
ability to create Ôtab#Õ resources.

- Note: You need Appearance Manager 1.0.1 or later to create tab controls in Tools Plus.
Earlier versions have a bug that does not create the tab parts.

CONST
{Tab ProcIDs: }

kControlTabLargeProc = 128; {Tab control with large tabs }
kControlTabSmallProc = 129; {Tab control with small tabs }

Tab Control

Tools Plus

162

Disclosure Triangles (CDEF 4)

Disclosure triangles work like check boxes: they can be off (related details are hidden, triangle
points right or optionally to the left), or on (related details are displayed, triangle points down).
You are responsible for coding the logic to hide and display the details relating to the triangle
control, as this does not happen automatically. Disclosure triangles should always be created in
a 12 x 12 pixel square.

CONST
{Tab ProcIDs: }

kControlTriangleProc = 64; {Triangle faces right }
kControlTriangleLeftFacingProc = 65; {Triangle faces left }
kControlTriangleAutoToggleProc = 66; {Faces right, auto-toggle}
kControlTriangleLeftFacingAutoToggleProc = 67; {Faces left, auto-toggle }

Off

On

Clock (CDEF 15)

The clock control is used to display the time (and optionally the date) in a consistent manner,
and to let the user set the time (and optionally the date). When created, this control defaults to
displaying the current time (and optionally the date) as indicated by the MacintoshÕs internal
clock. The clock control can be automatically updated once per minute or per second so that it
always shows the current time. See the Appearance ManagerÕs documentation for setting the
time for this control and retrieving the setting.

The clock control updates automatically each time your event handler routine finishes
executing. If you need to update the clock more frequently, see the Process1EventWhileBusy
routine for details. When you create a clock control, it is best if you create it exactly 22 pixels
high and use the system font.

CONST
{Clock ProcIDs: }

kControlClockTimeProc = 240; {Standard HH:MM time }
kControlClockTimeSecondsProc = 241; {Time with seconds (HH:MM:SS) }
kControlClockDateProc = 242; {Date clock }
kControlClockMonthYearProc = 243; {Date clock with month and year }

{Value settings for behavior: }
kControlClockNoFlags = 0; {User can change the time }
kControlClockIsDisplayOnly = 1; {User cannot change the time }
kControlClockIsLive = 2; {Auto-updated clock (combine this }

{ with kControlClockIsDisplayOnly. }

Display-only clock

Interactive clock

Group Box (CDEF 10)

The group box control offers some of the visual cues that are found in Tools PlusÕs panels.
Even though this control is not nearly as versatile as a Tools Plus Panel, you may decide to use
it anyway because it presents a look that is consistent with the Appearance Manager. The user
cannot interact with a group box control (clicking on it does not generate an event).

The Appearance Manager offers two additional services with the group box control:
¥ Setting the controlÕs value to zero (0) deselects all radio buttons
¥ The controlÕs value indicates the most recently selected radio button

CONST
{Primary Group Box }
{ ProcIDs: }

kControlGroupBoxTextTitleProc = 160; {With text title }
kControlGroupBoxCheckBoxProc = 161; {With check box title }
kControlGroupBoxPopupButtonProc = 162; {With pop-up menu title }

{Secondary Group Box }
{ ProcIDs: }

kControlGroupBoxSecondaryTextTitleProc = 164; {With text title }
kControlGroupBoxSecondaryCheckBoxProc = 165; {With check box title }
kControlGroupBoxSecondaryPopupButtonProc = 166; {With pop-up menu title }

Primary titled group box

Group with check box

Group with pop-up menu

Secondary Group Box

6 Buttons

WaterÕs Edge Software 163

Chasing Arrows (CDEF 7)

Chasing Arrows are used to indicate that a window, which is accessible to the user, is being
updated by some process. This is seen in Mac OS 8Õs Finder when you open a folder that is set
to icon view and that folder contains a lot of files -- while the Finder busies itself displaying the
icons, the user sees the Chasing Arrows and can still interact with the window.

The Chasing Arrows control animates automatically each time your event handler routine
finishes executing. If you need to animate the control more frequently, see the
Process1EventWhileBusy routine for details. To stop animation, simply hide or delete this
control. The user cannot interact with this control. Chasing Arrows should always be created in
a 16 x 16 pixel square.

CONST
kControlChasingArrowsProc = 112; {Chasing Arrows ProcID }

Chasing Arrows

Little Arrows (CDEF 6)

Little Arrows are used to increase or decreased a value, as seen in the Clock control. In Tools
Plus, this control can be implemented either as a button to allow the user to step through a
series of values one at a time with each click, or as a scroll bar to allow the user to also hold the
up arrow or down arrow to continuously increase or decrease a value while the button is held
down.

If you are using a ÔCNTLÕ resource to create this control, add 1 to the procID to tell Tools Plus
that you want to implement the Little Arrows control as a scroll bar, otherwise it is
implemented as a button. Little Arrows should always be created in a rectangle that is 13 pixels
wide by 23 pixels high.

CONST
kControlLittleArrowsProc = 96; {Little Arrows ProcID }

Little Arrows

Static Text (CDEF 18)

The Static Text control can be implemented as a non-selectable button or as a special kind of
field called a static text field (see the Editing Fields chapter). You can use static text controls in
place of standard static text items in dialogs. The advantage this provides is that the text looks
disabled on an inactive window (it is dimmed) and you can easily manipulate the text as you
would any other control, such as hiding and showing the control. The user cannot interact with
this control.

CONST
kControlStaticTextProc = 288; {Static Text ProcID }

Enabled

Disabled

Placard (CDEF 14)

The placard is designed to be a frame or ÒcontextÓ for displaying small items, such as a page
number to the left of a documentÕs horizontal scroll bar. Avoid using a placard for a large
background area, such as an area within a tab control that is used to hold several radio buttons.
Using a placard in this manner may cause unsightly flickering because when the placard is
refreshed, it overwrites the image of all embedded controls, then it refreshes those controls. The
user cannot interact with this control.

CONST
kControlPlacardProc = 224; {Placard ProcID }

Placard

Tools Plus

164

Visual Separator (CDEF 9)

The Visual Separator control is a dividing line between objects or groups of elements. Make
sure you make this control 3 pixels wide. The user cannot interact with this control.

CONST
kControlSeparatorLineProc = 144; {Visual Separator ProcID }

Visual Separator

Image Well (CDEF 11)

An image well is a display-only area where an image is shown. It provides an attractive
recessed border and a consistent background for displaying pictures or icons. The controlÕs
Minimum Limit and Value fields are used to specify what is displayed in the control. The user
cannot interact with this control.

Parameter ParameterÕs value is used forÉ

Min Limit Type of content
Value Resource ID for resource-based content types

If you use an icon suite, remember to include a mask icon (ICN# or ics#).

CONST
kControlImageWellProc = 176; {Image Well ProcID }

{Content (in min. limit): }
kControlContentTextOnly = 0; {Button contains only text }
kControlContentIconSuiteRes = 1; {Image us an icon suite }
kControlContentCIconRes = 2; {Image is a 'cicn' icon }
kControlContentPictRes = 3; {Image is a 'PICT' }
kControlContentIconRef = 132; {Image is an 'ICON' }

Image Well showing an
Icon Suite

Pop-Up Arrow (CDEF 12)

These minor controls are used typically in custom pop-up menus or in menu lists to indicate
that more information can be shown. The user cannot interact with this control.

CONST
kControlPopupArrowEastProc = 192; {Pop-up Arrow ProcIDs: }
kControlPopupArrowWestProc = 193; { }
kControlPopupArrowNorthProc = 194; { }
kControlPopupArrowSouthProc = 195; { }
kControlPopupArrowSmallEastProc = 196; { }
kControlPopupArrowSmallWestProc = 197; { }
kControlPopupArrowSmallNorthProc = 198; { }
kControlPopupArrowSmallSouthProc = 199; { }

Pop-up Arrows

Picture Control (CDEF 19)

The Picture Control uses a ÔPICTÕ resource to present the user with a click-sensing image. This
control darkens the image when it is being tracked by the user, and dims the image when the
control is disabled. Set the controlÕs Value parameter to the ÔPICTÕ resource ID that you want
to display.

+ Warning: Flag the ÔPICTÕ resource as preloaded, locked, and not purgeable to avoid an
Appearance Manager bug.

CONST
{Picture Control ProcIDs: }

kControlPictureProc = 304; {Standard, tracking picture control }
kControlPictureNoTrackProc = 305; {Instant-Event, non-tracking control }

Picture Control

6 Buttons

WaterÕs Edge Software 165

Icon Control (CDEF 20)

The Icon Control uses a ÔcicnÕ resource or an icon suite to present the user with a click-sensing
image. This control darkens the image when it is being tracked by the user, and dims the image
when the control is disabled. Set the controlÕs Value parameter to the ÔcicnÕ resource ID or to
the icon suite ID that you want to display.

If you use an icon suite, remember to include a mask icon (ICN# or ics#).

CONST
{Icon Control ProcIDs: }

kControlIconProc = 320; {Use a 'cicn', track control }
kControlIconNoTrackProc = 321; {Instant-Event, non-tracking control }
kControlIconSuiteProc = 322; {Use an icon suite, track control }
kControlIconSuiteNoTrackProc = 323; {Instant-Event, non-tracking control }

Icon Control

Window Header (CDEF 21)

The window header control is similar to the placard control, except that it is used as a header
area for a window. This control would typically contain column titles and perhaps a chasing
arrows control. The user cannot interact with this control.

- Note: You need Appearance Manager 1.0.2 or later to use window header controls in Tools
Plus. Earlier versions have a bug that causes static text items placed on this control to
display a pseudo random pattern instead of text.

CONST
{Window Header ProcIDs: }

kControlWindowHeaderProc = 336; {Normal header }
kControlWindowListViewHeaderProc = 337; {List variant, no bottom line }

Window Header

User Pane (CDEF 16)

The User Pane control can be used in two very different ways. With knowledge of the
Appearance Manager, you can write code that draws components of a custom pane in a style of
your choosing to produce an interface element that is similar to a placard or to a window header
control.

This control also provides a use in its naturally invisible state: you can create a user pane, then
create a number of user interface elements on that pane and auto-embed them to the pane. This
gives you the ability to hide or show all the user interface elements that belong to that pane just
by hiding or showing the user pane control. This is a useful technique in hiding and showing
ÒlayersÓ of controls that are associated with a single tab part in a tab control. The user cannot
interact directly with the user pane control.

CONST
kControlUserPaneProc = 256; {User Pane ProcID }

User Pane
(invisible)

Tools Plus

166

Appearance Manager and Keyboard Focus
Before the Appearance ManagerÕs arrival, the only user interface element that could process keystrokes was an editing
field. With the Appearance Manager present, a variety of user interface elements can process keystrokes, such as
editing fields, list boxes and the clock control. Keystrokes are directed at only one user interface element at a time (and
possibly at no element at all). When a user interface element processes keystrokes in such a way, it is said to have the
Òkeyboard focus.Ó Only one user interface element can have the keyboard focus at a time, and it is visually indicated
with a highlighted ÒbandÓ around the object. Tools Plus takes care of the focus highlight, and of applying keystrokes to
the element that has the keyboard focus.

The process of moving the keyboard focus between objects, either by tabbing or clicking, is identical to that of
navigating between editing fields. For details, see the ÒClicking and TabbingÓ section in the Editing Fields chapter.

..

NewButton
Create a new button.

C pascal void NewButton (short Button, short left, short top, short right,
short bottom, const Str255 Title, long Spec,
Boolean EnabledFlag, Boolean SelectedFlag);

Pascal procedure NewButton (Button, left, top, right, bottom: INTEGER;
Title: STRING; Spec: LONGINT;
EnabledFlag, SelectedFlag: BOOLEAN);

Button specifies the button number (from 1 to 511) that is created in the current window. Once a button is created, it is
referenced by this button number. If a button has been previously created in the current window using the same
number, it is replaced with a new button as specified by the parameters in the NewButton routine. If the current
window doesnÕt belong to your application, or if no windows are open, NewButton does nothing.

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the buttonÕs size and location in the
window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-hand
corner (right,bottom). See the chart below regarding the minimum height for buttons. These measurements are based
on using the system font (Chicago 12pt) for the buttonÕs text.

Minimum Height Standard
With Descenders No Descenders Height

Push Buttons
Radio/Check Box Buttons

18 13 20
14 12 16

The Title parameter is the buttonÕs title. Each button should have a unique title. Button titles can have multiple lines,
each line being separated by the ASCII character code $0D (carriage return). It is your responsibility to ensure that the
rectangle defining the buttonÕs co-ordinates is sufficient to contain the buttonÕs title.

Spec specifies a buttonÕs appearance and behavior. It is a combination of a button procID plus various Tools Plus
options detailed later in this section.

EnabledFlag indicates if the newly created button is enabled or not. All three button types can be either enabled or
disabled. When a button is disabled, it becomes dim and cannot be selected by the user. All buttons automatically
become disabled when the window containing them is inactive. When the window is activated, the buttons assume
their state as set by the NewButton routine and subsequent calls to the EnableButton routine. The two constants that
can be used for this flag are enabled and disabled.

SelectedFlag indicates if the newly created button is selected or not. Only check boxes and radio buttons can be
selected (this setting has no effect on push buttons). The two constants that can be used for this flag are selected and
notSelected.

6 Buttons

WaterÕs Edge Software 167

The following are examples of disabled and checked buttons:

pushButProc checkBoxProc radioButProc
(disabled) (disabled, notSelected) (disabled, notSelected)

pushButProc checkBoxProc radioButProc
(enabled) (enabled, selected) (enabled, selected)

Appearance and Behavior Specification

Spec specifies a buttonÕs appearance and behavior. It is a combination of a button procID (low 16 bits) plus various
Tools Plus options (high 16 bits). The value for this 4-byte long integer can be specified by adding a set of constants to
obtain the desired result. For example, a push-button using the windowÕs current font would have a spec of
pushButProc + bUseWFont. The constants defining the available options are as follows:

Choose only one of the following procIDs (or use a custom CDEFÕs procID)É
pushButProc Standard Apple push button. Used to Òdo something now.Ó

checkBoxProc Standard Apple check box. Used for Òyes/noÓ types of
selections.

radioButProc Standard Apple radio button. Used to select one of several
options in a group where all options must be visible. This
differs from the use of a pop-up menu where the only time all
options need to be visible is when the user is making a
selection, then only the selected item is displayed.

Also see the section on Appearance Manager Controls earlier in this chapter for additional procIDs.

Optionally choose any of the following optionsÉ
bUseWFont Display the button using the windowÕs current font, size and style settings (as set by

the TextFont, TextSize, and TextFace routines). The button stores this information
for future reference. By default, all buttons are drawn using the system font
(Chicago, 12 pt).

bColorButton Adopt the color settings as defined by the ButtonColors routine. By default, buttons
have black text and frame, and a background that matches their parent windowÕs
backdrop color (which is white by default). Note that some controls ignore color
settings, particularly those in the Appearance Manager.

bDefault Make this button the windowÕs default button. Can only be applied
to one push button on a standard window. Pressing the ÒReturnÓ or
ÒEnterÓ key selects this button.

bCmdKey Allow the button to be selected by a command key (1-first letter). If the buttonÕs
title is ÒCancelÓ (or a language-dependent equivalent), 1-. (command-period) and
the Escape key can be used to select the button.

bAutoMoveSize Automatically move and/or resize the button when the windowÕs size changes. The
AutoMoveSize routine lets you specify which sides are altered. You can use the
AutoMoveSizeButton routine as an alternative to setting this option.

bHidden Create a hidden button. This kind of button is accessible to your application but not
to the user. A default button loses its default status if you hide it.

Tools Plus

168

Optionally choose only one of the following options if you are using non-standard custom CDEFsÉ
If you want to use a custom CDEF whose variant codes do not match up with those defined by Apple, you
wonÕt be able to use the pushButProc, checkBoxProc, radioButProc or bUseWFont constants because their
values may map to completely different functions in the CDEF. Use the following options to inform Tools Plus
of the CDEFs properties.

bCDEFPushButton The CDEF is treated like a push button by Tools Plus. It can be the default for the
window and its value always remains 1.

bCDEFRadioButton The CDEF is treated like a radio button by Tools Plus. Its value can be 0 or 1
(unselected or selected). It can also be automatically deselected when placed in a
panel as a radio button group.

bCDEFCheckBox The CDEF is treated like a check box by Tools Plus. It can have any value.

Custom Control Definitions (CDEFs)
Your application can use custom control definitions (CDEFs) on a per-button basis. Tools Plus can make your custom
button behave like a push button, radio button, or check box. When using a custom CDEF, you will need to include a
special control definition (CDEF) resource in your applicationÕs resource fork. Tools Plus includes custom CDEFs in
the ÒOptional ResourcesÓ folder.

You can write your own CDEFs or use those created by a third-party. A CDEFÕs procID is calculated as follows:
CDEFÕs resource ID x 16 + variant code. As previously noted, if you are using a CDEF whose variant codes are
different from those defined by Apple (pushButProc, checkBoxProc or radioButProc plus the optional bUseWFont),
you can tell Tools Plus about the CDEFÕs properties by using the constants bCDEFPushButton, bCDEFRadioButton or
bCDEFCheckBox. This lets you use the low 4 bits (variant code) as required by your CDEF.

Your CDEFÕs resource ID can be in the range of 2 to 2047. If you use 0 you will replace the use of AppleÕs standard
buttons with your CDEF throughout your application. ID 1 is reserved by AppleÕs scroll bar and ID 63 is used by the
pop-up menu CDEF in System 7 or higher. It is best to use resource IDs 128 or higher for your custom CDEFs.

- Note: When using third party CDEFs, make sure you carefully read the documentation that accompanies the CDEF.
Your CDEF may not be able to make use of all the variant codes that are available to AppleÕs controls.

If your button is on a manually drawn background (other than a windowÕs backdrop) such as a picture, that
background must be refreshed in response to a doPreRefresh event. Tools Plus removes your buttonÕs rectangle
from the update region when it generates the doRefresh event, thereby protecting it from being overwritten.

- Note: Tools Plus makes no attempt to control the placement of buttons or to protect them once they have been
created. It is your responsibility to ensure that buttons are of sufficient size to contain their title, and that their
placement within the window is reasonable and does not conflict with other objects. Furthermore, you should
not allow your applicationÕs text and drawing processes to interfere with buttons, or with the Òdefault buttonÓ
frame. Windows with a Òsize boxÓ should not allow buttons to be obscured or hidden by making the window
too small.

Also see: SetAutoEmbed, NewButtonRect, NewDialogButton, ButtonColors and ReplaceControlProcID.

CONST {Button appearance/behavior specifications: }
pushButProc = 0; {Push button }
checkBoxProc = 1; {Check box }
radioButProc = 2; {Radio button }
bUseWFont = $00000008; {Use window's font settings }
bDefault = $00010000; {Default push button (1 only per window) }
bCmdKey = $00020000; {Button is selectable via command key }
bColorButton = $00080000; {Color button }
bHidden = $00100000; {Create hidden button }
bAutoMoveSize = $00200000; {Auto-resize as window's size changes }

{Button states: }
enabled = true; {Enable button }
disabled = false; {Disable button }
selected = true; {Select (check) button }
notSelected = false; {Deselect (un-check) button }

6 Buttons

WaterÕs Edge Software 169

{For custom (non-standard) CDEFs only: }
bCDEFPushButton = $80000000; {Control is a push button }
bCDEFRadioButton = $40000000; {Control is a radio button }
bCDEFCheckBox = $20000000; {Control is a check box }

..

NewButtonRect
Create a new button.

C pascal void NewButtonRect (short Button, const Rect *Bounds,
const Str255 Title, long Spec, Boolean EnabledFlag,
Boolean SelectedFlag);

Pascal procedure NewButtonRect (Button: INTEGER; Bounds: RECT; Title: STRING;
Spec: LONGINT; EnabledFlag, SelectedFlag: BOOLEAN);

NewButtonRect is identical to the NewButton routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

..

NewButtonControl
Create a new button.

C pascal void NewButtonControl (short Button, short left, short top,
short right, short bottom, const Str255 Title, long Spec,
Boolean EnabledFlag, short ControlMinLimit, short ControlValue,
short ControlMaxLimit);

Pascal procedure NewButtonControl (Button, left, top, right, bottom: INTEGER;
Title: STRING; Spec: LONGINT; EnabledFlag: BOOLEAN;
ControlMinLimit, ControlValue, ControlMaxLimit: INTEGER);

NewButtonControl is identical to the NewButton routine, except that it allows you to specify the controlÕs minimum
limit, value, and maximum limit. You will only need to use this routine if you are using a custom CDEF with special
requirements that necessitate setting these items to specific values.

..

NewButtonControlRect
Create a new button.

C pascal void NewButtonControlRect (short Button, const Rect *Bounds,
const Str255 Title, long Spec, Boolean EnabledFlag,
short ControlMinLimit, short ControlValue, short ControlMaxLimit);

Pascal procedure NewButtonControlRect (Button: INTEGER; Bounds: RECT;
Title: STRING; Spec: LONGINT; EnabledFlag: BOOLEAN;
ControlMinLimit, ControlValue, ControlMaxLimit: INTEGER);

NewButtonControlRect is identical to the NewButtonControl routine, except that it accepts the Bounds rectangle in
place of the individual left, top, right and bottom co-ordinates. You will only need to use this routine if you are using a
custom CDEF with special requirements that necessitate setting these items to specific values.

..

Tools Plus

170

NewDialogButton
Create a new button in a dialog using a dialog itemÕs co-ordinates.

C pascal void NewDialogButton (short Button, const Str255 Title, long Spec,
Boolean EnabledFlag, Boolean SelectedFlag);

Pascal procedure NewDialogButton (Button: INTEGER; Title: STRING; Spec: LONGINT;
EnabledFlag, SelectedFlag: BOOLEAN);

NewDialogButton is identical to the NewButton routine, except that the button is created in a dialog (a window opened
with the LoadDialog routine, or one that had a dialog list attached with the LoadDialogList routine). The buttonÕs co-
ordinates are obtained from the dialog item whose number matches the button number.

..

NewDialogButtonControl
Create a new button in a dialog using a dialog itemÕs co-ordinates.

C pascal void NewDialogButtonControl (short Button, const Str255 Title,
long Spec, Boolean EnabledFlag,
short ControlMinLimit, short ControlValue, short ControlMaxLimit);

Pascal procedure NewDialogButtonControl (Button: INTEGER; Title: STRING;
Spec: LONGINT; EnabledFlag: BOOLEAN;
ControlMinLimit, ControlValue, ControlMaxLimit: INTEGER);

NewDialogButtonControl is identical to the NewDialogButton routine, except that it allows you to specify the
controlÕs minimum limit, value, and maximum limit. You will only need to use this routine if you are using a custom
CDEF with special requirements that necessitate setting these items to specific values.

..

LoadButton
Create a new button using a ÔCNTLÕ resource.

C pascal void LoadButton (short Button, short ResID);

Pascal procedure LoadButton (Button, ResID: INTEGER);

LoadButton creates a button by calling the NewButton routine and supplying it with values from a ÔCNTLÕ resource,
commonly called a control template. This is a good way to create a button or button-like control that requires a color
table with more elements than those supported by the SetButtonColors routines. Note that some controls ignore color
settings.

Button specifies the button number (from 1 to 511) that is created in the current window. Once a button is created, it is
referenced by this button number. If a button has been previously created in the current window using the same
number, it is replaced with a new button as specified by the parameters in the ÔCNTLÕ resource. If the current window
doesnÕt belong to your application, or if no windows are open, LoadButton does nothing.

ResID is the ÔCNTLÕ resource ID number that is used to create the button. If the button has a ÔcctbÕ color table
resource, it must use the same ID number. Any resource ID number can be used, but numbers 128 or higher are safest
as stated in Inside Macintosh.

6 Buttons

WaterÕs Edge Software 171

When creating buttons using ÔCNTLÕ resources, please note the following:
¥ Flag your ÔCNTLÕ and ÔcctbÕ resources as purgeable to save memory. Tools Plus makes a copy of their data.
¥ The RefCon field in the ÔCNTLÕ resource is ignored since Tools Plus uses the controlÕs RefCon field to store its

own data.

Also see: NewButton and LoadSpecButton.

..

LoadSpecButton
Create a new button using a ÔCNTLÕ resource.

C pascal void LoadSpecButton (short Button, long Spec, short ResID);

Pascal procedure LoadSpecButton (Button: INTEGER; Spec: LONGINT; ResID: INTEGER);

LoadSpecButton is identical to the LoadButton routine, except that it requires the additional Spec parameter to give
you control over all the appearance and behavior options offered by Tools Plus. See the NewButton routine for details
about the Spec parameter.

..

SetAutoEmbed
Automatically embed new controls (Appearance Manager only).

C pascal void SetAutoEmbed (Boolean Embed);

Pascal procedure SetAutoEmbed (Embed: BOOLEAN);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. By default, when you create a
control dynamically using a Tools Plus routine, that control is also embedded.

Embed indicates if subsequently created controls are automatically embedded, those controls being buttons and scroll
bars, controls that are implemented as buttons and scroll bars (such as the Appearance ManagerÕs Tab control or
Progress Indicator control), Edit Text controls, Static Text controls, List Box controls, and Pop-Up Menu controls.
This affects only controls that are dynamically created using Tools Plus routines. When Embed is set to true, each new
control you create automatically calls the Appearance ManagerÕs AutoEmbedControl routine.

You can safely call SetAutoEmbed even if the Appearance Manager is not available.

Also see: EmbedButtonInButton, EmbedButtonInScrollBar, EmbedFieldInButton, EmbedFieldInScrollBar,
EmbedListBoxInButton, EmbedListBoxInScrollBar, EmbedScrollBarInButton, EmbedScrollBarInScrollBar,
EmbedPopUpInButton, and EmbedPopUpInScrollBar.

..

Tools Plus

172

EmbedButtonInButton
Embed a button into a button or into the windowÕs root control (Appearance Manager only).

C pascal void EmbedButtonInButton (short Button, short ContainerButton);

Pascal procedure EmbedButtonInButton (Button, ContainerButton: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedButtonInButton lets you
manually embed a button into a button, or into the windowÕs root control. Note that the term ÒbuttonÓ does not literally
mean a button control. It means any control that is implemented as a button in Tools Plus. The most likely candidate is
a Group Box control. If the Appearance Manager is not available, EmbedButtonInButton does nothing.

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the button does not exist in the current window,
EmbedButtonInButton does nothing.

ContainerButton specifies the button number (from 1 to 511) into which Button is embedded. This control must exist
in the current window, and it must be a ÒcontainerÓ type control such as the Appearance ManagerÕs Group Box. The
button must fit entirely within the container control or EmbedButtonInButton does nothing. If a value of 0 is provided
for a container button, Button is embedded into the windowÕs root control.

Also see: EmbedButtonInScrollBar and SetAutoEmbed.

..

EmbedButtonInScrollBar
Embed a button into a scroll bar or into the windowÕs root control (Appearance Manager only).

C pascal void EmbedButtonInScrollBar (short Button, short ContainerScrollBar);

Pascal procedure EmbedButtonInScrollBar (Button, ContainerScrollBar: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedButtonInScrollBar lets you
manually embed a button into a scroll bar, or into the windowÕs root control. Note that the term ÒbuttonÓ does not
literally mean a button control. It means any control that is implemented as a button in Tools Plus. The most likely
candidate is a Group Box control. The same applies for the term Òscroll bar.Ó If the Appearance Manager is not
available, EmbedButtonInScrollBar does nothing.

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the button does not exist in the current window,
EmbedButtonInScrollBar does nothing.

ContainerScrollBar specifies the scroll bar number (from 1 to 511) into which Button is embedded. This control must
exist in the current window, and it must be a ÒcontainerÓ type control. The button must fit entirely within the container
control or EmbedButtonInScrollBar does nothing. If a value of 0 is provided for a container scroll bar, Button is
embedded into the windowÕs root control.

Also see: EmbedButtonInButton and SetAutoEmbed.

..

6 Buttons

WaterÕs Edge Software 173

GetFreeButtonNum
Get the first unused button number.

C pascal short GetFreeButtonNum (void);

Pascal function GetFreeButtonNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own button
number, GetFreeButtonNum returns the first unused (free) button number. Using this routine, you can assign an
unused button number to a variable, then use that variable throughout your application without concern for the true
button number.

GetFreeButtonNum returns the first free button number on the current window. If the current window doesnÕt belong
to your application, if no windows are open, or if the maximum number of buttons has already been created on the
current window (no new ones can be created), GetFreeButtonNum returns a value of zero (0).

..

ButtonColors
Set the colors for new buttons as they are created.

C pascal void ButtonColors (const RGBColor *Frame, const RGBColor *Body,
const RGBColor *Text, const RGBColor *Back);

Pascal procedure ButtonColors (Frame, Body, Text, Back: RGBColor);

When new buttons are created, by default they have a black outline and text, and they adopt their parent windowÕs
backdrop as a background color. When you use the ButtonColors routine, new buttons adopt the colors specified in
this routine (providing that the button is created with the bColorButton option in the buttonÕs spec). This is the most
efficient way to color multiple buttons using the same colors. Note that some controls ignore color settings,
particularly those in the Appearance Manager.

Frame is the buttonÕs frame color (seen in push buttons, check boxÕs box, radio buttonÕs circle, and possibly custom
CDEFs).

Body is the buttonÕs body color (seen in push buttons only, and possibly custom CDEFs).

Text is the buttonÕs text color (seen in all buttons, and usually in custom CDEFs).

Back is the buttonÕs background color (seen in check boxes and radio buttons, and possibly custom CDEFs).

Also see: NoButtonColors and SetButtonColors.

..

NoButtonColors
Reset the colors for new buttons to the default.

C pascal void NoButtonColors (void);

Pascal procedure NoButtonColors;

When new buttons are created, by default they have a black outline and text, and they adopt their parent windowÕs
backdrop as a background color. When you use the ButtonColors routine, new buttons adopt the colors specified by
that routine (providing that the button is created with the bColorButton option in the buttonÕs spec).

Tools Plus

174

This routine resets the settings of the ButtonColors routine to the default values (black frame and text, white body and
background). It is seldom required since you can create default buttons by simply excluding the bColorButton constant
from the buttonÕs spec parameter.

Also see: ButtonColors.

..

DeleteButton
Delete a button.

C pascal void DeleteButton (short Button);

Pascal procedure DeleteButton (Button: INTEGER);

Button specifies the button number (from 1 to 511) that is deleted from the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the button does not exist in the current window,
DeleteButton does nothing. Use KillButton if you want to delete the button without removing its image from the
window.

..

KillButton
Delete a button without affecting its image on the window.

C pascal void KillButton (short Button);

Pascal procedure KillButton (Button: INTEGER);

KillButton is identical to DeleteButton except that it does not remove the buttonÕs image from the window. This
routine is useful for scrolling buttons in an area within a window (i.e., not the entire window). ScrollRect is used to
scroll the images in the affected area. OffsetButton repositions the buttonÕs co-ordinates without affecting its image
(since ScrollRect has already moved it). KillButton then deletes the buttons that are scrolled out of view without
affecting their image (ScrollRect has already scrolled them out of view).

..

ButtonDisplay
Hide or show a button.

C pascal void ButtonDisplay (short Button, Boolean Show);

Pascal procedure ButtonDisplay (Button: INTEGER; Show: BOOLEAN);

ButtonDisplay hides or shows a button on the current window. The result is seen immediately. Use discretion with this
routine since buttons should be enabled and disabled to indicate if they are accessible by the user.

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the button does not exist in the current window,
ButtonDisplay does nothing.

Show indicates if the button is being hidden or displayed. The two constants that can be used for this flag are on and
off. A default button loses its default status if you hide it.

..

6 Buttons

WaterÕs Edge Software 175

ButtonIsVisible
Determine if a button is visible.

C pascal Boolean ButtonIsVisible (short Button);

Pascal function ButtonIsVisible (Button: INTEGER): BOOLEAN;

ButtonIsVisible reports if a button (or a control that is implemented as a button) is visible on the current window, or if
it is hidden.

Button specifies the button number (from 1 to 511) that is queried in the current window.

This routineÕs value returns true if the button is visible, and false if the button is hidden. If the current window doesnÕt
belong to your application, or if no windows are open, or if the button does not exist in the current window,
ButtonIsVisible returns false. This routine takes control embedding into account, so it will return false if the target
button is embedded and its container control is hidden.

..

ObscureButton
Hide a button without removing its image from the window.

C pascal void ObscureButton (short Button);

Pascal procedure ObscureButton (Button: INTEGER);

ObscureButton hides a button on the current window without removing its image from the window. This routine is
useful for scrolling buttons in an area within a window (i.e., not the entire window). ScrollRect is used to scroll the
images in the affected area. OffsetButton repositions the buttonÕs co-ordinates without affecting its image (since
ScrollRect has already moved it). ObscureButton then hides the buttons that are scrolled out of view without affecting
their image (ScrollRect has already scrolled them out of view).

Button specifies the button number (from 1 to 511) that is hidden in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the button does not exist in the current window,
ObscureButton does nothing.

..

ActivateButton
Activate a button to give it the keyboard focus.

C pascal void ActivateButton (short Button, short PartCode);

Pascal procedure ActivateButton (Button, PartCode: INTEGER);

Button specifies the button number (from 1 to 511) that acquires the keyboard focus in the current window.
ActivateButton does nothing under any of these conditions: the current window doesnÕt belong to your application, no
windows are open, the button does not exist in the current window, the button is disabled or hidden, the button cannot
accept the keyboard focus, or the Appearance Manager is not available to your application.

PartCode is the controlÕs part number that is being activated. The part number is available either in the Appearance
Manager documentation, or from the author of the custom control you are using.

Activating a button allows the user to interact with the button by typing on the keyboard. On an active window, the
button acquires the keyboard focus making it the item that automatically processes keystrokes. Visually, this is
indicated by having the text highlighted or with a flashing caret. Additionally, the button is encompassed with a
highlighting keyboard focus band to indicate that it has the focus. Using ActivateButton in an active window removes

Tools Plus

176

the keyboard focus from any other object that may have the focus within the same window or any other active window
such as a tool bar or floating palette. This action may deactivate an active editing field.

If the button being activated is in an active window that allows access to pull-down menus, the Edit menuÕs ÒUndoÓ
item is changed to ÒCanÕt UndoÓ and is disabled. The ÒCutÓ, ÒCopyÓ, ÒPasteÓ, ÒClearÓ and ÒSelect AllÓ items are also
disabled.

Your application can activate virtually any editing field or Appearance Manager control that accepts the keyboard
focus. This flexibility can lead to a confusing user interface by allowing the keyboard focus to jump between active
windows. A good rule to observe is to activate a single item only on a standard window (not a tool bar or a floating
palette) when the window first opens. This sets up the default keyboard focus item for that window. At all other times,
activate a button only in response to a userÕs actions.

Also see: HaveTabInFocus, TabToFocus, the doClickToFocus event, and ClickToFocus for other activating services.

..

GetButtonRect
Get a buttonÕs co-ordinates.

C pascal void GetButtonRect (short Button, Rect *Bounds);

Pascal procedure GetButtonRect (Button: INTEGER; var Bounds: RECT);

Button specifies the button number (from 1 to 511) that is queried in the current window.

Bounds returns the buttonÕs bounding rectangle specified in the windowÕs local co-ordinates. These co-ordinates match
those used to create the button. If the current window doesnÕt belong to your application, or if no windows are open, or
if the button does not exist in the current window, Bounds returns with all co-ordinates set to zero (0).

..

EnableButton
Enable or disable a button.

C pascal void EnableButton (short Button, Boolean EnabledFlag);

Pascal procedure EnableButton (Button: INTEGER; EnabledFlag: BOOLEAN);

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the button does not exist in the current window,
EnableButton does nothing.

The EnabledFlag indicates if the button is enabled or not. All three button types can be either enabled or disabled.
When a button is disabled, it becomes dim and cannot be selected by the user. All buttons automatically become
disabled when the window containing them is inactive. When the window is activated, the buttons assume their state as
set by the NewButton routine, and subsequent calls to the EnableButton routine. The two constants that can be used for
this flag are enabled and disabled.

CONST {Button state }
enabled = true; {button is enabled }
disabled = false; {button is disabled }

See the NewButton routine for additional information pertaining to the buttonÕs enabling, disabling, and selection (i.e.,
checked or not).

..

6 Buttons

WaterÕs Edge Software 177

ButtonIsEnabled
Determine if a button is enabled or disabled.

C pascal Boolean ButtonIsEnabled (short Button);

Pascal function ButtonIsEnabled (Button: INTEGER): BOOLEAN;

Button specifies the button number (from 1 to 511) that is queried in the current window.

The routineÕs value returns true if the button is enabled, and false if the button is disabled. If the current window
doesnÕt belong to your application, or if no windows are open, or if the button does not exist in the current window,
ButtonIsEnabled returns false. ButtonIsEnabled returns the buttonÕs enabled state as it is currently displayed, so if the
buttonÕs window is inactive and has temporarily disabled the button, ButtonIsEnabled returns false.

..

SelectButton
Select or deselect (check or un-check) a button.

C pascal void SelectButton (short Button, Boolean SelectedFlag);

Pascal procedure SelectButton (Button: INTEGER; SelectedFlag: BOOLEAN);

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the button does not exist in the current window,
SelectButton does nothing.

The SelectedFlag indicates if the button is selected (checked) or not. Only check boxes and radio buttons can be
selected. This setting has no effect on push buttons. The two constants that can be used for this flag are selected and
notSelected. If you are using a custom CDEF and you need to set the button to a specific value, use the SetButtonVal
routine.

CONST {Button state }
selected = true; {button is selected (checked) }
notSelected = false; {button is not selected (not checked) }

See the NewButton routine for additional information pertaining to the buttonÕs enabling, disabling, and selection (i.e.,
checked or not).

..

ButtonIsSelected
Determine if a button is selected (i.e., checked.)

C pascal Boolean ButtonIsSelected (short Button);

Pascal function ButtonIsSelected (Button: INTEGER): BOOLEAN;

Button specifies the button number (from 1 to 511) that is queried in the current window.

The routineÕs value returns true if the button is selected (checked), and false if the button is not selected. If the current
window doesnÕt belong to your application, or if no windows are open, or if the button does not exist in the current
window, ButtonIsSelected returns false.

See the NewButton routine for additional information pertaining to the buttonÕs enabling, disabling, and selection (i.e.,
checked or not).

..

Tools Plus

178

GetButtonMin
Get a buttonÕs minimum value limit. This routine may be required for buttons that use a custom CDEF. Otherwise you
will never need to use it.

C pascal short GetButtonMin (short Button);

Pascal function GetButtonMin (Button: INTEGER): INTEGER;

Button specifies the affected button number (from 1 to 511) in the current window.

GetButtonMin returns a buttonÕs minimum value limit. If the current window doesnÕt belong to your application, or if
no windows are open, or if the button does not exist in the current window, GetButtonMin returns a value of zero (0).

..

SetButtonMin
Set a buttonÕs minimum value limit. This routine may be required for buttons that use a custom CDEF. Otherwise you
will never need to use it.

C pascal void SetButtonMin (short Button, short minimum);

Pascal procedure SetButtonMin (Button, minimum: INTEGER);

Button specifies the affected button number (from 1 to 511) in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the button does not exist in the current window,
SetButtonMin does nothing.

Minimum specifies the buttonÕs new minimum value limit. The buttonÕs current value and maximum limit are
automatically adjusted (if necessary) to be consistent with the new minimum limit.

..

GetButtonMax
Get a buttonÕs maximum value limit. This routine may be required for buttons that use a custom CDEF. Otherwise you
will never need to use it.

C pascal short GetButtonMax (short Button);

Pascal function GetButtonMax (Button: INTEGER): INTEGER;

Button specifies the affected button number (from 1 to 511) in the current window.

GetButtonMax returns a buttonÕs maximum value limit. If the current window doesnÕt belong to your application, or if
no windows are open, or if the button does not exist in the current window, GetButtonMax returns a value of zero (0).

..

6 Buttons

WaterÕs Edge Software 179

SetButtonMax
Set a buttonÕs maximum value limit. This routine may be required for buttons that use a custom CDEF. Otherwise you
will never need to use it.

C pascal void SetButtonMax (short Button, short maximum);

Pascal procedure SetButtonMax (Button, maximum: INTEGER);

Button specifies the affected button number (from 1 to 511) in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the button does not exist in the current window,
SetButtonMax does nothing.

Maximum specifies the buttonÕs new maximum value limit. The buttonÕs current value and minimum limit are
automatically adjusted (if necessary) to be consistent with the new maximum limit.

..

GetButtonVal
Get a buttonÕs current value. This routine may be required for buttons that use a custom CDEF. Otherwise you will
never need to use it.

C pascal short GetButtonVal (short Button);

Pascal function GetButtonVal (Button: INTEGER): INTEGER;

Button specifies the affected button number (from 1 to 511) in the current window.

GetButtonVal returns a buttonÕs current value. If the current window doesnÕt belong to your application, or if no
windows are open, or if the button does not exist in the current window, GetButtonVal returns a value of zero (0).

..

SetButtonVal
Set a buttonÕs current value. This routine may be required for buttons that use a custom CDEF. Otherwise you will
never need to use it.

C pascal void SetButtonVal (short Button, short value);

Pascal procedure SetButtonVal (Button, Value: INTEGER);

Button specifies the affected button number (from 1 to 511) in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the button does not exist in the current window,
SetButtonVal does nothing.

Value specifies the buttonÕs new current value. The value must fall within the limits defined by GetButtonMin and
GetButtonMax or SetButtonVal does nothing.

..

Tools Plus

180

ButtonTitle
Change a buttonÕs title.

C pascal void ButtonTitle (short Button, const Str255 Title);

Pascal procedure ButtonTitle (Button: INTEGER; Title: STRING);

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the button does not exist in the current window,
ButtonTitle does nothing.

The Title parameter is the buttonÕs title. Each button should have a unique title. Button titles can have multiple lines,
each line being separated by the ASCII character code $0D (carriage return). Note that a buttonÕs size does not change
automatically to accommodate larger or smaller titles.

..

FlashButton
Flash a button as though it was clicked by the user.

C pascal void FlashButton (short Button);

Pascal procedure FlashButton (Button: INTEGER);

Button specifies the button number (from 1 to 511) that is affected in the active window. If the active window doesnÕt
belong to your application, or if no windows are open, FlashButton does nothing.

FlashButton can be used in some specific instances. Advanced programmers may decide to display a modal window
when the Macintosh is busy with a lengthy process. If a button (such as ÒCancelÓ) on this window is equivalent to
typing 1-., your application should flash the button when a 1-. is reported to your event handler routine. This makes
the user feel that the key triggered the button. Another example is double-clicking in a list box; this action can be
interpreted as Òselect line and OKÓ in which case the OK button should be flashed. This also occurs if your application
interprets double-clicking a radio button as Òselect button and OK.Ó

..

MoveButton
Move a button to a new location on the window.

C pascal void MoveButton (short Button, short toHoriz, short toVert);

Pascal procedure MoveButton (Button, toHoriz, toVert: INTEGER);

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if Button specifies a button that does not exist,
MoveButton does nothing. The change is seen immediately providing that the button is not hidden. The buttonÕs width
and height are not changed.

ToHoriz is the new horizontal co-ordinate at which the left side of the button appears.

ToVert is the new vertical co-ordinate at which the top of the button appears.

Also see: SizeButton and MoveSizeButton.

..

6 Buttons

WaterÕs Edge Software 181

OffsetButton
Change a buttonÕs co-ordinates without affecting its image on the window.

C pascal void OffsetButton (short Button, short distHoriz, short distVert);

Pascal procedure OffsetButton (Button, distHoriz, distVert: INTEGER);

When you scroll an area that contains buttons, first use ScrollRect to scroll the pixel image containing the affected
objects in the window. OffsetButton is used to offset a buttonÕs co-ordinates without altering its image (since
ScrollRect has already done so). At this point, the buttonÕs co-ordinates match the scrolled image of the button.
ObscureButton or KillButton can be used to hide or delete buttons that are scrolled out of view.

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if Button specifies a button that does not exist,
OffsetButton does nothing.

DistHoriz and distVert specify the horizontal and vertical amount by which the buttonÕs co-ordinates are offset.
Positive numbers are right and down. The buttonÕs co-ordinates are updated but no change is seen.

..

SizeButton
Change a buttonÕs size.

C pascal void SizeButton (short Button, short width, short height);

Pascal procedure SizeButton (Button, width, height: INTEGER);

SizeButton changes a buttonÕs width and/or height without altering the buttonÕs top or left co-ordinate. The change is
seen immediately providing that the button is not hidden.

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if Button specifies a button that does not exist,
SizeButton does nothing.

Width and height specify the buttonÕs new width and height in pixels. If either parameter is less than 1, SizeButton
does nothing.

Also see: MoveButton and MoveSizeButton.

..

MoveSizeButton
Change a buttonÕs co-ordinates.

C pascal void MoveSizeButton (short Button,
short left, short top, short right, short bottom);

Pascal procedure MoveSizeButton (Button, left, top, right, bottom: INTEGER);

MoveSizeButton changes any of the buttonÕs four co-ordinates. The change is seen immediately providing that the
button is not hidden. This routine combines the functions of MoveButton and SizeButton.

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if Button specifies a button that does not exist,
MoveSizeButton does nothing.

Tools Plus

182

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the buttonÕs size and location in the
window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-hand
corner (right,bottom). If these parameters specify an empty rectangle, MoveSizeButton does nothing.

Also see: GetButtonRect.

..

MoveSizeButtonRect
Change a buttonÕs co-ordinates.

C pascal void MoveSizeButtonRect (short Button, const Rect *Bounds);

Pascal procedure MoveSizeButtonRect (Button: INTEGER; Bounds: RECT);

MoveSizeButtonRect is identical to the MoveSizeButton routine, except that it accepts the Bounds rectangle in place
of the individual left, top, right and bottom co-ordinates.

..

AutoMoveSizeButton
Specify how a button is automatically moved and/or resized as its windowÕs size is changed.

C pascal void AutoMoveSizeButton (short Button,
Boolean left, Boolean top, Boolean right, Boolean bottom);

Pascal procedure AutoMoveSizeButton (Button: INTEGER;
left, top, right, bottom: BOOLEAN);

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if Button specifies a button that does not exist,
AutoMoveSizeButton does nothing.

The left, top, right and bottom parameters specify if that side of the button is automatically adjusted when the
windowÕs size changes. These setting are applied to the button and are used the next time the windowÕs size changes:

left Does the buttonÕs left side track the windowÕs right edge?
top Does the buttonÕs top track the windowÕs bottom edge?
right Does the buttonÕs right side track the windowÕs right edge?
bottom Does the buttonÕs bottom track the windowÕs bottom edge?

You can think of each false value as locking that side of the button to a fixed co-ordinate regardless of the windowÕs
size (this is the default). Each true value establishes a fixed distance between that side of the button and the windowÕs
edge. For example, setting only left and right to true makes the button move horizontally as the window widens and
narrows, but the button does not move vertically when the windowÕs height changes.

If you are setting these values identically for a group of objects, use AutoMoveSize to define the settings then add the
appropriate xAutoMoveSize constant (such as bAutoMoveSize for buttons) to the objectsÕ spec as they are created.
The objects will adopt the settings specified by the AutoMoveSize routine.

+ Warning: Make sure that you resize objects in a way that makes sense. DonÕt allow a window to shrink down to a
size where objects become unusable or disappear altogether.

..

6 Buttons

WaterÕs Edge Software 183

SetButtonFontSettings
Set a buttonÕs font, size and style settings.

C pascal void SetButtonFontSettings (short Button,
short theFont, short theSize, Style theStyle);

Pascal procedure SetButtonFontSettings (Button: INTEGER;
theFont: INTEGER; theSize: INTEGER; theStyle: Style);

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if the button does not exist, SetButtonFontSettings does
nothing. Otherwise, the change is seen immediately.

TheFont specifies the buttonÕs new font. The default is Chicago, which is represented by the systemFont constant.

TheSize specifies the fontÕs size. The default is 0, which represents the default font size used by the system font, or
12pt in this case.

TheStyle specifies the buttonÕs new style. Special character constants defined by the Font Manager are bold, italic,
underline and shadow. C programmers use the Font ManagerÕs constants to specify a composite style, such as
SetButtonFontSettings(1, geneva, 9, bold + outline) for bold and outlined, or SetButtonFontSettings(1, geneva, 9, 0)
for plain text. Pascal programmers use the Font ManagerÕs constants to specify a style set, such as
SetButtonFontSettings(1,Êgeneva, 9, [bold, outline]) for bold and outlined, or SetButtonFontSettings(1, geneva, 9, [])
for plain text.

A buttonÕs font settings are set when a button is created, so this routine is not normally used by many applications.

- Note: This routine works on Appearance Manager savvy controls (ones that were written to take advantage of the
Appearance ManagerÕs extended features) that accept the Òset fontÓ command. This routine also works on
classic controls (those that were not written to take advantage of the Appearance Manager, including AppleÕs
controls in System 6 and System 7, and SuperCDEFs) as well as third party controls that observe two rules:

1. The high bit of the variant code (8) indicates that the control uses the windowÕs font.
2. All parameters that are used to create the control, specifically the controlÕs rectangle, title, visible state,

initial value, minimum limit, maximum limit, and reference constant, all have no special significance.
You may experience issues with third-party CDEFs that place special significance on the initial settings that
are used to create the control. For example, you may experience issues if you use a third-party icon-button
CDEF that initially uses the Òcurrent valueÓ setting to determine which icon it should display, then it later
changes the controlÕs Òcurrent valueÓ setting to reflect if the button is selected or not. Your only solutions are:
(1) create the control with the high bit of the variant code set on (+8 or bUseWFont), or (2) use another CDEF
that does not place special significance on initial settings when the control is created, or (3) do not use the
SetButtonFontSettings routine on that control.

..

GetButtonFontSettings
Get a buttonÕs font, size and style settings.

C pascal void GetButtonFontSettings (short Button,
short *theFont, short *theSize, Style *theStyle);

Pascal procedure GetButtonFontSettings (Button: INTEGER;
var theFont: INTEGER; var theSize: INTEGER; var theStyle: Style);

Button specifies the button number (from 1 to 511) in the current window whose font settings are being retrieved. If
the current window doesnÕt belong to your application, if no windows are open, or if Button specifies a button that
does not exist, GetButtonFontSettings returns default values.

Tools Plus

184

TheFont is the buttonÕs font number. The default is 0 which is represented by the systemFont constant.

TheSize is the fontÕs size. The default is 0, which represents the default font size used by the system font, or 12pt in
this case.

TheStyle is the fieldÕs font style. The default is plain text, which is represented by 0 in C and [] in Pascal.

..

SetButtonColors
Set a buttonÕs colors.

C pascal void SetButtonColors (short Button, const RGBColor *Frame,
const RGBColor *Body, const RGBColor *Text, const RGBColor *Back);

Pascal procedure SetButtonColors (Button: INTEGER;
Frame, Body, Text, Back: RGBColor);

Button specifies the button number (from 1 to 511) in the current window whose colors are being set. If the current
window doesnÕt belong to your application, or if no windows are open, SetButtonColors does nothing. Also, if Button
specifies a button that does not exist, SetButtonColors does nothing. The change is seen immediately, regardless if the
button was originally created with the bColorButton option or not. Note that some controls ignore color settings,
particularly those in the Appearance Manager.

Frame is the buttonÕs frame color (seen in push buttons, check boxÕs box, radio buttonÕs circle, and possibly custom
CDEFs).

Body is the buttonÕs body color (seen in push buttons only, and possibly custom CDEFs).

Text is the buttonÕs text color (seen in all buttons, and usually in custom CDEFs).

Back is the buttonÕs background color (seen in check boxes and radio buttons, and possibly custom CDEFs).

Also see: ButtonColors and GetButtonColors.

..

GetButtonColors
Get a buttonÕs colors.

C pascal void GetButtonColors (short Button, RGBColor *Frame, RGBColor *Body,
RGBColor *Text, RGBColor *Back);

Pascal procedure GetButtonColors (Button: integer; var Frame: RGBColor;
var Body: RGBColor; var Text: RGBColor; var Back: RGBColor);

Button specifies the button number (from 1 to 511) in the current window whose colors are being retrieved. If the
current window doesnÕt belong to your application, or if no windows are open, or if Button specifies a button that does
not exist, GetButtonColors returns default color values.

Frame is the buttonÕs frame color (seen in push buttons, check boxÕs box, radio buttonÕs circle, and possibly custom
CDEFs).

Body is the buttonÕs body color (seen in push buttons only, and possibly custom CDEFs).

Text is the buttonÕs text color (seen in all buttons, and usually in custom CDEFs).

Back is the buttonÕs background color (seen in check boxes and radio buttons, and possibly custom CDEFs).

Also see: ButtonColors and SetButtonColors.

6 Buttons

WaterÕs Edge Software 185

SetDefaultButton
Set a button to be a windowÕs ÒdefaultÓ button.

C pascal void SetDefaultButton (short Button);

Pascal procedure SetDefaultButton (Button: INTEGER);

Button specifies the button number (from 1 to 511) that will become the new default button in the current window. If
the current window doesnÕt belong to your application, or if no windows are open, SetDefaultButton does nothing.
Also, if Button specifies a button that is not a push button, or a button that does not exist, SetDefaultButton does
nothing. A default button cannot be set on a tool bar or floating palette.

The default button is automatically selected if the user presses the ÒReturnÓ key or ÒEnterÓ key. A black outline is
automatically drawn around the default button when the window is active. If another default button already exists in
the current window, it loses its ÒdefaultÓ status. Note that only 1 button can be the default in each window.

..

NoDefaultButton
Remove Òdefault buttonÓ status for a window.

C pascal void NoDefaultButton (void);

Pascal procedure NoDefaultButton;

This routine removes the Òdefault buttonÓ status from the current window (i.e., a specific button will not be
automatically selected when the user presses the ÒReturnÓ key or ÒEnterÓ key). The black outline that is automatically
drawn around the default button is removed. Buttons themselves, however, are not altered. If the current window
doesnÕt belong to your application, or if no windows are open, NoDefaultButton does nothing.

..

GetButtonHandle
Get a handle to a buttonÕs control record.

C pascal ControlHandle GetButtonHandle (short Button);

Pascal function GetButtonHandle (Button: INTEGER): ControlHandle;

This routine returns a standard ControlHandle to a button that was created by a Tools Plus routine. You should never
need to use this routine. It is provided for advanced programmers who may have specialized needs. Always use Tools
Plus routines to create and manipulate buttons.

Button specifies the button number (from 1 to 511) in the current window whose handle is being retrieved. If the
current window doesnÕt belong to your application, or if no windows are open, or if Button specifies a button that does
not exist, GetButtonHandle returns nil.

+ Warning: If you need to lock the handle or change its attributes, do so temporarily then restore the original settings
before using any Tools Plus routines. If you alter this handle or any data that is made accessible by this
handle, you do so at your own risk. The only exception is the controlÕs reference constant (contrlRfCon
field) which can safely be set using the toolboxÕs SetControlReference routine, and retrieved using the
toolbox GetControlReference routine.

..

Tools Plus

186

ReplaceControlProcID
Replace a button type throughout the application. The use of one procID is replaced with another.

C pascal void ReplaceControlProcID (short OriginalProcID,
short ReplacementProcID);

Pascal procedure ReplaceControlProcID (OriginalProcID, ReplacementProcID: INTEGER);

This routine lets your application globally replace the use of one procID with another. The replacement takes effect in
controls that are created after this routine is used.

OriginalProcID is the procID that is specified in your applicationÕs source code and in various resources such as
dialogs, ÔDITLÕ and ÔCNTLÕ.

ReplacementProcID is the procID that replaces OriginalProcID when the button (or any other control type) is created.
When a button is created in which the procID has a value that matches OriginalProcID, the procID is replaced with the
value specified by ReplacementProcID.

As an example, you can program your application to use a custom 3D button CDEF for buttons, such as those found in
SuperCDEFs. Early in your application following InitToolsPlus, your application can determine if the Appearance
Manager is running by using the UsingAppearanceManager routine. If it is, then your application can call
ReplaceControlProcID to replace the custom buttonsÕ procIDs with standard Apple procIDs. This allows you to use the
systemÕs standard 3D buttons when they are available, otherwise you can use custom 3D buttons.

ReplaceControlProcID can be used to specify numerous button and scroll bar procID substitutions for your
application. Tools Plus accumulates all the substitutions in a dynamic list and uses that list whenever a button or scroll
bar is created. You can remove an entry from the list by specifying a ReplacementProcID with the same value as
OriginalProcID.

..

7 Picture Buttons

WaterÕs Edge Software 187

7 Picture Buttons

Tools Plus supports the use of picture buttons on any Tools Plus window. Picture buttons allow an icon (of any type)
or picture (PICT resource) to be used as a button. Picture buttons also allow the use of multiple images (icons or
PICTs) to produce buttons whose appearance changes depending on whether the button is selected, disabled, or if its
value changes. (Please note that within this chapter, the term button is used to refer to a picture button unless otherwise
stated.)

The designing of attractive buttons is simplified with the use of Tools PlusÕs 3D picture buttons, which let you design a
black and white (1-bit) image, then Tools Plus takes care of transforming it into an elevated 3D color button, much like
the kind seen in the tool bars of many commercial software packages. When selected, these buttons appear to be
pushed into the window with appropriate shading and highlighting.

Picture buttons are created on the current window by the NewPictButton routine. Each picture button is referenced by
a unique picture button number, which can be from 1 to 511. This number is specified when the picture button is
created, and refers to the specific picture button until that button is deleted. Note that the buttonÕs number is related to
its associated window. This means that two different windows can each have a picture button numbered Ò1Ó without
interfering with each other. Whenever a picture button is clicked by the user, Tools Plus calls your event handler
routine and reports the picture button number as well as its window number.

The support of color and multiple monitors is automatic, so Tools PlusÕs picture buttons will always be drawn using
the most appropriate image, even if the button straddles the boundary of multiple monitors.

Picture buttons can be moved to a new location with MovePictButton. When a picture button is no longer required, it
is deleted by the DeletePictButton routine, which releases the memory used by that button. This is done automatically
if a window is closed. Picture buttons can be hidden or displayed with the PictButtonDisplay routine.

Button Types
Various types of picture buttons can be created, incorporating different behavioral characteristics and appearances. In
the simplest implementation, a picture button can be used merely as a Òclick-sensitiveÓ icon that reports an event when
it is selected by the user. Picture buttons can also be used to functionally replace the standard push buttons, check
boxes, or radio button groups. More importantly, picture buttons are more than a cosmetic user interface enhancement;
in many cases they provide a stronger metaphor for tasks at hand (such as a Òpower on/power offÓ switch). The
following are just a few examples of the types of picture buttons that can be created:

Click-Sensitive Push Button Multistage Button Radio Button Set Polarized Analog
Icon (Click on, click off) (Exclusive Selection) Button Simulation

Button Behavior
When you create a picture button, you must specify its behavioral characteristics. These characteristics define how the
button operates when it is clicked by the user, as well as other properties the button has. Although the behavior
specification is detailed by the NewPictButton routine, some of the choices you have are as follows:

¥ Does the button report an event when the mouse is first pressed down in the button, or does it wait for the mouse
button to be released?

¥ Does the button lock in the ÒselectedÓ position?
¥ Does the button produce repeated events when it is held down?
¥ How quickly does the buttonÕs value change?

Tools Plus

188

¥ Is the button polarized? (One side increases its value, the other decreases)
¥ Are PICTs used, or icons?

Please see the NewPictButton routine for details describing all the behavioral options at your disposal.

Selection Effects
An enabled button can be selected by the user by clicking on the button. Your application can also select or deselect
any button by using the SelectPictButton routine. By default, Tools Plus darkens the buttonÕs image to make it appear
selected, but you can override this effect individually for each button. Instead of darkening the image, you can provide
an alternate image of the selected button. This is particularly effective if you are trying to produce the illusion of three
dimensional controls. A complete description of selection effects is provided within the NewPictButton
documentation.

Tools PlusÕs 3D picture buttons require only a single black and white icon to produce all the necessary three
dimensional effects in color. They also provide you with several selection effects, all of which include the button being
pushed into the window when it is selected.

Default Effect 3D Picture Buttons Alternate ÒSelectedÓ Image
(Darken) (Automatic ÒselectedÓ image) (You create the buttonÕs ÒselectedÓ image)

Disabling Effects
All picture buttons can be enabled or disabled by using the EnablePictButton routine. When a button is disabled, it
cannot be selected by the user. By default, Tools Plus overlays the image with a black color using a light gray pattern
(25%) to make the button appear disabled (as does the Finder), but you can override this effect individually for each
button. See the DefaultIconLook routine for details on setting disabled imagesÕ default appearance. Instead of applying
the default disabling effect, you can provide an alternate image of the disabled button. This option provides you with
the ultimate control over a buttonÕs appearance. A complete description of disabling effects is provided within the
NewPictButton documentation.

Tools PlusÕs 3D picture buttons require only a single black and white icon to produce all the necessary three
dimensional effects in color. When disabled, these buttons are automatically dimmed and ÒembossedÓ to provide a
functional and attractive depiction of a disabled button.

Default Effect 3D Picture Buttons Alternate ÒDisabledÓ Image
(Black overlay using light gray screen) (Automatic ÒdisabledÓ image) (You create the buttonÕs ÒdisabledÓ image)

ButtonÕs Value and Stages
Each picture button has an associated value, and range defined by an upper and lower limit of that range (a minimum
value and maximum value). Buttons that are only concerned with being selected or disabled do not have to set or
report button values. Other buttons, such as a picture button that controls the rotation of an object through 360°, need a
current value that will fall within the buttonÕs value range. Your application can obtain the buttonÕs value at any time,
or in response to an event.

Each button that has a range of values, even simple on/off buttons that have a small range (off = 0 and on = 1), can
optionally be defined as multistage picture buttons. A multistage button has a different image for each stage. For
example, a ÒCutting ToolÓ button may have three stages, each of which has a different image for the different kinds of
cutting tools available:

7 Picture Buttons

WaterÕs Edge Software 189

¥ Stage 1: Scissors image
¥ Stage 2: Knife image
¥ Stage 3: Ax image

In a multistage button, there is a ÒstageÓ for each value in the buttonÕs range. Within each stage, the button potentially
has four states: enabled/deselected, enabled/selected, disabled/deselected, and disabled/selected.

Multistage buttons should be used with discretion, since the buttonsÕ values are serial and the user cannot skip directly
to a value. You can imagine the difficulty that a user would experience if they were forced to step through a dozen
stages. Generally, three to five stages are the practical limits for a user interface. If you need more stages, consider
using a more appropriate control, like a pop-up menu.

Single stage picture buttons can have any value that lies within their upper and lower limit. Multistage buttons use the
buttonÕs value to determine the current stage, therefore their value must also lie within their upper and lower limit.

Handling Picture Buttons
Your application specifies if picture buttons are selected or deselected, and if they are enabled or disabled. When a
window in inactive, Tools Plus disables all of its picture buttons. When the window is activated again, all the buttons
regain their correct status as specified by your application.

Tools Plus constantly inquires about any events that have occurred, including clicking on picture buttons. If a button is
selected (i.e., the user presses the mouse button down and releases it within the buttonÕs region), Tools Plus reports it
by calling your event handler routine. If the button is configured to report an ÒinstantÓ event, your application will be
informed as soon as the mouse-down occurs in the picture button. Picture buttons that are configured to produce
repeating events will produce events while the picture button is held down and the cursor is in the button.

When working with picture buttons that function like radio buttons, you can place these buttons in a panel and
optionally have them behave as a radio button group so that when a picture button is selected, the other buttons in the
group are automatically deselected. Otherwise Tools Plus doesnÕt know how your picture buttons are grouped and your
application must select/deselect related buttons appropriately.

..

NewPictButton
Create a new picture button.

C pascal void NewPictButton (short Button, short left, short top,
short BaseID, long Spec,
Boolean EnabledFlag, Boolean SelectedFlag,
short minimum, short value, short maximum);

Pascal procedure NewPictButton (Button, left, top, BaseID: INTEGER;
Spec: LONGINT; EnabledFlag, SelectedFlag: BOOLEAN;
minimum, value, maximum: INTEGER);

Button specifies the picture button number (from 1 to 511) that is created in the current window. Once a picture button
is created, it is referenced by this picture button number. If a picture button has been previously created in the current
window using the same number, it is replaced with a new picture button as specified by the parameters in the
NewPictButton routine. If the current window doesnÕt belong to your application, or if no windows are open,
NewPictButton does nothing.

Left and top define the top left-hand corner of the picture button in windowÕs local co-ordinates. The buttonÕs images
define the size of the button.

BaseID specifies the base resource ID number of the icon (any type) or PICT used by the picture button. All other
image resources used by this button will be numbered higher than this one. See ÒResource IDsÓ later in this section for
a detailed description of image resource numbering.

Tools Plus

190

Spec is the picture buttonÕs behavior and appearance specification. It is used by the button to determine its behavioral
characteristics, and how it looks when selected or deselected, enabled or disabled, and when the buttonÕs value is
changed. See ÒBehavior and Appearance SpecificationÓ later in this section for a detailed description of how the value
for this item is determined.

The EnabledFlag indicates if the newly created picture button is enabled or not. When a picture button is disabled, it
cannot be selected by the user. All picture buttons automatically become disabled when the window containing them is
inactive. When the window is activated, the picture buttons assume their state as set by the NewPictButton routine and
subsequent calls to the EnablePictButton routine. The two constants that can be used for this flag are enabled and
disabled.

The SelectedFlag indicates if the newly created picture button is selected or not. The two constants that can be used for
this flag are selected and notSelected.

Minimum declares the picture buttonÕs minimum value limit. In multistage buttons, the first stage starts at this
minimum limit. Use zero (0) if your buttonÕs value does not change.

Value defines the picture buttonÕs current value. The current value must be greater than or equal to the minimum limit,
and less than or equal to the maximum limit. Use zero (0) if your buttonÕs value does not change.

Maximum declares the picture buttonÕs maximum value limit. The maximum limit must be greater than the minimum
limit. In multistage buttons, use this upper limit to define the total number of available stages (i.e., Maximum =
Minimum + Total Stages - 1). Use zero (0) if your buttonÕs value does not change.

- Note: Tools Plus makes no attempt to control the placement of picture buttons or to protect them once they have been
created. It is your responsibility to ensure that picture buttons are placed within the window as to not conflict
with other objects. Furthermore, you should not allow your applicationÕs text and drawing processes to
interfere with picture buttons. Windows with a Òsize boxÓ should not allow picture buttons to be obscured or
hidden by making the window too small.

+ Warning: If you are using a ÔcicnÕ (variable size color) icon that may be displayed on a Macintosh that doesnÕt have
Color QuickDraw, make sure the iconÕs size is set to at least 9 pixels wide (although the actual image can
be smaller). A bug in the MacintoshÕs ROMs causes a crash when CopyBits tries to work on a BitMap that
is 8 pixels wide or less. Tools Plus circumvents this bug by not displaying the ÔcicnÕ.

Resource IDs

Picture buttons can use PICTs or icons of any kind for a buttonÕs image. Multiple buttons can also share the same
resources. When you are designing images for your buttons, make sure you adhere to the resource numbering schemes
detailed in this section. The numbering system is based on ÒstagesÓ with each stage having a block of resource IDs.
The relative resource ID in each stage (i.e., the third resource in each stage) performs the same routine, the only
difference being the stage number (which correlates to the buttonÕs value). For example, the first image in each stage is
the buttonÕs image as an enabled, deselected button. The first image in stage 1 is for an enabled, deselected button with
the buttonÕs minimum value. The first image in stage 2 is for an enabled, deselected button with the buttonÕs minimum
value + 1.

Picture buttons can also incorporate a mask, which is useful if the button uses images that are not rectangular, or if it
uses a set of images that vary in size. If a mask is provided, the buttonÕs image is limited to the maskÕs region, as will
the userÕs mouse clicks. See the DrawIcon routine for a detailed description of how a mask works.

Icon Resource IDs

If you are going to use icons for picture button images, you must first have an understanding of an icon family. An icon
family is a set of icons (of any type) that share the same resource ID number. From a picture buttonÕs point of view, all
the images in an icon family are all the same image with the only difference being the suitability of a particular icon
for the target monitorÕs settings.

Tools PlusÕs picture buttons will always select the best possible image for the button, depending on the monitorÕs
settings. This is true even if the button straddles multiple monitors. See the DrawIcon routine for a detailed description
of each icon, and the sequence in which they are accessed by Tools Plus.

7 Picture Buttons

WaterÕs Edge Software 191

The following chart describes the icon resource numbering sequence that must be followed when creating images for
picture buttons:

Icon ID Selected Enabled
Stage #1 Base ID N Y
(min. limit) Base ID + 1 Y Y

Base ID + 2 N N
Base ID + 3 Y N

Stage #2 Base ID + 4 N Y

Note: Multistage 3D buttons using the SICN resource require
only 1 resource for all possible combinations and stages

When you are creating icons for your picture button, be aware that you do not have to create an icon for each possible
combination of being selected/deselected and enabled/disabled. If your button uses an alternate image as a selection
effect, you will need to create an image for the selected button (Base ID + 1). If your button uses an alternate image as
a disabling effect, you will have to create an image for the disabled button (Base ID + 2). And if your button uses an
alternate image for both selecting and disabling, you will have to create an image for the selected, disabled button
(Base ID + 3). If you are creating a multistage button, you will have to create similar images for each stage (note that
your button can have a range of values and still be a single stage button).

In the table above, the ÒStageÓ represents multiple stages in a multi-stage button. Each stage corresponds to a single
button value. For example, the first stage (Stage #1) represents the buttonÕs minimum limit. The second stage
represents the buttonÕs minimum limit plus one. Using this pattern, if we have an icon Base ID of 128, then the
selected and enabled icon for Stage #1 has a resource ID of 129 (Base ID of 128 +1), and the same button for Stage #2
has a resource ID of 133 (Base ID of 128 + 5).

3D SICN Buttons

A unique feature is available in Tools PlusÕs picture buttons that allows you to create 3D color buttons by simply
designing a black and white icon. This is accomplished by using an SICN resource. A single SICN resource is capable
of storing multiple icon images, and is therefore particularly well suited for multistage buttons.

If you are using an SICN resource to create a 3D button, you only need to create one resource for the button. Tools
Plus formulates all the necessary selected and disabled images. If the button has multiple stages, create one icon within
the that SICN resource for each stage.

- Note: To avoid icon and picture conflicts while you are developing your application, avoid resource numbers that are
used by your development environment (THINK C or THINK Pascal). THINK C and THINK Pascal
sometimes supply their own resources in place of those in your resource file whenever resources numbers
coincide. You can create and edit resources with a resource editor such as AppleÕs ResEdit. Remember to use
ID numbers 128 or higher. The rest are reserved numbers.

PICT Resource IDs

The numbering scheme used for PICTs is similar to the one used for icons, except that it is not possible to create
several PICTs (to account for different monitor settings) with the same resource ID number. Therefore, a buttonÕs
PICTs are numbered in such a way as to preserve the trend established by the iconÕs numbering scheme, and to
account for multiple PICTs that are required for different screen depths.

Tools PlusÕs picture buttons will always select the best possible PICT image for the button, depending on the monitorÕs
settings. This is true even if the button straddles multiple monitors.

The following chart describes the PICT resource numbering sequence that must be followed when creating images for
picture buttons:

Tools Plus

192

Scr Depth PICT ID Selected Enabled
Stage #1 B&W Base ID N Y
(min. limit) 4-bit Base ID + 1

8-bit Base ID + 2
Mask Base ID + 3
B&W Base ID + 4 Y Y
4-bit Base ID + 5
8-bit Base ID + 6
Mask Base ID + 7
B&W Base ID + 8 N N
4-bit Base ID + 9
8-bit Base ID + 10
Mask Base ID + 11
B&W Base ID + 12 Y N
4-bit Base ID + 13
8-bit Base ID + 14
Mask Base ID + 15

Stage #2 B&W Base ID + 16 N Y

Note that in the table above, the pixel depth of your picture does not need to match that of the screen depth in the
second column. You can, for example, use 16-bit, 24-bit, or even 32-bit pictures for your picture buttons.

When you are creating PICTs for your button, be aware that you do not have to create a PICT for each possible
combination of being selected/deselected and enabled/disabled, or color. If your button uses an alternate image as a
selection effect, you will need to create an image for the selected button (Base ID + 4 through 7). If your button uses
an alternate image as a disabling effect, you will have to create an image for the disabled button (Base ID + 8 through
11). And if your button uses an alternate image for both selecting and disabling, you will have to create an image for
the selected, disabled button (Base ID + 12 through 15). If you are creating a multistage button, you will have to create
similar images for each stage (note that your button can have a range of values and still be a single stage button).

Always create a PICT for the black and white image. Depending on your requirements, you may choose not to have
color PICTs for 4-bit or 8-bit monitor settings.

The mask is optional in all cases, but is recommended in cases when the button is irregularly shaped, or if all the
PICTs used by a button are not the same size. Tools Plus also recognizes that in many cases, masks will be identical
between stages, and possibly between selected/deselected and enabled/disabled buttons. A picture button will try to
find a mask that corresponds to its current selection and enabled state. If the appropriate mask canÕt be found (because
the correctly number PICT resource does not exist), it will try to use substitute masks based on the following rules:

¥ If the button is disabled, try to find the equivalent ÒenabledÓ mask in the same stage
¥ If the button is selected, try to find the equivalent ÒdeselectedÓ mask in the same stage
If a multistage button is not at its minimum stageÉ
¥ If the button is disabled, try to find the equivalent ÒenabledÓ mask in the minimum stage
¥ If the button is selected, try to find the equivalent ÒdeselectedÓ mask in the minimum stage

Behavior and Appearance Specification

Spec specifies the picture buttonÕs appearance and behavior characteristics. It is used by the button to determine its
behavioral characteristics, and how it looks when selected or deselected, enabled or disabled, and when the buttonÕs
value is changed. The value for this 4-byte long integer can be specified either by adding a set of constants to obtain
the desired result, or using a specially defined variant record, as illustrated below:

Optionally choose any of the following optionsÉ
picbutMultiStage The button has a different image for each value in a range of values (i.e., 0

through 3). Note that even with this option turned off, you can still use an
alternate image for a selected button and/or a disabled button.

7 Picture Buttons

WaterÕs Edge Software 193

picbutAutoMoveSize Automatically move and size the picture button when the windowÕs size
changes. The AutoMoveSize routine lets you specify which sides are
altered. You can use the AutoMoveSizePictButton routine as an alternative
to setting this option.

picbutHidden Create a hidden button. This kind of button is accessible to your
application but not to the user.

Optionally choose only one of the following Òimage typeÓ optionsÉ
picbutUsePICTS Use PICTs instead of icons for the buttonÕs image(s). By default, a suite of

icons is used for the buttonÕs image. Note that PICTs and icons use
different resource numbering schemes. See the relevant details earlier in
this chapter.

picbutGray4use8 If your 8-bit PICTs look good on 4-bit gray scale monitors, turn this option
on to allow them to be used in such a way. By default, a 4-bit PICT is
required when a monitor is set to 4-bits. This option can only be used in
conjunction with the picbutUsePICTS (use PICT resources) option.

picbutBigSICN3D If you are using an SICN icon to produce a 3D button,
you can create a slightly larger button (24 x 22 pixels)
with more pronounced shading. By default, a 3D SICN
icon produces a slightly smaller button (24 x 20 pixels).

Big SICN 3D

Standard SICN 3D

Optionally choose only one of the following tracking optionsÉ
picbutInstantEvent Report a picture button event as soon as the mouse-down occurs in the

button. By default, the picture button generates an event when the mouse
button is released.

This option is best utilized with Òclick sensitiveÓ icons, such as the ones
seen in the Chooser. Instant events are automatically turned on when you
turn on the picbutRepeatEvents (repeating events) option.

picbutTrackWithHilite Draw a tracking highlight (a bold outline around the button, similar to the
one used by the toolboxÕs radio buttons) when the mouse button is down
and the cursor is inside the button.

Optionally choose only one of the following mouse-down optionsÉ
picbutLockSelected When the user selects the button, lock it in the selected state thereby

preventing the user from deselecting it. This option is usually used to
produce the functionality of radio buttons, where a button can be turned on
by clicking on it, but the user has to click another button to turn this one
off.

picbutSwitchSelected When the user clicks the button, reverse the ÒselectionÓ state (i.e., if
currently selected, switch to deselected; if currently deselected, switch to
selected). This option produces a simple click-on/click-off type of button
using a single stage.

picbutRepeatEvents Repeated doPictButton events are generated as long as the mouse button is
down and the cursor is in the button. These events can optionally
increment/decrement the buttonÕs value at a specified rate. This option is
useful for a button that controls object movement or situations where the
buttonÕs value may change by more than one stage.

Tools Plus

194

Optionally choose any of the following value changing optionsÉ
picbutAutoValueChg Automatically increment/decrement the buttonÕs value when it is selected

by the user. By default, your application must change the buttonÕs value as
required. Automatic value changing is only useful if your button has a
range of values through which is can progress.

picbutValueWrap When the buttonÕs value reaches either the high or low limit, start at the
opposite end of the range. By default, the buttonÕs value stops changing
when it reaches the minimum or maximum limit. This option can only be
used in conjunction with the picbutAutoValueChg (automatic value
change) option.

Optionally choose only one of the following Òrate of value changeÓ options if the picbutAutoValueChg
option is onÉ
picbutScaleLinear After an initial pause, the buttonÕs value increments/decrements at a fixed

rate. This is the default speed for automatic value changes and does not
need to be explicitly stated.

picbutScaleSlowAccel Same as above, but the rate slowly accelerates.

picbutScaleMedAccel Same as above, but the rate accelerates at a moderate rate.

picbutScaleFastAccel Same as above, but the rate accelerates rapidly.

Choose only one of the following Òbutton splittingÓ options if requiredÉ
picbutLeftRightSplit Clicking on the left half of the button decrements the buttonÕs value, while

clicking on the right half increments it. By default, clicking anywhere on
the button increments the value. Note that if the picbutAutoValueChg
(automatic value change) option is off, the buttonÕs value is not
automatically changed: an event is generated telling your application to
change the value.

picbutTopBottomSplit Same as above except that clicking on the bottom half of the button
decrements the buttonÕs value, while clicking on the top half increments it.

Choose only one of the following Òselection effectsÓ optionsÉ
picbutSelectDarken Darken the buttonÕs image when it is selected.

picbutSelectDarkenSICN3D Darken and Òpush inÓ a 3D button when it is selected. An SICN resource is
used for the buttonÕs image. Tools Plus converts the SICN to a 3D color
button and formulates all the necessary selected and disabled images.

picbutSelectLightenSICN3D Lighten and Òpush inÓ a 3D button when it is selected. An SICN resource is
used for the buttonÕs image. Tools Plus converts the SICN to a 3D color
button and formulates all the necessary selected and disabled images.

picbutSelectPushedSICN3D ÒPush inÓ a 3D button when it is selected, but donÕt darken or lighten the
button. An SICN resource is used for the buttonÕs image. Tools Plus
converts the SICN to a 3D color button and formulates all the necessary
selected and disabled images. This option is suitable for momentary push
buttons (like the MacintoshÕs standard push button), because they provide
minimal visual feedback that the button is selected.

picbutSelectAltImage Use an alternate image when the button is selected. A selected image is
required for each stage if the picbutMultiStage (multiple stage) option is
on.

7 Picture Buttons

WaterÕs Edge Software 195

Choose only one of the following Òdisabling effectsÓ options.
If a disabling effect is not specified, the global default is used as defined by the DefaultIconLook routineÉ

picbutDimUsingBlackLite When the button is disabled,
overlay the image with a
black color using a Òlight
grayÓ (25%) pattern. Enabled Disabled Disabled

(not selected) (selected) (not selected)

picbutDimUsingWhiteLite When the button is disabled,
overlay the image with a
white color using a Òlight
grayÓ (25%) pattern. Enabled Disabled Disabled

(not selected) (selected) (not selected)

picbutDimUsingWhite When the button is disabled,
overlay the image with a
white color using a Òmedium
grayÓ (50%) pattern. Enabled Disabled Disabled

(not selected) (selected) (not selected)

picbutDimLeaveBorder When the button is disabled,
do not apply the disabling
effect to the imageÕs border.
This option can be used in
conjunction with any of the
disabling effects listed above.

Enabled Disabled Disabled
border preserved

picbutDimAltImage Use an alternate image when the button is disabled. If the button is
multistage, a selected image will likely be required for each stage. You
may have to create a disabled image for both the selected and deselected
state if the button can be seen in such a way.

picbutDimNoChange The button appears unchanged when it is disabled. The user is beeped if
they click on a disabled button.

So, if you want to create a large SICN 3D picture button that locks into the selected state, lightens when selected, and
is disabled by overlaying the image using a white color with a 50% gray pattern, you should use the combined
constants picbutLockSelected + picbutBigSICN3D + picbutSelectLightenSICN3D + picbutDimUsingWhite.
Alternatively, a C structure and a Pascal variant record are available to help you define the spec parameter in a more
intuitive way, as follows:

Tools Plus

196

C union TPPictButtonSpec { /*Picture Button's appearance and */
/* behavior specs in 2 formatsÉ */

 struct{ /* ¥ Parsed into components: */
 unsigned short InstantEvent: 1; /* Report event on mouse-down */
 unsigned short TrackWithHilite: 1; /* Track w/highlight (like radio button) */
 unsigned short LockSelected: 1; /* Lock if selected (mouse can't deselect) */
 unsigned short SwitchSelected: 1; /* Switch 'select' state if clicked */
 unsigned short RepeatEvents: 1; /* Repeat event when button is held */
 unsigned short AutoValueChg: 1; /* Automatically change button's value */
 unsigned short AutoValueScaling: 3; /* Rate of change for button's value */
 unsigned short ValueWrap: 1; /* Button's range of values 'wrap' around */
 unsigned short LeftRightSplit: 1; /* Left side reduces value, right increase */
 unsigned short TopBottomSplit: 1; /* Top increases value, bottom reduces */
 unsigned short MultiStage: 1; /* Button has multiple stages */
 unsigned short BigSICN3D: 1; /* Create a larger SICN 3D button */
 unsigned short UsePICTS: 1; /* Use PICTs instead of icons */
 unsigned short Gray4use8: 1; /* Use 8-bit color pict on 4-bit gray */

/* scale monitor. */
/* Selection EffectsÉ */

 unsigned short SelectDarken: 1; /* Darken image */
 unsigned short SelectDarkenSICN3D: 1; /* Darken (+push in) a 3D SICN icon */
 unsigned short SelectLightenSICN3D: 1; /* Lighten (+push in) 3D SICN icon */
 unsigned short SelectPushedSICN3D: 1; /* Same color (+push) 3D SICN icon */
 unsigned short bit12: 1; /* (reserved bit) */
 unsigned short bit11: 1; /* (reserved bit) */
 unsigned short SelectAltImage: 1; /* Use an alternate image */
 unsigned short Hidden: 1; /* Create a hidden button */

/* Disabling EffectsÉ */
 unsigned short DimUsingBlackLite: 1; /* Overlay Black color, Lt Gray pat */
 unsigned short DimUsingWhiteLite: 1; /* Overlay White color, Lt Gray pat */
 unsigned short DimUsingWhite: 1; /* Overlay White color, Gray pat. */
 unsigned short bit5: 1; /* (reserved bit) */
 unsigned short bit4: 1; /* (reserved bit) */
 unsigned short DimLeaveBorder: 1; /* Leave border when effect applied */
 unsigned short DimAltImage: 1; /* Use an alternate image */
 unsigned short DimNoChange: 1; /* Button looks same when disabled */
 unsigned short AutoMoveSize: 1; /* Auto-resize as window's size changes */
 } Bits; /* */
 long Num; /* ¥ Long equivalent */
}; /* */
typedef union TPPictButtonSpec TPPictButtonSpec;

Pascal TPPictButtonSpec = packed record {Picture Button's appearance and behavior }
{ specifications in 2 formatsÉ }

 case integer of { }
 0: ({¥ Parsed into components: }
 InstantEvent: boolean; { Report event on mouse-down }
 TrackWithHilite: boolean; { Track w/highlight, like a radio button }
 LockSelected: boolean; { Lock if selected (mouse can't deselect) }
 SwitchSelected: boolean; { Switch 'selected' state if clicked }
 RepeatEvents: boolean; { Repeat event when button is held down }
 AutoValueChg: boolean; { Automatically change button's value }
 AutoValueScaling: 0..3; { Rate of change for button's value }
 ValueWrap: boolean; { Button's range of values 'wrap' around }
 LeftRightSplit: boolean; { Left side reduces value, right increases }
 TopBottomSplit: boolean; { Top increases value, bottom reduces }
 MultiStage: boolean; { Button has multiple stages }
 BigSICN3D: boolean; { Create a larger SICN 3D button }
 UsePICTS: boolean; { Use PICTs instead of icons }
 Gray4use8: boolean; { Use 8-bit color pict on 4-bit gray monitor }

{ Selection EffectsÉ }
 SelectDarken: boolean; { Darken image }
 SelectDarkenSICN3D: boolean; { Darken (and push in) a 3D SICN icon }
 SelectLightenSICN3D: boolean; { Lighten (and push in) a 3D SICN icon }
 SelectPushedSICN3D: boolean; { Same color (and push in) a 3D SICN icon }
 bit12, bit11: boolean; { (reserved bits) }
 SelectAltImage: boolean; { Use an alternate image }
 Hidden: boolean; { Create a hidden button }

{ Disabling EffectsÉ }
 DimUsingBlackLite: boolean; { Overlay Black color using Lt Gray pat. }
 DimUsingWhiteLite: boolean; { Overlay White color using Lt Gray pat. }
 DimUsingWhite: boolean; { Overlay White color using Gray pat. }
 bit5, bit4: boolean; { (reserved bits) }
 DimLeaveBorder: boolean; { Leave border when applying effect }
 DimAltImage: boolean; { Use an alternate image }
 DimNoChange: boolean; { Button looks the same when disabled }
 AutoMoveSize: boolean; { Auto-resize as window's size changes }
); { }
 1: ({¥ Longint equivalent: }
 Num: longint; { Specification longint }
); { }
 end;

As an example, lets create a picture button that repeats events, uses an alternate image when selected, and looks the
same when disabled. The following code sample illustrates how this is done:

7 Picture Buttons

WaterÕs Edge Software 197

procedure DoItNow;
 var
 Spec: TPPictButtonSpec; {Define the variable used for the Spec }
 begin
 Spec.Num := 0; {Initialize all the bits to zero values }
 Spec.RepeatEvents := true; {Button will produce repeating events }
 Spec.SelectAltImage := true; {Alternate image is used when button is selected }
 Spec.DimNoChange := true; {Button looks the same when disabled }

{Create the picture button using the long integer }
{ part of the SpecÉ }

 NewPictButton(1, 441, 5, PlusIcon, Spec.Num, enabled, notSelected, 0, 0, 0); { }

You can use whatever you like best as the Spec, a single constant, several constants added together, a variable, or the
long integer component of a structure or variant record.

Rate of Repeating Events

Picture buttons have the ability to produce repeating events when they are held down. Four predefined rates are
available to control the speed at which a picture buttonÕs value changes:

¥ Linear: The buttonÕs value changes when the button is selected. After a brief pause, the value continues to change
at a slow and consistent rate.

¥ Slow Acceleration: The buttonÕs value changes when the button is selected. After a brief pause, the value
continues to change at a rate that slowly accelerates.

¥ Medium Acceleration: The buttonÕs value changes when the button is selected. After a brief pause, the value
continues to change at a moderately accelerating rate.

¥ Fast Acceleration: The buttonÕs value changes when the button is selected. After a brief pause, the value continues
to change at a rate that rapidly accelerates.

There is yet another way to control a buttonÕs speed, and that is by using the SetPictButtonSpeed routine which lets
you specify an exact rate (change in value per second). When you use SetPictButtonSpeed, the specified rate takes
effect immediately when the user presses the picture button. Unlike the four standard Tools Plus acceleration rates,
there is no pause between the time when the user selects the picture button and when the repeating events begin.

- Note: Your event handler routine may receive doNothing events (no event) between repeating doPictButton events.

Picture Buttons on Color Backgrounds

If you are creating a picture button on a color surface, set the windowÕs background color (by using SetBackRGB) to
the color on which the picture button is being created, then create the button. After the button is created, you may
change the windowÕs foreground and background colors at any time without affecting picture buttons.

Each picture button remembers the color on which it is created, and uses this color when any erasing is performed by
the picture button. This is required if you are using multiple images with masks that are not identical, because the
picture button must erase the difference in space between the larger and smaller image.

CONST {Pict Button Behavior and Appearance Specs: }
picbutInstantEvent = $80000000; { Report event on mouse-down }
picbutTrackWithHilite = $40000000; { Track w/highlight, like radio button }
picbutLockSelected = $20000000; { Lock if selected (mouse can't deselect) }
picbutSwitchSelected = $10000000; { Switch 'selected' state if clicked }
picbutRepeatEvents = $08000000; { Repeat event when button is held down }
picbutAutoValueChg = $04000000; { Automatically change button's value }
picbutScaleLinear = $00000000; { Rate of automatic value changeÉ }
picbutScaleSlowAccel = $01000000; { Linear, Slow Acceleration, }
picbutScaleMedAccel = $02000000; { Medium Acceleration, and }
picbutScaleFastAccel = $03000000; { Fast Acceleration. }
picbutLinear = 0; { Linear (use in structure) }
picbutSlowAccel = 1; { Slow (use in structure) }
picbutMedAccel = 2; { Medium (use in structure) }
picbutFastAccel = 3; { Fast (use in structure) }
picbutValueWrap = $00800000; { Button's range of values 'wrap' around }
picbutLeftRightSplit = $00400000; { Left side reduces value, right increases}
picbutTopBottomSplit = $00200000; { Top increases value, bottom reduces }
picbutMultiStage = $00100000; { Button has multiple stages }
picbutBigSICN3D = $00080000; { Create a larger SICN 3D button }

Tools Plus

198

picbutUsePICTS = $00040000; { Use PICTs instead of icons }
picbutGray4use8 = $00020000; { Use 8-bit color pict on 4-bit gray mon. }
picbutHidden = $00000200; { Create hidden picture button }
picbutAutoMoveSize = $00000001; { Auto-resize as window's size changes }

{ Selection EffectsÉ }
picbutSelectDarken = $00010000; { Darken image }
picbutSelectDarkenSICN3D = $00008000; { Darken (and push in) a 3D SICN icon }
picbutSelectLightenSICN3D = $00004000; { Lighten (and push in) a 3D SICN icon }
picbutSelectPushedSICN3D = $00002000; { Same color (and push in) a 3D SICN icon }
picbutSelectAltImage = $00000400; { Use an alternate image }

{ Disabling EffectsÉ }
picbutDimUsingBlackLite = $00000100; { Overlay Black color using Lt Gray pat. }
picbutDimUsingWhiteLite = $00000080; { Overlay White color using Lt Gray pat. }
picbutDimUsingWhite = $00000040; { Overlay White color using Gray pat. }
picbutDimLeaveBorder = $00000008; { Leave border when applying effect }
picbutDimAltImage = $00000004; { Use an alternate image }
picbutDimNoChange = $00000002; { Button looks the same when disabled }

..

NewDialogPictButton
Create a new picture button in a dialog using a dialog itemÕs co-ordinates.

C pascal void NewDialogPictButton (short Button, short BaseID, long Spec,
Boolean EnabledFlag, Boolean SelectedFlag,
short minimum, short value, short maximum);

Pascal procedure NewDialogPictButton (Button, BaseID: INTEGER; Spec: LONGINT;
EnabledFlag, SelectedFlag: BOOLEAN;
minimum, value, maximum: INTEGER);

NewDialogPictButton is identical to the NewButton routine, except that the button is created in a dialog (a window
opened with the LoadDialog routine, or one that had a dialog list attached with the LoadDialogList routine). The
buttonÕs co-ordinates are obtained from the dialog item whose number matches the button number.

..

GetFreePictButtonNum
Get the first unused picture button number.

C pascal short GetFreePictButtonNum (void);

Pascal function GetFreePictButtonNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own picture
button number, GetFreePictButtonNum returns the first unused (free) picture button number. Using this routine, you
can assign an unused picture button number to a variable, then use that variable throughout your application without
concern for the true picture button number.

GetFreePictButtonNum returns the first free picture button number on the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if the maximum number of picture buttons has already
been created on the current window (no new ones can be created), GetFreePictButtonNum returns a value of zero (0).

..

7 Picture Buttons

WaterÕs Edge Software 199

DeletePictButton
Delete a picture button.

C pascal void DeletePictButton (short Button);

Pascal procedure DeletePictButton (Button: INTEGER);

Button specifies the picture button number (from 1 to 511) that is deleted from the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, DeletePictButton does nothing. Use KillPictButton if you want to delete the picture button without
removing its image from the window.

..

KillPictButton
Delete a picture button without affecting its image on the window.

C pascal void KillPictButton (short Button);

Pascal procedure KillPictButton (Button: INTEGER);

KillPictButton is identical to DeletePictButton except that it does not remove the picture buttonÕs image from the
window. This routine is useful for scrolling picture buttons in an area within a window (i.e., not the entire window).
ScrollRect is used to scroll the images in the affected area. OffsetPictButton repositions the picture buttonÕs co-
ordinates without affecting its image (since ScrollRect has already moved it). KillPictButton then deletes the picture
buttons that are scrolled out of view without affecting their image (ScrollRect has already scrolled them out of view).

..

PictButtonDisplay
Hide or show a picture button.

C pascal void PictButtonDisplay (short Button, Boolean Show);

Pascal procedure PictButtonDisplay (Button: INTEGER; Show: BOOLEAN);

PictButtonDisplay hides or shows a picture button on the current window. The result is seen immediately. Use
discretion with this routine since picture buttons should be enabled and disabled to indicate if they are accessible by
the user.

Button specifies the picture button number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, PictButtonDisplay does nothing.

Show indicates if the picture button is being hidden or displayed. The two constants that can be used for this flag are on
and off.

..

Tools Plus

200

PictButtonIsVisible
Determine if a picture button is visible.

C pascal Boolean PictButtonIsVisible (short Button);

Pascal function PictButtonIsVisible (Button: INTEGER): BOOLEAN;

PictButtonIsVisible reports if a picture button is visible on the current window, or if it is hidden.

Button specifies the picture button number (from 1 to 511) that is queried in the current window.

This routineÕs value returns true if the picture button is visible, and false if the button is hidden. If the current window
doesnÕt belong to your application, or if no windows are open, or if the picture button does not exist in the current
window, PictButtonIsVisible returns false.

..

ObscurePictButton
Hide a picture button without removing its image from the window.

C pascal void ObscurePictButton (short Button);

Pascal procedure ObscurePictButton (Button: INTEGER);

ObscurePictButton hides a picture button on the current window without removing its image from the window. This
routine is useful for scrolling buttons in an area within a window (i.e., not the entire window). ScrollRect is used to
scroll the images in the affected area. OffsetPictButton repositions the buttonÕs co-ordinates without affecting its
image (since ScrollRect has already moved it). ObscurePictButton then hides the buttons that are scrolled out of view
without affecting their image (ScrollRect has already scrolled them out of view).

Button specifies the picture button number (from 1 to 511) that is hidden in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the picture button does not exist in the current
window, ObscurePictButton does nothing.

..

GetPictButtonRect
Get a picture buttonÕs co-ordinates.

C pascal void GetPictButtonRect (short Button, Rect *Bounds);

Pascal procedure GetPictButtonRect (Button: INTEGER; var Bounds: RECT);

Button specifies the picture button number (from 1 to 511) that is queried in the current window.

Bounds returns the picture buttonÕs bounding rectangle specified in the windowÕs local co-ordinates. These co-
ordinates match those used to create the picture button. If the current window doesnÕt belong to your application, or if
no windows are open, or if the picture button does not exist in the current window, Bounds returns with all co-
ordinates set to zero (0). The left and top co-ordinates of Bounds are identical to those specified when creating a
picture button. The bottom and right co-ordinates are determined each time the picture button is displayed using the
buttonÕs current image co-ordinates.

..

7 Picture Buttons

WaterÕs Edge Software 201

EnablePictButton
Enable or disable a picture button.

C pascal void EnablePictButton (short Button, Boolean EnabledFlag);

Pascal procedure EnablePictButton (Button: INTEGER; EnabledFlag: BOOLEAN);

Button specifies the picture button number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, EnablePictButton does nothing.

The EnabledFlag indicates if the picture button is enabled or not. All three picture button types can be either enabled
or disabled. When a picture button is disabled, it becomes dim and cannot be selected by the user. All picture buttons
automatically become disabled when the window containing them is inactive. When the window is activated, the
picture buttons assume their state as set by the NewPictButton routine, and subsequent calls to the EnablePictButton
routine. The two constants that can be used for this flag are enabled and disabled.

CONST {Button state }
enabled = true; {picture button is enabled }
disabled = false; {picture button is disabled }

See the NewPictButton routine for additional information pertaining to the picture buttonÕs enabling, disabling, and
selection.

..

PictButtonIsEnabled
Determine if a picture button is enabled or disabled.

C pascal Boolean PictButtonIsEnabled (short Button);

Pascal function PictButtonIsEnabled (Button: INTEGER): BOOLEAN;

Button specifies the picture button number (from 1 to 511) that is queried in the current window.

The routineÕs value returns true if the picture button is enabled, and false if the button is disabled. If the current
window doesnÕt belong to your application, or if no windows are open, or if the button does not exist in the current
window, PictButtonIsEnabled returns false. PictButtonIsEnabled returns the buttonÕs enabled state as it is currently
displayed, so if the buttonÕs window is inactive and has temporarily disabled the button, PictButtonIsEnabled returns
false.

..

SelectPictButton
Select or deselect a picture button.

C pascal void SelectPictButton (short Button, Boolean SelectedFlag);

Pascal procedure SelectPictButton (Button: INTEGER; SelectedFlag: BOOLEAN);

Button specifies the picture button number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, SelectPictButton does nothing.

The SelectedFlag indicates if the picture button is selected or not. The two constants that can be used for this flag are
selected and notSelected.

Tools Plus

202

CONST {Button state }
selected = true; {picture button is selected }
notSelected = false; {picture button is not selected }

See the NewPictButton routine for additional information pertaining to the picture buttonÕs enabling, disabling, and
selection.

..

PictButtonIsSelected
Determine if a picture button is selected.

C pascal Boolean PictButtonIsSelected (short Button);

Pascal function PictButtonIsSelected (Button: INTEGER): BOOLEAN;

Button specifies the picture button number (from 1 to 511) that is queried in the current window.

The routineÕs value returns true if the picture button is selected, and false if the picture button is not selected. If the
current window doesnÕt belong to your application, or if no windows are open, or if the picture button does not exist in
the current window, PictButtonIsSelected returns false.

CONST {Button state }
selected = true; {picture button is selected }
notSelected = false; {picture button is not selected }

See the NewPictButton routine for additional information pertaining to the picture buttonÕs enabling, disabling, and
selection.

..

GetPictButtonMin
Get a picture buttonÕs minimum value limit.

C pascal short GetPictButtonMin (short Button);

Pascal function GetPictButtonMin (Button: INTEGER): INTEGER;

Button specifies the picture button number (from 1 to 511) that is queried in the current window.

GetPictButtonMin returns a picture buttonÕs minimum value limit. If the current window doesnÕt belong to your
application, or if no windows are open, or if the picture button does not exist in the current window, GetPictButtonMin
will return a value of zero (0).

..

SetPictButtonMin
Set a picture buttonÕs minimum value limit.

C pascal void SetPictButtonMin (short Button, short minimum);

Pascal procedure SetPictButtonMin (Button, minimum: INTEGER);

Button specifies the picture button number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, SetPictButtonMin does nothing. The minimum and maximum limit cannot be changed in multistage
buttons.

7 Picture Buttons

WaterÕs Edge Software 203

Minimum specifies the picture buttonÕs new minimum value limit. The picture buttonÕs current value and maximum
limit are automatically adjusted (if necessary) to be consistent with the new minimum limit.

..

GetPictButtonMax
Get a picture buttonÕs maximum value limit.

C pascal short GetPictButtonMax (short Button);

Pascal function GetPictButtonMax (Button: INTEGER): INTEGER;

Button specifies the picture button number (from 1 to 511) that is queried in the current window.

GetPictButtonMax returns a picture buttonÕs maximum value limit. If the current window doesnÕt belong to your
application, or if no windows are open, or if the picture button does not exist in the current window,
GetPictButtonMax will return a value of zero (0).

..

SetPictButtonMax
Set a picture buttonÕs maximum value limit.

C pascal void SetPictButtonMax (short Button, short maximum);

Pascal procedure SetPictButtonMax (Button, maximum: INTEGER);

Button specifies the picture button number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, SetPictButtonMax does nothing. The minimum and maximum limit cannot be changed in multistage
buttons

Maximum specifies the picture buttonÕs new maximum value limit. The picture buttonÕs current value and minimum
limit are automatically adjusted (if necessary) to be consistent with the new maximum limit.

..

GetPictButtonVal
Get a picture buttonÕs current value.

C pascal short GetPictButtonVal (short Button);

Pascal function GetPictButtonVal (Button: INTEGER): INTEGER;

Button specifies the picture button number (from 1 to 511) that is queried in the current window.

GetPictButtonVal returns a picture buttonÕs current value. If the current window doesnÕt belong to your application, or
if no windows are open, or if the picture button does not exist in the current window, GetPictButtonVal will return a
value of zero (0).

..

Tools Plus

204

SetPictButtonVal
Set a picture buttonÕs current value.

C pascal void SetPictButtonVal (short Button, short value);

Pascal procedure SetPictButtonVal (Button, Value: INTEGER);

Button specifies the picture button number (from 1 to 511) which is to be affected in the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, SetPictButtonVal does nothing.

Value specifies the picture buttonÕs new current value. In multistage buttons, the value is adjusted to fit within the
buttonÕs minimum and maximum limit. In single stage buttons, the minimum and maximum limits are automatically
adjusted (if necessary) to be consistent with the new current value.

..

SetPictButtonValSelect
Set a picture buttonÕs current value, and simultaneously select or deselect the button.

C pascal void SetPictButtonValSelect (short Button, short value,
Boolean SelectedFlag);

Pascal procedure SetPictButtonValSelect (Button, Value: INTEGER;
SelectedFlag: BOOLEAN);

Sometimes, it is necessary to simultaneously change a buttonÕs value and to select or deselect it, otherwise the
transition from one stage to another would look jerky. An example of this is a multistage button that locks in the
selected position, then lets your application determine if conditions allow the button to be deselected in the next stage
(indicating acceptance of the buttonÕs action), or deselected in the same stage (indicating rejection of the buttonÕs
action).

Button specifies the picture button number (from 1 to 511) which is to be affected in the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, SetPictButtonValSelect does nothing.

Value specifies the picture buttonÕs new current value. In multistage buttons, the value is adjusted to fit within the
buttonÕs minimum and maximum limit. In single stage buttons, the minimum and maximum limits are automatically
adjusted (if necessary) to be consistent with the new current value.

The SelectedFlag indicates if the picture button is selected or not. The two constants that can be used for this flag are
selected and notSelected.

CONST {Button state }
selected = true; {picture button is selected }
notSelected = false; {picture button is not selected }

..

7 Picture Buttons

WaterÕs Edge Software 205

SetPictButtonAccel
Set a picture buttonÕs value change rate.

C pascal void SetPictButtonAccel (short Button, short Rate);

Pascal procedure SetPictButtonAccel (Button, Rate: INTEGER);

Button specifies the picture button number (from 1 to 511) which is to be affected in the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, SetPictButtonAccel does nothing.

Rate specifies the rate at which the picture buttonÕs value changes. The four constants that can be used for this setting
are:
picbutLinear Linear: The buttonÕs value changes when the button is selected. After a brief pause, the

value continues to change at a slow and consistent rate.

picbutSlowAccel Slow Acceleration: The buttonÕs value changes when the button is selected. After a
brief pause, the value continues to change at a rate that slowly accelerates.

picbutMedAccel Medium Acceleration: The buttonÕs value changes when the button is selected. After a
brief pause, the value continues to change at a moderately accelerating rate.

picbutFastAccel Fast Acceleration: The buttonÕs value changes when the button is selected. After a
brief pause, the value continues to change at a rate that rapidly accelerates.

The affected picture button must be created with the Òautomatic value changeÓ and Òrepeating eventsÓ options both
turned on for this routine to have any effect. Using SetPictButtonAccel overrides the settings established by the
SetPictButtonSpeed routine.

CONST {Value change rates:
picbutLinear = 0; {Linear (does not accelerate) }
picbutSlowAccel = 1; {Slow acceleration }
picbutMedAccel = 2; {Medium acceleration }
picbutFastAccel = 3; {Fast acceleration }

See the NewPictButton routine for additional information pertaining to the picture buttonÕs automatic value change
rate. Also see the SetPictButtonSpeed routine for another method of setting the buttonÕs speed.

..

SetPictButtonSpeed
Set a picture buttonÕs value change speed.

C pascal void SetPictButtonSpeed (short Button, short Rate);

Pascal procedure SetPictButtonSpeed (Button, Rate: INTEGER);

Button specifies the picture button number (from 1 to 511) which is to be affected in the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the picture button does not exist in the
current window, SetPictButtonSpeed does nothing.

Rate specifies the constant speed at which the picture buttonÕs value changes. The rate is expressed as an amount that
is incremented per second (i.e., Ò30Ó means change the buttonÕs value by 30 for each second it is held down).

The picture buttonÕs value will change at the specified speed as soon as the user presses down on the button (there is
no pause before the event starts repeating). The affected picture button must be created with the Òautomatic value
changeÓ and Òrepeating eventsÓ options both turned on for this routine to have any effect. Using SetPictButtonSpeed
overrides the settings established by the SetPictButtonAccel routine.

See the SetPictButtonAccel routine for another method of setting the buttonÕs value change rate.

Tools Plus

206

FlashPictButton
Flash a picture button as though it was clicked by the user.

C pascal void FlashPictButton (short Button);

Pascal procedure FlashPictButton (Button: INTEGER);

Button specifies the picture button number (from 1 to 511) that is affected in the active window. If the active window
doesnÕt belong to your application, or if no windows are open, FlashPictButton does nothing.

FlashPictButton can be used in some specific instances. Advanced programmers may decide to display a modal
window when the Macintosh is busy with a lengthy process. If a picture button (such as ÒCancelÓ) on this window is
equivalent to typing 1-., your application should flash the picture button when a 1-. is reported to your event handler
routine. This makes the user feel that the key triggered the picture button. Another example is double-clicking in a list
box; this action can be interpreted as Òselect line and OKÓ in which case the OK picture button should be flashed.

..

MovePictButton
Move a picture button to a new location on the window.

C pascal void MovePictButton (short Button, short toHoriz, short toVert);

Pascal procedure MovePictButton (Button, toHoriz, toVert: INTEGER);

Button specifies the picture button number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, if no windows are open, or if Button specifies a picture button that does
not exist, MovePictButton does nothing. The change is seen immediately providing that the picture button is not
hidden. The picture buttonÕs width and height are not changed.

ToHoriz is the new horizontal co-ordinate at which the left side of the picture button appears.

ToVert is the new vertical co-ordinate at which the top of the picture button appears.

..

OffsetPictButton
Change a picture buttonÕs co-ordinates without affecting its image on the window.

C pascal void OffsetPictButton (short Button, short distHoriz, short distVert);

Pascal procedure OffsetPictButton (Button, distHoriz, distVert: INTEGER);

When you scroll an area that contains picture buttons, first use ScrollRect to scroll the pixel image containing the
affected objects in the window. OffsetPictButton is used to offset a picture buttonÕs co-ordinates without altering its
image (since ScrollRect has already done so). At this point, the picture buttonÕs co-ordinates match the scrolled image
of the picture button. ObscurePictButton or KillPictButton can be used to hide or delete picture buttons that are
scrolled out of view.

Button specifies the picture button number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, if no windows are open, or if Button specifies a picture button that does
not exist, OffsetPictButton does nothing.

DistHoriz and distVert specify the horizontal and vertical amount by which the picture buttonÕs co-ordinates are offset.
Positive numbers are right and down. The picture buttonÕs co-ordinates are updated but no change is seen.

..

7 Picture Buttons

WaterÕs Edge Software 207

AutoMoveSizePictButton
Specify how a picture button is automatically moved as its windowÕs size is changed.

C pascal void AutoMoveSizePictButton (short Button, Boolean left, Boolean top);

Pascal procedure AutoMoveSizePictButton (Button: INTEGER; left, top: BOOLEAN);

Button specifies the picture button number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, if no windows are open, or if Button specifies a picture button that does
not exist, AutoMoveSizePictButton does nothing.

The left and top parameters specify if that side of the picture button is automatically adjusted when the windowÕs size
changes. These setting are applied to the picture button and are used the next time the windowÕs size changes:

left Do the picture buttonÕs left and right side track the windowÕs right edge?
top Do the picture buttonÕs top and bottom track the windowÕs bottom edge?

You can think of each false value as locking that side of the picture button to a fixed co-ordinate regardless of the
windowÕs size (this is the default). Each true value establishes a fixed distance between that side of the picture button
and the windowÕs edge. For example, setting only left to true makes the picture button move horizontally as the
window widens and narrows, but the picture button does not move vertically when the windowÕs height changes.

If you are setting these values identically for a group of objects, use AutoMoveSize to define the settings then add the
appropriate xAutoMoveSize constant (such as picbutAutoMoveSize for picture buttons) to the objectsÕ spec as they are
created. The objects will adopt the settings specified by the AutoMoveSize routine.

+ Warning: Make sure that you resize objects in a way that makes sense. DonÕt allow a window to shrink down to a
size where objects become unusable or disappear altogether.

..

Tools Plus

208

8 Scroll Bars

WaterÕs Edge Software 209

8 Scroll Bars

Tools Plus supports the use of scroll bars on any Tools Plus window. Additionally, custom control definitions (CDEFs)
that are similar to scroll bars, such as sliders, can also be used. Within this manual, the term Òscroll barÓ refers to a real
scroll bar or a custom CDEF that works like a scroll bar.

Scroll bars are created on the current window by the NewScrollBar routine. Each scroll bar is referenced by a unique
scroll bar number that can be from 1 to 511. This number is specified when the scroll bar is created, and refers to the
specific scroll bar until that scroll bar is deleted. Note that the scroll bar number is related to its associated window.
This means that two different windows can each have a scroll bar numbered Ò1Ó without interfering with each other.
Whenever a scroll bar is used by the user, Tools Plus calls your event handler routine and reports the scroll bar
number, the part (see below) that was used, and its window number. You can also create a scroll bar from a ÔCNTLÕ
resource by using the LoadScrollBar routine.

Scroll bars can be moved to a new location with MoveScrollBar and have their width and/or height changed with
SizeScrollBar. MoveSizeScrollBar combines both tasks by letting you specify new co-ordinates for the scroll bar.

Scroll bars can be either horizontal or vertical, and are made up of five distinct parts: [1] up arrow, [2] Òpage upÓ
region, [3] thumb (also called an indicator), [4] Òpage downÓ region, and [5] down arrow.

¬

¬

¬

minimum
setting

current
value

maximum
setting

­ ­ ­
minimum
setting

current
value

maximum
setting

up arrow

Òpage upÓ region

Òpage downÓ region

thumb

down arrow

A scroll barÕs minimum and maximum settings can be obtained by the GetScrollBarMin and GetScrollBarMax
routines. The current value can be obtained by the GetScrollBarVal routine. Conversely, these values can be set by
using the SetScrollBarMin, SetScrollBarMax, and SetScrollBarVal routines.

When a scroll bar is no longer required, it is deleted by the DeleteScrollBar routine, which releases the memory used
by the scroll bar. This is done automatically if a window is closed. A scroll bar can be hidden or displayed with the
ScrollBarDisplay routine.

Tools Plus also supports the use of custom CDEFs as scroll bars, as well as the extended set of controls that are part of
the Appearance Manager which first appeared in Mac OS 8. Many of these controls are implemented as scroll bars and
are detailed in this section. See the chapter on Buttons for details on the remaining Appearance Manager controls.

Tools Plus

210

Scroll Bar States
A scroll bar is enabled or disabled by the EnableScrollBar routine. When a window is inactive, all the associated scroll
bars are automatically hidden (only the outline is displayed) and cannot be selected. When the window is activated, the
scroll bars return to their normal status as set by your application. This standard behavior can be overridden to merely
disable scroll bars on inactive windows, which is more appropriate for custom CDEFs like sliders.

enabled disabled

Colors
By default, AppleÕs scroll bars have a black frame and a background that matches their parent windowÕs backdrop
color (which is white by default). The rest of the scroll bar is colored appropriately. Third party CDEFs used as scroll
bars may behave differently. Optionally, each scroll bar can adopt unique color settings as it is created. The colors for
the various scroll bar parts are defined by the ScrollBarColors routine, and are optionally adopted by scroll bars as they
are created. Scroll barsÕ colors can be changed afterwards using the SetScrollBarColors routine. Conversely, the
GetScrollBarColors routine retrieves a scroll barÕs color settings.

When designing applications, always design them in black and white then apply color (if required) to add value to your
application. DonÕt add color just because you can. In the case of color scroll bars, test your color selection thoroughly
on a monitor set to 8, 4, and 2-bit color and gray scale, and black and white to ensure that your colors and window
backdrop color map to usable colors. Note that some controls ignore color settings, particularly those in the
Appearance Manager.

Text
Scroll bars do not normally have any associated text. A custom CDEF like a slider may have text such as numbers that
are part of a numeric scale. When your application creates a scroll bar, it memorizes the windowÕs text settings as set
by TextFont, TextSize, and TextFace, and it retains those setting whenever the scroll bar is used. This way, custom
CDEFs that have a Òuse window fontÓ variant code will be able to use the windowÕs font setting that were established
when the scroll bar was created. This also facilitates custom CDEFs that always display text using the windowÕs
current font settings. CDEFs that do not display any text will suffer no ill effects from this strategy.

If you are creating scroll bars that display text, set the windowÕs font settings as required using TextFont, TextSize and
TextFace before the scroll bar is created. Once the scroll bar is created, it will automatically have access to those text
settings. You can use the GetScrollBarFontSettings and SetScrollBarFontSettings routines to get and set the scroll
barÕs font, size and style settings.

Scroll Bar Speed
Normally, scroll bars generate doScrollBar events as quickly as your application can handle them. Tools Plus lets you
control the rate at which doScrollBar events are generated, thereby letting you slow down a scroll bar to an ideal
speed. As a beneficial side effect, scroll bars move at a consistent speed to compensate for time-consuming processes
in your application, such as those that display the material that is scrolled by a scroll bar.

ScrollBarLineTime and ScrollBarPageTime are used to specify the rate at which scroll bars move a line at a time
(when the up/down arrows are used), and a page at a time (when the page up/down regions are used). Subsequently
created scroll bars adopt the settings specified by these routines. Similarly, SetScrollBarLineTime and
SetScrollBarPageTime set the rate for an individual scroll bar.

8 Scroll Bars

WaterÕs Edge Software 211

Substituting Scroll Bar ProcIDs
Certain system resources may or may not be available to your application depending on the system version of the
Macintosh that is running your application. A good example of this is the sliders that are part of the Appearance
Manager in Mac OS 8 or later. With Tools Plus, you can design and write your application to use a custom slider
(CDEF resource) to provide sliders in your application, such as those in SuperCDEFs. Then at the beginning of your
application it can determine the MacÕs capabilities, specifically if the Appearance Manager is running to make the
systemÕs sliders available to your application. If this is the case, your application can easily substitute the use of the
custom slider CDEF with the Appearance ManagerÕs slider throughout your application.

Two routines in the Miscellaneous Routines chapter of this manual help facilitate determining the capabilities of the
Macintosh that is running your application: HasAppearanceManager and UsingAppearanceManager. You can also use
the toolboxÕs Gestalt routines to determine whether other features are available or not. Tools PlusÕs
ReplaceControlProcID routine is used to replace a specific scroll bar procID with another procID throughout your
application, thereby substituting the use of one type of scroll bar (or slider) with another. The ReplaceControlProcID
routine is detailed in the Buttons chapter of this manual.

Handling Scroll Bars
Your application specifies if a scroll bar is enabled or disabled. When a window in inactive, Tools Plus disables all
scroll bars on that window. When the window is activated again, all the scroll bars regain their correct status as
specified by your application. If a window contains a scroll bar along its right side and/or bottom (such as on word
processing documents and spreadsheets), these scroll bars are automatically sized and moved if the user drags the
windowÕs Òsize boxÓ (providing that the window has a Òsize boxÓ) or clicks the Òzoom box.Ó

Processing doScrollBar Events

There are two basic ways your application can respond to the userÕs interaction with a scroll bar. The first one, the
easier of the two alternatives, is to have your application simply respond to doScrollBar events. When Tools Plus
detects a mouse-down event in a scroll bar, it calls your event handler routine and reports it as a doScrollBar event.
The event also includes information about which part was clicked: up button, down button, page up region, page down
region, or thumb. In the case of all the up/down possibilities, your application should respond by scrolling the screenÕs
image if required (using the toolboxÕs ScrollRect routine), updating the scroll bar with its new value (using the
SetScrollBarVal routine), and possibly offsetting user interface element co-ordinates. With Tools Plus, your
application will get a series of doScrollBar events as long as the user holds the mouse down and has the cursor in the
originally clicked region. See the tutorials for examples of how to scroll user interface elements.

When Tools Plus reports a doScrollBar event, the part code may indicate the event is a result of the user moving the
scroll barÕs thumb, in which case your application can obtain the scroll barÕs value by using the GetScrollBarVal
routine then scrolling the required area. Tools Plus supports optional Òlive scrollingÓ that causes the scroll bar to move
its thumb in real time as it tracks the cursor. During this tracking, your event handler routine gets a doScrollBar event
each time the scroll barÕs value changes. The live scrolling feature works with virtually any CDEF that behaves like a
scroll bar, including AppleÕs scroll bars and third party sliders. ItÕs easy for you to program this because as far as your
application is concerned, the user is moving the scroll barÕs thumb in a series of steps.

Action routine

The second method of responding to the userÕs interaction with a scroll bar is the one originally designed by Apple,
that being creating an Òaction routineÓ and installing it in a scroll bar with the SetScrollBarAction routine. Your action
routine is called continuously while the user interacts with the scroll bar, be it holding the mouse in the scroll barÕs up
button or while dragging the scroll barÕs thumb. Your action routine can call GetScrollBarActionInfo to determine
which scroll bar is being called, its parent window, the part that was clicked by the user, and if the mouse is still in the
originally clicked part (i.e., is the mouse still in the page up region).

Tools Plus

212

In some cases, your application will experience better performance by using the action routine. A typical case where
this is true is using a slider to control the volume of music in real time, such as in an audio mixer. Beware that some
CDEFs (like the Apple scroll bar) do not change the scroll barÕs value when the user drags the thumb. The value is
changed only when the user releases the thumb, so an action routine is ineffective in trying to regulate or control
something in real time. This is when you should use Tools PlusÕs live scrolling option in conjunction with processing
doScrollBar events.

WaterÕs Edge Software offers a set of slider CDEFs that can be used with either method of handling scroll bar. They
can easily be integrated into your existing application without having to change any code. They can also be used in the
most demanding real-time control environments where you can create an action routine that responds to the indicatorÕs
movement in real time.

+ Warning: If you have obtained a handle to a scroll bar, do not change any of the fields in the scroll barÕs record.

Appearance Manager Controls
The Appearance Manager, first introduced in mid 1997 with Mac OS 8, gives your application a number of 3D
controls in addition to the ordinary push button, check box, radio button, and scroll bar that were originally supplied by
Apple when Macintosh debuted in 1984. All the new Appearance Manager controls are implemented as CDEFs, but
unlike third party CDEF resources that must be installed in your application when it is built, the Appearance
ManagerÕs controls are available to your application without having to install them. They are available from the
system, just like regular system controls, if the Macintosh running your application has an Appearance Manager.

Your application can access the Appearance ManagerÕs 3D push buttons, check boxes, radio buttons and scroll bars
without any special programming. In fact, you can replace the standard controls throughout your application with the
equivalent Appearance Manager controls as a default behavior when you initialize Tools Plus libraries with the
InitToolsPlus routine. However, if you want to make use of other Appearance Manager controls and features, you need
to make your application ÒAppearance Manager aware.Ó 680x0 applications are automatically Appearance Manager
aware. To make your PowerPC application Appearance Manager aware, see the Designing Your Application chapter
of this manual for details in the ÒUsing the Appearance ManagerÓ section.

Many of the Appearance ManagerÕs controls are considerably more complex than the standard controls, and
understandably so because they offer considerably more features. Many controls place special significance on their
initial values when they are created, specifically the controlÕs minimum limit, maximum limit and current value (these
items equate to the contrlMin, contrlMax and contrlValue fields of the Control ManagerÕs ControlRecord record).
Constants for these controls and all their options appear in the Appearance.h (C/C++ header) and Appearance.p (Pascal
interface) files, as well as in Controls.h and Controls.p files.

See the chapters on Buttons, Editing Fields, List Boxes and Pop-Up Menus in this user manual for additional
Appearance Manager controls.

- Note: For complete information on Appearance Manager concepts, the Appearance ManagerÕs features, and how to
best use the Appearance ManagerÕs new controls, please read the documentation pertaining to the Appearance
Manager. It is available from Apple or in the latest issue of Inside Macintosh. This manual does not duplicate
that material.

8 Scroll Bars

WaterÕs Edge Software 213

Scroll Bar (CDEF 24)

This scroll bar works identically to a standard scrollBarProc scroll bar.

CONST
kControlScrollBarProc = 384; {Normal Scroll Bar ProcID }
kControlScrollBarLiveProc = 386; {Live scrolling variant }

Enabled

Disabled

Slider (CDEF 3)

The slider works similarly to a scroll bar, except it has no page up, page down, line up or line
down regions. The user can only set a slider by dragging the indicator.

CONST
kControlSliderProc = 48; {Slider ProcID }
kControlSliderLiveFeedback = $01; {Live scrolling variant }

{Add these variants to the ProcIDÉ }
kControlSliderHasTickMarks = $02; {Slider has tick marks }
kControlSliderReverseDirection = $04; {Thumb points in opposite direction

}
kControlSliderNonDirectional = $08; {Thumb is non-directional }

When creating a slider with tick marks, the controlÕs initial value is used to determine the
number of tick marks that appear in the slider.

Slider

Slider with Tick Marks

Non-Directional

Progress Indicator or ÒThermometerÓ (CDEF 5)

The progress indicator is implemented like a scroll bar, but unlike a scroll bar, the user cannot
interact with this control. The standard progress indicatorÕs height is 14 pixels.

CONST
kControlProgressBarProc = 80; {Progress Indicator ProcID }
scrlBusyThermometerMinLimit = -32768; {Minimum value for indeterminate }

{ indicator. }

Your application sets the progress indicatorÕs current value such that it indicates a relative
progress between the indicatorÕs minimum limit and maximum limit. An ÒindeterminateÓ state
can exist when the application does not know how long a task will take. In Tools Plus, the
progress indicator assumes an indeterminate state when its minimum limit is set to -32768.

An indeterminate indicator animates automatically each time your event handler routine
finishes executing. If you need to animate the indicator more frequently, see the
Process1EventWhileBusy routine for details.

Determinate

Indeterminate

Little Arrows (CDEF 6)

Little Arrows are used to increase or decreased a value, as seen in the Clock control. In Tools
Plus, this control can be implemented either as a button to allow the user to step through a
series of values one at a time with each click, or as a scroll bar to allow the user to also hold the
up arrow or down arrow to continuously increase or decrease a value while the button is held
down.

If you are using a ÔCNTLÕ resource to create this control, add 1 to the procID to tell Tools Plus
that you want to implement the Little Arrows control as a scroll bar, otherwise it is
implemented as a button. Little Arrows should always be created in a rectangle that is 13 pixels
wide by 23 pixels high.

CONST
kControlLittleArrowsProc = 96; {Little Arrows ProcID }

Little Arrows

Tools Plus

214

Appearance Manager and Keyboard Focus
Before the Appearance ManagerÕs arrival, the only user interface element that could process keystrokes was an editing
field. With the Appearance Manager present, a variety of user interface elements can process keystrokes, such as
editing fields, list boxes and the clock control. Keystrokes are directed at only one user interface element at a time (and
possibly at no element at all). When a user interface element processes keystrokes in such a way, it is said to have the
Òkeyboard focus.Ó Only one user interface element can have the keyboard focus at a time, and it is visually indicated
with a highlighted ÒbandÓ around the object. Tools Plus takes care of the focus highlight, and of applying keystrokes to
the element that has the keyboard focus.

The process of moving the keyboard focus between objects, either by tabbing or clicking, is identical to that of
navigating between editing fields. For details, see the ÒClicking and TabbingÓ section in the Editing Fields chapter.

..

NewScrollBar
Create a new scroll bar.

C pascal void NewScrollBar (short ScrollBar,
short left, short top, short right, short bottom,
long Spec, Boolean EnabledFlag,
short minimum, short value, short maximum);

Pascal procedure NewScrollBar (ScrollBar: INTEGER;
left, top, right, bottom: INTEGER;
Spec: LONGINT; EnabledFlag: BOOLEAN;
minimum, value, maximum: INTEGER);

ScrollBar specifies the scroll bar number (from 1 to 511) that is created in the current window. Once a scroll bar is
created, it is referenced by this scroll bar number. If a scroll bar has been previously created in the current window
using the same number, it is replaced with a new scroll bar as specified by the parameters in the NewScrollBar routine.
If the current window doesnÕt belong to your application, or if no windows are open, NewScrollBar does nothing.

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the scroll barÕs size and location in
the window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-
hand corner (right,bottom). A scroll bar is vertical or horizontal depending on whether the height or width of the
rectangle is greatest. Scroll bars should be exactly 16 pixels wide, so there should be a 16 pixel difference between the
scroll barÕs top and bottom, or left and right side. If there isnÕt, the scroll bar is scaled to fit into the rectangle and will
not look as attractive. Also, the scroll bar must be at least 40 pixels long in order to contain the up arrow, down arrow,
and thumb.

For windows with a ProcID of documentProc (i.e., with a Òsize boxÓ) special scroll bars may be created along the right
side of a window and/or along the bottom. These scroll bars are special because they are automatically sized and
moved if the windowÕs size is changed. Here are some useful measurements and constants for these specialized scroll
bars:

Co-Ordinates
Type of Scroll Bar Left Top Right Bottom
At windowÕs right edge scrlRightEdge

(window width - 15)
scrlTopEdge (or -1)

(optional)
scrlRightEdge

(window width + 1) (your co-ordinate)
At windowÕs right edge,
bottom linked to grow box

scrlRightEdge
(window width - 15)

scrlTopEdge (or -1)
(optional)

scrlRightEdge
(window width + 1)

scrlBottomEdge

At windowÕs bottom scrlLeftEdge (or -1)
(optional)

scrlBottomEdge
(window height-15) (your co-ordinate)

scrlBottomEdge
(window height + 1)

At windowÕs bottom, right
side linked to grow box

scrlLeftEdge (or -1)
(optional)

scrlBottomEdge
(window height-15)

scrlRightEdge scrlBottomEdge
(window height + 1)

(The windowÕs dimensions can be obtained from the WindowStatus routine.)

8 Scroll Bars

WaterÕs Edge Software 215

Spec specifies the scroll barÕs appearance and behavior characteristics. It is a combination of a control procID plus
various Tools Plus options detailed later in this section.

EnabledFlag specifies if the scroll bar is enabled or disabled when the window is active. When a scroll bar is disabled,
the thumb and toned Òpage upÓ and Òpage downÓ regions disappear, and the scroll bar cannot be used by the operator.
The two constants that can be used for this purpose are enabled and disabled. All scroll bars automatically become
hidden (only the outline is shown) when the window containing them becomes inactive. When the window is
activated, the scroll bars will assume their normal state as set by the NewScrollBar routine, and subsequent calls to the
EnableScrollBar routine. Below is an example:

EnabledFlag = enabled EnabledFlag = disabled

Minimum declares the scroll barÕs minimum limit.

Value defines the scroll barÕs current value. The current value must be greater than or equal to the minimum setting,
and less than or equal to the maximum setting.

Maximum declares the scroll barÕs maximum limit. The maximum limit must be greater than the minimum limit.

Appearance and Behavior Specification

Spec specifies the scroll barÕs appearance and behavior characteristics. The value for this 4-byte long integer can be
specified by adding a set of constants to obtain the desired result. The constants defining the available options are as
follows:

Choose only one of the following procIDsÉ
scrollBarProc Standard Apple scroll bar.

scrlStandard Same as the standard Apple scroll bar procID.

(your own procID) You can use your own scroll bar or slider procID and Tools Plus will make
it work. When using custom control definitions (CDEFs), realize that the
procID specifies both the controlÕs resource number as well as optional
variants (low 4 bits) that are ignored by Tools Plus but may be used by the
CDEF. The procID is calculated as follows: CDEF resource ID x 16 + the
optional variants (0-15).

Optionally choose any of the following optionsÉ
scrlColorScrollBar Adopt the color settings as defined by the ScrollBarColors routine. By

default, scroll bars have a black frame and a background that matches their
parent windowÕs backdrop color (which is white by default). Note that some
controls ignore color settings, particularly those in the Appearance
Manager.

scrlLiveScroll Scroll an object in real time as the user moves a scroll barÕs thumb. This is
not a Macintosh user interface standard. By default, an outline tracks the
mouse as the user drags the scroll barÕs thumb, then when the user releases
the mouse button, the scroll barÕs thumb snaps to the new position and
generates an event. When using this option, the thumb tracks the mouse
position and generates a doScrollBar event when the thumb moves to a new
position.

scrlValueLimit When setting the scroll barÕs value, it is always limited by the scroll barÕs
minimum and maximum limit. By default, if you set a value that is lower
than the minimum limit or higher than the maximum limit, Tools Plus
adjusts the minimum or maximum limit to accommodate the new value.
With this option, if a scroll barÕs minimum limit is 0 and maximum is 100
and you specify a new value of 110 it will be adjusted to 100 to prevent

Tools Plus

216

exceeding the scroll barÕs maximum limit.

scrlNoObscure Display the scroll bar as disabled when it is on an inactive window. This is
the preferred behavior for custom CDEFs. By default, a scroll bar is drawn
as an outlined frame when it is on an inactive window.

scrlAutoMoveSize Automatically move and/or resize the scroll bar when the windowÕs size
changes. The AutoMoveSize routine lets you specify which sides are
altered. You can use the AutoMoveSizeScrollBar routine as an alternative to
setting this option.

scrlHidden Create a hidden scroll bar. This kind of scroll bar is accessible to your
application but not to the user.

Custom Control Definitions (CDEFs)
Your application can use custom control definitions (CDEFs) on a per-scroll bar basis. If your CDEF is written to
AppleÕs specifications, Tools Plus will make your custom scroll bar work like a regular scroll bar or slider. When
using a custom CDEF, you will need to include a special control definition (CDEF resource) in your applicationÕs
resource fork. Add the required CDEF resource to your projectÕs resource file before you compile your application.
Tools Plus includes custom CDEFs in the ÒOptional ResourcesÓ folder.

You can write your own CDEFs or you can use third-party CDEFs. As per Macintosh standards, a controlÕs procID is
comprised from the following formula: CDEF ID x 16 + variant code. Your CDEFÕs ID can be in the range of 2 to
2047. Make sure your CDEF resource IDs do not conflict with System resources (i.e., the standard Apple button CDEF
ID is 0).

- Note: When using third party CDEFs, make sure you carefully read the documentation that accompanies the CDEF.
If your scroll bar is irregularly shaped, like most sliders, and it is on a manually drawn background (other than
a windowÕs backdrop), that background must be refreshed in response to a doPreRefresh event. Tools Plus
removes your scroll barÕs region from the update region when it generates the doRefresh event, thereby
protecting it from being overwritten.

- Note: Tools Plus makes no attempt to control the placement of scroll bars or to protect them once they have been
created. It is your responsibility to ensure that scroll bars are of sufficient length to contain the up/down arrows
and the thumb, and that their placement within the window is reasonable and does not conflict with other
objects. Furthermore, you should not allow your applicationÕs text and drawing processes to interfere with
scroll bars. Windows with a Òsize boxÓ should not allow scroll bars to be obscured or hidden by making the
window too small.

Also see: SetAutoEmbed (in the Buttons chapter), NewScrollBarRect, NewDialogScrollBar, ScrollBarColors and
ReplaceControlProcID.

CONST {Scroll bar appearance and behavior: }
enabled = true; {Enable the scroll bar }
disabled = false; {Disable the scroll bar }

{Automatic placement on window's edgeÉ }
scrlLeftEdge =-32768; { left edge of document }
scrlTopEdge =-32768; { top edge of document }
scrlRightEdge = 32767; { right edge of document }
scrlBottomEdge = 32767; { bottom edge of document }
scrlStandard = $00000010; {Standard scroll bar (default) }
scrlLiveScroll = $00010000; {Live scrolling when dragging thumb }
scrlValueLimit = $00020000; {Value is limited by minimum/maximum limit }
scrlNoObscure = $00040000; {Don't obscure scroll bar on inactive window }
scrlColorScrollBar = $00080000; {Use color settings for this scroll bar }

scrlHidden = $00100000; {Create a hidden scroll bar }
scrlAutoMoveSize = $00200000; {Auto-resize as window's size changes }

..

8 Scroll Bars

WaterÕs Edge Software 217

NewScrollBarRect
Create a new scroll bar.

C pascal void NewScrollBarRect (short ScrollBar, const Rect *Bounds, long Spec,
Boolean EnabledFlag, short minimum, short value, short maximum);

Pascal procedure NewScrollBarRect (ScrollBar: INTEGER; Bounds: rect; Spec: LONGINT;
EnabledFlag: BOOLEAN; minimum, value, maximum: INTEGER);

NewScrollBarRect is identical to the NewScrollBar routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

..

NewDialogScrollBar
Create a new scroll bar in a dialog using a dialog itemÕs co-ordinates.

C pascal void NewDialogScrollBar (short ScrollBar, long Spec,
Boolean EnabledFlag, short minimum, short value, short maximum);

Pascal procedure NewDialogScrollBar (ScrollBar: INTEGER; Spec: LONGINT;
EnabledFlag: BOOLEAN; minimum, value, maximum: INTEGER);

NewDialogScrollBar is identical to the NewScrollBar routine, except that the scroll bar is created in a dialog (a
window opened with the LoadDialog routine, or one that had a dialog list attached with the LoadDialogList routine).
The scroll barÕs co-ordinates are obtained from the dialog item whose number matches the scroll bar number.

..

LoadScrollBar
Create a new scroll bar using a ÔCNTLÕ resource.

C pascal void LoadScrollBar (short ScrollBar, short ResID);

Pascal procedure LoadScrollBar (ScrollBar, ResID: INTEGER);

LoadScrollBar creates a scroll bar by calling the NewScrollBar routine and supplying it with values from a ÔCNTLÕ
resource, commonly called a control template. This is a good way to create a scroll bar or scroll bar-like control that
requires a color table with more elements than those supported by the SetScrollBarColors routines. Note that some
controls ignore color settings, particularly those in the Appearance Manager.

ScrollBar specifies the scroll bar number (from 1 to 511) that is created in the current window. Once a scroll bar is
created, it is referenced by this scroll bar number. If a scroll bar has been previously created in the current window
using the same number, it is replaced with a new scroll bar as specified by the parameters in the ÔCNTLÕ resource. If
the current window doesnÕt belong to your application, or if no windows are open, LoadScrollBar does nothing.

ResID is the ÔCNTLÕ resource ID number that is used to create the scroll bar. If the scroll bar has a ÔcctbÕ color table
resource, it must use the same ID number. Any resource ID number can be used, but numbers 128 or higher are safest
as stated in Inside Macintosh.

When creating scroll bars using ÔCNTLÕ resources, please note the following:
¥ Flag your ÔCNTLÕ and ÔcctbÕ resources as purgeable to save memory. Tools Plus makes a copy of their data.
¥ The RefCon field in the ÔCNTLÕ resource is ignored since Tools Plus uses the controlÕs RefCon field to store its

own data.

Also see: NewScrollBar and LoadSpecScrollBar.

Tools Plus

218

LoadSpecScrollBar
Create a new scroll bar using a ÔCNTLÕ resource.

C pascal void LoadSpecScrollBar (short ScrollBar, long Spec, short ResID);

Pascal procedure LoadSpecScrollBar (ScrollBar: INTEGER; Spec: LONGINT;
ResID: INTEGER);

LoadSpecScrollBar is identical to the LoadScrollBar routine, except that it requires the additional Spec parameter to
give you control over all the appearance and behavior options offered by Tools Plus. See the NewScrollBar routine for
details about the Spec parameter.

..

EmbedScrollBarInButton
Embed a scroll bar into a button or into the windowÕs root control (Appearance Manager only).

C pascal void EmbedScrollBarInButton (short ScrollBar, short ContainerButton);

Pascal procedure EmbedScrollBarInButton (ScrollBar, ContainerButton: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedScrollBarInButton lets you
manually embed a scroll bar into a button, or into the windowÕs root control. Note that the term ÒbuttonÓ does not
literally mean a button control. It means any control that is implemented as a button in Tools Plus. The most likely
candidate is a Group Box control. The same applies to the term Òscroll bar.Ó If the Appearance Manager is not
available, EmbedScrollBarInButton does nothing.

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
EmbedScrollBarInButton does nothing.

ContainerButton specifies the button number (from 1 to 511) into which ScrollBar is embedded. This control must
exist in the current window, and it must be a ÒcontainerÓ type control such as the Appearance ManagerÕs Group Box.
The scroll bar must fit entirely within the container control or EmbedScrollBarInButton does nothing. If a value of 0 is
provided for a container button, ScrollBar is embedded into the windowÕs root control.

Also see: EmbedScrollBarInScrollBar and SetAutoEmbed.

..

EmbedScrollBarInScrollBar
Embed a scroll bar into a scroll bar or into the windowÕs root control (Appearance Manager only).

C pascal void EmbedScrollBarInScrollBar (short ScrollBar,
short ContainerScrollBar);

Pascal procedure EmbedScrollBarInScrollBar (ScrollBar, ContainerScrollBar: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedScrollBarInScrollBar lets you
manually embed a scroll bar into a scroll bar, or into the windowÕs root control. Note that the term Òscroll barÓ does
not literally mean a scroll bar control. It means any control that is implemented as a scroll bar in Tools Plus. If the
Appearance Manager is not available, EmbedScrollBarInScrollBar does nothing.

8 Scroll Bars

WaterÕs Edge Software 219

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
EmbedScrollBarInScrollBar does nothing.

ContainerScrollBar specifies the scroll bar number (from 1 to 511) into which ScrollBar is embedded. This control
must exist in the current window, and it must be a ÒcontainerÓ type control. The scroll bar must fit entirely within the
container control or EmbedScrollBarInScrollBar does nothing. If a value of 0 is provided for a container scroll bar,
ScrollBar is embedded into the windowÕs root control.

Also see: EmbedScrollBarInButton and SetAutoEmbed.

..

GetFreeScrollBarNum
Get the first unused scroll bar number.

C pascal short GetFreeScrollBarNum (void);

Pascal function GetFreeScrollBarNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own scroll bar
number, GetFreeScrollBarNum returns the first unused (free) scroll bar number. Using this routine, you can assign an
unused scroll bar number to a variable, then use that variable throughout your application without concern for the true
scroll bar number.

GetFreeScrollBarNum returns the first free scroll bar number on the current window. If the current window doesnÕt
belong to your application, if no windows are open, or if the maximum number of scroll bars has already been created
on the current window (no new ones can be created), GetFreeScrollBarNum returns a value of zero (0).

..

ScrollBarColors
Set the colors for new scroll bars as they are created.

C pascal void ScrollBarColors (const RGBColor *Frame, const RGBColor *Body,
const RGBColor *Text, const RGBColor *Thumb,
const RGBColor *Back);

Pascal procedure ScrollBarColors (Frame, Body, Text, Thumb, Back: RGBColor);

When new scroll bars are created, by default they have a black outline and they adopt their parent windowÕs backdrop
as a background color. When you use the ScrollBarColors routine, new scroll bars adopt the colors specified in this
routine (providing that the scroll bar is created with the scrlColorScrollBar option in the scroll barÕs spec). This is the
most efficient way to color multiple scroll bars using the same colors. Note that some controls ignore color settings,
particularly those in the Appearance Manager.

Frame is the scroll barÕs frame color.

Body is the scroll barÕs body color.

Text is the scroll barÕs text color. AppleÕs standard scroll bars as well as most other scroll bars do not have text.
Custom CDEFs like sliders may have text as a part of a numeric scale.

Thumb is the scroll barÕs thumb color. The thumb is typically outlined using the frame color.

Tools Plus

220

Back is the scroll barÕs background color. The standard Apple scroll bar uses this color only when the scroll bar is on
an inactive window and is displayed as and empty rectangle. Tools Plus overrides the windowÕs backdrop color with
this setting so that custom CDEFs are drawn using this color as a background.

Also see: NoScrollBarColors and SetScrollBarColors.

..

NoScrollBarColors
Reset the colors for new scroll bars to the default.

C pascal void NoScrollBarColors (void);

Pascal procedure NoScrollBarColors;

When new scroll bars are created, by default they have a black outline and they adopt their parent windowÕs backdrop
as a background color. When you use the ScrollBarColors routine, new scroll bars adopt the colors specified by that
routine (providing that the scroll bar is created with the scrlColorScrollBar option in the scroll barÕs spec).

This routine resets the settings of the ScrollBarColors routine to the default values (black frame, white body and
background). It is seldom required since you can create default scroll bars by simply excluding the scrlColorScrollBar
constant from the scroll barÕs spec parameter.

Also see: ScrollBarColors.

..

DeleteScrollBar
Delete a scroll bar.

C pascal void DeleteScrollBar (short ScrollBar);

Pascal procedure DeleteScrollBar (ScrollBar: INTEGER);

ScrollBar specifies the scroll bar number (from 1 to 511) that is deleted from the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the scroll bar does not exist in the current
window, DeleteScrollBar does nothing. Use KillScrollBar if you want to delete the scroll bar without removing its
image from the window.

..

KillScrollBar
Delete a scroll bar without affecting its image on the window.

C pascal void KillScrollBar (short ScrollBar);

Pascal procedure KillScrollBar (ScrollBar: INTEGER);

KillScrollBar is identical to DeleteScrollBar except that it does not remove the scroll barÕs image from the window.
This routine is useful for scrolling scroll bars in an area within a window (i.e., not the entire window). ScrollRect is
used to scroll the images in the affected area. OffsetScrollBar repositions the scroll barÕs co-ordinates without affecting
its image (since ScrollRect has already moved it). KillScrollBar then deletes the scroll bars that are scrolled out of
view without affecting their image (ScrollRect has already scrolled them out of view).

..

8 Scroll Bars

WaterÕs Edge Software 221

ScrollBarDisplay
Hide or show a scroll bar.

C pascal void ScrollBarDisplay (short ScrollBar, Boolean Show);

Pascal procedure ScrollBarDisplay (ScrollBar: INTEGER; Show: BOOLEAN);

ScrollBarDisplay hides or shows a scroll bar on the current window. The result is seen immediately. Use discretion
with this routine since scroll bars should be enabled and disabled to indicate if they are accessible by the user.

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
ScrollBarDisplay does nothing.

Show indicates if the scroll bar is being hidden or displayed. The two constants that can be used for this flag are on and
off.

..

ScrollBarIsVisible
Determine if a scroll bar is visible.

C pascal Boolean ScrollBarIsVisible (short ScrollBar);

Pascal function ScrollBarIsVisible (ScrollBar: INTEGER): BOOLEAN;

ScrollBarIsVisible reports if a scroll bar (or a control that is implemented as a scroll bar) is visible on the current
window, or if it is hidden.

ScrollBar specifies the scroll bar number (from 1 to 511) that is queried in the current window.

This routineÕs value returns true if the scroll bar is visible, and false if the scroll bar is hidden. If the current window
doesnÕt belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
ScrollBarIsVisible returns false. This routine takes control embedding into account, so it will return false if the target
scroll bar is embedded and its container control is hidden.

..

ObscureScrollBar
Hide a scroll bar without removing its image from the window.

C pascal void ObscureScrollBar (short ScrollBar);

Pascal procedure ObscureScrollBar (ScrollBar: INTEGER);

ObscureScrollBar hides a scroll bar on the current window without removing its image from the window. This routine
is useful for scrolling scroll bars (moving their position) in an area within a window (i.e., not the entire window).
ScrollRect is used to scroll the images in the affected area. OffsetScrollBar repositions the scroll barÕs co-ordinates
without affecting its image (since ScrollRect has already moved it). ObscureScrollBar then hides the scroll bars that
are scrolled out of view without affecting their image (ScrollRect has already scrolled them out of view).

ScrollBar specifies the scroll bar number (from 1 to 511) that is hidden in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
ObscureScrollBar does nothing.

..

Tools Plus

222

ActivateScrollBar
Activate a scroll bar to give it the keyboard focus.

C pascal void ActivateScrollBar (short ScrollBar, short PartCode);

Pascal procedure ActivateScrollBar (ScrollBar, PartCode: INTEGER);

ScrollBar specifies the scroll bar number (from 1 to 511) that acquires the keyboard focus in the current window.
ActivateScrollBar does nothing under any of these conditions: the current window doesnÕt belong to your application,
no windows are open, the scroll bar does not exist in the current window, the scroll bar is disabled or hidden, the scroll
bar cannot accept the keyboard focus, or the Appearance Manager is not available to your application.

PartCode is the controlÕs part number that is being activated. The part number is available either in the Appearance
Manager documentation, or from the author of the custom control you are using.

Activating a scroll bar allows the user to interact with the scroll bar by typing on the keyboard. On an active window,
the scroll bar acquires the keyboard focus making it the item that automatically processes keystrokes. Visually, this is
indicated by having the text highlighted or with a flashing caret. Additionally, the scroll bar is encompassed with a
highlighting keyboard focus band to indicate that it has the focus. Using ActivateScrollBar in an active window
removes the keyboard focus from any other object that may have the focus within the same window or any other active
window such as a tool bar or floating palette. This action may deactivate an active editing field.

If the scroll bar being activated is in an active window that allows access to pull-down menus, the Edit menuÕs ÒUndoÓ
item is changed to ÒCanÕt UndoÓ and is disabled. The ÒCutÓ, ÒCopyÓ, ÒPasteÓ, ÒClearÓ and ÒSelect AllÓ items are also
disabled.

Your application can activate virtually any editing field or Appearance Manager control that accepts the keyboard
focus. This flexibility can lead to a confusing user interface by allowing the keyboard focus to jump between active
windows. A good rule to observe is to activate a single item only on a standard window (not a tool bar or a floating
palette) when the window first opens. This sets up the default keyboard focus item for that window. At all other times,
activate a scroll bar only in response to a userÕs actions.

Also see: HaveTabInFocus, TabToFocus, the doClickToFocus event, and ClickToFocus for other activating services.

..

GetScrollBarRect
Get a scroll barÕs co-ordinates.

C pascal void GetScrollBarRect (short ScrollBar, Rect *Bounds);

Pascal procedure GetScrollBarRect (ScrollBar: INTEGER; var Bounds: RECT);

ScrollBar specifies the scroll bar number (from 1 to 511) that is queried in the current window.

Bounds returns the scroll barÕs bounding rectangle specified in the windowÕs local co-ordinates. These co-ordinates
match those used to create the scroll bar. If the current window doesnÕt belong to your application, or if no windows
are open, or if the scroll bar does not exist in the current window, Bounds returns with all co-ordinates set to zero (0).

..

8 Scroll Bars

WaterÕs Edge Software 223

EnableScrollBar
Enable or disable a scroll bar.

C pascal void EnableScrollBar (short ScrollBar, Boolean EnabledFlag);

Pascal procedure EnableScrollBar (ScrollBar: INTEGER; EnabledFlag: BOOLEAN);

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
EnableScrollBar does nothing.

EnabledFlag specifies if the scroll bar is enabled or disabled when the window is active. When a scroll bar is disabled,
the thumb and toned Òpage upÓ and Òpage downÓ regions disappear and the scroll bar cannot be selected by the user.
The two constants that can be used for this purpose are enabled and disabled.

All scroll bars automatically become disabled if the window containing them becomes inactive. When the window is
activated, the scroll bars assume their normal state as set by the EnableScrollBar routine.

CONST {Scroll bar state }
enabled = true; {enable the scroll bar }
disabled = false; {disable the scroll bar }

..

ScrollBarIsEnabled
Determine if a scroll bar is enabled or disabled.

C pascal Boolean ScrollBarIsEnabled (short ScrollBar);

Pascal function ScrollBarIsEnabled (ScrollBar: INTEGER): BOOLEAN;

ScrollBar specifies the scroll bar number (from 1 to 511) that is queried in the current window.

The routineÕs value returns true if the scroll bar is enabled, and false if the scroll bar is disabled. If the current window
doesnÕt belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
ScrollBarIsEnabled returns false. ScrollBarIsEnabled returns the scroll barÕs enabled state as it is currently displayed,
so if the scroll barÕs window is inactive and has temporarily disabled the scroll bar, ScrollBarIsEnabled returns false.

..

GetScrollBarMin
Get a scroll barÕs minimum value limit.

C pascal short GetScrollBarMin (short ScrollBar);

Pascal function GetScrollBarMin (ScrollBar: INTEGER): INTEGER;

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window.

GetScrollBarMin returns a scroll barÕs minimum value limit. If the current window doesnÕt belong to your application,
or if no windows are open, or if the scroll bar does not exist in the current window, GetScrollBarMin will return a
value of zero (0).

..

Tools Plus

224

SetScrollBarMin
Set a scroll barÕs minimum value limit.

C pascal void SetScrollBarMin (short ScrollBar, short minimum);

Pascal procedure SetScrollBarMin (ScrollBar, minimum: INTEGER);

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
SetScrollBarMin does nothing.

Minimum specifies the scroll barÕs new minimum value limit. The scroll barÕs current value and maximum limit are
automatically adjusted (if necessary) to be consistent with the new minimum limit.

..

GetScrollBarMax
Get a scroll barÕs maximum value limit.

C pascal short GetScrollBarMax (short ScrollBar);

Pascal function GetScrollBarMax (ScrollBar: INTEGER): INTEGER;

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window.

GetScrollBarMax returns a scroll barÕs maximum value limit. If the current window doesnÕt belong to your
application, or if no windows are open, or if the scroll bar does not exist in the current window, GetScrollBarMax will
return a value of zero (0).

..

SetScrollBarMax
Set a scroll barÕs maximum value limit.

C pascal void SetScrollBarMax (short ScrollBar, short maximum);

Pascal procedure SetScrollBarMax (ScrollBar, maximum: INTEGER);

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
SetScrollBarMax does nothing.

Maximum specifies the scroll barÕs new maximum value limit. The scroll barÕs current value and minimum limit are
automatically adjusted (if necessary) to be consistent with the new maximum limit.

..

GetScrollBarVal
Get a scroll barÕs current value.

C pascal short GetScrollBarVal (short ScrollBar);

Pascal function GetScrollBarVal (ScrollBar: INTEGER): INTEGER;

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window.

8 Scroll Bars

WaterÕs Edge Software 225

GetScrollBarVal returns a scroll barÕs current value. If the current window doesnÕt belong to your application, or if no
windows are open, or if the scroll bar does not exist in the current window, GetScrollBarVal will return a value of zero
(0).

..

SetScrollBarVal
Set a scroll barÕs current value.

C pascal void SetScrollBarVal (short ScrollBar, short value);

Pascal procedure SetScrollBarVal (ScrollBar, Value: INTEGER);

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
SetScrollBarVal does nothing.

Value specifies the scroll barÕs new current value. The scroll barÕs minimum and maximum limits are automatically
adjusted (if necessary) to be consistent with the new current value.

..

MoveScrollBar
Move a scroll bar to a new location on the window.

C pascal void MoveScrollBar (short ScrollBar, short toHoriz, short toVert);

Pascal procedure MoveScrollBar (ScrollBar, toHoriz, toVert: INTEGER);

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if ScrollBar specifies a scroll bar that does not exist,
MoveScrollBar does nothing. The change is seen immediately providing that the scroll bar is not hidden. The scroll
barÕs width and height are not changed.

ToHoriz is the new horizontal co-ordinate at which the left side of the scroll bar appears.

ToVert is the new vertical co-ordinate at which the top of the scroll bar appears.

Also see: SizeScrollBar and MoveSizeScrollBar.

..

OffsetScrollBar
Change a scroll barÕs co-ordinates without affecting its image on the window.

C pascal void OffsetScrollBar (short ScrollBar,
short distHoriz, short distVert);

Pascal procedure OffsetScrollBar (ScrollBar, distHoriz, distVert: INTEGER);

When you scroll an area that contains scroll bars, first use ScrollRect to scroll the pixel image containing the affected
objects in the window. OffsetScrollBar is used to offset a scroll barÕs co-ordinates without altering its image (since
ScrollRect has already done so). At this point, the scroll barÕs co-ordinates match the scrolled image of the scroll bar.
ObscureScrollBar or KillScrollBar can be used to hide or delete scroll bars that are scrolled out of view.

Tools Plus

226

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if ScrollBar specifies a scroll bar that does not exist,
OffsetScrollBar does nothing.

DistHoriz and distVert specify the horizontal and vertical amount by which the scroll barÕs co-ordinates are offset.
Positive numbers are right and down. The scroll barÕs co-ordinates are updated but no change is seen.

..

SizeScrollBar
Change a scroll barÕs size.

C pascal void SizeScrollBar (short ScrollBar, short width, short height);

Pascal procedure SizeScrollBar (ScrollBar, width, height: INTEGER);

SizeScrollBar changes a scroll barÕs width and/or height without altering the scroll barÕs top or left co-ordinate. The
change is seen immediately providing that the scroll bar is not hidden.

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if ScrollBar specifies a scroll bar that does not exist,
SizeScrollBar does nothing.

Width and height specify the scroll barÕs new width and height in pixels. If either parameter is less than 1,
SizeScrollBar does nothing.

Also see: MoveScrollBar and MoveSizeScrollBar.

..

MoveSizeScrollBar
Change a scroll barÕs co-ordinates.

C pascal void MoveSizeScrollBar (short ScrollBar,
short left, short top, short right, short bottom);

Pascal procedure MoveSizeScrollBar (ScrollBar, left, top, right, bottom: INTEGER);

MoveSizeScrollBar changes any of the scroll barÕs four co-ordinates. The change is seen immediately providing that
the scroll bar is not hidden. This routine combines the functions of MoveScrollBar and SizeScrollBar.

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if ScrollBar specifies a scroll bar that does not exist,
MoveSizeScrollBar does nothing.

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the scroll barÕs size and location in
the window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-
hand corner (right,bottom). If these parameters specify an empty rectangle, MoveSizeScrollBar does nothing.

Also see: GetScrollBarRect.

..

8 Scroll Bars

WaterÕs Edge Software 227

MoveSizeScrollBarRect
Change a scroll barÕs co-ordinates.

C pascal void MoveSizeScrollBarRect (short ScrollBar, const Rect *Bounds);

Pascal procedure MoveSizeScrollBarRect (ScrollBar: INTEGER; Bounds: RECT);

MoveSizeScrollBarRect is identical to the MoveSizeScrollBar routine, except that it accepts the Bounds rectangle in
place of the individual left, top, right and bottom co-ordinates.

..

AutoMoveSizeScrollBar
Specify how a scroll bar is automatically moved and/or resized as its windowÕs size is changed.

C pascal void AutoMoveSizeScrollBar (short ScrollBar,
Boolean left, Boolean top, Boolean right, Boolean bottom);

Pascal procedure AutoMoveSizeScrollBar (ScrollBar: INTEGER;
left, top, right, bottom: BOOLEAN);

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if ScrollBar specifies a scroll bar that does not exist,
AutoMoveSizeScrollBar does nothing.

The left, top, right and bottom parameters specify if that side of the scroll bar is automatically adjusted when the
windowÕs size changes. These setting are applied to the scroll bar and are used the next time the windowÕs size
changes:

left Does the scroll barÕs left side track the windowÕs right edge?
top Does the scroll barÕs top track the windowÕs bottom edge?
right Does the scroll barÕs right side track the windowÕs right edge?
bottom Does the scroll barÕs bottom track the windowÕs bottom edge?

You can think of each false value as locking that side of the scroll bar to a fixed co-ordinate regardless of the
windowÕs size (this is the default). Each true value establishes a fixed distance between that side of the scroll bar and
the windowÕs edge. For example, setting only left and right to true makes the scroll bar move horizontally as the
window widens and narrows, but the scroll bar does not move vertically when the windowÕs height changes.

If you are setting these values identically for a group of objects, use AutoMoveSize to define the settings then add the
appropriate xAutoMoveSize constant (such as scrlAutoMoveSize for scroll bars) to the objectsÕ spec as they are
created. The objects will adopt the settings specified by the AutoMoveSize routine.

+ Warning: Make sure that you resize objects in a way that makes sense. DonÕt allow a window to shrink down to a
size where objects become unusable or disappear altogether.

..

Tools Plus

228

SetScrollBarFontSettings
Set a scroll barÕs font, size and style settings.

C pascal void SetScrollBarFontSettings (short ScrollBar,
short theFont, short theSize, Style theStyle);

Pascal procedure SetScrollBarFontSettings (ScrollBar: INTEGER;
theFont: INTEGER; theSize: INTEGER; theStyle: Style);

ScrollBar specifies the scroll bar number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if the scroll bar does not exist, SetScrollBarFontSettings
does nothing. Otherwise, the change is seen immediately.

TheFont specifies the scroll barÕs new font. The default is Chicago, which is represented by the systemFont constant.

TheSize specifies the fontÕs size. The default is 0, which represents the default font size used by the system font, or
12pt in this case.

TheStyle specifies the scroll barÕs new style. Special character constants defined by the Font Manager are bold, italic,
underline and shadow. C programmers use the Font ManagerÕs constants to specify a composite style, such as
SetScrollBarFontSettings(1,Êgeneva,Ê9,ÊboldÊ+Êoutline) for bold and outlined, or for plain text,
SetScrollBarFontSettings(1,Êgeneva,Ê9,Ê0). Pascal programmers use the Font ManagerÕs constants to specify a style set,
such as SetScrollBarFontSettings(1,Êgeneva,Ê9,Ê[bold,Êoutline]) for bold and outlined, or for plain text,
SetScrollBarFontSettings(1,Êgeneva,Ê9,Ê[Ê]).

A scroll barÕs font settings are set when a scroll bar is created, so this routine is not normally used by many
applications.

- Note: This routine works on Appearance Manager savvy controls (ones that were written to take advantage of the
Appearance ManagerÕs extended features) that accept the Òset fontÓ command. This routine also works on
classic controls (those that were not written to take advantage of the Appearance Manager, including AppleÕs
controls in System 6 and System 7, and SuperCDEFs) as well as third party controls that observe two rules:

1. The high bit of the variant code (8) indicates that the control uses the windowÕs font.
2. All parameters that are used to create the control, specifically the controlÕs rectangle, title, visible state,

initial value, minimum limit, maximum limit, and reference constant, all have no special significance.
You may experience issues with third-party CDEFs that place special significance on the initial settings that
are used to create the control. For example, you may experience issues if you use a third-party slider CDEF
that initially uses the Òcurrent valueÓ setting to determine which pictures it should display for the sliderÕs parts,
then it later changes the controlÕs Òcurrent valueÓ setting to reflect the sliderÕs real value. Your only solutions
are: (1) create the control with the high bit of the variant code set on (+8 or bUseWFont), or (2) use another
CDEF that does not place special significance on initial settings when the control is created, or (3) do not use
the SetScrollBarFontSettings routine on that control.

..

GetScrollBarFontSettings
Get a scroll barÕs font, size and style settings.

C pascal void GetScrollBarFontSettings (short ScrollBar,
short *theFont, short *theSize, Style *theStyle);

Pascal procedure GetScrollBarFontSettings (ScrollBar: INTEGER;
var theFont: INTEGER; var theSize: INTEGER; var theStyle: Style);

ScrollBar specifies the scroll bar number (from 1 to 511) in the current window whose font settings are being
retrieved. If the current window doesnÕt belong to your application, if no windows are open, or if ScrollBar specifies a
scroll bar that does not exist, GetScrollBarFontSettings returns default values.

8 Scroll Bars

WaterÕs Edge Software 229

TheFont is the scroll barÕs font number. The default is 0 which is represented by the systemFont constant.

TheSize is the fontÕs size. The default is 0, which represents the default font size used by the system font, or 12pt in
this case.

TheStyle is the fieldÕs font style. The default is plain text, which is represented by 0 in C and [] in Pascal.

..

SetScrollBarColors
Set a scroll barÕs colors.

C pascal void SetScrollBarColors (short ScrollBar, const RGBColor *Frame,
const RGBColor *Body, const RGBColor *Text, const RGBColor *Thumb,
const RGBColor *Back);

Pascal procedure SetScrollBarColors (ScrollBar: INTEGER;
Frame, Body, Text, Thumb, Back: RGBColor);

ScrollBar specifies the scroll bar number (from 1 to 511) in the current window whose colors are being set. If the
current window doesnÕt belong to your application, or if no windows are open, SetScrollBarColors does nothing. Also,
if ScrollBar specifies a scroll bar that does not exist, SetScrollBarColors does nothing. The change is seen
immediately, regardless if the scroll bar was originally created with the scrlColorScrollBar option or not. Note that
some controls ignore color settings, particularly those in the Appearance Manager.

Frame is the scroll barÕs frame color.

Body is the scroll barÕs body color.

Text is the scroll barÕs text color. AppleÕs standard scroll bars as well as most other scroll bars do not have text.
Custom CDEFs like sliders may have text as a part of a numeric scale.

Thumb is the scroll barÕs thumb color. The thumb is typically outlined using the frame color.

Back is the scroll barÕs background color. The standard Apple scroll bar uses this color only when the scroll bar is on
an inactive window and is displayed as and empty rectangle. Tools Plus overrides the windowÕs backdrop color with
this setting so that custom CDEFs are drawn using this color as a background.

Also see: ScrollBarColors and GetScrollBarColors.

..

GetScrollBarColors
Get a scroll barÕs colors.

C pascal void GetScrollBarColors (short ScrollBar, RGBColor *Frame,
RGBColor *Body, RGBColor *Text, RGBColor *Thumb, RGBColor *Back);

Pascal procedure GetScrollBarColors (ScrollBar: INTEGER; var Frame: RGBColor;
var Body: RGBColor; var Text: RGBColor; var Thumb: RGBColor;
var Back: RGBColor);

ScrollBar specifies the scroll bar number (from 1 to 511) in the current window whose colors are being retrieved. If the
current window doesnÕt belong to your application, or if no windows are open, or if ScrollBar specifies a scroll bar
that does not exist, GetScrollBarColors returns default color values.

Frame is the scroll barÕs frame color.

Body is the scroll barÕs body color.

Text is the scroll barÕs text color. AppleÕs standard scroll bars as well as most other scroll bars do not have text.

Tools Plus

230

Custom CDEFs like sliders may have text as a part of a numeric scale.

Thumb is the scroll barÕs thumb color. The thumb is typically outlined using the frame color.

Back is the scroll barÕs background color. The standard Apple scroll bar uses this color only when the scroll bar is on
an inactive window and is displayed as and empty rectangle. Tools Plus overrides the windowÕs backdrop color with
this setting so that custom CDEFs are drawn using this color as a background.

Also see: ScrollBarColors and SetScrollBarColors.

..

ScrollBarLineTime
Set the line scrolling speed for new scroll bars.

C pascal void ScrollBarLineTime (short Ticks);

Pascal procedure ScrollBarLineTime (Ticks: INTEGER);

Subsequently created scroll bars adopt the specified speed when their up arrow or down arrow is used. Use this routine
when you want a number of scroll bars (or all of them) to scroll at the same rate.

Ticks specifies the number of ticks (1/60 of a second) that elapse between doScrollBar events when the user clicks and
holds the up arrow or down arrow. A value of zero (0) will generate doScrollBar events as rapidly as your application
can handle them (no throttling), whereas the maximum value of 60 causes the scroll bar to wait one second between
each doScrollBar event.

Also see: ScrollBarPageTime, SetScrollBarLineTime and SetScrollBarPageTime.

..

ScrollBarPageTime
Set the page scrolling speed for new scroll bars.

C pascal void ScrollBarPageTime (short Ticks);

Pascal procedure ScrollBarPageTime (Ticks: INTEGER);

Subsequently created scroll bars adopt the specified speed when their page up or page down region is used. Use this
routine when you want a number of scroll bars (or all of them) to scroll at the same rate.

Ticks specifies the number of ticks (1/60 of a second) that elapse between doScrollBar events when the user clicks and
holds the page up or page down region. A value of zero (0) will generate doScrollBar events as rapidly as your
application can handle them (no throttling), whereas the maximum value of 60 causes the scroll bar to wait one second
between each doScrollBar event.

Also see: ScrollBarLineTime, SetScrollBarLineTime and SetScrollBarPageTime.

..

8 Scroll Bars

WaterÕs Edge Software 231

SetScrollBarLineTime
Set a scroll barÕs line scrolling speed.

C pascal void SetScrollBarLineTime (short ScrollBar, short Ticks);

Pascal procedure SetScrollBarLineTime (ScrollBar: INTEGER; Ticks: INTEGER);

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
SetScrollBarLineTime does nothing.

Ticks specifies the number of ticks (1/60 of a second) that elapse between doScrollBar events when the user clicks and
holds the up arrow or down arrow. A value of zero (0) will generate doScrollBar events as rapidly as your application
can handle them (no throttling), whereas the maximum value of 60 causes the scroll bar to wait one second between
each doScrollBar event.

Also see: ScrollBarLineTime, ScrollBarPageTime and SetScrollBarPageTime.

..

SetScrollBarPageTime
Set a scroll barÕs page scrolling speed.

C pascal void SetScrollBarPageTime (short ScrollBar, short Ticks);

Pascal procedure SetScrollBarPageTime (ScrollBar: INTEGER; Ticks: INTEGER);

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
SetScrollBarPageTime does nothing.

Ticks specifies the number of ticks (1/60 of a second) that elapse between doScrollBar events when the user clicks and
holds the page up or page down region. A value of zero (0) will generate doScrollBar events as rapidly as your
application can handle them (no throttling), whereas the maximum value of 60 causes the scroll bar to wait one second
between each doScrollBar event.

Also see: ScrollBarLineTime, ScrollBarPageTime and SetScrollBarLineTime.

..

SetScrollBarAction
Set a scroll barÕs action routine.

C pascal void SetScrollBarAction (short ScrollBar,
ScrollBarActionUPP ActionProc);

Pascal procedure SetScrollBarAction (ScrollBar: INTEGER;
ActionProc: ScrollBarActionUPP);

SetScrollBarAction sets a routine that is called repeatedly when a scroll bar is tracked. This occurs as long as the user
holds the mouse button down in the scroll bar, regardless if the cursor wanders off the scroll bar. Each scroll bar can
have its own action routine or several scroll bars can share the same routine, even if they are on different windows.

ScrollBar specifies the affected scroll bar number (from 1 to 511) in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the scroll bar does not exist in the current window,
SetScrollBarAction does nothing.

Tools Plus

232

ActionProc is the routine that is called repeatedly while the scroll bar is being tracked.

The ScrollBarActionUPP type is a Universal Procedure Pointer used for consistency across all interfaces (C/C++ and
Pascal using the original Apple interfaces or the newer universal interfaces required for PowerMacs). In 680x0
applications, the ScrollBarActionUPP is nothing more than a ProcPtr, or a pointer to a Pascal routine. This is how you
set an action routine in C/C++:

SetScrollBarAction(5, myActionProc);

In Pascal, a similar statement is used except the Ò@Ó symbol indicates the address of a routine which is the same thing
as a pointer to a routine:

SetScrollBarAction(5, @myActionProc);

In PowerMac applications, the ScrollBarActionUPP is a pointer to a structure that is allocated using the
NewScrollBarActionProc routine. If you are writing a PowerMac application, or if your source code will compile to
both 680x0 and PowerMac-native code, you will need to use the new universal headers (or universal interfaces for
Pascal) and do the following to ensure 680x0 and PowerPC compatibility:

1. Create a global variable for each action routine you will use throughout your application. If you are using the
same action routine for several scroll bars, all the scroll bars can share a single global variable. Declare the
variable as a ScrollBarActionUPP type. In 680x0 applications, this variable will be used as a pointer to an action
routine. In PowerMac applications, it will be used as a pointer to a universal procedure structure. In this example,
define a global variable named myActionUPP of type ScrollBarActionUPP.

2. Populate myActionUPP so that it points to your scroll barÕs action routine. In this example, the action routine is
named myScrollAction. In C/C++, the code looks like this:

myActionUPP = NewScrollBarActionProc(myScrollAction);

In Pascal, the code is identical except the Ò@Ó symbol indicated the address of a routine:
myActionUPP := NewScrollBarActionProc(@myScrollAction);

Do this very early in your application because you are creating a non-relocatable structure and allocating it early
will prevent memory fragmentation.

3. After you create your scroll bar, you can install the action routine into the scroll bar with the following code. This
example assumes the action routine is being installed into scroll bar number 5 on the current window:

SetScrollBarAction(5, myActionUPP);

The action routine is written as a Pascal procedure that has no parameters. Here is an example of how your routine
should be written:

C pascal void myScrollAction (void)
 {
 // Your code goes here
 }

Pascal procedure myScrollAction;
 begin
 {Your code goes here}
 end;

If you want to deallocate the UPP for scroll barÕs action routine in a PowerMac application or plug-in, use the
DisposeRoutineDiscriptor routine. PowerMac plug-ins will certainly want to do this as part of their quitting logic along
with calling DeinitToolsPlus.

Your action routine will likely need to know some information about the scroll bar that called the action routine and
how the user is interacting with the scroll bar. See the GetScrollBarActionInfo routine to obtain this information.

Also see: GetScrollBarActionInfo.

..

8 Scroll Bars

WaterÕs Edge Software 233

GetScrollBarActionInfo
Get info about the caller of a scroll barÕs action routine.

C pascal void GetScrollBarActionInfo (short *Window,
short *ScrollBar, short *Part, Boolean *InPart);

Pascal procedure GetScrollBarActionInfo (var Window: INTEGER;
var ScrollBar: INTEGER; var Part: INTEGER; var InPart: BOOLEAN);

This routine can be used in a scroll barÕs action routine to learn about the scroll bar that has called the routine. Its
values will be valid only when called from inside a scroll bar action routine.

Window is the window number containing the scroll bar that the user is using.

ScrollBar is the scroll bar number that is being used.

Part is the part code that corresponds to the region in the scroll bar where the mouse when down. The values for
standard scroll bars and CDEFs that are written to behave like scroll bars are available through the constants
inUpButton, inDownButton, inPageUp, inPageDown and inThumb.

InPart tells your action routine if the userÕs mouse is still in the region that is specified by the Part parameter. If, for
example, the user starts by pressing the mouse on the up button, Part will always be set to inUpButton each time your
action routine is called but InPart is set to true only when the cursor is on the up button. When InPart returns false,
your action routine should behave as though the scroll bar is not being used and not perform any scrolling.

CONST {Scroll Bar parts }
inUpButton = 20; {up arrow of a scroll bar }
inDownButton = 21; {down arrow of a scroll bar }
inPageUp = 22; {"page up" region of a scroll bar }
inPageDown = 23; {"page down" region of a scroll bar }
inThumb = 129; {thumb of a scroll bar }

..

GetScrollBarHandle
Get a handle to a scroll barÕs control record.

C pascal ControlHandle GetScrollBarHandle (short ScrollBar);

Pascal function GetScrollBarHandle (ScrollBar: INTEGER): ControlHandle;

This routine returns a standard ControlHandle to a scroll bar that was created by a Tools Plus routine. You should
never need to use this routine. It is provided for advanced programmers who may have specialized needs. Always use
Tools Plus routines to create and manipulate scroll bars.

ScrollBar specifies the scroll bar number (from 1 to 511) in the current window whose handle is being retrieved. If the
current window doesnÕt belong to your application, or if no windows are open, or if ScrollBar specifies a scroll bar
that does not exist, GetScrollBarHandle returns nil.

+ Warning: If you need to lock the handle or change its attributes, do so temporarily then restore the original settings
before using any Tools Plus routines. If you alter this handle or any data that is made accessible by this
handle, you do so at your own risk. The only exception is the controlÕs reference constant (contrlRfCon
field) which can safely be set using the toolboxÕs SetControlReference routine, and retrieved using the
toolbox GetControlReference routine.

..

Tools Plus

234

9 Editing Fields

WaterÕs Edge Software 235

9 Editing Fields

Editing fields are supported by Tools Plus windows with some notable enhancements over the MacintoshÕs standard
TextEdit fields. Editing fields (or simply ÒfieldsÓ) are created on the current window with the NewField routine. Each
field is referenced by a unique field number that can be from 1 to 511. Fields that are not implemented using the
Appearance ManagerÕs Edit Text control or Static Control can be numbered from 1 to 32767. This number is specified
when the field is created, and refers to the specific field until that field is deleted. Note that the field number is related
to its associated window. This means that two different windows can each have a field numbered Ò1Ó without
interfering with each other. Whenever any field event occurs, such as the user clicking on a field, Tools Plus calls your
event handler routine and reports the field number as well as the window number to which the field belongs.

Fields can edit and store as much as 32K of text. Tools Plus also accommodates PascalÕs 255 characters strings
(Str255). Your application can limit the number of characters that can be typed by the user, as well as the number of
characters that are eventually stored by the field. Details are provided later in this chapter. Both C and Pascal
programmers can make use of both C and Pascal strings within an application.

Tools Plus fields offer an option called a Òstatic textÓ field, that being a field that cannot be edited by the user. It is
used to display information like a title or caption, and can be created as part of a dialog resource, or dynamically just
like regular fields. Additional information about creating and maintaining fields in dialogs can be found in the
Windows chapter, specifically in the LoadDialog routine.

Tools Plus also supports a Òread onlyÓ field that looks like an editing field, but cannot be changed by the user. With
this option, the user can select text in the field and copy text from the field, but the user cannot change the text in the
field.

The FieldÕs String
When a field is first created, your application initiates a permanent association between the editing field and its related
text by providing a handle that points to the fieldÕs string. The handle can point to either a Pascal string (up to 255
characters long plus a length-byte prefix), or to a C string (up to 32767 characters long plus a null termination byte).
Each field must have its own string handle that is valid while the field exists. You must either allocate memory for the
handle and set it to a default string value before using it in the NewField routine, or let NewField allocate the string for
you. Tools PlusÕs NewStrHandle routine is perfect for allocating a handle of a specific size and initializing its string to
zero characters.

- Note: Your application must allocate memory for a text handle when creating a new field. The NewStrHandle routine
is best suited for this. If your editing fields contain random characters, it is a sure sign that you provided an
invalid handle when creating the field.

Dynamic String Handles
A field can optionally store its string more efficiently by resizing its string handle on an ongoing basis to accommodate
only the number of valid characters currently stored in the string as opposed to the maximum number of characters the
string may contain. This feature is especially useful if you let NewField dynamically allocate a string handle for you.
You should consider turning this feature on for all fields if your application has numerous editing fields. To make a
field store its string handle more efficiently, call DynamicFieldHandles(true) and all subsequently created fields will
automatically resize their associated text handle. You can also do this on a field-by-field basis when a field is being
created by including the teResizeHdl constant in the fieldÕs specification.

The one thing you must pay attention to is that a dynamic handle may be smaller than you expect, and that you can
accidentally damage your applicationÕs heap if you write more data into the handle than the handle can physically
accommodate. To prevent this, make a habit of using PasteIntoField to change a fieldÕs text instead of writing to the
handle directly.

Tools Plus

236

The Active Field
Text editing can occur in only one field at a time even if multiple applications are running concurrently or multiple
windows are open in an a variety of applications. The applicationÕs active field is the field in which the user is working
when an application is active. The active field indicates it is active by containing either a flashing insertion point
(called a ÒcaretÓ), or several highlighted (selected) characters as seen below.

A field can be activated by using the ActivateField routine. When a field is first activated by your application, an
insertion point can be placed at the beginning or at the end of the fieldÕs text, or the fieldÕs entire text can be selected.
In most cases, the fieldÕs entire text is selected. When a window becomes inactive, the flashing insertion point
disappears and selected text becomes deselected. When the window is activated again, the insertion point or selection
reappears. A field can be deactivated by either calling the DeactivateField routine, or by activating another field.

Each window can have its own editing field that becomes the applicationÕs active editing field when the window is
active. This is called the windowÕs active field. For example, field 3 could be active in the Òadd customerÓ window,
and when the Òadd shipping addressÓ window is active, field 8 could be active in that window. This concept is simple
as long as only one window is active at a time.

When your application uses a tool bar and/or floating palettes, multiple windows are active simultaneously: the tool
bar, all floating palettes, and the frontmost standard window. Tools Plus manages the additional functionality required
to make editing fields work on all windows in your application, including the tool bar and floating palettes. It ensures
that only one field is active at a time, and that it is the appropriate one.

Editing Field Window
The Editing Field Window is the one window in your application containing the active editing field. The field either
has a flashing insertion point, or its selected text is highlighted. Tools Plus automatically keeps track of which window
contains your applicationÕs active editing field.

If your application does not use a tool bar or floating palettes, this window is the active window providing it has an
editing field. If your application uses a tool bar and/or floating palettes, potentially any active window (tool bar, any
floating palette, or the active standard window) can contain the active editing field.

Activating a Field and Editing Text
Your application can activate a field by using the ActivateField routine to specify the field that is active when its
parent window is active. This is usually done to specify the default field when the window is first opened. When a field
is activated, a copy of its associated text (the fieldÕs string) is made. It is the copy that is edited by the user while the
fieldÕs original string is left untouched. The copy being edited by the user is called the edited text. The edited text can
be inspected by your application by using GetEditString which returns a copy of the edited text, or GetEditHandle
which returns a handle to the edited text. The edited text is saved as the fieldÕs string by calling the SaveFieldString
routine.

When a field is deactivated, the text edited by the user is destroyed without being saved and the fieldÕs string is
redrawn. This is done in case your application determines that the edited text should not be saved. If you saved the
edited text with SaveFieldString, no apparent change is seen. Tools Plus has options to automatically save edited text,
as explained later in the chapter under ÒClicking and Tabbing.Ó

Editing fields are fully integrated with all Tools Plus windows. As a result, Tools Plus prevents fields from being
mysteriously activated or deactivated as windows are opened, closed, hidden, displayed, activated and deactivated. The
userÕs interaction with editing fields is completely intuitive.

9 Editing Fields

WaterÕs Edge Software 237

Length Limited Fields
In some applications, it may be necessary to limit the length of edited text to a specific number of characters. This can
be done by calling FieldLengthLimit(true). All subsequently created fields will be length limited. You can also length
limit a field as it is being created by including the teLengthLimit constant in the fieldÕs specification.

If a field is length limited, the user can type characters until the fieldÕs maximum length is reached. After this point, a
beep is heard when the user types any keys. For example, if you create a 30 character string handle and length limit the
field, the user can type only 30 characters into that field. This also applies when pasting text into a length limited field.

Length limited fields look their best if you use a monospaced font like Monaco 9 in a single-line editing field that is
long enough to hold the maximum number of characters without scrolling.

Clicking and Tabbing
The task of moving between active fields, either by tabbing or clicking, is accomplished in one of two very different
ways:
(1) When your application is initialized, you can use the initAutoFocusChanges option to automatically let the user

tab to the next/previous field, or to activate an inactive (but enabled) field by clicking on it. This option makes for
much simpler coding, but it does not give your application the opportunity to validate fieldsÕ contents on a field-
by-field basis. Instead, your application can edit the fieldsÕ contents in a batch when the user clicks the OK
button to process the entire window.

(2) If you need to edit your fields on a field-by-field basis, meaning the user may get an error message as he tries to
tab to another field thereby forcing him to correct his error before moving on, then you should not use the
initAutoFocusChanges option when initializing Tools Plus. Instead, your application will be informed when the
user wants to move to another field by way of events. This lets you edit the field before letting the user activate
another field.

If you chose the second option to allow editing on a field-by-field basis, Tools Plus reports a doClickToFocus event to
your event handler routine when the user clicks in an inactive field. When this happens, your event handler will likely
call GetEditString (or GetEditHandle) to obtain a copy of the edited text and check the string for errors. If an error is
detected, display an appropriate alert and ignore the doClickToFocus event. If no error is detected, call the
SaveFieldString routine to save the edited text in the fieldÕs string, then call the ClickToFocus routine to activate the
required field and places the insertion point at the appropriate place. The following code shows you how to respond to
a doClickToFocus event in your applicationÕs event handler routine:

C case doClickToFocus:
 GetEditString(&theString);
 // your code to validate string for errors
 if (errorInString)
 // Show alert
 else {
 SaveFieldString();
 ClickToFocus();
 }
 break;

Pascal doClickToFocus:
 begin
 GetEditString(theString);
 {your code to validate string for errors}
 if errorInString then
 {Show alert}
 else
 begin
 SaveFieldString;
 ClickToFocus;
 end;
 end;

Tools Plus

238

If your application allows field validation on a field-by-field basis, it will also be interested in validating the active
field when the user tabs out of it. When Tools Plus reports a doKeyDown or doAutoKey event, your event handler can
call HaveTabInFocus to determine if a tab or shift-tab was typed by the user in an editing field. If HaveTabInFocus
returns true, you will likely validate the edited text as described in the previous paragraph, then activate the next field
if the tab was pressed or the previous field if shift-tab is pressed. A simpler alternative is to use TabToFocus which
takes care of tabbing to the correct field. The Event Management chapter details key and mouse events. The following
code illustrates how to tab to another field:

C case doKeyDown: case doAutoKey:
 if (HaveTabInFocus()) {
 GetEditString(&theString);
 // your code to validate string for errors
 if (errorInString)
 // Show alert
 else {
 SaveFieldString();
 TabToFocus();
 }
 break;

Pascal doKeyDown, doAutoKey:
 If HaveTabInFocus then
 begin
 GetEditString(theString);
 {your code to validate string for errors}
 if errorInString then
 {Show alert}
 else
 begin
 SaveFieldString;
 TabToFocus;
 end;
 end;

Keyboard Focus on Tool Bars and Floating Palettes
If your application includes a tool bar and/or a floating palette, and any of these windows contains an editing field or
any other object that can assume the keyboard focus (such as a list box or a clock control), then you may have to write
your application with a few special considerations. The easiest way to address these special cases is to initialize your
application with the initAutoFocusChanges option. That way, Tools Plus will automatically save any edited text as and
when required, and it will move the keyboard focus as the user tabs and clicks to other user interface elements.
Without the initAutoFocusChanges option, you may have to account for some special cases as described in this
section.

Normally, a Macintosh application has only one active window at a time, so when a window with the keyboard focus
is deactivated, that window remembers all the information about its own focus while the applicationÕs keyboard focus
is temporarily transferred to a newly activated window. When the user activates the original window again, the
keyboard focus returns to that window exactly as it was left. When using only standard window (no tool bars or
floating palettes), each windowÕs keyboard focus is specific to that window and it never conflicts or interacts with the
focus on any other window. This is what Macintosh users and developers are used to.

User working in Window 1 User activates window 2 by clicking on it. User activates window 1 by clicking on it.
Keyboard focus moves to window 2. Keyboard focus returns to window 1 exactly as it was left.

9 Editing Fields

WaterÕs Edge Software 239

When a tool bar or a floating palette with a keyboard focus item is introduced to your application, your application
then has two or more active windows, only one of which can have the keyboard focus at a time. Two potentially
problematic situations can arise:

¥ When your application gets a doClickToFocus event, it may indicate that the user is clicking on an object in
another active window. An example of this is when the user is working on a standard window, then clicks in an
editing field on a floating palette. This means you may have to save the edited text on one window before
allowing the user to move to another by calling ClickToFocus.

¥ Once the keyboard focus has been placed on a tool bar or floating palette, it will not automatically move to a
standard window that is being activated. This may impact your application because the user could do something
like this:

- User edits text in a field in window 1
- User clicks on window 2 to activate it (window 1 and its field with edited text are deactivated)
- User clicks on a floating palette and enters text in a field (focus now stays on the floating palette)
- User clicks on window 1. Window 1 activates but the editing field is deactivated because the

floating palette, an active window, is still holding onto the keyboard focus.

The actions required by your application are as follows:
¥ When your application gets a doClickToFocus event, save the edited text on the window that has the active field

(the EditFldWindowNumber routine tells you which one it is). This must be done before you allow the focus to
move to the other window by calling ClickToFocus.

¥ Before a window is activated, check to see if the keyboard focus or active editing field is on a tool bar or floating
palette. If so, save the edited text on the window that is being activated before you activate it.

Alignment of Text in a Field
Each field can be either left aligned, right aligned, or centered. It cannot, however, be fully justified (i.e., margin to
margin). Each field can have its own font, font size, and font styling. Variations of font, size and style within a single
field are not possible. Static text fields can only be left aligned.

Fonts
All fields default to using the Chicago 12pt font. When a field is created, it can optionally adopt and remember the
windowÕs current font, size and style settings (as set by the TextFont, TextSize, and TextFace routines) by including
the teUseWFont option in the spec parameter. The windowÕs settings can then be changed without affecting the field.
Unlike regular fields, Tools Plus fields can each have a different font. You can use the GetFieldFontSettings and
SetFieldFontSettings routines to get and set the fieldÕs font, size and style settings.

Colors
By default, a field is displayed using black text on a white background. You can change this by adding the
teColorText, teColorBack or teBackdrop constants to the fieldÕs specification parameter when you create the field.
When doing so, the field stores the windowÕs foreground and background colors and displays its text using these
colors. After the field is created, you can change the windowÕs colors without affecting the field. The GetFieldColors
and SetFieldColors routines are used to set and retrieve a fieldÕs text and background colors.

The Appearance Manager does not support the use of colors in static text fields (it supplies colors and patterns that are
consistent with the user-selected theme). Initializing Tools Plus with the initPureAppearanceManager option enforces
this principle by ignoring custom color information when the Appearance Manager is available.

Tools Plus

240

Disabled Fields
Individual fields can be disabled to prevent the user from making changes to those fields. This can be done by calling
the EnableField routine with a value of false. A disabled field cannot be activated by your application. The user canÕt
tab to it, click in it, or otherwise change the disabled fieldÕs contents. By default, a disabled fieldÕs text and its
outlining box (if it has one) are grayed out, but you can override this appearance with the DisabledFieldLook and
SetDisabledFieldLook routines. You can also disable a field as it is being created by including the teDisabled constant
in the fieldÕs specification.

Filtering Characters
Tools Plus supports field filters that act like gates to either allow or disallow specified characters into fields. The filter
affects any action that puts text into a field: typing, pasting from the Edit menu, and pasting under your applicationÕs
control.

You create a new filter with the NewFieldFilter routine by specifying characters and the behavior characteristics you
want the filter to exhibit. By default, the filter is sensitive to case and diacritical marks, so if you specify only the
characters ÒABCDEÓ, the filter will consider the characters ÒeÓ and Ò�Ó to be alien to the character set. You can
optionally override a filterÕs sensitivity to case and/or diacritical marks. When you do this, NewFieldFilter expands the
set of characters you specify to account for the other implied characters. The table below illustrates this:

Specified Characters Option FilterÕs Character Set Comments
ABCDE (none) ABCDE Contains only the characters you specify
ABCDE ignore case ABCDEabcde Also includes upper and lower case equivalents
ABCDE ignore diacritical marks A��ËÌåçB

C�DE�æèé
Also includes diacritical equivalents of the same
case

ABCDE ignore case and
ignore diacritical marks

A��ËÌåçBC�DE�æ
èéa������»bc�de����

Also includes upper and lower case equivalents,
and diacritical equivalents

A filter can also optionally shift all characters to upper case or lower case letters, so a user typing ÒSmithÓ would see
ÒSMITHÓ appear in the field if the Òshift to upper caseÓ option is used. This is useful for entering postal codes or part
numbers where case uniformity is required.

Use NewFieldFilter to create a filter and to obtain a unique Filter Reference Number (1 through 32767) that is used to
reference the filter at a later time.

To make an editing field (or set of fields) adopt a specific filter, use the CurrentFieldFilter routine to specify a filter
before the field is created. Subsequently created fields that include the teFilter constant in their specification code
adopt the filter specified by CurrentFieldFilter. CurrentFieldFilter also specifies if the filter allows or disallows the
characters in its set. You can also assign filters on a field-by-field basis using SetFieldFilter.

If you want to prevent all characters from being typed into the field, consider creating the field with the teReadOnly
option which makes the field Òread only,Ó thereby allowing the user to select the text and copy it, but not alter it.

Word Wrap
Word wrap occurs automatically in fields. When a word is too long to appear on the current line of a field, the entire
word is moved to the next line and scrolling is performed (if necessary) to ensure that the insertion point is visible. A
word is defined as any series of characters excluding the space (ASCII character 32) and carriage return (ASCII
character 13).

If a fieldÕs height is less than or equal to its fontÕs height (font height can be determined by calling the GetFontInfo
routine and adding Ascent + Descent + Leading), and you disallow carriage return characters ($0D) in the field, the
field is deemed to be a Òsingle line field.Ó Word wrap does not occur in single line fields. Instead, the fieldÕs text
automatically scrolls to ensure that the selection always remains in view.

9 Editing Fields

WaterÕs Edge Software 241

User Interaction with Fields
An inactive field cannot be edited by the user. It must first be activated by clicking on the field or tabbing to it. Note,
however, that the contents of any field can be changed by your application by using the PasteIntoField routine.

An active field contains either an insertion point (a flashing caret) or a selection (one or more highlighted characters).
A selection of characters is made by extending (dragging the mouse inside a field) away from the insertion point. The
insertion pointÕs position becomes a fixed Òanchor,Ó and the selection is lengthened by moving the ÒheadÓ away from
the anchor, or shortened by moving it towards the anchor. Fields automatically scroll to insure that the selection
remains in view.

The following illustration demonstrates the head and anchor of a selection range.

Insertion Point Extending a Selection Range Shortening a Selection Range

­ ­ Þ ­ ­ ­ Ü
Insertion Point Anchor Head Anchor Head

­ Ü ­ Þ ­ ­
Head Anchor Head Anchor

When a field is active, all key-down and auto-key events are automatically intercepted and processed by the field.
Notable exceptions and features are listed below.

- Note: Older keyboards, namely those found on the Macintosh 512KE and Macintosh Plus, have a ÒBackspaceÓ key
instead of a ÒDeleteÓ key. However, it performs the same function.

When the user types characters on the MacÕs keyboard and an editing field is active, Tools Plus automatically applies
those characters to the active field (just as you would expect). However, there are some keys on the keyboard that do
not produce characters in the field. Instead, they perform some function pertaining to the active field. Below, is a list of
those keys and the function they perform:

1 Any 1-key sequence entered from the keyboard is first interpreted as a menu event. If it matches a
menuÕs 1-key equivalent, the corresponding menu is highlighted and a doMenu event is generated.
1-key equivalents for Undo, Cut, Copy, and Paste in the Edit menu are processed automatically
without generating an event. If the key does not match a menuÕs 1-key equivalent, a doKeyDown
or doAutoKey event is reported. The edited text and selection are not changed

Enter If an enabled default button exists, the Enter key is interpreted as a doButton event for the default
button. Otherwise, a doKeyDown or doAutoKey event is reported. The edited text and selection are
not changed.

Return If a window is open that contains an active editing field that accepts the Return key, the field
executes a carriage return (move insertion point to the next line). If the active field doesnÕt accept a
Return key, the keystroke is ignored.

If a field is not active, and a default button exists on the active standard window, the Return
key is interpreted as a doButton event for the default button. Otherwise, a doKeyDown or
doAutoKey event is reported.

Tab The Tab key generates a doKeyDown or doAutoKey event and must be processed by your
application. The edited text and selection are not changed.

Delete If the Delete key is pressed at an insertion point, the character immediately to the left is erased
without being placed on the clipboard. Backspacing on a selection of characters erases the selection.

Tools Plus

242

Delete Forward If the Delete Forward key (available on extended keyboards) is pressed at an insertion point, the
character immediately to the right is erased without being placed on the clipboard. Deleting
Forward on a selection of characters erases the selection.

Home Scroll field vertically to top. Insertion point or selection is not altered. The field is not scrolled
horizontally.

End Scroll field vertically to bottom. Insertion point or selection is not altered. The field is not scrolled
horizontally.

Page Up Scroll field up by one page (visible area less one line). Insertion point or selection is not altered.
The field is not scrolled horizontally.

Page Down Scroll field down by one page (visible area less one line). Insertion point or selection is not altered.
The field is not scrolled horizontally.

Clear Clear the selected characters in the field without placing them on the clipboard. The clear key and
the Clear item in the Edit menu perform the same function.

¬ When used at an insertion point, the caret is moved one character to the left. When used at a
selection range, the selection becomes an insertion point at the left side of the selection. The edited
text is not changed.

Shift ¬ Lengthen or shorten the selection by one character (i.e., the rangeÕs head is moved one character to
the left). The edited text is not changed.

Option ¬ Move the insertion point one word to the left. When used at an insertion point, the caret is moved
leftward to the beginning of a word. When used at a selection range, the selection becomes an
insertion point and moves leftward to the beginning of a word. The edited text is not changed.

Option Shift ¬ Lengthen or shorten the selection range by one word. When used at an insertion point, a word is
selected by moving leftward to the beginning of a word, then the selection is extended by moving
the anchor rightward to the end of a single word. When used at a selection range, the selection is
first checked to ensure that it starts at the beginning of a word, and ends at the end of a word. If this
is the case, the selection range is lengthened or shortened by one word (i.e., the rangeÕs head is
moved one word to the left). If the selection does not start at the beginning of a word and/or
terminate at the end of a word, a word is selected by moving leftward to the beginning of a word,
then the selection is extended by moving the anchor rightward to the end of a single word. In all
cases, the edited text is not changed.

® Move the insertion point one character to the right. When used at an insertion point, the caret is
moved one character to the right. When used at a selection range, the selection becomes an insertion
point at the right side of the selection. The edited text is not changed.

Shift ® Lengthen or shorten the selection by one character (i.e., the rangeÕs head is moved one character to
the right). The edited text is not changed.

Option ® Move the insertion point one word to the right. When used at an insertion point, the caret is moved
rightward to the beginning of a word. When used at a selection range, the selection becomes an
insertion point and is moved rightward to the beginning of a word. The edited text is not changed.

Option Shift ® Lengthen or shorten the selection range by one word. When used at an insertion point, a word is
selected by moving rightward to the beginning of a word, then the selection is extended by moving
the anchor leftward to the end of a single word. When used at a selection range, the selection is first
checked to ensure that it starts at the beginning of a word, and terminates at the end of a word. If
this is the case, the selection range is lengthened or shortened by one word (i.e., the rangeÕs head is
moved one word to the right). If the selection does not begin at the beginning of a word and/or
terminate at the end of a word, a word is selected by moving rightward to the beginning of a word,
then the selection is extended by moving the anchor leftward to the end of a single word. In all
cases, the edited text is not changed.

9 Editing Fields

WaterÕs Edge Software 243

­

or Option ­

Move the insertion point up one line. When used at an insertion point, the caret is moved up one
line. When used at a selection range, the selection becomes an insertion point at the left side of the
selection. Nothing happens if the insertion point is on the fieldÕs first line. The edited text is not
changed.

Shift ­

or Shift Option ­

Lengthen or shorten the selection by one line (i.e., the rangeÕs head is moved up one line). The
edited text is not changed.

¯

or Option ¯

Move the insertion point down one line. When used at an insertion point, the caret moves down one
line. When used at a selection range, the selection becomes an insertion point at the right side of the
selection. Nothing happens if the insertion point is on the fieldÕs last line. The edited text is not
changed.

Shift ¯

or Shift Option ¯

Lengthen or shorten the selection by one line (i.e., the rangeÕs head is moved down one line). The
edited text is not changed.

Clicking
or Click/Drag

Clicking in an active field deselects the current selection and places an insertion point where the
mouse was clicked. If the mouse button is held down, the insertion point may be dragged to form a
selection range. The fieldÕs text scrolls automatically to keep the selection in view.

If a click occurs in an inactive field, a doClickToFocus event is reported. Your application
should then respond by validating the active fieldÕs text (GetEditString or GetEditHandle routine),
then saving the fieldÕs edited text by using the SaveFieldString routine. Then, by calling the
ClickToFocus routine, the click is processed as previously described.

Double-Clicking
or
Double Click/Drag

Double-clicking in an active field deselects the current selection and selects the word that was
clicked. If the mouse button is held down, the selection range may be dragged to extend or shorten
the range by one word. The fieldÕs text scrolls automatically to keep the selection in view.

If a double-click occurs in an inactive field, a doClickToFocus event is generated. Your
application should then respond by validating the active fieldÕs text (GetEditString or
GetEditHandle routine), then saving the fieldÕs edited text by using the SaveFieldString routine.
Then, by calling the ClickToFocus routine, the double-click is processed as previously described.

Mac 512KE and Mac Plus keyboard with numeric pad
In order to provide the Shift-Arrow combinations as previously described, Tools Plus must discern an Arrow key from
a Shift-Arrow key. This causes a slight problem on Macintosh 512KE and Macintosh Plus keyboards. Shift-¬, for
example, produces the same key code as the Ò+Ó on the numeric pad. A problem arises when Tools Plus cannot discern
between a Shift-¬ and a Ò+Ó key on the numeric pad.

It is for this reason that the =, /, *, and + keys on the numeric pad are treated as Shift-¯, Shift-­, Shift-®, and Shift-¬
respectively. This occurs only in an active field on a Macintosh 512KE and Macintosh Plus.

The Edit Menu
If a second menu exists, it must be called ÒEditÓ and must contain ÒUndoÓ, ÒCutÓ, ÒCopyÓ, ÒPasteÓ and ÒClearÓ as the
first five items in the listed order. A dividing line must exist between ÒUndoÓ and ÒCutÓ. See the chapter on Menus for
more details.

When a field is active in a window that allows access to pull-down menus, the Edit menuÕs ÒUndoÓ, ÒCutÓ, ÒCopyÓ,
ÒPasteÓ, and ÒClearÓ items automatically affect the active field in the following manner:

Undo Undo is disabled when a field is activated or deactivated. It is enabled and changed to ÒUndo Cut,Ó ÒUndo
CopyÓ and ÒUndo PasteÓ when the respective menus are selected, and changed to ÒUndo TypingÓ when keys
are typed or the Delete key is used at an insertion point.

Selecting ÒUndo taskÓ performs all the necessary operations that are required to undo the previous
operation, and changes the item to ÒRedo task.Ó Selecting ÒRedo taskÓ restores the field to a state before
ÒUndo taskÓ was used. Undoing and Redoing also remembers insertion point positions and selection ranges.

Cut Cut deletes the selected text from the field and places it on the Clipboard. This item is disabled when a field is
deactivated or when an insertion point exists in an active field (i.e., a selection range has not been made).

Tools Plus

244

Copy Copy takes a copy of the selected text and places it on the Clipboard without changing the field. Copy is
disabled when a field is deactivated or when an insertion point exists in an active field (i.e., a selection range
has not been made).

Paste At an insertion point, Paste inserts a copy of the ClipboardÕs text. At a selection range, Paste replaces the
selected characters with the ClipboardÕs text. The ClipboardÕs contents are not changed.

In a length limited field, the ClipboardÕs text is pasted a character at a time (although very quickly) until
all the ClipboardÕs text has been pasted, or the field is full (whichever comes first).

Paste does not paste Carriage Returns into fields where they are disallowed.
Paste is disabled when a field is deactivated or when no text exists on the Clipboard. Paste is also disabled

if a field has been length limited and the insertion point is in a field that has reached its limit of characters
(i.e., a full field).

Clear Clear is disabled when a field is deactivated or when an insertion point exists in an active field (i.e., a
selection range has not been made). Clear deletes the selected characters in the field without placing them on
the clipboard. The clear key and the Clear item in the Edit menu perform the same function.

Select All The ÒSelect AllÉÓ item is optional, but frequently used in applications. It selects all the text in the active
field.

- Note: See the Multiple Languages chapter for changing the text that appears in the Edit menuÕs Undo item. Tools
Plus supports multiple languages, and you can replace the English text with equivalent words of your own.

Large Fields and Buffers
Tools Plus is designed to be quick and to make efficient use of memory. One of the methods it uses to accomplish this
is to create only one TextEdit record for each window, regardless of the number of fields the window has. (A TextEdit
record is a mechanism used by the Macintosh toolbox to display the contents of a field and to allow its text to be
edited.) This strategy saves at least 70 bytes per field as compared to having a TextEdit record for each field. A
negative side effect is that there is a performance penalty when activating a field or when an inactive field is refreshed.
This effect is inperceivable when working with fields containing small amounts of text, however it becomes quite
annoying when working with fields that hold larger amounts.

As an option, you can create a Tools Plus field with its own TextEdit record by adding the teBuffered option to the
fieldÕs specification. When you do this, Tools Plus creates and maintains a TextEdit record for the field thereby giving
it maximum performance at all times. This is called a buffered field. The price you pay for this additional performance
is that more memory is required for fields using this option: an additional 96 bytes + 2 bytes per line of text in the
field.

You should consider using a buffered field under any of the following conditions:
¥ fieldÕs string is over 1K and your application is expected to run on a Mac Plus
¥ you need excellent response on a mid-powered Mac (25 MHz Ô040) and the fieldÕs string is over 4K
¥ you need acceptable response on a mid-powered Mac and the fieldÕs string is over 8K

Fields with Scroll Bars
Tools PlusÕs fields can optionally have a vertical and/or horizontal scroll bar (except single-line fields which cannot
have any). The fieldÕs text and its scroll bars are kept synchronized at all times: changing the text or moving through it
updates the scroll bars, and moving the scroll bars scrolls the fieldÕs text.

To add a vertical scroll bar along the right side of your editing field, add the teVScroll option to the fieldÕs
specification. The vertical scroll bar typically runs along the fieldÕs right side, so for the best visual results, make sure
your field is at least 50 pixels high so that you can see the scroll barÕs up arrow, down arrow and thumb. The top of the
scroll bar can be brought down in 15 pixel increments by adding the teVScrollDown option. This lets you place picture
buttons or other user interface elements just above the vertical scroll bar. The bottom of the scroll bar is brought up
automatically to accommodate a windowÕs grow box if necessary.

9 Editing Fields

WaterÕs Edge Software 245

A vertical scroll is placed just outside the fieldÕs
right edge by adding teVScroll to the field
specification. Use NewWideField to create a field
with a horizontal scroll bar.

To add a horizontal scroll bar along the bottom edge of the field, use the NewWideField routine. It requires one
additional parameter that specifies how wide the area containing the text is (the width at which word wrapping takes
place, referred to as the destination rectangle in Inside Macintosh). The left side of the scroll bar can be moved to the
right in 15 pixel increments by adding the teHScrollRight option. This lets you place picture buttons or other user
interface elements just below the bottom left corner of the field. The right side of the scroll bar is automatically moved
left to accommodate a windowÕs grow box if necessary.

When placing a field against a windowÕs right or
bottom edge, Tools Plus automatically makes
room for the grow box (if the window has one) by
shortening the scroll bars.

Scroll bars can be pushed away from the left and
top of the field to make room for other user
interface elements by adding teHScrollRight or
teVScrollDown constants to the fieldÕs
specification.

Normally when the user drags the scroll barÕs thumb, an outline of the thumb tracks the cursor then when the user
releases the mouse button, the scroll barÕs thumb and the related text snap to the new position. A useful feature that is
not a Macintosh standard is live scrolling. If you add the teLiveScroll option to the fieldÕs specification, the text is
scrolled in real time when the user drags a scroll barÕs thumb. If you use live scrolling in your fields, you should do so
with all fields to give your interface a consistent feel.

Memory Management
This section describes how Tools Plus manages memory in relation to editing fields and the clipboard. If your
application uses large fields (1K to 32K), this section will help you understand how Tools Plus is protecting your
application in low memory situations, and how a ÒtinyÓ application can suddenly become Òmemory hungry.Ó It is also
a good idea to understand how much memory Tools Plus expects or will consume in certain situations so that you can
write your application appropriately in anticipation of this.

Tools Plus automatically maintains all the Òmemory objectsÓ (data) related to your editing fields and the clipboard.
Even though you may not immediately realize it, in a worse-case scenario a single 32K editing field can consume over
128K of your applicationÕs memory, even if only on a temporary basis. If you are not aware of this or your application
is not prepared for a sudden consumption of memory, Tools Plus will do various things to protect your application
from behaving ungracefully or from getting dangerously low on memory. Details are provided later in this section.

The following is a list of Òmemory objectsÓ maintained by Tools Plus and details on how they are maintained.
Throughout this section, references to memory refer to your applicationÕs heap and not the stack. If you donÕt know
what a heap or stack is, it is sufficient to say that it means the section of Macintosh memory that is reserved by (and
exclusively for) your application while it is running.

Desk Scrap

The desk (or System) scrap is equivalent to what users call the Clipboard. It is used to transfer text, images, or other
kinds of data between applications and desk accessories. The desk scrap can contain multiple ÒversionsÓ of data: a
paragraph represented as plain text, and a copy of the paragraph represented as text formatted by its originating word
processor. Nearly all applications include a Òplain textÓ version of the text they are cutting or copying to the clipboard
(theyÕre all supposed to), and Tools Plus accesses only the plain text ignoring other kinds of data.

Tools Plus

246

When you launch your application, the desk scrap normally shares your applicationÕs memory. During the launch, if
the desk scrap is bigger than half your applicationÕs memory, the Macintosh toolbox automatically unloads the desk
scrap to disk so that it does not occupy any application memory. Finally, InitToolsPlus (Tools Plus initialization)
unloads the desk scrap to disk if there is less that 90K of free memory just before Tools Plus libraries are initialized
(although you can override this default).

It is important to remember that the desk scrap can potentially occupy up to half your applicationÕs memory at startup.
This can also happen while your application is running if you switch to a word processor and copy a large selection of
text to the clipboard. That copied text can potentially consume all your free application memory.

Whenever any application cuts or copies anything, it ends up in the desk scrap, possibly with multiple copies in
different formats. When your application cuts or copies text from an editing field, it too ends up in the desk scrap but
only as plain text. When you paste text in a Tools Plus editing field, the plain text is copied from the desk scrap to your
editing field.

TextEdit Scrap

The TextEdit scrap is a local copy of the desk scrap. It contains only text data ignoring images and other kinds of data.
TextEdit scrap is necessary only if your application uses editing fields that are not created by Tools Plus. The TextEdit
scrap always has a Òplain textÓ copy of the text in the desk scrap. Having a TextEdit scrap can consume up to 32K of
memory. By default, Tools Plus does not create or maintain a TextEdit scrap although you can override this default at
initialization in the InitToolsPlus routine.

The size of the TextEdit scrap will not grow beyond the Òbuffer sizeÓ you specify when initializing Tools Plus (in the
InitToolsPlus routine).

Scrap ÒUndoÓ Text

Tools Plus automatically lets you undo and redo edits in an editing field. The undo/redo services also let you undo a
copy or cut, which obviously put new text in the scrap (Clipboard). Just before you cut or copy text from a Tools Plus
editing field, a copy of the clipboardÕs text is automatically made which can consume up to 32K of memory. Undo
Cut, Redo Cut, Undo Copy and Redo Copy automatically swap the text that is currently on the clipboard with the
Òscrap ÔundoÕ text.Ó

The size of the Òscrap ÔundoÕ textÓ will not grow beyond the Òbuffer sizeÓ you specify when initializing Tools Plus (in
the InitToolsPlus routine).

FieldÕs String

The fieldÕs string is a Pascal string or C string that is referenced by a handle. It contains the fieldÕs permanent text (not
the text being edited by the user), and usually does not change its size. You may optionally decide to have the handle
automatically resize to accommodate the text it contains (Òdynamic handlesÓ option when creating a field). This saves
memory overall, but may introduce additional risk by suddenly consuming additional memory when you save your
fieldÕs edited text using the SaveFieldString routine.

The size of the fieldÕs string handle will not grow if you have not specified that you are using dynamic handles in
editing fields. If you are using a dynamic handle, it will not grow beyond its own maximum size (the size is was
initialized to).

FieldÕs Edited Text

The fieldÕs edited text is the text being edited by the user when the field is active. Each window can have one active
field, and can therefore consume up to 32K of memory (per field) as the user types or pastes text into the field. When
you deactivate a field (using DeactivateField or TabToFocus, or by closing the parent window), the edited text is
destroyed and its memory is released.

Edited text can consume up to 32K of memory per active field. You can reduce this amount by using length limited
fields which allow a user to type a certain number of characters into a field. Additional characters are not accepted
when the field is full, and the user is beeped when they try to type more characters.

9 Editing Fields

WaterÕs Edge Software 247

Edited ÒUndoÓ Text

Tools Plus automatically lets you undo and redo edits in an editing field. Just before any change is made in a field (cut,
paste, clear, typing, backspace, or delete forward), a copy if the fieldÕs edited text is automatically made. This copy can
consume up to 32K of memory. Undo/redo automatically swap the fieldÕs edited text with the Òedited ÔundoÕ text.Ó

The size of the Òedited ÔundoÕ textÓ will not grow beyond the Òbuffer sizeÓ you specify when initializing Tools Plus (in
the InitToolsPlus routine). Also, it wonÕt exceed the number of characters of edited text in the field.

ÓLow MemoryÓ Protection

When it comes to editing fields, Tools Plus automatically protects your application from running out of memory and
from getting into situations where memory is dangerously low. Your application can define several memory thresholds
that trigger certain actions:

¥ Low memory for editing: If the largest piece of continuous memory is smaller than this specified value after the
Undo/Redo services have been set up, the user is warned with a message stating ÒLow memoryÉ Continue
without ÔUndo/RedoÕ?Ó A ÒContinueÓ button lets the user continue without the Undo/Redo services being set up
(i.e., the Edit menuÕs ÒUndoÉÓ item is disabled and set to ÒCanÕt UndoÓ). A ÒCancelÓ button lets the user cancel
the editing operation without making any changes. See the SetTENoUndoThresh routine to set this value.

¥ No memory for editing: If there is not enough memory to set up the Undo/Redo services and the largest piece of
continuous memory is smaller than this specified value after the edit is performed (such as a paste or typing), the
user is warned with a message stating ÒWARNINGÉ Not enough memory for this operation.Ó A ÒCancelÓ button
lets the user cancel the editing operation without making any changes. See the SetTENoEditThresh routine to set
this value.

¥ Low memory while typing: If the largest piece of continuous memory is smaller than this specified value after the
user types a character, the user is warned with a message stating ÒWARNINGÉ Low memory!Ó An ÒOKÓ button
lets the user proceed. This message is displayed every 90 seconds as long as the user continues to type while
memory is low. See the SetTELowMemThresh routine to set this value

All these thresholds are set to reasonable default values when Tools Plus is initialized, so your application benefits
from low-memory protection without you having to explicitly do anything. You can change the messages displayed by
Tools Plus as described in the Multiple Languages chapter.

Tips for Conserving Memory

(1) Use UnloadScrap at the beginning of your application to store the desk scrap on the disk. This can be done as part
of initialization by InitToolsPlus. Remember to use LoadScrap just before you quit your application.

(2) DonÕt use a TextEdit scrap. This is done as part of initialization by InitToolsPlus.

(3) Limit copy, paste, undo/redo to less than 32K. This is done as part of initialization by InitToolsPlus. If your
largest field is only 400 characters, why be able to cut, copy, paste or undo/redo more than that?

(4) Length limit your fields to prevent the user from being able to type or paste a full 32K into a field.

(5) If you donÕt use dynamic handles (declared when creating a field), you wonÕt have to worry about the fieldÕs
string suddenly growing. However, you can save memory overall by using dynamic handles in your fields.

Handling Fields
Once a field is activated, Tools Plus performs all the editing required within the field. When a window in inactive,
Tools Plus deselects the text in the active field on that window and hides the insertion point. When the window is
activated again, the active field regains its original state.

Tools Plus constantly inquires about any events that have occurred, including typing in fields. It also maintains the
enabled/disabled status for the Edit menuÕs Undo, Cut, Copy, Paste, and Clear items. The active field is automatically
affected if the user selects the Edit MenuÕs Undo, Cut, Copy, Paste, or Clear command. Command key equivalents for
these items have the same effect.

If you did not use the initAutoFocusChanges option when initializing Tools Plus, many types of events may indicate
that the user has completed using the field. For example, a doKeyDown event may report that Tab or Return was
pressed, indicating the user wishes to advance to the next field. The doClickToFocus event may indicate that the user

Tools Plus

248

has clicked on an inactive field, or the doMenu event may indicate that the user wants to quit your application. In these
cases, you will likely want to validate the active fieldÕs edited text before accepting it as the fieldÕs string. A copy of
the fieldÕs edited text can be obtained by GetEditString or GetEditHandle. If your application determines that the
edited text is invalid, display an appropriate alert box and ignore the event. If no error is detected, call the
SaveFieldString routine to save the edited text as the fieldÕs string, then process the event.

If your application needs to monitor changes as they occur in an editing field, it can do so by responding to the
doChgInField event. An example of this is disabling a ÒsaveÓ button when a field is empty.

See the Event Management chapter for details.

Special Handling of Fields
Some applications may find it necessary to reposition a field. An example of this occurs in an application that has a
matrix of fields aligned as cells: 3 columns across and 10 lines down. If your application needs to ÒscrollÓ this block of
fields, it is necessary to change the position of existing fields. This can be done by using the OffsetField routine.

Another unusual circumstance occurs if your application needs to paste text into a field under your applicationÕs
control. For example, your application may choose to insert a commonly used word or phrase into a field when the
user selects a menu item or a specific command key. The PasteIntoField routine allows text to be pasted directly into a
field.

If your application sets other user interface elements depending on a fieldÕs contents (i.e., disabling a ÒSaveÓ button if
a field is empty), then you can use the doChgInField event which is reported whenever the active fieldÕs contents are
changed. See the Event Management chapter for details.

Appearance Manager and Keyboard Focus
Before the Appearance ManagerÕs arrival, the only user interface element that could process keystrokes was an editing
field. With the Appearance Manager present, a variety of user interface elements can process keystrokes, such as
editing fields, list boxes and the clock control. Keystrokes are directed at only one user interface element at a time (and
possibly at no element at all). When a user interface element processes keystrokes in such a way, it is said to have the
Òkeyboard focus.Ó Only one user interface element can have the keyboard focus at a time, and it is visually indicated
with a highlighted ÒbandÓ around the object. Tools Plus takes care of the focus highlight, and of applying keystrokes to
the element that has the keyboard focus.

The process of moving the keyboard focus between objects, either by tabbing or clicking, is identical to that of
navigating between editing fields. For details, see the ÒClicking and TabbingÓ section in this chapter.

Appearance Manager Controls
The Appearance Manager, first introduced in mid 1997 with Mac OS 8, gives your application a number of 3D
controls including editing fields with a 3D box around them, and static text controls. All the new Appearance Manager
controls are implemented as CDEFs, but unlike third party CDEF resources that must be installed in your application
when it is built, the Appearance ManagerÕs edit text and static text control is available to your application without
having to install them. They are available from the system, just like regular system controls, if the Macintosh running
your application has an Appearance Manager.

If you want to use the Appearance ManagerÕs edit text control or static text control, you need to make your application
ÒAppearance Manager aware.Ó 680x0 applications are automatically Appearance Manager aware. To make your
PowerPC application Appearance Manager aware, see the Designing Your Application chapter of this manual for
details in the ÒUsing the Appearance ManagerÓ section.

See the chapters on Buttons, Scroll Bars, List Boxes and Pop-Up Menus in this user manual for additional Appearance
Manager controls.

9 Editing Fields

WaterÕs Edge Software 249

- Note: For complete information on Appearance Manager concepts, the Appearance ManagerÕs features, and how to
best use the Appearance ManagerÕs new controls, please read the documentation pertaining to the Appearance
Manager. It is available from Apple or in the latest issue of Inside Macintosh. This manual does not duplicate
that material.

Edit Text (CDEF 17)

The Edit Text control is implemented as a Tools Plus editing field, so you can use the same
Tools Plus routines to create and work with standard TextEdit fields or with the Appearance
ManagerÕs Edit Text controls.

The Appearance ManagerÕs Edit Text controls do not support some of features that are part of
Tools Plus. This is due to the limitations of the Appearance Manager.

¥ Scroll bars cannot be attached to the field
¥ Tools PlusÕs Òsmart scrollingÓ (text scrolling that accelerates as you drag the mouse further

out of the editing field)
¥ The following cursor control keys do nothing: Home, End, Page Up and Page Down
¥ A fieldÕs text is always reset to the top when the field is deactivated
¥ Word-wrap is always on. This is most noticeable in 1-line fields that are not length limited

because as the text wraps, all the user sees in the caret at the left of an empty field. The
user is in fact on the second line of the field, but he cannot see the first line of text so it
may appear that the text disappeared. This is standard behavior for editing fields, but in
Tools PlusÕs fields that donÕt use the Appearance ManagerÕs Edit Text control, text only
scrolls horizontally without word wrap.

CONST
kControlEditTextProc = 272; {Edit Text ProcID }

Edit Text control

Static Text (CDEF 18)

The Static Text control can be implemented as a non-selectable button (see the Buttons
chapter), or as a special kind of field called a static text field. You can use static text controls in
place of standard static text items in dialogs. The advantage this provides is that the text looks
disabled on an inactive window (it is dimmed) and you can easily manipulate the text as you
would any other control, such as hiding and showing the control. The user cannot interact with
this control.

CONST
kControlStaticTextProc = 288; {Static Text ProcID }

Enabled

Disabled

Creating a Field Using a ÔCNTLÕ Resource
Tools Plus offers considerable versatility in the way it supports the creation of editable fields and static fields from
ÔCNTLÕ resources. These features are most often used when opening a dialog (ÔDLOGÕ resource) that contains fields
or static text items. In all cases, the ÔCNTLÕ resource specifies a CDEF ID of 17 which produces a procID of 272 plus
any variants for an editable field, or a CDEF ID of 18 which produces a procID of 288 plus any variants for a static
text field. When you open a dialog, ÔCNTLÕ resources that reference these CDEF IDs (the edit text or static text
control) create a Tools Plus field. The translation from a ÔCNTLÕ resource to a Tools Plus field takes place as follows:

¥ Tools Plus starts by assuming that you want to use the Appearance ManagerÕs edit text control (CDEF 17) or
static text control (CDEF 18) and it attempts to create the control.

¥ If the Appearance Manager is not available, a regular TextEdit field is created. You can use the same Tools Plus
routines to access standard TextEdit fields as you would an edit text or static text control.

Tools Plus

250

¥ The field is created using a default appearance and behavior specification. You can change this default value using
the SetDialogEditTextSpec and SetDialogStaticTextSpec routines.

¥ To set the appearance and behavior specifications for a field, place the specificationÕs value in the ÔCNTLÕ
resourceÕs contrlRfCon field, the reference constant. A list of possible values can be found in the NewField
description.

Flag your ÔCNTLÕ resources as purgeable to save memory. Tools Plus makes a copy of their data.

..

NewStrHandle
Allocate memory for a string and initialize it to an empty string.

C pascal StringHandle NewStrHandle (short StringLen);

Pascal function NewStrHandle (StringLen: INTEGER): StringHandle;

StringLen is the size of the string being allocated, from 1 to 32767 characters. Although a Pascal string (Str255) can
contain a maximum of 255 characters, Pascal applications can still reference the larger 32K structure as a large block
of text. NewStrHandle automatically allocates one additional byte to account for a Pascal stringÕs length byte or a C
stringÕs null terminator.

The routineÕs value returns a handle to a string of the specified length. It is initialized to an empty string (ÔÔ), thus
making is ready for immediate use with the NewField or NewFieldRect routines.

When you are finished using this handle, you can deallocate it using the toolboxÕs DisposeHandle routine. Be careful
not to deallocate this handle after you assign it to a field unless the field is deleted first.

+ Warning: When allocating a Pascal string handle, make sure you do not use a value that is greater than 255 (PascalÕs
maximum string size). If you do, NewField will reject the handle and tell you that you have given it an
invalid parameter.

..

NewField
Create a new field. The new field is not activated.

C pascal void NewField (short Field, short left, short top, short right,
short bottom, Handle hStr, long Spec, short Just);

Pascal procedure NewField (Field, left, top, right, bottom: INTEGER;
hStr: HANDLE; Spec: LONGINT; Just: INTEGER);

Field specifies the field number (from 1 to 32767, or 1 to 511 when using the Appearance ManagerÕs Edit Text control
or Static Text control) that is created in the current window. Once a field is created, it is referenced by this field
number. If a field has been previously created in the current window using the same number, it is replaced with a new
field as specified by the parameters in the NewField routine. If the current window doesnÕt belong to your application,
or if no windows are open, NewField does nothing.

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the fieldÕs size and location in the
current window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom
right-hand corner (right,bottom). The field must be wide enough for at least 1 character (minimum of 5 pixels). The
height of the field should be the same as a fontÕs height (font height can be determined by calling the GetFontInfo
routine and adding Ascent + Descent + Leading). In multiple-line fields, the height should be in increments of the font
height. If top and bottom are the same, NewField calculates the line height for you and creates a field that is one line
high. If bottom is less that top, NewField takes the absolute value of bottom and creates a field that is that many lines

9 Editing Fields

WaterÕs Edge Software 251

high (i.e., if top is 30 and bottom is -4, a four line field is created starting downward at the top co-ordinate).

You can align the fieldÕs edge to a windowÕs edge by using the teLeftEdge, teTopEdge, teRightEdge or teBottomEdge
constants. Tools Plus calculates the fieldÕs co-ordinates correctly regardless if your field has scroll bars or not.

HStr is a handle that points to a Pascal string or a C string. It provides this editing field with a reference to its
associated text. You must either allocate memory for this handle and set it to a default string value before using it here,
or specify nil and let NewField allocate the string for you. Using the NewStrHandle routine is a good way to allocate
and initialize a string handle of a required size. When you specify nil, NewField allocates a handle to a 255 character
string structure and initializes it to zero characters. NewField can automatically allocate a 32767 character C string if
you include the teCstring and teBuffered options (high speed buffering). An automatically allocated string is
automatically deallocated when the field is deleted or when its parent window is closed. If you must lock this handle,
do so temporarily and make sure it is unlocked before calling any Tools Plus routines.

Spec specifies the appearance and behavior of the editing field. See ÒAppearance and Behavior SpecificationÓ for
details later in this section.

Just specifies if a field is left aligned, right aligned, or centered. The constants teJustLeft, teJustRight or teJustCenter
can be used.

Appearance and Behavior Specification

Spec specifies a fieldÕs appearance and behavior. The value for this 4-byte long integer can be specified by adding a set
of constants to obtain the desired result. The constants defining the available options are as follows:

Optionally choose any of the following optionsÉ
teSystemBody Create the field using the Appearance ManagerÕs edit text control or static text

control. If the Appearance Manager is not available, a regular TextEdit field is
created. When you create a field with this option, the text and optional box are
dimmed when the field is on an inactive window. Note: Only fields that are
implemented as a control can be embedded into other controls.

teStaticText Create the field as a static text field. This option is used to create display-only
fields that do not have a box around them. They look just like ordinary text does
on a window, except static text fields are automatically refreshed and your
application can change their text as required.

teReadOnly This option prevents the user from editing the field in any way (typing, Edit
menu, etc.) If the field is editable and enabled, the user can select text in the
field and copy it only.

teUseWFont Display the field using the windowÕs current font, size and style settings (as set
by the TextFont, TextSize, and TextFace routines). The field stores this
information for future reference. By default, fields are drawn using the system
font (Chicago, 12 pt).

teDimWhenInactive Dim the field as though it is disabled when it is displayed on an inactive
window. This option is automatically turned on when the teSystemBody option
is used.

teAllowCR Allow carriage return characters (Return) in the field. By default, carriage
returns are disallowed and are ignored while a user is typing in a field.

teNoCR Disallow carriage return characters (Return) in the field. This is the default and it
does not need to be explicitly included.

teBox A 1-pixel wide box is drawn around the field as a rectangle that is exactly 3
pixels larger than the coordinates specified by left, top, right and bottom. This is
the default and it does not need to be explicitly included.

Tools Plus

252

teNoBox A box is not drawn around the field. One reason you may decide not to have a
box drawn around your field is to accommodate many small fields that are laid
out as a grid to resemble a spreadsheet.

teLengthLimit The user is prevented from typing more characters than the fieldÕs maximum
string length. By default, the user can type up to 32767 characters in a field. All
fields can be length limited by using FieldLengthLimit(on) immediately after
Tools Plus initialization.

teResizeHdl Automatically resize the fieldÕs text handle to accommodate the exact amount of
text stored in it. By default, the handleÕs size is not changed by Tools Plus.
When using this option, the handleÕs size may shrink, but it will not grow larger
than the originally supplied handle size. If you specify nil in place of a string
handle (thereby indicating that NewField should allocate the handle for you), a
Pascal string handle may grow up to 255 characters while a C string handle may
grow up to 32767 characters.

This option saves memory but introduces additional risk because memory
consumption becomes more dynamic.

teFilter Apply the current field filter to this field (the current filter is specified by the
CurrentFilter routine). The field remembers the current filter. Whenever the user
types or pastes into the field, that filter is used to allow or disallow a specific
character set and/or to convert characters to upper or lower case letters. See
NewFieldFilter and CurrentFilter for details on creating and setting a filter.

teCstring The hStr handle points to a null-terminated C string. By default, NewField
expects the handle to point to a Pascal string which is prefixed by a length byte.

teDisabled The field is disabled. By default, a new field is enabled.

teAutoMoveSize Automatically move and/or resize the field and its scroll bars when the
windowÕs size changes. The AutoMoveSize routine lets you specify which sides
are altered. You can use the AutoMoveSizeField routine as an alternative to
setting this option.

teHidden Create a hidden field. This kind of field is accessible to your application but not
to the user.

teBuffered Increase the fieldÕs performance by assigning a TextEdit record to this field.
This requires more memory but speeds up activating the field and refreshing it
when it is inactive. Not needed for fields storing less that 1K.

Note: If the fieldÕs text handle was automatically allocated (by specifying nil as
a string handle) Tools Plus does not allocate a Pascal or C string. It
allocates a generic text handle that is the exact length of the text. It is not
prefixed with a Pascal-styled length byte or null-terminated like a C
string.

teNoResetOnDeactivate By default, a field scrolls to the top left (or right if itÕs right aligned) when it is
deactivated. Use this option to leave the field as the user leaves it when the field
is deactivated (i.e., when tabbing to another field, when the user clicks in
another field, or when the application activates another field).

teVScroll Include a vertical scroll bar for this field. By default, fields do not have scroll
bars. The scroll bar is created outside the fieldÕs co-ordinates.

teLiveScroll Scroll the fieldÕs text in real time as the user moves the scroll barÕs thumb. This
is not a Macintosh user interface standard. By default, an outline tracks the
mouse as the user drags the scroll barÕs thumb. When the user releases the
mouse button, the scroll barÕs thumb and the fieldÕs text snap to their new
position.

9 Editing Fields

WaterÕs Edge Software 253

Optionally choose only one of the following text selection optionsÉ
teTabSelectAll Select the entire fieldÕs text when tabbing into this field. This is the default and it

does not need to be explicitly included.

teTabSelectEnd Place an insertion point at the end of the fieldÕs text when tabbing into this field.

teTabSelectStart Place an insertion point at the beginning of the fieldÕs text when tabbing into this
field.

Optionally choose only one of the following vertical scroll bar offset optionsÉ
teVScrollDown15
teVScrollDown30
teVScrollDown45

ß
teVScrollDown195
teVScrollDown210
teVScrollDown225

Bring the top of the vertical (right) scroll bar down by multiple of 15 pixels to
allow additional user interface elements to be placed above the scroll bar.
Normally, the vertical scroll bar extends to the top of field.

No offset With teVScrollDown15 offset

Optionally choose only one of the following background optionsÉ
teWhiteBack The fieldÕs background is white. This is the default and it does not need to be

explicitly included.

teBackdrop The fieldÕs background is the same color as the windowÕs backdrop color.

teColorBack The field remembers the windowÕs background color and uses it as the fieldÕs
background color. If Color QuickDraw is unavailable (or unused), the
background is white.

Optionally choose only one of the following text color optionsÉ
teBlackText Text is black. This is the default, so omitting all options implies using this one.

teColorText The field remembers the windowÕs foreground color and uses it as the fieldÕs
text color. If Color QuickDraw is unavailable (or unused), the text is black.

Single Line Fields

Tools Plus lets you create single line editing fields in which word wrap does not occur. Instead, characters are
automatically scrolled horizontally along a single line. To create a single line field, set the fieldÕs height equal to its
fontÕs height (font height can be determined by calling the GetFontInfo routine and adding Ascent + Descent +
Leading). You can also accomplish this by specifying a bottom co-ordinate that is the same as the top and letting
NewField calculate the exact line height. You must also specify carriage returns are disallowed in the field.

Also see: NewFieldRect and NewDialogField
FieldLengthLimit to limit the length of editable text
EnableField to enable or disable a field
NewFieldFilter, CurrentFieldFilter and SetFieldFilter to utilize character filtering and or/case shifting
NewWideField and NewWideFieldRect for fields with a horizontal scroll bar

- Note: The numeric range for the field number (1 through 32767) for each window is a theoretical limit. Your actual
limit will be determined by the amount of available memory and your processorÕs speed. Even though the
Macintosh running your application may have enough memory, a large number of fields can slow down
operations that access fields such as tabbing between fields and activating fields. This is only a concern with a
very large number of fields since even the slowest Macintosh can easily handle a few hundred fields in a single
window.

Tools Plus

254

- Note: Tools Plus makes no attempt to control the placement of fields or to protect them once they have been created.
It is your responsibility to ensure that fields are a sufficient size (at least 1 character wide and high), and that
their placement within the window is reasonable and does not conflict with other objects. Furthermore, you
should not allow your applicationÕs text and drawing processes to interfere with fields. Windows with a Òsize
boxÓ should not allow fields to be obscured or hidden by making the window too small.

+ Warning: Your application must allocate memory for each handle that it provides to NewField by using the
NewHandle routine. Tools Plus does not automatically allocate this memory. If your editing fields contain
random characters, it is a sure sign that you have not allocated memory for your handle.

CONST {Behavior and Appearance Options: }
{Field co-ordinates: }

teLeftEdge =-32768; { Window's left edge }
teTopEdge =-32768; { Window's top edge }
teRightEdge = 32767; { Window's right edge }
teBottomEdge = 32767; { Window's bottom edge }

{Carriage Returns and Box: }
teAllowCR = $00000100; { Allow Carriage Return in text }
teNoCR = $00000000; { Disallow Carriage Return in text }
teBox = $00000000; { Draw box around field }
teNoBox = $00000200; { Don't draw box around field }

{Combined Box and/or CR constants: }
teBoxNoCR = teBox + teNoCR; { Box around field, no CR allowed }
teBoxCR = teBox + teAllowCR; { Box around field, CR allowed }
teNoBoxNoCR = teNoBox + teNoCR; { No box, no CR allowed }
teNoBoxCR = teNoBox + teAllowCR; { No box, CR allowed }

{Other Options: }
teSystemBody = $00000020; {Use Appearance Manager Edit Text control }
teStaticText = $00000040; {Create 'Static Text' field }
teReadOnly = $00000080; {Field cannot be edited by user }
teDimWhenInactive = $00000004; {Dim when field is on an inactive window }
teUseWFont = $00000008; {Use window's font }
teLengthLimit = $00000400; { Limit typing to field's length }
teResizeHdl = $00000800; { Resize text handle to save memory }
teFilter = $00001000; { Use current field filter }
teCstring = $00002000; { C string text format (32K max) }
teDisabled = $00004000; { Field is disabled }
teHidden = $00008000; { Create a hidden field }
teBuffered = $00040000; { Accelerate large field with buffer }
teAutoMoveSize = $00080000; { Auto-resize as window's size changes }
teNoResetOnDeactivate = $00100000; { Retain scrolling on deactivate }
teLiveScroll = $00200000; { Live scrolling using scroll bars }
teVScroll = $00400000; { Field has a vertical scroll bar }

{Default selection on activation: }
teTabSelectEnd = $00010000; { Insertion point at end }
teTabSelectStart = $00020000; { Insertion point at start }
teTabSelectAll = $00000000; { Select all text }

{Move top of vertical scroll bar down by: }
teVScrollDown15 = $01000000; { 15 pixels }
teVScrollDown30 = $02000000; { 30 pixels }
teVScrollDown45 = $03000000; { 45 pixels }
teVScrollDown60 = $04000000; { 60 pixels }
teVScrollDown75 = $05000000; { 75 pixels }
teVScrollDown90 = $06000000; { 90 pixels }
teVScrollDown105 = $07000000; { 105 pixels }
teVScrollDown120 = $08000000; { 120 pixels }
teVScrollDown135 = $09000000; { 135 pixels }
teVScrollDown150 = $0A000000; { 150 pixels }
teVScrollDown165 = $0B000000; { 165 pixels }
teVScrollDown180 = $0C000000; { 180 pixels }
teVScrollDown195 = $0D000000; { 195 pixels }
teVScrollDown210 = $0E000000; { 210 pixels }
teVScrollDown225 = $0F000000; { 225 pixels }

{Background Color: }
teWhiteBack = $0000; { White background (default) }
teBackdrop = $0001; { Draw on backdrop color }
teColorBack = $0002; { Color background }

{Text Color: }
teBlackText = $0000; { Black text (default) }
teColorText = $0010; { Foreground colored text }

{Combined text & background color constants: }
teBlackOnBackdrop = teBlackText + teBackdrop; {Black text on backdrop }

9 Editing Fields

WaterÕs Edge Software 255

teBlackOnWhite = teBlackText + teWhiteBack; {Black text on white }
teBlackOnColor = teBlackText + teColorBack; {Black text on color }
teColorOnBackdrop = teColorText + teBackdrop; {Color text on backdrop }
teColorOnWhite = teColorText + teWhiteBack; {Color text on white }
teColorOnColor = teColorText + teColorBack; {Color text on color }

{Text alignment: }
teJustLeft = 0; { Left aligned (default) }
teJustCenter = 1; { Centered }
teJustRight =-1; { Right aligned }

..

NewFieldRect
Create a new field. The new field is not activated.

C pascal void NewFieldRect (short Field, const Rect *Bounds, Handle hStr,
long Spec, short Just);

Pascal procedure NewFieldRect (Field: INTEGER; Bounds: RECT; hStr: HANDLE;
Spec: LONGINT; Just: INTEGER);

NewFieldRect is identical to the NewField routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

..

NewDialogField
Create a new field in a dialog using a dialog itemÕs co-ordinates.

C pascal void NewDialogField (short Field, Handle hStr, long Spec, short Just);

Pascal procedure NewDialogField (Field: INTEGER; hStr: HANDLE; Spec: LONGINT;
Just: INTEGER);

NewDialogField is identical to the NewField routine, except that the field is created in a dialog (a window opened with
the LoadDialog routine, or one that had a dialog list attached with the LoadDialogList routine). The fieldÕs co-
ordinates are obtained from the dialog item whose number matches the field number.

..

NewWideField
Create a new field with a horizontal scroll bar. The new field is not activated.

C pascal void NewWideField (short Field, short left, short top, short right,
short bottom, short DestWidth, Handle hStr, long Spec,
short Just);

Pascal procedure NewWideField (Field: INTEGER; left, top, right, bottom: INTEGER;
DestWidth: INTEGER; hStr: HANDLE; Spec: LONGINT; Just: INTEGER);

NewWideField is identical to the NewField routine except that it creates a field with a horizontal scroll bar. The scroll
bar is created outside the fieldÕs co-ordinates.

DestWidth is an additional parameter that specifies the width in pixels at which word wrap takes place. Inside
Macintosh refers to this as the destination rectangleÕs width. The co-ordinates specified by left, top, right and bottom
are the viewing area inside which text can be seen and edited. DestWidth, on the other hand, is the width of the
rectangle containing the text behind the scenes. DestWidth can have a value from 50 to 15000.

Tools Plus

256

DestWidth

Viewing and Editing Area

You can have Tools Plus calculate the destination rectangleÕs width by specifying a value of zero (0) for DestWidth.
For fieldÕs whose right side is attached to the windowÕs right edge, or if you have included the teAutoMoveSize option
with the fieldÕs right side tracking the windowÕs width, NewWideField creates a destination rectangle whose width is
as wide as the fieldÕs width when the window is sized to its maximum width.

Spec specifies the appearance and behavior of the editing field. The value for this 4-byte long integer can be specified
by adding a set of constants to obtain the desired result. In addition to the values specified in NewField, you can also
optionally offset the horizontal scroll barÕs left side.

Optionally choose only one of the following horizontal scroll bar offset optionsÉ
teHScrollRight15
teHScrollRight30
teHScrollRight45

ß
teHScrollRight195
teHScrollRight210
teHScrollRight225

Bring the horizontal (bottom) scroll barÕs left side to the right by a multiple of
15 pixels to allow additional user interface elements to be placed to the left the
scroll bar. Normally, the horizontal scroll bar extends to the fieldÕs left side.

No offset With teHScrollRight45 offset

CONST {Move left side of horiz. scroll bar right by: }
teHScrollRight15 = $10000000; { 15 pixels }
teHScrollRight30 = $20000000; { 30 pixels }
teHScrollRight45 = $30000000; { 45 pixels }
teHScrollRight60 = $40000000; { 60 pixels }
teHScrollRight75 = $50000000; { 75 pixels }
teHScrollRight90 = $60000000; { 90 pixels }
teHScrollRight105 = $70000000; { 105 pixels }
teHScrollRight120 = $80000000; { 120 pixels }
teHScrollRight135 = $90000000; { 135 pixels }
teHScrollRight150 = $A0000000; { 150 pixels }
teHScrollRight165 = $B0000000; { 165 pixels }
teHScrollRight180 = $C0000000; { 180 pixels }
teHScrollRight195 = $D0000000; { 195 pixels }
teHScrollRight210 = $E0000000; { 210 pixels }
teHScrollRight225 = $F0000000; { 225 pixels }

..

NewWideFieldRect
Create a new field with a horizontal scroll bar. The new field is not activated.

C pascal void NewWideFieldRect (short Field, const Rect *Bounds,
short DestWidth, Handle hStr, long Spec, short Just);

Pascal procedure NewWideFieldRect (Field: INTEGER; Bounds: RECT;
DestWidth: INTEGER; hStr: HANDLE; Spec: LONGINT; Just: INTEGER);

NewWideFieldRect is identical to the NewWideField routine, except that it accepts the Bounds rectangle in place of
the individual left, top, right and bottom co-ordinates.

..

9 Editing Fields

WaterÕs Edge Software 257

NewDialogWideField
Create a new field with a horizontal scroll bar in a dialog using a dialog itemÕs co-ordinates.

C pascal void NewDialogWideField (short Field, short DestWidth, Handle hStr,
long Spec, short Just);

Pascal procedure NewDialogWideField (Field: INTEGER; DestWidth: INTEGER;
hStr: HANDLE; Spec: LONGINT; Just: INTEGER);

NewDialogWideField is identical to the NewWideField routine, except that the field is created in a dialog (a window
opened with the LoadDialog routine, or one that had a dialog list attached with the LoadDialogList routine). The
fieldÕs co-ordinates are obtained from the dialog item whose number matches the field number.

..

EmbedFieldInButton
Embed a field into a button or into the windowÕs root control (Appearance Manager only).

C pascal void EmbedFieldInButton (short Field, short ContainerButton);

Pascal procedure EmbedFieldInButton (Field, ContainerButton: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedFieldInButton lets you
manually embed a field into a button, or into the windowÕs root control. Note that the term ÒbuttonÓ does not literally
mean a button control. It means any control that is implemented as a button in Tools Plus. The most likely candidate is
a Group Box control. If the Appearance Manager is not available, EmbedFieldInButton does nothing.

Field specifies the field number (from 1 to 511) that is affected in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the field does not exist in the current window,
EmbedFieldInButton does nothing. Note that the only fields that can be embedded are those that are drawn using a
CDEF (use the teSystemBody option when creating the field).

ContainerButton specifies the button number (from 1 to 511) into which Field is embedded. This control must exist in
the current window, and it must be a ÒcontainerÓ type control such as the Appearance ManagerÕs Group Box. The field
must fit entirely within the container control or EmbedFieldInButton does nothing. If a value of 0 is provided for a
container button, Field is embedded into the windowÕs root control.

Also see: EmbedFieldInScrollBar and SetAutoEmbed.

..

EmbedFieldInScrollBar
Embed a field into a scroll bar or into the windowÕs root control (Appearance Manager only).

C pascal void EmbedFieldInScrollBar (short Field, short ContainerScrollBar);

Pascal procedure EmbedFieldInScrollBar (Field, ContainerScrollBar: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedFieldInScrollBar lets you
manually embed a field into a scroll bar, or into the windowÕs root control. Note that the term Òscroll barÓ does not
literally mean a scroll bar control. It means any control that is implemented as a scroll bar in Tools Plus. If the
Appearance Manager is not available, EmbedFieldInScrollBar does nothing.

Tools Plus

258

Field specifies the field number (from 1 to 511) that is affected in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the field does not exist in the current window,
EmbedFieldInScrollBar does nothing. Note that the only fields that can be embedded are those that are drawn using a
CDEF (use the teSystemBody option when creating the field).

ContainerScrollBar specifies the scroll bar number (from 1 to 511) into which Field is embedded. This control must
exist in the current window, and it must be a ÒcontainerÓ type control. The field must fit entirely within the container
control or EmbedFieldInScrollBar does nothing. If a value of 0 is provided for a container scroll bar, Field is
embedded into the windowÕs root control.

Also see: EmbedFieldInButton and SetAutoEmbed.

..

GetFreeFieldNum
Get the first unused field number.

C pascal short GetFreeFieldNum (void);

Pascal function GetFreeFieldNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own field
number, GetFreeFieldNum returns the first unused (free) field number. Using this routine, you can assign an unused
field number to a variable, then use that variable throughout your application without concern for the true field
number.

GetFreeFieldNum returns the first free field number on the current window. If the current window doesnÕt belong to
your application, if no windows are open, or if the maximum number of fields has already been created on the current
window (no new ones can be created), GetFreeFieldNum returns a value of zero (0).

..

DeleteField
Delete a field.

C pascal void DeleteField (short Field);

Pascal procedure DeleteField (Field: INTEGER);

Field specifies the field number (from 1 to 32767) that is deleted from the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the field does not exist in the current window,
DeleteField does nothing.

If the field being deleted is the active field then it is deactivated before being deleted. If field was also in an active
window that allows access to pull-down menus, the Edit menuÕs ÒUndoÓ item is changed to ÒCanÕt UndoÓ and is
disabled along with the ÒCutÓ, ÒCopyÓ, ÒPasteÓ and ÒClearÓ items. Use KillField if you want to delete the field without
removing its image from the window.

..

9 Editing Fields

WaterÕs Edge Software 259

KillField
Delete a field without affecting its image on the window.

C pascal void KillField (short Field);

Pascal procedure KillField (Field: INTEGER);

KillField is identical to DeleteField except that it does not remove the fieldÕs image from the window. This routine is
useful for scrolling fields in an area within a window (i.e., not the entire window). ScrollRect is used to scroll the
images in the affected area. OffsetField repositions the fieldÕs co-ordinates without affecting its image (since
ScrollRect has already moved it). KillField then deletes the fields that are scrolled out of view without affecting their
image (ScrollRect has already scrolled them out of view).

..

FieldDisplay
Hide or show a field.

C pascal void FieldDisplay (short Field, Boolean Show);

Pascal procedure FieldDisplay (Field: INTEGER; Show: BOOLEAN);

FieldDisplay hides or shows a field on the current window. The result is seen immediately. Use discretion with this
routine since fields should be enabled and disabled to indicate if they are accessible by the user.

Field specifies the field number (from 1 to 32767) that is affected in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the field does not exist in the current window, FieldDisplay
does nothing.

Show indicates if the field is being hidden or displayed. The two constants that can be used for this flag are on and off.
If the affected field is the windowÕs active field, it is automatically deactivated before it is hidden. This will result in
the loss of the edited text if you do not call SaveFieldString before hiding the field.

..

FieldIsVisible
Determine if a field is visible.

C pascal Boolean FieldIsVisible (short Field);

Pascal function FieldIsVisible (Field: INTEGER): BOOLEAN;

FieldIsVisible reports if a field is visible on the current window, or if it is hidden.

Field specifies the field number (from 1 to 32767) that is queried in the current window.

This routineÕs value returns true if the field is visible, and false if the field is hidden. If the current window doesnÕt
belong to your application, or if no windows are open, or if the field does not exist in the current window,
FieldIsVisible returns false. This routine takes control embedding into account, so it will return false if the target field
is embedded and its container control is hidden.

..

Tools Plus

260

ObscureField
Hide a field without removing its image from the window.

C pascal void ObscureField (short Field);

Pascal procedure ObscureField (Field: INTEGER);

ObscureField hides a field on the current window without removing its image from the window. This routine is useful
for scrolling fields in an area within a window (i.e., not the entire window). ScrollRect is used to scroll the images in
the affected area. OffsetField repositions the fieldÕs co-ordinates without affecting its image (since ScrollRect has
already moved it). ObscureField then hides the fields that are scrolled out of view without affecting their image
(ScrollRect has already scrolled them out of view).

Field specifies the field number (from 1 to 32767) that is hidden in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the field does not exist in the current window,
ObscureField does nothing. If the affected field is the windowÕs active field, it is automatically deactivated before it is
hidden. This will result in the loss of the edited text if you do not call SaveFieldString before hiding the field.

..

GetFieldRect
Get a fieldÕs co-ordinates.

C pascal void GetFieldRect (short Field, Rect *Bounds);

Pascal procedure GetFieldRect (Field: INTEGER; var Bounds: RECT);

Field specifies the field number (from 1 to 32767) that is queried in the current window.

Bounds returns the fieldÕs bounding rectangle specified in the windowÕs local co-ordinates. These co-ordinates match
those used to create the field. If the current window doesnÕt belong to your application, or if no windows are open, or if
the field does not exist in the current window, Bounds returns with all co-ordinates set to zero (0).

..

SetFieldFontSettings
Set a fieldÕs font, size and style settings.

C pascal void SetFieldFontSettings (short Field,
short theFont, short theSize, Style theStyle);

Pascal procedure SetFieldFontSettings (Field: INTEGER;
theFont: INTEGER; theSize: INTEGER; theStyle: Style);

Field specifies the field number (from 1 to 32767) that is affected in the current window. If the current window doesnÕt
belong to your application, if no windows are open, or if the field does not exist, SetFieldFontSettings does nothing.
Otherwise, the change is seen immediately.

TheFont specifies the fieldÕs new font. The default is Chicago, which is represented by the systemFont constant.

TheSize specifies the fontÕs size. The default is 0, which represents the default font size used by the system font, or
12pt in this case.

TheStyle specifies the fieldÕs new style. Special character constants defined by the Font Manager are bold, italic,
underline and shadow. C programmers use the Font ManagerÕs constants to specify a composite style, such as
SetFieldFontSettings(1, geneva, 9, bold + outline) for bold and outlined, or SetFieldFontSettings(1, geneva, 9, 0) for
plain text. Pascal programmers use the Font ManagerÕs constants to specify a style set, such as

9 Editing Fields

WaterÕs Edge Software 261

SetFieldFontSettings(1,Êgeneva, 9, [bold, outline]) for bold and outlined, or SetFieldFontSettings(1, geneva, 9, []) for
plain text.

A fieldÕs font settings are set when a field is created, so this routine is not normally used by many applications.

..

GetFieldFontSettings
Get a fieldÕs font, size and style settings.

C pascal void GetFieldFontSettings (short Field,
short *theFont, short *theSize, Style *theStyle);

Pascal procedure GetFieldFontSettings (Field: INTEGER;
var theFont: INTEGER; var theSize: INTEGER; var theStyle: Style);

Field specifies the field number (from 1 to 32767) in the current window whose font settings are being retrieved. If the
current window doesnÕt belong to your application, if no windows are open, or if Field specifies a field that does not
exist, GetFieldFontSettings returns default values.

TheFont is the fieldÕs font number. The default is 0 which is represented by the systemFont constant.

TheSize is the fontÕs size. The default is 0, which represents the default font size used by the system font, or 12pt in
this case.

TheStyle is the fieldÕs font style. The default is plain text, which is represented by 0 in C and [] in Pascal.

..

SetFieldColors
Set a fieldÕs colors.

C pascal void SetFieldColors (short Field,
const RGBColor *TextColor, const RGBColor *BackColor);

Pascal procedure SetFieldColors (Field: INTEGER;
TextColor: RGBColor; BackColor: RGBColor);

Field specifies the field number (from 1 to 32767) in the current window whose colors are being set. If the current
window doesnÕt belong to your application, or if no windows are open, SetFieldColors does nothing. Also, if Field
specifies a field that does not exist, or if Color QuickDraw is unavailable or not used, SetFieldColors does nothing.
The change is seen immediately, regardless if the field was originally created with colors or not.

TextColor is the color of the fieldÕs text.

BackColor is the fieldÕs background color upon which the text is drawn.

Normally, a fieldÕs colors are set when this field is created with NewField or NewFieldRect, so this routine would not
be used by many applications.

..

Tools Plus

262

GetFieldColors
Get a fieldÕs colors.

C pascal void GetFieldColors (short Field,
RGBColor *TextColor, RGBColor *BackColor);

Pascal procedure GetFieldColors (Field: INTEGER;
var TextColor: RGBColor; var BackColor: RGBColor);

Field specifies the field number (from 1 to 32767) in the current window whose colors are being retrieved. If the
current window doesnÕt belong to your application, or if no windows are open, or if Field specifies a field that does not
exist, GetFieldColors returns default color values.

TextColor is the color of the fieldÕs text. The default color is black.

BackColor is the fieldÕs background color upon which the text is drawn. The default color is white.

..

ActivateField
Activate a field.

C pascal void ActivateField (short Field, short Selection);

Pascal procedure ActivateField (Field, Selection: INTEGER);

Field specifies the field number (from 1 to 32767) being activated in the current window. ActivateField does nothing
under any of these conditions: the current window doesnÕt belong to your application, no windows are open, the field
does not exist in the current window, the field is disabled or hidden, or the field is a static text field.

Selection specifies which part of the text is selected. The constants that can be used to specify a fieldÕs text selection
are teSelectStart (places insertion point at beginning of the field), teSelectEnd (places insertion point at end of the
field), teSelectAll (selects all the text in the field) and teSelectDefault (selects text according to the fieldÕs default
specifications).

Activating a field allows the user to interact with the field by typing on the keyboard. On an active window, the field
acquires the keyboard focus making it the item that automatically processes keystrokes. Visually, this is indicated by
having the fieldÕs text highlighted, or by a flashing caret. Additionally, if the Appearance Manager is available, the
field is encompassed by a highlighting keyboard focus band to indicate that it has the focus. Using ActivateField in an
active window removes the keyboard focus from any other object that may have the focus within the same window or
any other active window such as a tool bar or floating palette. This action may deactivate another active field.

If the field being activated is in an active window that allows access to pull-down menus, the Edit menuÕs ÒUndoÓ item
is changed to ÒCanÕt UndoÓ and is disabled, while the ÒCutÓ, ÒCopyÓ, ÒPasteÓ and ÒClearÓ items are enabled/disabled
according to the insertion point or selection range as previously described in this chapter under ÒThe Edit Menu.Ó

Your application can activate virtually any field. This flexibility can lead to a confusing user interface by allowing the
keyboard focus (active field) to jump between active windows. A good rule to observe is to activate a field only on a
standard window (not a tool bar or a floating palette) when the window first opens. This sets up the default field for
that window. At all other times, activate a field only in response to a userÕs actions.

Also see: HaveTabInFocus, TabToFocus, the doClickToFocus event, and ClickToFocus for other activating services.

CONST {Field text selection: }
teSelectStart =1; {Insertion point at beginning of field }
teSelectEnd =2; {Insertion point at end of field }
teSelectAll =3; {Select the field's entire text }
teSelectDefault =0; {Set selection as specified when creating field }

..

9 Editing Fields

WaterÕs Edge Software 263

GetFieldSelection
Get a fieldÕs selection range.

C pascal void GetFieldSelection (short *SelStart, short *SelEnd);

Pascal procedure GetFieldSelection (var SelStart: INTEGER; var SelEnd: INTEGER);

GetFieldSelection returns the start and end of the selection range in the current windowÕs active field. If the current
window doesnÕt belong to your application, if no windows are open, or if the current window does not have an active
field, SelStart and SelEnd return with values of zero (0).

SelStart returns the beginning of the selection range. Character numbering starts from 0 and increases sequentially,
therefore a value of 0 indicates the beginning of the selection range is just before the first character.

SelEnd returns the end of the selection range. Character numbering starts from 0 and increases sequentially, therefore a
value of 6 indicates the end of the selection range is just before the seventh character, or just after the sixth character.

0 1 2 3 4 5 6 7 8Character Number: 9

..

SetFieldSelection
Set a fieldÕs selection range.

C pascal void SetFieldSelection (short SelStart, short SelEnd);

Pascal procedure SetFieldSelection (SelStart, SelEnd: INTEGER);

SetFieldSelection sets the start and end of the selection range in the current windowÕs active field. If the current
window doesnÕt belong to your application, if no windows are open, or if the current window does not have an active
field, SetFieldSelection does nothing. You will only need to use this routine if you need to specify selection on a
character by character basis. ActivateField lets you activate a field and place the insertion point at the beginning or end
of the field, or select the fieldÕs entire text.

SelStart defines the beginning of the selection range. Character numbering starts from 0 and increases sequentially,
therefore a value of 0 indicates the beginning of the selection range is just before the first character.

SelEnd defines the end of the selection range. Character numbering starts from 0 and increases sequentially, therefore a
value of 6 indicates the end of the selection range is just before the seventh character, or just after the sixth character.

..

DeactivateField
Deactivate the active field.

C pascal void DeactivateField (void);

Pascal procedure DeactivateField;

The active field, if one exists in the current window, is deactivated by this routine. If the current window doesnÕt
belong to your application, or if no windows are open, or if a field is not active, DeactivateField does nothing. Once a
field is deactivated, its edited text is discarded and replaced with the fieldÕs string. Therefore, if you want to save the
fieldÕs edited text, call GetEditString or GetEditHandle and validate the text, then call SaveFieldString prior to
deactivating the field.

Tools Plus

264

If the deactivated field is in an active window that allows access to pull-down menus, the Edit menuÕs ÒUndoÓ item is
changed to ÒCanÕt UndoÓ and is disabled along with the ÒCutÓ, ÒCopyÓ, ÒPasteÓ and ÒClearÓ items.

..

EnableField
Enable or disable a field.

C pascal void EnableField (short Field, Boolean EnabledFlag);

Pascal procedure EnableField (Field: INTEGER; EnabledFlag: BOOLEAN);

Field specifies the field number (from 1 to 32767) that is affected in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the field does not exist in the current window, EnableField
does nothing.

EnabledFlag specifies if the field is enabled or disabled. A disabled field cannot be activated by your application. The
user canÕt tab to it, click in it, or otherwise change the disabled fieldÕs contents. A disabled fieldÕs text and its outlining
box (if it has one) are grayed out. If you disable a field while it is active, the field is automatically deactivated and the
fieldÕs edited text is not saved. The two constants that can be used for this purpose are enabled and disabled.

Also see: DisabledFieldLook and SetDisabledFieldLook.

CONST {Field state }
enabled = true; {enable the field }
disabled = false; {disable the field }

..

FieldIsEnabled
Determine if a field is enabled or disabled.

C pascal Boolean FieldIsEnabled (short Field);

Pascal function FieldIsEnabled (Field: INTEGER): BOOLEAN;

Field specifies the field number (from 1 to 511) that is queried in the current window.

The routineÕs value returns true if the field is enabled, and false if the field is disabled. If the current window doesnÕt
belong to your application, or if no windows are open, or if the field does not exist in the current window,
FieldIsEnabled returns false. FieldIsEnabled returns the fieldÕs enabled state as it is currently displayed, so if the
fieldÕs window is inactive and has temporarily disabled the field, FieldIsEnabled returns false.

..

ClickToFocus
Process a mouse click that has occurred in a field or other item that wants the keyboard focus in an active window.

C pascal void ClickToFocus (void);

Pascal procedure ClickToFocus;

When Tools Plus reports a doClickToFocus event, it indicates that the user clicked the mouse in an a field or in
another user interface element that wants the keyboard focus. If a field is active when this event is reported, it may be
necessary to first validate the active field before responding to the click (before ClickToFocus is called). First, call
GetEditString or GetEditHandle to retrieve the active fieldÕs edited text for validation. If the string cannot be validated,
display an appropriate alert box and ignore the doClickToFocus event. If no error occurred, save the edited text as the

9 Editing Fields

WaterÕs Edge Software 265

fieldÕs string by calling SaveFieldString, then process the click by calling ClickToFocus. The InitToolsPlus routine
offers various options for automatically moving between fields and for saving fieldsÕ edited text.

ClickToFocus first deactivates the active field (if one exists) in any active window including a tool bar or floating
palette. Similarly, it removes the keyboard focus from any user interface element that may have it. The routine then
activates the required item and gives it the keyboard focus. In the case of an editing field, this means that an insertion
point is placed at the point of the click. A double-click in the field and/or subsequent dragging is processed
automatically.

If an editing field is activated in a window that allows access to pull-down menus, the Edit menuÕs ÒUndoÓ item is
changed to ÒCanÕt UndoÓ and is disabled, while the ÒCutÓ, ÒCopyÓ, ÒPasteÓ and ÒClearÓ items are enabled/disabled as
previously described in this chapter under ÒThe Edit MenuÓ. For other items that accept the keyboard focus, the Edit
menuÕs items are disabled.

+ Warning: Between the time when the doClickToFocus event is reported and when your application calls
ClickToFocus is called, observe the following rules:

¥ do not call Process1EventWhileBusy or ProcessToolboxEvent
¥ do not open or close any windows, including alerts and dialogs
¥ do not hide or show any windows
¥ do not activate any windows
¥ do not activate, deactivate, enable, disable or delete any user interface elements

ClickToFocus depends on working with the same window that registered the doClickToFocus event, and
will not work if your application gets or processes any subsequent events, or if you alter user interface
elements.

..

HaveTabInFocus
Determine if the user is tabbing to the next or previous field or item that can take the keyboard focus.

C pascal Boolean HaveTabInFocus (void);

Pascal function HaveTabInFocus: boolean;

When Tools Plus reports a doKeyDown or doAutoKey event, it simply indicates that Tools Plus is unable to
automatically process the key stroke by automatically applying to the active editing field or other item that has the
keyboard focus. Several conditions must be tested to determined if the user wants to tab to the next or previous item,
and fortunately, HaveTabInFocus performs all the necessary tests.

If the routine returns with a value of true, then the user wants to tab to the next or previous item.

HaveTabInFocus looks for the following conditions to return with a true value:
¥ A doKeyDown or doAutoKey event was reported
¥ The user is in an active editing field or other item that has the keyboard focus
¥ You do not activate another window in response to a doKeyDown or doAutoKey event
¥ You do not change the active editing field number (or keyboard focus item number) in response to a

doKeyDown or doAutoKey event
¥ The Tab key was typed (optionally, with the Shift key to tab to the previous field)
¥ The Command, Option, and Control key modifiers were all up when Tab was typed

It may be necessary to first process the active field before responding to the tab (before activating another field or
using TabToFocus). First, call GetEditString or GetEditHandle to retrieve the active fieldÕs edited text for validation. If
the string cannot be validated, display an appropriate alert box and ignore the doKeyDown or doAutoKey event. If no
error occurred, save the edited text as the fieldÕs string by calling SaveFieldString, then process the tab by calling
TabToFocus. The InitToolsPlus routine offers various options for automatically moving between fields and for saving
fieldsÕ edited text.

Also see: TabToFocus.

Tools Plus

266

TabToFocus
Tab to the next or previous field or item that can acquire the keyboard focus.

C pascal void TabToFocus (void);

Pascal procedure TabToFocus;

This routine is used in response to the HaveTabInFocus routine which detects that the user wants to tab to the next or
previous field or item that can acquire the keyboard focus. When Tools Plus reports a doKeyDown or doAutoKey
event (typing), and HaveTabInFocus returns with a value of true it indicates that the user wants to move to the
previous/next keyboard focus item. Your application then uses TabToFocus to execute the request.

TabToFocus first deactivates the active field and/or removes the keyboard focus from any user interface element that
has the focus in the active window. The routine then activates the previous or next user interface element that can
acquire the keyboard focus. If an editing field is activated in a window that allows access to pull-down menus, the Edit
menuÕs ÒUndoÓ item is changed to ÒCanÕt UndoÓ and is disabled, while the ÒCutÓ, ÒCopyÓ, ÒPasteÓ and ÒClearÓ items
are enabled/disabled as previously described in this chapter under ÒThe Edit MenuÓ. For other items that accept the
keyboard focus, the Edit menuÕs items are disabled.

TabToFocus considers the list of keyboard focus items to be cyclical, in that tabbing off the end of the list starts you at
the beginning of the list and vice versa.

Also see: HaveTabInFocus.

- Note: If you are using standard editing fields (without the teSystemBody option) make sure your fields are numbered
in the order in which you want to tab. If you are using the Appearance Manager and itÕs controls that can
acquire the keyboard focus (fields with the teSystemBody option and other user interface elements that acquire
the keyboard focus), make sure the items are created in the order in which you want to tab.

+ Warning: Do not mix ordinary editing fields (those created without the teSystemBody option) with Appearance
Manager items that acquire the keyboard focus because the user will not be able to tab through all the
elements in one continuous cycle. If the user is editing a non Appearance Manager field, then he will be
able to tab only between those fields. Similarly, if the user is working in an Appearance Manager control
that has the keyboard focus such as a field creed with the teSystemBody option, list box or clock control,
he will only be able to tab to other Appearance Manager controls.

+ Warning: Between the time when your application calls HaveTabInFocus and when your application calls
TabToFocus is called, observe the following rules:

¥ Do not call ProcessToolboxEvent or Process1EventWhileBusy
¥ Do not open or close any windows, including alerts and dialogs
¥ Do not hide or show any windows
¥ Do not activate any windows
¥ Do not activate, deactivate, enable, disable or delete any user interface elements

TabToFocus depends on working with the same window that registered the typing-related event, and may
not work as expected if Tools Plus reports or processes any subsequent events or if you alter user interface
elements.

..

9 Editing Fields

WaterÕs Edge Software 267

GetEditString
Obtain a copy of the active fieldÕs edited text.

C pascal void GetEditString (Str255 EditString);

Pascal procedure GetEditString (var EditString: Str255);

EditString retrieves a copy of the edited text from the active field in the current window. The fieldÕs edited text is not
altered by this routine. Although it is physically possible for the user to type more than 255 characters into a field that
is not length limited, only the first 255 characters (the limit of a Pascal string) are retrieved by this routine. If the
current window doesnÕt belong to your application or if it doesnÕt have an active field, or if no windows are open,
GetEditString returns an empty string (string length of 0).

If the field is not length limited, the text retrieved by GetEditString may be longer than the fieldÕs associated string
handle (as specified by the hStr handle when the field was created). If the field is length limited, EditStringÕs length
will never exceed the size limit of the fieldÕs associated string.

Also see: GetEditHandle, GetEditLength, GetFieldString, GetFieldHandle and GetFieldLength.

..

GetEditHandle
Obtain a handle to the active fieldÕs edited text.

C pascal Handle GetEditHandle (void);

Pascal function GetEditHandle: HANDLE;

This routine returns a handle to the edited text in the active field in the current window. Nil is returned if the current
window does not have an active field or if the current window does not belong to your application.

The handle points to a generic block of text, and not a Pascal or C string. This is the actual text being edited by the user
(it is not a copy of the text), so it is critically important that you do not change the text, resize, or deallocate the handle.
If you must lock this handle, do so only on a temporary basis and make sure the handle is unlocked before using any
Tools Plus routines.

Also see: GetEditString, GetEditLength, GetFieldString, GetFieldHandle and GetFieldLength.

..

GetEditLength
Determine the length of the active fieldÕs edited text.

C pascal short GetEditLength (void);

Pascal function GetEditLength: INTEGER;

This routine returns the length of the edited text in the active field in the current window. Zero (0) is returned if the
current window does not have an active field or if the current window does not belong to your application.

The length refers to a generic block of text, and not a Pascal or C string. This is the number of characters in the actual
text being edited by the user, and it does not have a Pascal string length-byte prefix or C string null-byte terminator. Its
value can be up to 32767 characters if the field is not length limited. In length limited fields, this number wonÕt exceed
the fieldÕs maximum size.

Also see: GetEditString, GetEditHandle, GetFieldString, GetFieldHandle and GetFieldLength.

Tools Plus

268

GetFieldString
Obtain a copy of a fieldÕs string.

C pascal void GetFieldString (short Field, Str255 EditString);

Pascal procedure GetFieldString (Field: INTEGER; var EditString: Str255);

Field specifies the editing field number (from 1 to 32767) that is queried in the current window.

EditString retrieves a copy of the specified fieldÕs string as a Pascal string. If the field is active, the string contains the
text that existed before changes were made by the user. Only the first 255 characters are retrieved if the fieldÕs string is
a C string and is larger than 255 characters. If the current window doesnÕt belong to your application, or if no windows
are open, or if the editing field does not exist in the current window, an empty string is returned.

Also see: GetEditString, GetEditHandle, GetEditLength, GetFieldHandle and GetFieldLength.

..

GetFieldHandle
Obtain a handle to a fieldÕs string.

C pascal Handle GetFieldHandle (short Field);

Pascal function GetFieldHandle (Field: INTEGER): HANDLE;

Field specifies the editing field number (from 1 to 32767) that is queried in the current window.

This routine returns a handle to the specified fieldÕs Pascal string or C string. If the field is active, the handle points to
text that existed before changes were made by the user. If the current window doesnÕt belong to your application, or if
no windows are open, or if the editing field does not exist in the current window, a nil handle is returned. It is critically
important that you do not change the text, resize, or deallocate the handle once your field has been created. If you must
lock this handle, do so only on a temporary basis and make sure the handle is unlocked before using any Tools Plus
routines. It is safest to paste text into the field using PasteIntoField or a similar Tools Plus routine.

Also see: GetEditString, GetEditHandle, GetEditLength, GetFieldString and GetFieldLength.

- Note: When you create a field using a nil text handle to automatically allocate a string handle, and you use the
teBuffered option to give a large field high performance, Tools Plus does not allocate a Pascal or C string. It
allocates a generic text handle that is the exact length of the text. It is not prefixed with a Pascal-styled length
byte or null-terminated like a C string. GetFieldHandle returns this generic handle.

+ Warning: When you create a field using a nil text handle to automatically allocate a string handle, and you use the
teBuffered option to give a large field high performance, Tools Plus performs some memory swapping
when a field is activated or deactivated. Therefore, your handle to the fieldÕs unedited text is valid until the
next time the file field is activated or deactivated.

..

9 Editing Fields

WaterÕs Edge Software 269

GetFieldLength
Determine the length of a fieldÕs string.

C pascal short GetFieldLength (short Field);

Pascal function GetFieldLength (Field: INTEGER): INTEGER;

Field specifies the editing field number (from 1 to 32767) that is queried in the current window.

This routine returns the length of the specified fieldÕs string (it excludes a Pascal stringÕs length-byte prefix or a C
stringÕs null termination byte). If the field is active, the length is for the text that existed before changes were made by
the user. Its value can be up to 32767 characters in a C string, or 255 characters in a Pascal string. In length limited
fields, this number wonÕt exceed the maximum size of the field. If the current window doesnÕt belong to your
application, or if no windows are open, or if the editing field does not exist in the current window, zero is returned.

Also see: GetEditString, GetEditHandle, GetEditLength, GetFieldString and GetFieldHandle.

..

FieldIsEmpty
Determine if the specified field is empty.

C pascal Boolean FieldIsEmpty (short Field);

Pascal function FieldIsEmpty (Field: INTEGER): BOOLEAN;

Field specifies the editing field number (from 1 to 32767) that is queried in the current window.

The routineÕs value returns true if the field is empty (string length is zero). A non-zero string length returns a value of
false. If the specified field is the windowÕs active editing field (even though the window itself may not be active at the
time), the function is performed on the fieldÕs edited text. Otherwise, the function is performed on the fieldÕs string. If
the current window doesnÕt belong to your application, or if no windows are open, or if the editing field does not exist
in the current window, FieldIsEmpty returns with a value of true.

..

SaveFieldString
Save the active fieldÕs edited text as the fieldÕs associated string.

C pascal void SaveFieldString (void);

Pascal procedure SaveFieldString;

SaveFieldString is used to save an active fieldÕs edited text by copying it into the fieldÕs associated string. This action
occurs in the current window. If the current window doesnÕt belong to your application, or if no windows are open, or
if a field is not active in the current window, SaveFieldString does nothing.

When SaveFieldString is called, the fieldÕs string handle (hStr) dictates the maximum number of characters that can be
saved from the edited text. For example, if the field uses an Str255 (255 character Pascal string), up to 255 characters
of edited text are saved in the fieldÕs associated string. These settings are established when a field is created. If the
field is length limited, the edited text complies to these constraints by physically preventing the user from typing
characters that would exceed the fieldÕs limit.

..

Tools Plus

270

EditFldWindowNumber
Get the window number of the window containing your applicationÕs active editing field.

C pascal short EditFldWindowNumber (void);

Pascal function EditFldWindowNumber: INTEGER;

This routine returns the window number of the window containing the active editing field in your application. If your
application does not have a tool bar or floating palettes, this window will either be the active window (frontmost), or it
will be zero (0) when there is no active field or no windows are open. When a tool bar and/or floating palettes are used,
this window can potentially be any of the active windows (tool bar, any floating palette, or the active standard
window).

..

ActiveFieldNumber
Determine the active field number.

C pascal short ActiveFieldNumber (void);

Pascal function ActiveFieldNumber: INTEGER;

The routineÕs value returns the active field number in the current window. If the current window does not belong to
your application, or if no windows are open, or if no field is active in the current window, ActiveFieldNumber returns
a value of zero (0). If you want to determine which window contains your applicationÕs active field, use the
EditFldWindowNumber routine.

..

FieldLengthLimit
Turn field length limiting on or off.

C pascal void FieldLengthLimit (Boolean Limits);

Pascal procedure FieldLengthLimit (Limit: BOOLEAN);

Limit specifies if subsequently created fields are length limited or not. The boolean constants ÒonÓ or ÒoffÓ may be
used.

Length limiting is an enhancement supported by Tools Plus. It prevents a fieldÕs edited text from exceeding a fixed
length. This is done by preventing additional characters from being typed once the field has reached its limit, and by
truncating text (if necessary) after a ÒPasteÓ command is executed. The user is beeped when excess characters are
typed instead of accepting the key-strokes.

If a field is length limited, the limit is set to the maximum length of the fieldÕs string (referenced via the hStr handle)
as described in the NewField routine.

A field takes on its limited/unlimited status when it is created by the NewField routine, depending on
FieldLengthLimitÕs setting. When FieldLengthLimit(true) has been set, subsequently created fields are length limited.
When FieldLengthLimit(false) is in effect, subsequently created fields will not be length limited. You can achieve the
same thing on a field-by-field basis by adding the teLengthLimit constant when creating a field.

For the sake of consistency, all fields on a window should either be limited or unlimited. Length limiting works best, in
a visual sense, when a mono-spaced (non-proportional) font is used and the fieldÕs width is long enough to contain the
maximum number of characters. In this way, the user is limited to the number of characters that are visible in a field.

FieldLengthLimit is set to false when Tools Plus is initialized.

9 Editing Fields

WaterÕs Edge Software 271

Programming Tips:
1 To help you keep track of which fields have adopted length limiting, use FieldLengthLimit(on) immediately

before creating a set of fields that are length limited. After the fields are created, use FieldLengthLimit(off) to
make subsequently created fields non-limited (as per the default).

..

SetFieldLengthLimit
Set field length limiting for an existing field.

C pascal void SetFieldLengthLimit (short Field, short NewLimit);

Pascal procedure SetFieldLengthLimit (Field, NewLimit: INTEGER);

See the FieldLengthLimit routine for details about what Òlength limitingÓ is, and related information.

Field specifies the editing field number (from 1 to 32767) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the field does not exist in the current window,
FieldLengthLimit does nothing

NewLimit specifies the number of characters that the user can type or paste into the editing field. If the specified new
limit is smaller than the number if characters that are currently in the field, or the number of characters that the user is
editing in the field, then the value of NewLimit is automatically adjusted to account for the current number of
characters in the field.

..

DynamicFieldHandles
Turn fieldsÕ automatic handle resizing on or off.

C pascal void DynamicFieldHandles (Boolean Resize);

Pascal procedure DynamicFieldHandles (Resize: BOOLEAN);

Resize specifies if subsequently created fields will have their string handles automatically resized or not. The boolean
constants ÒonÓ or ÒoffÓ may be used. If a field is set to resize its string handle, the handle grows and shrinks to reflect
the amount of text it contains.

A field takes on its dynamic or static status when it is created by the NewField routine, depending on
DynamicFieldHandlesÕ setting. When DynamicFieldHandles(true) has been set, subsequently created fields have their
string handles automatically resized. When DynamicFieldHandles(false) is in effect, subsequently created fields have
fixed size string handles. You can achieve the same thing on a field-by-field basis by adding the teResizeHdl constant
when creating a field.

DynamicFieldHandles is set to false when Tools Plus is initialized.
..

DisabledFieldLook
Set the appearance and behavior for disabled fields.

C pascal void DisabledFieldLook (long DimFieldSpec);

Pascal procedure DisabledFieldLook (DimFieldSpec: LONGINT);

Field disabling is an enhancement supported by Tools Plus. It prevents a user from changing a fieldÕs contents or
activating a field. A field takes on its Òdisabled characteristicsÓ when it is created by the NewField routine. For the
sake of consistency, all fields in an application should have the same characteristics when disabled, so itÕs a good idea

Tools Plus

272

to call DisabledFieldLook once early in your application before any fields are created.

DimFieldSpec specifies the appearance and behavior of subsequently created fields when they are disabled. The value
for this 4-byte long integer is specified by adding a set of constants to obtain the desired result as illustrated below. By
default, all options are off.

teNeverDimBWText Do not dither disabled text on a monochrome monitor. By default, disabled
text is dithered on a black and white monitor. Fine fonts such as Geneva and
Helvetica become unreadable when dithered, so you may want to use this
option when appropriate.

Examples of enabled and disabled fields using large and small fonts on a black and white monitor

teNeverDimColorText Do not change the appearance of a disabled fieldÕs text when displayed on a
color or gray scale monitor. By default, disabled text is dimmed on a color or
gray scale monitor in System 7 or later, and dithered in System 6 or earlier.
This is consistent with AppleÕs controls.

teColSys6Text Dim disabled text on a color or gray scale monitor in System 6 or earlier. By
default, disabled text is dithered on System 6 or earlier. Using this option
makes Macs running older system versions look more like System 7. This
setting has no effect on Macs running System 7 or later.

teNeverDimBWBox DonÕt dither a disabled fieldÕs outline box (if it has one) when it is displayed
on a black and white monitor. By default, the outline box is dithered using a
gray pattern on a black and white monitor.

teNeverDimColorBox Do not change the appearance of a disabled fieldÕs outline box (if it has one)
when it is displayed on a color or gray scale monitor. By default, a disabled
fieldÕs outline is dimmed on a color or gray scale monitor in System 7 or later,
and dithered in System 6 or earlier. This is consistent with AppleÕs controls.

teColSys6Box Dim a disabled fieldÕs outline on a color or gray scale monitor in System 6 or
earlier. By default, disabled objects are dithered on System 6 or earlier. Using
this option makes Macs running older system versions look more like System
7. This setting has no effect on Macs running System 7 or later.

teClickBeep Beep when a disabled field is clicked by the user. By default, nothing happens
when a disabled field is clicked. You may want to use this option if you have
turned off all visual cues for disabling and you want an audible cue to indicate
that the clicked field cannot be activated.

teDfltDisabledLook Use this constant alone to restore all settings back to their default values (all
off).

Also see: SetDisabledFieldLook.

CONST {Behavior and Appearance Specs for disabled }
{ fields: }

teNeverDimBWText = $0001; {Never dim text (B&W) }
teNeverDimColorText = $0002; {Never dim text (color) }
teColSys6Text = $0004; {Colorize System 6 text }
teNeverDimBWBox = $0008; {Never dim outline (B&W) }
teNeverDimColorBox = $0010; {Never dim outline (color) }
teColSys6Box = $0020; {Colorize Sys 6 outline }
teClickBeep = $0040; {Beep when disabled }
teDfltDisabledLook = $0000; {Use default settings }

9 Editing Fields

WaterÕs Edge Software 273

Programming Tips:
1 If your application displays text that changes but is not editable (such as status or feedback information), you

can use an editing field for this purpose. First you create a field without an outline box. The fieldÕs text should
not dim (add teNeverDimBWText and teNeverDimColorText when specifying the disabled field look). Then
use PasteIntoField to change the fieldÕs text.

2 To create a non-editable field with scroll bars, use teNeverDimBWText + teNeverDimColorText +
teNeverDimBWBox + teNeverDimColorBox. The field will look normal and will be scrollable but will not be
editable.

3 To help you keep track of which fields have adopted a certain appearance when disabled, use
DisabledFieldLook immediately before creating a set of fields that need a non-default look. After the fields
are created, set DisabledFieldLook back to the default value after by using the teDfltDisabledLook constant.

..

SetDisabledFieldLook
Set the appearance and behavior for a disabled field.

C pascal void SetDisabledFieldLook (short Field, long DimFieldSpec);

Pascal procedure SetDisabledFieldLook (Field: INTEGER; DimFieldSpec: LONGINT);

This routine is similar to DisabledFieldLook except that it sets the disabled appearance and behavior for a single field.
The change is seen immediately if the field is disabled when calling this routine.

Field specifies the editing field number (from 1 to 32767) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the editing field does not exist in the current
window, SetDisabledFieldLook does nothing.

DimFieldSpec specifies the appearance and behavior of subsequently created fields when they are disabled. The value
for this 4-byte long integer is specified by adding a set of constants to obtain the desired result as illustrated below.

teNeverDimBWText Do not dither disabled text on a monochrome monitor. By default, disabled
text is dithered on a black and white monitor. Fine fonts such as Geneva and
Helvetica become unreadable when dithered, so you may want to use this
option when appropriate.

Examples of enabled and disabled fields using large and small fonts on a black and white monitor

teNeverDimColorText Do not change the appearance of a disabled fieldÕs text when displayed on a
color or gray scale monitor. By default, disabled text is dimmed on a color or
gray scale monitor in System 7 or later, and dithered in System 6 or earlier.
This is consistent with AppleÕs controls

teColSys6Text Dim disabled text on a color or gray scale monitor in System 6 or earlier. By
default, disabled text is dithered on System 6 or earlier. Using this option
makes Macs running older system versions look more like System 7. This
setting has no effect on Macs running System 7 or later.

teNeverDimBWBox DonÕt dither a disabled fieldÕs outline box (if it has one) when it is displayed
on a black and white monitor. By default, the outline box is dithered using a
gray pattern on a black and white monitor.

teNeverDimColorBox Do not change the appearance of a disabled fieldÕs outline box (if it has one)
when it is displayed on a color or gray scale monitor. By default, a disabled
fieldÕs outline is dimmed on a color or gray scale monitor in System 7 or later,
and dithered in System 6 or earlier. This is consistent with AppleÕs controls.

Tools Plus

274

teColSys6Box Dim a disabled fieldÕs outline on a color or gray scale monitor in System 6 or
earlier. By default, disabled objects are dithered on System 6 or earlier. Using
this option makes Macs running older system versions look more like System
7. This setting has no effect on Macs running System 7 or later.

teClickBeep Beep when a disabled field is clicked by the user. By default, nothing happens
when a disabled field is clicked. You may want to use this option if you have
turned off all visual cues for disabling and you want an audible cue to indicate
that the clicked field cannot be activated.

teDfltDisabledLook Use this constant alone to restore all settings back to their default values (all
off).

CONST {Behavior and Appearance Specs for disabled }
{ fields: }

teNeverDimBWText = $0001; {Never dim text (B&W) }
teNeverDimColorText = $0002; {Never dim text (color) }
teColSys6Text = $0004; {Colorize System 6 text }
teNeverDimBWBox = $0008; {Never dim outline (B&W) }
teNeverDimColorBox = $0010; {Never dim outline (color) }
teColSys6Box = $0020; {Colorize Sys 6 outline }
teClickBeep = $0040; {Beep when disabled }
teDfltDisabledLook = $0000; {Use default settings }

..

PasteIntoField
Paste text into a field.

C pascal void PasteIntoField (short Field, const Str255 Text, Boolean Replace);

Pascal procedure PasteIntoField (Field: INTEGER; Text: STRING; Replace: BOOLEAN);

Some applications need to paste text directly into a field under their own control. An example of this is an operation
that lets the user select an item from a List Box, then the selected item is pasted into a field as though the user had
typed it. Use this routine judiciously, because indiscriminate pasting can be detrimental to a good user interface. Text
can be pasted into an active or inactive field. After pasting into an active field, the insertion point is placed after the
last character of the pasted text. If the pasting occurred in the active field within a window, then the Edit menu, if one
exists, has its ÒUndoÓ item set to ÒUndo PasteÓ thereby allowing the pasting to be undone.

Field specifies the field number (from 1 to 32767) into which the text is pasted in the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the field does not exist in the current
window, PasteIntoField does nothing.

Text specifies the string that is pasted into the specified field. If an empty string (length of 0) is specified, the fieldÕs
affected text is cleared. When pasting into a length limited field, text is pasted one character at a time (although very
quickly) and stops when the field is full. This text is automatically filtered if the field is using a filter.

Replace specifies if the pasted text is inserted into the field or if it replaces the fieldÕs entire contents. With a value of
teInsert, the fieldÕs selected range of characters is removed (if a selection range exists) and the new text is inserted at
the insertion point. If a value of teReplace is used, the fieldÕs entire text is replaced with the contents of the supplied
string. When pasting into an inactive field, the fieldÕs contents are replaced regardless of the value of the Replace
parameter.

Also see: PastePintoField and PasteHIntoField.

CONST {Types of pasting }
teReplace = true; {Replace field's contents with specified text }
teInsert = false; {Insert specified text at the insertion point }

..

9 Editing Fields

WaterÕs Edge Software 275

PastePIntoField
Paste text into a field using a pointer.

C pascal void PastePIntoField (short Field, Ptr Text, short TextLength,
Boolean Replace);

Pascal procedure PastePIntoField (Field: INTEGER; Text: PTR; TextLength: INTEGER;
Replace: BOOLEAN);

PastePIntoField is similar to PasteIntoField in that it pastes text into a field, however this routine pastes text from a
pointer instead of a string.

Field specifies the field number (from 1 to 32767) into which the text is pasted in the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the field does not exist in the current
window, PastePIntoField does nothing.

Text is a pointer to the text that is being pasted. It can also be the address of a C string or any other structure where the
text begins at the first byte.

TextLength specifies the number of characters being pasted. It may be in the range of 0 to 32767 characters. If 0 is
specified, the fieldÕs affected text is cleared. When pasting into a length limited field, text is pasted one character at a
time (although very quickly) and stops when the field is full. This text is automatically filtered if the field is using a
filter.

Replace specifies if the pasted text is inserted into the field or if it replaces the fieldÕs entire contents. With a value of
teInsert, the fieldÕs selected range of characters is removed (if a selection range exists) and the new text is inserted at
the insertion point. If a value of teReplace is used, the fieldÕs entire text is replaced with the contents of the supplied
string. When pasting into an inactive field, the fieldÕs contents are replaced regardless of the value of the Replace
parameter.

CONST {Types of pasting }
teReplace = true; {Replace field's contents with specified text }
teInsert = false; {Insert specified text at the insertion point }

..

PasteHIntoField
Paste text into a field using a handle.

C pascal void PasteHIntoField (short Field, Handle Text, short TextLength,
Boolean Replace);

Pascal procedure PasteHIntoField (Field: INTEGER; Text: HANDLE; TextLength: INTEGER;
Replace: BOOLEAN);

PasteHIntoField is similar to PastePIntoField except that it accepts a handle to the text instead of a pointer. Your
application can pass either a locked or unlocked handle

..

Tools Plus

276

MoveField
Move a field to a new location on the window.

C pascal void MoveField (short Field, short toHoriz, short toVert);

Pascal procedure MoveField (Field, toHoriz, toVert: INTEGER);

Field specifies the field number (from 1 to 32767) that is affected in the current window. If the current window doesnÕt
belong to your application, if no windows are open, or if Field specifies a field that does not exist, MoveField does
nothing. The change is seen immediately providing that the field is not hidden. The fieldÕs width and height are not
changed.

ToHoriz is the new horizontal co-ordinate at which the left side of the field appears.

ToVert is the new vertical co-ordinate at which the top of the field appears.

Also see: SizeField and MoveSizeField.

..

OffsetField
Change a fieldÕs co-ordinates without affecting its image on the window.

C pascal void OffsetField (short Field, short distHoriz, short distVert);

Pascal procedure OffsetField (Field, distHoriz, distVert: INTEGER);

When you scroll an area that contains fields, first use ScrollRect to scroll the pixel image containing the affected
objects in the window. OffsetField is used to offset a fieldÕs co-ordinates without altering its image (since ScrollRect
has already done so). At this point, the fieldÕs co-ordinates match the scrolled image of the field. ObscureField or
KillField can be used to hide or delete fields that are scrolled out of view.

Field specifies the field number (from 1 to 32767) that is affected in the current window. If the current window doesnÕt
belong to your application, if no windows are open, or if Field specifies a field that does not exist, OffsetField does
nothing.

DistHoriz and distVert specify the horizontal and vertical amount by which the fieldÕs co-ordinates are offset. Positive
numbers are right and down. The fieldÕs co-ordinates are updated but no change is seen.

Scrolling fields

Your application can create a matrix of fields and treat them as though they were ÒcellsÓ in a spread-sheet. For
example, fields could be aligned to represent columns and rows as illustrated below:

Seven rows, each with 3 fields, is a total of 21 fields. In fact,
any combination of lines and columns can be used as long as
no more than 32767 fields are visible at a time.

By scrolling up or down, the user is given the impression that
there are actually more lines available than those that are
currently visible. The scrolling process is accomplished by
the following series of steps.

1. Shift Lines: Use the toolboxÕs ScrollRect routine to shift the lines to their new position. They should be shifted to
the position where they will appear after scrolling, typically a multiple of a fieldÕs height.

2. Delete Old Fields: Use KillField to delete fields that are scrolled out of view. KillField does not affect the
windowÕs image.

9 Editing Fields

WaterÕs Edge Software 277

3. Shift Fields: Use OffsetField to change co-ordinates of each remaining field that is visible after scrolling.

4. Create New Fields: Create new fields that are now in view due to scrolling.

Note that within the steps outlined above, you will have to decide how your application deals with the active field and
its edited text, since it may be scrolled out of view during this process. See the tutorials folder for a working example
of scrolled a Òfield list.Ó

..

SizeField
Change a fieldÕs size.

C pascal void SizeField (short Field, short width, short height);

Pascal procedure SizeField (Field, width, height: INTEGER);

SizeField changes a fieldÕs width and/or height without altering the fieldÕs top or left co-ordinate. The change is seen
immediately providing that the field is not hidden.

Field specifies the field number (from 1 to 32767) that is affected in the current window. If the current window doesnÕt
belong to your application, if no windows are open, or if Field specifies a field that does not exist, SizeField does
nothing.

Width and height specify the fieldÕs new width and height in pixels. You must specify a minimum width of 5 and a
minimum height of 8 or SizeField does nothing. The height parameter is ignored if you are changing a single line field.

Also see: MoveField and MoveSizeField.

..

MoveSizeField
Change a fieldÕs co-ordinates.

C pascal void MoveSizeField (short Field,
short left, short top, short right, short bottom);

Pascal procedure MoveSizeField (Field, left, top, right, bottom: INTEGER);

MoveSizeField changes any of the fieldÕs four co-ordinates. The change is seen immediately providing that the field is
not hidden. This routine combines the functions of MoveField and SizeField.

Field specifies the field number (from 1 to 32767) that is affected in the current window. If the current window doesnÕt
belong to your application, if no windows are open, or if Field specifies a field that does not exist, MoveSizeField does
nothing.

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the fieldÕs size and location in the
window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-hand
corner (right,bottom). You must specify a minimum width of 5 and a minimum height of 8 or MoveSizeField does
nothing. The bottom parameter is ignored if you are changing a single line field to prevent changing the fieldÕs height.

Also see: GetFieldRect.

..

Tools Plus

278

MoveSizeFieldRect
Change a fieldÕs co-ordinates.

C pascal void MoveSizeFieldRect (short Field, const Rect *Bounds);

Pascal procedure MoveSizeFieldRect (Field: INTEGER; Bounds: RECT);

MoveSizeFieldRect is identical to the MoveSizeField routine, except that it accepts the Bounds rectangle in place of
the individual left, top, right and bottom co-ordinates.

..

AutoMoveSizeField
Specify how a field is automatically moved and/or resized as its windowÕs size is changed.

C pascal void AutoMoveSizeField (short Field,
Boolean left, Boolean top, Boolean right, Boolean bottom);

Pascal procedure AutoMoveSizeField (Field: INTEGER;
left, top, right, bottom: BOOLEAN);

Field specifies the field number (from 1 to 32767) that is affected in the current window. If the current window doesnÕt
belong to your application, if no windows are open, or if Field specifies a field that does not exist, AutoMoveSizeField
does nothing.

The left, top, right and bottom parameters specify if that side of the field is automatically adjusted when the windowÕs
size changes. These setting are applied to the field and are used the next time the windowÕs size changes:

left Does the fieldÕs left side track the windowÕs right edge?
top Does the fieldÕs top track the windowÕs bottom edge?
right Does the fieldÕs right side track the windowÕs right edge?
bottom Does the fieldÕs bottom track the windowÕs bottom edge?

You can think of each false value as locking that side of the field to a fixed co-ordinate regardless of the windowÕs size
(this is the default). Each true value establishes a fixed distance between that side of the field and the windowÕs edge.
For example, setting only left and right to true makes the field move horizontally as the window widens and narrows,
but the field does not move vertically when the windowÕs height changes.

If you are setting these values identically for a group of objects, use AutoMoveSize to define the settings then add the
appropriate xAutoMoveSize constant (such as teAutoMoveSize for fields) to the objectsÕ spec as they are created. The
objects will adopt the settings specified by the AutoMoveSize routine.

+ Warning: Make sure that you resize objects in a way that makes sense. DonÕt allow a window to shrink down to a
size where objects become unusable or disappear altogether.

..

9 Editing Fields

WaterÕs Edge Software 279

ResetFieldScrolling
Scroll the text in an editing field to its default position.

C pascal void ResetFieldScrolling (short Field);

Pascal procedure ResetFieldScrolling (Field: INTEGER);

By default, an editing fieldÕs text is automatically reset to its default scrolling orientation when it is deactivated, that is:
¥ top-left for left-aligned fields
¥ top-center for centered fields
¥ top-right for right aligned fields

Your application can override this behavior when the field is created by adding the teNoResetOnDeactivate option to
the fieldÕs specification. When this is done and the user tabs or clicks in another field, the current field stays scrolled
exactly as the user left it.

Field specifies the editing field number (from 1 to 32767) that is affected. If the current window doesnÕt belong to your
application, or if no windows are open, or if the editing field does not exist in the current window, ResetFieldScrolling
does nothing. This routine does not work on editing fields created with the Appearance ManagerÕs Edit Text control
(created with the teSystemBody option).

..

NewFieldFilter
Create a new field filter independently of any fields.

C pascal short NewFieldFilter (const Str255 Chars, long FilterSpec);

Pascal function NewFieldFilter (Chars: STRING; FilterSpec: LONGINT): INTEGER;

Chars specifies the character set that makes up a single, unique filter. By default, the filter is sensitive to case and
diacritical marks. Later, when your application applies this filter to a field or a set of fields (using CurrentFieldFilter),
it specifies if the characters in the filter are allowed or disallowed in the field. Tools Plus automatically processes the
following special characters by either carrying out their correct action as is the case with the right arrow, or by filtering
out the character as is the case with the escape key. You do not have to specify any of these special characters in your
filter. They are ASCII characters 0-16, 21-31 and 127:

EscClearKey
FKey
BackSpaceKey
TabKey
ReturnKey
EnterKey

HelpKey
DeleteFwdKey
HomeKey
EndKey
PageUpKey
PageDownKey

LeftArrowKey
RightArrowKey
UpArrowKey
DownArrowKey

FilterSpec specifies several options for the filter. The value for this 4-byte long integer is specified by adding a set of
constants to obtain the desired result as illustrated below. By default, all options are off.

teIgnoreCase The filter automatically adds upper and lower case characters to those you specify. For
example, if you specify ÒAbCÓ the fieldÕs character set it expanded to ÒABCabcÓ.

teIgnoreDiac The filter automatically adds diacritically equivalent characters to those you specify.
For example, if you specify ÒbceÓ the fieldÕs character set it expanded to Òbc�e����Ó.

teShiftCaseUp As characters are added to fields using this filter, they are converted to their upper case
equivalent.

teShiftCaseDown As characters are added to fields using this filter, they are converted to their lower case
equivalent. Do not use this option in conjunction with teShiftCaseUp.

Tools Plus

280

The routineÕs value returns with a unique Filter Reference Number that is in the range of 1 to 32767. If your
application tries to create two identical filters, the second attempt will return the prior Filter Reference Number
without creating a duplicate filter.

Although NewFieldFilter does not fragment memory, it is a good idea to create all your filters early in your application
before memory is fragmented at all.

Also see: CurrentFieldFilter and SetFieldFilter to apply a filter to a field.

- Note: The teIgnoreDiac option includes all diacritically equivalent characters, even though those characters may not
be present in a fieldÕs font. Helvetica, for example, has the character ÒÙÓ (upper case ÒØÓ) while Chicago does
not. If this is a concern, manually specify the characters in the filter instead of using the teIgnoreDiac option.

CONST {Filter options }
teIgnoreCase = $0001; {Disable case sensing }
teIgnoreDiac = $0002; {Disable diacritical sensing }
teShiftCaseUp = $0004; {Shift typed/pasted characters to upper case }
teShiftCaseDown = $0008; {Shift typed/pasted characters to lower case }

..

CurrentFieldFilter
Apply a filter to subsequently created editing fields.

C pascal void CurrentFieldFilter (short FilterRefNum);

Pascal procedure CurrentFieldFilter (FilterRefNum: INTEGER);

FilterRefNum specifies the Filter Reference Number of the filter that is used by subsequently created editing fields. If
zero (0) is used, or if the specified filter does not exist, subsequently created fields are not filtered. A filterÕs reference
number is returned when the filter is created by using the NewFieldFilter routine. Text pasted into static text fields is
always unfiltered.

A field adopts a filter when it is created by the NewField routine, depending on CurrentFieldFilterÕs setting. Specifying
a positive filter number allows only the characters contained in the filterÕs character set. Using a negative version of
the same reference number disallows the characters contained in the filterÕs character set. The following example
disallows the digits 0 through 9:

myFilter := NewFieldFilter ('0123456789', 0); {Create new filter & return reference number }
CurrentFieldFilter (-myFilter); {Disallow chars in filter specified by myFilter }

CurrentFieldFilter is set to 0 when Tools Plus is initialized.

Also see: NewFieldFilter to create new filters.

..

SetFieldFilter
Apply a filter to an editing field.

C pascal void SetFieldFilter (short Field, short FilterRefNum);

Pascal procedure SetFieldFilter (Field: INTEGER; FilterRefNum: INTEGER);

Field specifies the field number (from 1 to 32767) in the current window that will adopt the specified filter. If the
current window doesnÕt belong to your application, or if no windows are open, or if the specified field number does
not exist, SetFieldFilter does nothing.

FilterRefNum specifies the Filter Reference Number for the filter that is applied to the field. A filterÕs reference
number is returned when the filter is created by using the NewFieldFilter routine. Specifying a positive number allows

9 Editing Fields

WaterÕs Edge Software 281

only the characters in the filter. Specifying a negative number disallows the characters in the filter. The field becomes
unfiltered if zero (0) is used for this parameter. If the specified Filter Reference Number does not exist, SetFieldFilter
does nothing.

SetFieldFilter establishes the relationship between the field and a filter. Subsequently, the field uses that filter to filter
unwanted characters as they are typed or pasted into the field. This routine does not filter characters that are already in
the field when SetFieldFilter is used.

Also see: NewFieldFilter to create new filters.

..

SetTENoUndoThresh
Specify the minimum free memory required after ÒundoÓ services are set up.

C pascal void SetTENoUndoThresh (long Threshold);

Pascal procedure SetTENoUndoThresh (Threshold: LONGINT);

Threshold specifies the minimum amount of contiguous memory you want your application to have after Tools PlusÕs
Undo/Redo services have been set up (which may consume up to 64K of memory). The services are set up just before
a change is made to an active editing field.

If the largest piece of continuous memory is smaller than this specified value after the Undo/Redo services have been
set up, the user is warned with a message stating ÒLow memoryÉ Continue without ÔUndo/RedoÕ?Ó A ÒContinueÓ
button lets the user continue without the Undo/Redo services being set up (i.e., the Edit menuÕs ÒUndoÉÓ item is
disabled and set to ÒCanÕt UndoÓ). A ÒCancelÓ button lets the user cancel the editing operation without making any
changes.

This threshold is set to a reasonable default value when Tools Plus is initialized, so your application benefits from low-
memory protection without you having to explicitly do anything. You can change the message displayed by Tools Plus
as described in the Multiple Languages chapter.

..

SetTENoEditThresh
Specify minimum free memory below which text editing is disallowed.

C pascal void SetTENoEditThresh (long Threshold);

Pascal procedure SetTENoEditThresh (Threshold: LONGINT);

Threshold specifies the minimum amount of contiguous memory you want your application to have after an editing
operation (such as pasting) is performed without Undo/Redo services. The condition is checked just before a change is
made to an active editing field.

If there is not enough memory to set up the Undo/Redo services and the largest piece of continuous memory is smaller
than this specified value after the edit is performed (such as a paste or typing), the user is warned with a message
stating ÒWARNINGÉ Not enough memory for this operation.Ó A ÒCancelÓ button lets the user cancel the editing
operation without making any changes.

This threshold is set to a reasonable default value when Tools Plus is initialized, so your application benefits from low-
memory protection without you having to explicitly do anything. You can change the message displayed by Tools Plus
as described in the Multiple Languages chapter.

..

Tools Plus

282

SetTELowMemThresh
Specify minimum free memory below which a Òlow memoryÓ warning is displayed while typing.

C pascal void SetTELowMemThresh (long Threshold);

Pascal procedure SetTELowMemThresh (Threshold: LONGINT);

Threshold specifies the minimum amount of contiguous memory you want your application to have after the user types
in a field. The condition is checked as the user types in an active field.

If the largest piece of continuous memory is smaller than this specified value after the user types a character, the user
is warned with a message stating ÒWARNINGÉ Low memory!Ó An ÒOKÓ button lets the user continue. This message
is displayed every 90 seconds as long as the user continues to type while memory is low.

This threshold is set to a reasonable default value when Tools Plus is initialized, so your application benefits from low-
memory protection without you having to explicitly do anything. You can change the message displayed by Tools Plus
as described in the Multiple Languages chapter.

..

GetTEHandle
Get a handle to a fieldÕs TextEdit record.

C pascal TEHandle GetTEHandle (short Field);

Pascal function GetTEHandle (Field: INTEGER): TEHandle;

This routine returns a standard TEHandle to a field that was created by a Tools Plus routine. You should never need to
use this routine. It is provided for advanced programmers who may have specialized needs. Always use Tools Plus
routines to create and manipulate fields.

Field specifies the field number (from 1 to 32767) in the current window whose handle is being retrieved. If the
current window doesnÕt belong to your application, or if no windows are open, or if Field specifies a field that does not
exist, GetTEHandle returns nil.

To conserve memory, Tools Plus does not always allocate a TextEdit record for each field. This is detailed at the
beginning of this chapter and in the section describing the NewField routine. If a field is ÒbufferedÓ with its own
TextEdit record, you can get a handle to the TextEdit record at any time. If the field is not buffered, meaning it shares
a single TextEdit record with other fields on the same window, then you can only obtain a handle to the TextEdit
record when the field is active. This is true even if the field is deselected when its window is inactive.

+ Warning: If you need to lock the handle or change its attributes, do so temporarily then restore the original settings
before using any Tools Plus routines. If you alter this handle or any data that is made accessible by this
handle, you do so at your own risk.

..

10 List Boxes

WaterÕs Edge Software 283

10 List Boxes

List boxes are a mechanism that lets the user make a selection from multiple choices. Where this interface differs from
radio buttons, is that the user can optionally make multiple selections from the list, and the available choices are
dynamic. Your application specifies the list boxÕs dimensions as the visible area in which the items appear. A 1-pixel
border is drawn just outside these co-ordinates and a scroll bar is integrated to the right of the list box, thereby
consuming an additional 16 pixels. Once a list box is created, your application can define each line of text within the
list. Lines can be added, changed and deleted as required. Tools Plus also supports the use of custom LDEFs.

Various selection rules can be put into place to control how the user can select lines. The
simplest rule allows only one line to be selected at a time. More complex methods allow
multiple lines to be selected with various limitations imposed. When a line is selected, it is
highlighted, such as ÒGenevaÓ in the example to the left. When the user clicks or double-
clicks a line, Tools Plus reports this to your application with a doListBox event (your
application may choose to ignore double-clicks). Although your application can create
blank lines in a list box, they canÕt be selected by the user.

List boxes are created on the current window by the NewListBox routine. Each list box is referenced by a unique list
box number that can be from 1 to 511. This number is specified when the list box is created, and refers to the specific
list box until that list box is deleted. Note that the list box number is related to its associated window. This means that
two different windows can each have a list box numbered Ò1Ó without interfering with each other. Whenever the user
clicks on a line within the list box, Tools Plus reports this to your application.

After NewListBox creates an empty list box, repeated calls to SetListBoxText will append lines to the list box, or
replace an existing lineÕs text with new text. The GetListBoxText routine is used to obtain any lineÕs text. Individual
lines are referenced by a relative line number, where the top line is line 1, the second from the top is line 2, and so on.
All lines are referenced by the relative line number, even when lines are inserted or deleted.

The InsertListBoxLine routine inserts a new line between two existing lines. The DeleteListBoxLine routine deletes an
existing line. ResNamesToListBox inserts resource names (such as fonts or sounds), sorted alphabetically, at a
specified line. In all cases, if any other lines were selected before calling the routine, they retain their selection status.

SetListBoxLine is used to highlight a line, and is often used to set a default line the first time a list box is displayed.
The first selected line is automatically scrolled into view. GetListBoxLine is a complementary routine that tells you if
a specific line is selected or not. An additional routine, GetListBoxLines (ending with an ÒsÓ) is used to determine the
next selected line. This is useful when the selection of multiple lines is allowed because your application does not have
to query each line individually.

Lines in a list box can be arranged in alphabetical order by adding or inserting lines in the correct place. The
SearchListBox routine tells you where to insert a new text line to make the list alphabetic.

One additional routine is used to make your list boxes look professional: DrawListBox. Because list boxes are Òlive,Ó
the use of SetListBoxText, SetListBoxLine, InsertListBoxLine, and DeleteListBoxLine has an immediate and visible
affect on your list. This can become quite unsightly when adding one line at a time to a list box of any significant
length. DrawListBox turns the drawing process off prior to your applicationÕs maintenance of lines. When the task is
completed, DrawListBox turns the drawing process on and instantly displays all the visible lines.

An entire list box can be deleted by using DeleteListBox. ClearListBox deletes all the lines in a list box.

When a window becomes inactive, any selected lines become deselected and the scroll bar is disabled. When the
window is activated again, the selection(s) reappear and the scroll bar is enabled.

When a list box is no longer required, it is deleted by the DeleteListBox routine, which releases the memory used by
the list box. This is done automatically if a window is closed. A list box can also be hidden or displayed with the
ListBoxDisplay routine. List boxes can be moved to a new location with MoveListBox and have their width and/or
height changed with SizeListBox. MoveSizeListBox combines both tasks by letting you specify new co-ordinates for
the list box.

Tools Plus

284

Auto-Positioning Options
Tools Plus can automatically position a list box if you use one or more of the following
constants in place of actual co-ordinates: listLeftEdge, listTopEdge, listRightEdge and
listBottomEdge. A special situation exists when you create a list box whose bottom co-
ordinate is equal to the windowÕs bottom local co-ordinate (or listBottomEdge), and the listÕs
right co-ordinate is equal to the windowÕs right local co-ordinate less 15 pixels (or
listRightEdge): the list attaches itself to the windowÕs bottom right corner and resizes
automatically when the windowÕs size changes. Tools Plus also shortens the scroll bar
appropriately if the window has a grow box so that the list fits perfectly around the windowÕs
grow box.

Fonts
All list boxes default to using the Chicago 12pt font. When a list box is created, it can optionally adopt and remember
the windowÕs current font, size and style settings (as set by the TextFont, TextSize, and TextFace routines) by
including the listUseWFont option in the spec parameter. The windowÕs settings can then be changed without affecting
the list box. Unlike regular list boxes, Tools Plus list boxes can each have a different font. You can use the
GetListBoxFontSettings and SetListBoxFontSettings routines to get and set the list boxÕs font, size and style settings.

Colors
By default, a list box is displayed using black text on a white background. You can change this by adding the
listColorList constant to the listÕs type when it is created. When doing so, the list box stores the windowÕs foreground
and background colors and displays its text using these colors. The GetListBoxColors and SetListBoxColors routines
can be used to set and retrieve a lists boxÕs text and background colors. When you implement a list box as a control (an
option under Tools Plus), the list box ignores the windowÕs colors. Note that some controls ignore color settings,
particularly those in the Appearance Manager. If you create a list box using the Appearance ManagerÕs List Box
control, it ignores color settings.

Appearance Manager Controls
The Appearance Manager, first introduced in mid 1997 with Mac OS 8, gives your application a number of 3D
controls including a list box control with an integrated 3D scroll bar. All the new Appearance Manager controls are
implemented as CDEFs, but unlike third party CDEF resources that must be installed in your application when it is
built, the Appearance ManagerÕs list box control is available to your application without having to install it. It is
available from the system, just like regular system controls, if the Macintosh running your application has an
Appearance Manager.

If you want to use the Appearance ManagerÕs list box control, you need to make your application ÒAppearance
Manager aware.Ó 680x0 applications are automatically Appearance Manager aware. To make your PowerPC
application Appearance Manager aware, see the Designing Your Application chapter of this manual for details in the
ÒUsing the Appearance ManagerÓ section. Your application must also include an ÔldesÕ resource to let the Appearance
Manager do its work. In Tools Plus, a single ÔldesÕ resource is shared by all list box controls. The settings in this
resource are ignored because Tools Plus populates it with the correct values just before the Appearance Manager reads
the resource. To include an ÔldesÕ resource in your application, just copy the ÔldesÕ resource that is supplied in the
ÒOptional ResourcesÓ folder into the resource file you are using for your project.

See the chapters on Buttons, Scroll Bars, Editing Fields and Pop-Up Menus in this user manual for additional
Appearance Manager controls.

- Note: For complete information on Appearance Manager concepts, the Appearance ManagerÕs features, and how to
best use the Appearance ManagerÕs new controls, please read the documentation pertaining to the Appearance
Manager. It is available from Apple or in the latest issue of Inside Macintosh. This manual does not duplicate
that material.

10 List Boxes

WaterÕs Edge Software 285

- Note: Remember to include an ÔldesÕ resource in your project!

List Box (CDEF 22)

Tools Plus supports the Appearance ManagerÕs list box control in a way that, from a
programmerÕs perspective, it is indistinguishable from a regular list box. This lets you use a
consistent set of Tools Plus routines and programming principles to take advantage of the List
Box control if it is available, or the regular List Manager list box. Tools Plus automatically
implements a regular List Manager list box if the Appearance Manager is not available.
Remember to include an ÔldesÕ resource in your project.

CONST
kControlListBoxProc = 352; {List Box ProcIDs }

List Box control

Creating a List Box Using a ÔCNTLÕ Resource
Tools Plus offers considerable versatility in the way it supports the creation of list boxes from ÔCNTLÕ resources.
These features are most often used when opening a dialog (ÔDLOGÕ resource) that contains list boxes. In all cases, the
ÔCNTLÕ resource specifies a CDEF ID of 22 which produces a procID of 352 plus any variants. When you open a
dialog, ÔCNTLÕ resources that reference CDEF ID 22 (the list box control) create a Tools Plus list box. The translation
from a ÔCNTLÕ resource to a Tools Plus list box takes place as follows:

¥ Tools Plus starts by assuming that you want to use the Appearance ManagerÕs list box control (CDEF 22) and it
attempts to create the control.

¥ If the Appearance Manager is not available, a regular List Manager list box is created. You can use the same Tools
Plus routines to access the List ManagerÕs list box as you would a list box control.

¥ The list box is created using the listOnlyOne option, thereby allowing only one item to be selected by the user in
the list.

¥ To set the appearance and behavior specifications for a list box, place the specificationÕs value in the ÔCNTLÕ
resourceÕs contrlRfCon field, the reference constant. A list of possible values can be found in the NewListBox
description.

- Note: Remember to include an ÔldesÕ resource in your application. See the ÒAppearance Manager ControlsÓ section
earlier in this chapter for details. Flag your ÔCNTLÕ and ÔldesÕ resources as purgeable to save memory. Tools
Plus makes a copy of their data.

Appearance Manager and Keyboard Focus
Before the Appearance ManagerÕs arrival, the only user interface element that could process keystrokes was an editing
field. With the Appearance Manager present, a variety of user interface elements can process keystrokes, such as
editing fields, list boxes and the clock control. Keystrokes are directed at only one user interface element at a time (and
possibly at no element at all). When a user interface element processes keystrokes in such a way, it is said to have the
Òkeyboard focus.Ó Only one user interface element can have the keyboard focus at a time, and it is visually indicated
with a highlighted ÒbandÓ around the object. Tools Plus takes care of the focus highlight, and of applying keystrokes to
the element that has the keyboard focus.

The process of moving the keyboard focus between objects, either by tabbing or clicking, is identical to that of
navigating between editing fields. For details, see the ÒClicking and TabbingÓ section in the Editing Fields chapter.

Special Considerations
Starting with Mac OS 8.5, the Appearance ManagerÕs List Box control (i.e., a list box created with the listSystemBody
option) always draws a 3 pixel thick band around the outer edge of the box using the windowÕs background theme. If
you want the list box to be drawn perfectly when running on Mac OS 8.5 or later, you must make sure you do one of
the following:

Tools Plus

286

¥ Leave the windowÕs backdrop color as white, and do not apply a background theme or backdrop color to the
window.

¥ Apply a background theme to the window
¥ Create a standard list box without using the listSystemBody. This list box will not get the keyboard focus.

Handling List Boxes
Once a list box is created, Tools Plus performs all the processing required within the box and its scroll bar. When a
window in inactive, Tools Plus deselects items in all list boxes on that window. When the window is activated again,
all list boxes regain their original state as specified by your application. Tools Plus constantly inquires about any
events that have occurred, inlcuding events in a list box.

Several types of events may indicate that your application has to perform some action. For example, you may want to
enable or disable buttons based on whether a selection has been made in the list box. Or you may ignore all list box
action and use GetListBoxLine to determine the selection only after an OK button is clicked. Though various
interpretations can be implemented, please adhere to the Macintosh User Interface Guidelines as outlined in Inside
Macintosh. In any case, Tools Plus tells your application if any activity has occurred in a list box, or if a selection has
been double clicked.

See the Event Management chapter for details pertaining to list box events.

..

NewListBox
Create a new list box.

C pascal void NewListBox (short ListBox, short left, short top, short right,
short bottom, long Spec);

Pascal procedure NewListBox (ListBox, left, top, right, bottom: INTEGER;
Spec: LONGINT);

ListBox specifies the list box number (from 1 to 511) that is created in the current window. Once a list box is created, it
is referenced by this list box number. If a list box has been previously created in the current window using the same
number, it is replaced with a new (empty) list box as specified by the parameters in the NewListBox routine (which is
a good way to clear all of an existing list boxÕs lines). If the current window doesnÕt belong to your application, or if
no windows are open, NewListBox does nothing.

Left, top, right, and bottom define a rectangle in the current windowÕs local co-ordinates that determine the list boxÕs
size and location in the window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and
the bottom right-hand corner (right,bottom). A 1-pixel wide outline is drawn as a frame for the list box just outside
these co-ordinates. Also, a scroll bar is created along the entire length of the list boxÕs right side. The scroll bar is 16
pixels wide and is drawn outside the specified co-ordinates. To make a list box operate at its best, the list boxÕs height
(difference between top and bottom) should be a multiple of its fontÕs height (font height can be determined by calling
the GetFontInfo routine and adding Ascent + Descent + Leading). If bottom is less than top, NewListBox takes the
absolute value of bottom and creates a list box that is that many lines high (i.e., if top is 30 and bottom is -8, an eight
line list box is created starting downward at the top co-ordinate). You can align the list boxÕs edge to a windowÕs edge
by using the listLeftEdge, listTopEdge, listRightEdge or listBottomEdge constants in place of the list boxÕs left, top,
right or bottom co-ordinates.

Spec specifies a list boxÕs appearance and behavior. It is a combination of various Tools Plus options detailed below.

10 List Boxes

WaterÕs Edge Software 287

Appearance and Behavior Specification

Spec specifies a list boxÕs appearance and behavior. To maintain backwards compatibility with previous versions of
Tools Plus, the value for this 4-byte long integer can be calculated in either of the following ways:

(a) By adding only standard Apple constants. AppleÕs standard LDEF is used.
(b) By adding Tools Plus constants plus an optional custom LDEF procID. If no procID is specified, AppleÕs

standard LDEF is used. Using this method, spec is a combination of an LDEF procID (low 16 bits) plus
various Tools Plus options (high 16 bits).

Do not mix standard Apple constants with Tools Plus constants when specifying the spec. Doing so will produce
unpredictable results.

Choose any of the following selection methods (when using AppleÕs standard LDEF)É
0 (zero) This is the default selection method. If additional options are specified they override the

default behavior. Line selection is affected by modifier keys as follows:

Option The Option key is always ignored even when used in combination with
other keys.

no Shift or 1 Any click in the list box deselects previous selections and selects the
line clicked by the user. If the mouse is moved while the mouse button
is held down, only the line beneath the cursor is selected.

Shift If the Shift key is down before clicking the mouse, the selection is
extended or shortened as if it were an expandable rectangle. When the
mouse is first clicked, the selection is changed to include the line that
was just clicked. If the mouse is dragged, the selection either extends or
shortens to follow the mouseÕs pointer.

1 If the 1 key is down before clicking the mouse, lines are either selected
or unselected, depending on the first clicked line. If the initial line was
selected, it is deselected along with any other lines the mouseÕs pointer
passes over. If the initial line was not selected, it is selected along with
any other lines the mouseÕs pointer passes over. This is called Òsense of
first line.Ó

lOnlyOne Only one line can be selected at a time. Any previous selection is deselected when a new
line is clicked.

lExtendDrag Selections are extended without using the Shift key. All lines dragged over by the mouse
are selected. It works best when used in conjunction with lNoDisjoint, lNoExtend, and
lUseSense.

lNoDisjoint Multiple lines can be selected, but all lines are deselected when the mouse is clicked.
This occurs even if the Shift or 1 keys are held down, and prevents ÒdisjointedÓ
selections.

lNoExtend The current selection is ignored. The mouseÕs click defines an anchor point for the new
Shift selection.

lUseSense If the Shift key is pressed, Òsense of first lineÓ is in effect. This means if the initial line
was selected, it is deselected along with any other line the mouse passes over. If the
initial line was not selected, it is selected along with any other line the mouse passes
over.

Common or interesting selection methods (combinations of the above)É
lOnlyOne Only one selection can be made at a time. Any previous selection is deselected. This

is a Macintosh standard.

lNoExtend +
lUseSense

A click deselects previous selections. A Shift-Click selects a deselected line, or
deselects a selected line. A Shift-Click can also be dragged to perform the same action
across other lines. The ÒFont/DA MoverÓ uses this method.

Tools Plus

288

lExtendDrag +
lNoDisjoint +
lNoExtend +
lUseSense

A click deselects previous selections. Dragging the click selects lines along the drag.
This is a good way to let the user select multiple lines that must be grouped together.

lExtendDrag +
lNoExtend +
lUseSense

A click selects a deselected line, or deselects a selected line. A click can be dragged to
perform the same action across other lines. Shift is ignored. This selection method
makes a list box behave as though it were a list of check boxes. Although this is a neat
idea, it does not follow the Macintosh User Interface Guidelines.

If you need to create a list box that goes beyond AppleÕs standard list and/or uses a custom LDEF, use the following
Tools Plus constants in place of AppleÕs constants.

Choose any of the following selection methodsÉ
listDefault Same as 0 (zero) when using AppleÕs constants.

listOnlyOne Same as lOnlyOne when using AppleÕs constants.

listExtendDrag Same as lExtendDrag when using AppleÕs constants.

listNoDisjoint Same as lNoDisjoint when using AppleÕs constants.

listNoExtend Same as lNoExtend when using AppleÕs constants.

listUseSense Same as lUseSense when using AppleÕs constants.

Optionally choose any of the following optionsÉ
listSystemBody Create the list box using the Appearance ManagerÕs list box control. If the Appearance

Manager is not available, a regular List Manager list box is created. When you create a
list box with this option, the list dims when it is on an inactive window. Note: Only list
boxes that are implemented as a control can be embedded into other controls.

listUseWFont Display the list box using the windowÕs current font, size and style settings (as set by the
TextFont, TextSize, and TextFace routines). The list box stores this information for
future reference. By default, list boxes are drawn using the system font (Chicago, 12 pt).

listDimWhenInactive
Using this option causes the listÕs text and frame to be dimmed when the list is inactive,
such as on an inactive window. This option is automatically included when you use the
listSystemBody option.

listColorList Use the windowÕs foreground color for the listÕs text, and the windowÕs background
color for the listÕs background. The list stores this information for future reference. By
default, the list box is drawn using black text on a white background. This option is
ignored if you use the listSystemBody option.

listNoFrame Do not draw a box around the list. By default, list boxes have a 1-pixel wide frame
around them. This option is useful if you are integrating the list box into a graphic
element and you do not want a line between the two elements. This option is ignored if
you use the listSystemBody option.

listAutoMoveSize Automatically move and/or resize the list box when the windowÕs size changes. The
AutoMoveSize routine lets you specify which sides are altered. You can use the
AutoMoveSizeListBox routine as an alternative to setting this option.

listHidden Create a hidden list box. This kind of list box is accessible to your application but not to
the user.

(LDEF procID) If you want to use an LDEF other than the default Apple LDEF, add its procID to the
specÕs value. Do not specify kControlListBoxProc, because the is a CDEF (control)
procID, and not one for an LDEF. If you use the listSystemBody option, it automatically
calls the Appearance ManagerÕs list box LDEF.

10 List Boxes

WaterÕs Edge Software 289

Also see: NewListBoxRect and NewDialogListBox.

- Note: Tools Plus makes no attempt to control the placement of list boxes or to protect them once they have been
created. It is your responsibility to ensure that list boxes are of sufficient size to contain their lines, and that
their placement within the window is reasonable and does not conflict with other objects. Furthermore, you
should not allow your applicationÕs text and drawing processes to interfere with list boxes. Windows with a
Òsize boxÓ should not allow list boxes to be obscured or hidden by making the window too small.

CONST {LIST BOXES: }
{Standard Apple constants for backwards }
{compatibility. Don't mix with T+ constants: }

lUseSense = 4; { Shift senses state of initial line }
lNoExtend = 16; { Shift won't extend selection }
lNoDisjoint = 32; { Click deselects previous selections }
lExtendDrag = 64; { Drag extends without shift key }
lOnlyOne = -128; { Prevent multiple selections }

{List box co-ordinates: }
listLeftEdge =-32768; { Window's left edge }
listTopEdge =-32768; { Window's top edge }
listRightEdge = 32767; { Window's right edge }
listBottomEdge = 32767; { Window's bottom edge }

{Tools Plus List Box constants: }
listDefault = $00000000; { Default list box }
listSystemBody = $80000000; { Use Appearance Manager List Box }
listUseWFont = $40000000; { Use window's font }
listNoFrame = $00040000; { Don't draw frame around the list box }
listColorList = $00080000; { Use color settings for this list box }
listHidden = $00100000; { Create a hidden list box }
listAutoMoveSize = $00200000; { Auto-move/size as window's size chg }
listUseSense = $00400000; { Shift senses state of initial line }
listNoExtend = $00800000; { Shift won't extend selection }
listNoDisjoint = $01000000; { Click deselects previous selections }
listExtendDrag = $02000000; { Drag extends without shift key }
listOnlyOne = $04000000; { Prevent multiple selections }

..

NewListBoxRect
Create a new list box.

C pascal void NewListBoxRect (short ListBox, const Rect *Bounds,
long Spec);

Pascal procedure NewListBoxRect (ListBox: INTEGER; Bounds: RECT;
Spec: LONGINT);

NewListBoxRect is identical to the NewListBox routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

..

NewDialogListBox
Create a new list box in a dialog using a dialog item's co-ordinates.

C pascal void NewDialogListBox (short ListBox, long Spec);

Pascal procedure NewDialogListBox (ListBox: INTEGER; Spec: LONGINT);

NewDialogListBox is identical to the NewListBox routine, except that the list box is created in a dialog (a window
opened with the LoadDialog routine, or one that had a dialog list attached with the LoadDialogList routine). The list
boxÕs co-ordinates are obtained from the dialog item whose number matches the list box number.

..

Tools Plus

290

EmbedListBoxInButton
Embed a list box into a button or into the windowÕs root control (Appearance Manager only).

C pascal void EmbedListBoxInButton (short ListBox, short ContainerButton);

Pascal procedure EmbedListBoxInButton (ListBox, ContainerButton: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedListBoxInButton lets you
manually embed a list box into a button, or into the windowÕs root control. Note that the term ÒbuttonÓ does not
literally mean a button control. It means any control that is implemented as a button in Tools Plus. The most likely
candidate is a Group Box control. If the Appearance Manager is not available, EmbedListBoxInButton does nothing.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the list box does not exist in the current window,
EmbedListBoxInButton does nothing. Note that the only list boxes that can be embedded are those that are drawn
using a CDEF (use the listSystemBody option when creating the list box).

ContainerButton specifies the button number (from 1 to 511) into which ListBox is embedded. This control must exist
in the current window, and it must be a ÒcontainerÓ type control such as the Appearance ManagerÕs Group Box. The
list box must fit entirely within the container control or EmbedListBoxInButton does nothing. If a value of 0 is
provided for a container button, ListBox is embedded into the windowÕs root control.

Also see: EmbedListBoxInScrollBar and SetAutoEmbed.

..

EmbedListBoxInScrollBar
Embed a list box into a scroll bar or into the windowÕs root control (Appearance Manager only).

C pascal void EmbedListBoxInScrollBar (short ListBox,
short ContainerScrollBar);

Pascal procedure EmbedListBoxInScrollBar (ListBox, ContainerScrollBar: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedListBoxInScrollBar lets you
manually embed a list box into a scroll bar, or into the windowÕs root control. Note that the term Òscroll barÓ does not
literally mean a scroll bar control. It means any control that is implemented as a scroll bar in Tools Plus. If the
Appearance Manager is not available, EmbedListBoxInScrollBar does nothing.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the list box does not exist in the current window,
EmbedListBoxInScrollBar does nothing. Note that the only list boxes that can be embedded are those that are drawn
using a CDEF (use the listSystemBody option when creating the list box).

ContainerScrollBar specifies the scroll bar number (from 1 to 511) into which ListBox is embedded. This control must
exist in the current window, and it must be a ÒcontainerÓ type control. The list box must fit entirely within the
container control or EmbedListBoxInScrollBar does nothing. If a value of 0 is provided for a container scroll bar,
ListBox is embedded into the windowÕs root control.

Also see: EmbedListBoxInButton and SetAutoEmbed.

..

10 List Boxes

WaterÕs Edge Software 291

GetFreeListBoxNum
Get the first unused list box number.

C pascal short GetFreeListBoxNum (void);

Pascal function GetFreeListBoxNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own list box
number, GetFreeListBoxNum returns the first unused (free) list box number. Using this routine, you can assign an
unused list box number to a variable, then use that variable throughout your application without concern for the true
list box number.

GetFreeListBoxNum returns the first free list box number on the current window. If the current window doesnÕt
belong to your application, if no windows are open, or if the maximum number of list boxes has already been created
on the current window (no new ones can be created), GetFreeListBoxNum returns a value of zero (0).

..

DeleteListBox
Delete a list box.

C pascal void DeleteListBox (short ListBox);

Pascal procedure DeleteListBox (ListBox: INTEGER);

ListBox specifies the list box number (from 1 to 511) that is deleted from the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the list box does not exist in the current window,
DeleteListBox does nothing. Use KillListBox if you want to delete the list box without removing its image from the
window.

..

KillListBox
Delete a list box without affecting its image on the window.

C pascal void KillListBox (short ListBox);

Pascal procedure KillListBox (ListBox: INTEGER);

KillListBox is identical to DeleteListBox except that it does not remove the list boxÕs image from the window. This
routine is useful for scrolling list boxes in an area within a window (i.e., not the entire window). ScrollRect is used to
scroll the images in the affected area. OffsetListBox repositions the list boxÕs co-ordinates without affecting its image
(since ScrollRect has already moved it). KillListBox then deletes the list boxes that are scrolled out of view without
affecting their image (ScrollRect has already scrolled them out of view).

..

Tools Plus

292

ListBoxDisplay
Hide or show a list box.

C pascal void ListBoxDisplay (short ListBox, Boolean Show);

Pascal procedure ListBoxDisplay (ListBox: INTEGER; Show: BOOLEAN);

ListBoxDisplay hides or shows a list box on the current window. The result is seen immediately.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the list box does not exist in the current window,
ListBoxDisplay does nothing.

Show indicates if the list box is being hidden or displayed. The two constants that can be used for this flag are on and
off.

..

ListBoxIsVisible
Determine if a list box is visible.

C pascal Boolean ListBoxIsVisible (short ListBox);

Pascal function ListBoxIsVisible (ListBox: INTEGER): BOOLEAN;

ListBoxIsVisible reports if a list box is visible on the current window, or if it is hidden.

ListBox specifies the list box number (from 1 to 511) that is queried in the current window.

This routineÕs value returns true if the list box is visible, and false if the list box is hidden. If the current window
doesnÕt belong to your application, or if no windows are open, or if the list box does not exist in the current window,
ListBoxIsVisible returns false. This routine takes control embedding into account, so it will return false if the target list
box is embedded and its container control is hidden.

..

ObscureListBox
Hide a list box without removing its image from the window.

C pascal void ObscureListBox (short ListBox);

Pascal procedure ObscureListBox (ListBox: INTEGER);

ObscureListBox hides a list box on the current window without removing its image from the window. This routine is
useful for scrolling list boxes in an area within a window (i.e., not the entire window). ScrollRect is used to scroll the
images in the affected area. OffsetListBox repositions the list boxÕs co-ordinates without affecting its image (since
ScrollRect has already moved it). ObscureListBox then hides the list boxes that are scrolled out of view without
affecting their image (ScrollRect has already scrolled them out of view).

ListBox specifies the list box number (from 1 to 511) that is hidden in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the list box does not exist in the current window,
ObscureListBox does nothing.

..

10 List Boxes

WaterÕs Edge Software 293

ActivateListBox
Activate a list box to give it the keyboard focus.

C pascal void ActivateListBox (short ListBox);

Pascal procedure ActivateListBox (ListBox: INTEGER);

ListBox specifies the list box number (from 1 to 511) that acquires the keyboard focus in the current window.
ActivateListBox does nothing under any of these conditions: the current window doesnÕt belong to your application,
no windows are open, the list box does not exist in the current window, the list box is disabled or hidden, the list box
was not implemented using the listSystemBody option, or the Appearance Manager is not available to your
application.

Activating a list box allows the user to interact with the list box by typing on the keyboard. On an active window, the
list box acquires the keyboard focus making it the item that automatically processes keystrokes. Visually, this is
indicated by having highlighted lines. Additionally, the list box is encompassed with a highlighting keyboard focus
band to indicate that it has the focus. Using ActivateListBox in an active window removes the keyboard focus from
any other object that may have the focus within the same window or any other active window such as a tool bar or
floating palette. This action may deactivate an active editing field.

If the list box being activated is in an active window that allows access to pull-down menus, the Edit menuÕs ÒUndoÓ
item is changed to ÒCanÕt UndoÓ and is disabled. The ÒCutÓ, ÒCopyÓ, ÒPasteÓ, ÒClearÓ and ÒSelect AllÓ items are also
disabled.

Your application can activate virtually any editing field or Appearance Manager control that accepts the keyboard
focus. This flexibility can lead to a confusing user interface by allowing the keyboard focus to jump between active
windows. A good rule to observe is to activate a single item only on a standard window (not a tool bar or a floating
palette) when the window first opens. This sets up the default keyboard focus item for that window. At all other times,
activate a list box only in response to a userÕs actions.

Also see: HaveTabInFocus, TabToFocus, the doClickToFocus event, and ClickToFocus for other activating services.

..

GetListBoxRect
Get a list boxÕs co-ordinates.

C pascal void GetListBoxRect (short ListBox, Rect *Bounds);

Pascal procedure GetListBoxRect (ListBox: INTEGER; var Bounds: RECT);

ListBox specifies the list box number (from 1 to 511) that is queried in the current window.

Bounds returns the list boxÕs bounding rectangle specified in the windowÕs local co-ordinates. These co-ordinates
match those used to create the list box. If the current window doesnÕt belong to your application, or if no windows are
open, or if the list box does not exist in the current window, Bounds returns with all co-ordinates set to zero (0).

..

Tools Plus

294

SetListBoxText
Create a new line in a list box, or replace an existing lineÕs text.

C pascal void SetListBoxText (short ListBox, short LineNum, const Str255 Text);

Pascal procedure SetListBoxText (ListBox, LineNum: INTEGER; Text: STRING);

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the list box does not exist in the current window,
SetListBoxText does nothing.

LineNum specifies the line number (from 1 to 32767) that is affected in the specified list box. The line is created if it
does not already exist. If necessary, blank lines are created between the last line in the list box and the new line being
created. If the line already exists, the lineÕs text is simply replaced.

The Text parameter is the text that appears in the list boxÕs line. When running on System 6 or older, text that is too
long to be displayed in its entirety is truncated and appended with an ellipsis (ÒÉÓ). System 7 (or later) does not do
this. Instead, it first condenses character spacing, then, as a last resort, gives the appearance of truncation without
altering the text.

Repeated calls of SetListBoxText should be bracketed by calls to DrawListBox. See the DrawListBox routine for
details.

Programming Tips:
1 If you are going to create several list boxes, create all the empty list boxes first using NewListBox. This

makes all the list boxes appear in quick succession. Next, turn list box drawing off by using DrawListBox,
and fill all the list boxes as required. Lastly, turn list box drawing back on. Your list boxes will be filled in
quick succession. No time is saved, but the display looks more professional.

2 If you know in advance how many lines are going to be added to a list box, add the last line first, even if it is
blank. By doing this, all the blank lines you need will be created at the same time. Since it takes less time to
replace text in an existing line than it does to append a new line, your list box will be filled much quicker.

3 If you are creating a list box of font names, be aware that some Macintoshes have some fonts in ROM. That
means that calling CountResources(ÔFONDÕ) will include not only the number of fonts in your system, but in
ROM too. Before you add a font name to your list box, check to see if it already exists in the list to avoid
duplicates. You can use the ResNamesToListBox routine to find, sort and insert the resource names for you.

4 If your application is running on a system file prior to System 7, long lines of text in the list are actually
truncated as you see them on the screen (i.e., ÒLong wordÉÓ). In System 7 or higher, long lines only appear
to be truncated. When you retrieve a line by using the GetListBoxText routine under System 7 or higher, you
will obtain the full string that was placed in that line, even if it appears truncated on the screen to fit in the list.
The same call, when using a system file prior to System 7, retrieves the truncated text as it appears in the list.

+ Warning: AppleÕs List Manager (and the LDEF written by Apple) is limited to 32K of data. This means that your list
canÕt contain more than thirty-two thousand characters. Tools Plus will break this limit in a future release
by writing our own list manager. Tools Plus routines will continue to work as they do now, but will have
additional functionality available to them.

..

10 List Boxes

WaterÕs Edge Software 295

ResNamesToListBox
Insert resource names into a list box.

C pascal void ResNamesToListBox (short ListBox, short LineNum, ResType rType);

Pascal procedure ResNamesToListBox (ListBox, LineNum: INTEGER; rType: RESTYPE);

This routine finds all named resources of the specified type and inserts those names (sorted alphabetically) into a list
box. Duplicated names are ignored as are ones that start with Ò.Ó (period) or Ò%Ó.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the list box does not exist in the current window,
ResNamesToListBox does nothing.

LineNum specifies the line number (from 1 to 32767) where the resource names are inserted. The line is created if it
does not already exist. If necessary, blank lines are created between the last line in the list box and the new line being
created.

rType is the four character resource type whose names are being inserted into the list box. When running on System 6
or older, names that are too long to be displayed in their entirety are truncated and appended with an ellipsis (ÒÉÓ).
System 7 (or later) does not do this. Instead, it first condenses characters spacing then as a last resort, gives the
appearance of truncation without altering the name. If you specify ÔFONDÕ or ÔFONTÕ resources, both are obtained
since they are just different types of fonts.

..

StrToListBox
Copy a set of strings to a list box.

C pascal void StrToListBox (short ListBox, Handle hRec);

Pascal procedure StrToListBox (ListBox: INTEGER; hRec: HANDLE);

StrToListBox is a highly optimized routine used to copy a set of strings into a list box. It is about 30 times faster than
using toolbox routines to populate the list. You can think of this routine as a Òbatch loaderÓ for a list box.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the list box does not exist in the current window,
StrToListBox does nothing. This list is cleared of entries before the new ones are added.

HRec is a handle to an indexed string structure, or commonly known as an ÔSTR#Õ record or resource. Your
application can create and populate the record using Tools PlusÕs routines, or it can read an ÔSTR#Õ resource from a
resource file. If this handle points to a resource, it is best if you flag the resource as purgeable since you wonÕt need to
keep it in memory after the strings have been loaded into the list. The following code shows you how to copy an
ÔSTR#Õ resource to a list box:

hRec := GetResource('STR#', 128); {Load the resource into memory }
HNoPurge(hRec); {Prevent purging while we copy strings to the list box }
StrToListBox(1, hRec); {Copy 'STR#' resource to the list box }
HPurge(hRec); {Allow the resource to be purged }
ReleaseResource(hRec); {Release the resource to save memory }

The hRec parameter can also be used to specify an ÔSTR#Õ resource ID instead of a handle to an ÔSTR#Õ structure. To
do so, typecast the resource ID as a handle before passing it to the routine.
..

Tools Plus

296

GetListBoxText
Get the text from a specific line in a list box.

C pascal void GetListBoxText (short ListBox, short LineNum, Str255 Text);

Pascal procedure GetListBoxText (ListBox, LineNum: INTEGER; var Text: Str255);

ListBox specifies the list box number (from 1 to 511) that is queried in the current window.

LineNum specifies the line number (from 1 to 32767) that is queried in the specified list box.

The Text variable is the text that appears in the list boxÕs specified line. If the current window doesnÕt belong to your
application, or if no windows are open, or if the list box does not exist in the current window, or if LineNum does not
exist in the specified list box, Text will return as a null string.

Programming Tips:
1 If your application is running on a system file prior to System 7, long lines of text in the list are actually

truncated as you see them on the screen (i.e., ÒLong wordÉÓ). In System 7 or higher, long lines only appear
to be truncated. When you retrieve a line by using the GetListBoxText routine under System 7 or higher, you
will obtain the full string that was placed in that line, even if it appears truncated on the screen to fit in the list.
The same call, when using a system file prior to System 7, retrieves the truncated text as it appears in the list.

..

SearchListBox
Search a list box for a line that is greater than or equal to the specified text.

C pascal short SearchListBox (short ListBox, const Str255 Text);

Pascal function SearchListBox (ListBox: INTEGER; Text: STRING): INTEGER;

ListBox specifies the list box number (from 1 to 511) that is queried in the current window.

Text is a string that is used to find a matching line.

The routine searches all the lines in the specified list box for the string indicated by Text. If an exact match is found,
the routineÕs value returns the line number containing the matching string. If a match is not found, the routine returns
the first line number that contains text that is greater than the specified Text. If the current window doesnÕt belong to
your application, or if no windows are open, or if the list box does not exist in the current window, a value of zero (0)
is returned.

This routine is most useful if you want to create a list box with the lines in alphabetical order (such as fonts). Before
your application adds a line, call SearchListBox to determine where the line should be inserted. Using the returned
value, call InsertListBoxLine to insert a blank line in the list box, then use SetListBoxText to set the blank lineÕs text.
Keep in mind that the alphabetic comparison that is made between the list boxÕs lines and the string specified by Text
differentiates between upper and lower case letters. Also, under systems older than System 7, the list boxÕs lines may
have been truncated and suffixed by with an ellipsis (ÒÉÓ) if they were too wide to fit in the list box.

..

10 List Boxes

WaterÕs Edge Software 297

SetListBoxLine
Select or deselect a line in a list box.

C pascal void SetListBoxLine (short ListBox, short LineNum, Boolean SetIt);

Pascal procedure SetListBoxLine (ListBox, LineNum: INTEGER; SetIt: BOOLEAN);

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the list box does not exist in the current window,
SetListBoxLine does nothing.

LineNum specifies the line number (from 1 to 32767) that is affected in the specified list box. If the line number does
not exist in the specified list box, SetListBoxLine does nothing. This line scrolls into view if it is being selected.

SetIt specifies if the line is to be selected or deselected. The constants on and off can be used for this purpose.

The SetListBoxLine routine should be used to set default lines within a list box immediately after it is created.
Normally, you wonÕt have to use this routine because the userÕs actions will select and deselect lines.

If you are going to select a number of lines using this routine, first use the DrawListBox routine to turn list drawing
off, set your lines, then use DrawListBox to turn drawing on. The user sees all the lines selected at once instead of
seeing each line selected individually.

CONST {list box's line state }
on = true; {line is selected }
off = false; {line is deselected }

..

GetListBoxLine
Determine if a specified line in a list box is selected or deselected.

C pascal Boolean GetListBoxLine (short ListBox, short LineNum);

Pascal function GetListBoxLine (ListBox, LineNum: INTEGER): BOOLEAN;

ListBox specifies the list box number (from 1 to 511) that is queried in the current window.

LineNum specifies the line number (from 1 to 32767) that is queried in the specified list box.

The routineÕs value returns as true if the line is selected, or false if the line is not selected. If the current window
doesnÕt belong to your application, or if no windows are open, or if the list box does not exist in the current window, or
if LineNum does not exist in the specified list box, the routineÕs value returns a false.

See the GetListBoxLines (ending with an ÒsÓ) routine.

..

Tools Plus

298

GetListBoxLines
Find the first selected line in a list box, starting at a specified line number.

C pascal short GetListBoxLines (short ListBox, short LineNum);

Pascal function GetListBoxLines (ListBox, LineNum: INTEGER): INTEGER;

ListBox specifies the list box number (from 1 to 511) that is queried in the current window.

LineNum specifies the line number (from 1 to 32767) that is the first in a series to be queried in the specified list box.

The routineÕs value returns the line number of the first selected line starting at LineNum. If no selected lines were
found, the routine returns a value of zero (0). If the current window doesnÕt belong to your application, or if no
windows are open, or if the list box does not exist in the current window, or if LineNum does not exist in the specified
list box, the routineÕs value returns a zero (0).

When multiple lines can be selected in a list box, GetListBoxLines is a good way to determine which lines are
currently selected. Instead of checking each line individually, use GetListBoxLines with a LineNum of 1 to determine
the first selected line. Add 1 to the resultant value to resume the search starting at the next LineNum. When
GetListBoxLines returns a value of zero, you know you have reached the end of the list.

A second use for this routine is to enable or disable a button depending on whether any items are selected in a list box.
The ÒOpenÉÓ dialog box provides a good example. If a line (i.e., file name) is not selected in the list box, the Open
button is disabled. As soon as a line is selected, the Open button is enabled. To do this, your application merely has to
set up the correct default (or absence of one) in the list box, and correctly enable or disable a push button. When Tools
Plus informs your application that some activity has taken place in the list box, call GetListBoxLines with a LineNum
of 1 to determine if any lines were selected. If GetListBoxLines returns a non-zero value, you know a selection has
been made, otherwise, no selections have been made. Based on this conclusion, you could enable or disable the push
button accordingly.

..

InsertListBoxLine
Insert a blank line into a list box.

C pascal void InsertListBoxLine (short ListBox, short LineNum);

Pascal procedure InsertListBoxLine (ListBox, LineNum: INTEGER);

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the list box does not exist in the current window,
InsertListBoxLine does nothing.

LineNum specifies the line number (from 1 to 32767) that is the targeted destination for a blank line in the specified list
box. The specified line number, and all the lines below it, are pushed down one line. If the line number does not exist
in the specified list box, InsertListBoxLine does nothing.

Repeated calls to InsertListBoxLine should be bracketed by calls to DrawListBox. See the DrawListBox routine for
details.

..

10 List Boxes

WaterÕs Edge Software 299

DeleteListBoxLine
Delete an existing line from a list box.

C pascal void DeleteListBoxLine (short ListBox, short LineNum);

Pascal procedure DeleteListBoxLine (ListBox, LineNum: INTEGER);

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the list box does not exist in the current window,
DeleteListBoxLine does nothing.

LineNum specifies the line number (from 1 to 32767) that is deleted. The specified line number is deleted, and all the
lines below it are moved up one line. If the line number does not exist in the specified list box, DeleteListBoxLine
does nothing.

If you want to clear a line (i.e., clear the existing text and leave a blank line), use SetListBoxText and specify a null
string (Ò\pÓ in C, or ÔÔ in Pascal).

Repeated calls to DeleteListBoxLine should be bracketed by calls to DrawListBox. See the DrawListBox routine for
details. You can delete all lines in a list box with ClearListBox.

..

ClearListBox
Delete all lines from a list box.

C pascal void ClearListBox (short ListBox);

Pascal procedure ClearListBox (ListBox: INTEGER);

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the list box does not exist in the current window,
ClearListBox does nothing.

ClearListBox deletes all lines in a list box. This routine is very quick regardless of the number of lines in the list box
so you can leave list box drawing on when you use it.

..

ListBoxIsEnabled
Determine if a list box is enabled or disabled.

C pascal Boolean ListBoxIsEnabled (short ListBox);

Pascal function ListBoxIsEnabled (ListBox: INTEGER): BOOLEAN;

ListBox specifies the list box number (from 1 to 511) that is queried in the current window.

The routineÕs value returns true if the list box is enabled, and false if the list box is disabled. If the current window
doesnÕt belong to your application, or if no windows are open, or if the list box does not exist in the current window,
ListBoxIsEnabled returns false. ListBoxIsEnabled returns the list boxÕs enabled state as it is currently displayed, so if
the list boxÕs window is inactive and has temporarily disabled the list box, ListBoxIsEnabled returns false.

..

Tools Plus

300

SetListBoxFontSettings
Set a list boxÕs font, size and style settings.

C pascal void SetListBoxFontSettings (short ListBox,
short theFont, short theSize, Style theStyle);

Pascal procedure SetListBoxFontSettings (ListBox: INTEGER;
theFont: INTEGER; theSize: INTEGER; theStyle: Style);

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if the list box does not exist, SetListBoxFontSettings
does nothing. Otherwise, the change is seen immediately.

TheFont specifies the list boxÕs new font. The default is Chicago, which is represented by the systemFont constant.

TheSize specifies the fontÕs size. The default is 0, which represents the default font size used by the system font, or
12pt in this case.

TheStyle specifies the list boxÕs new style. Special character constants defined by the Font Manager are bold, italic,
underline and shadow. C programmers use the Font ManagerÕs constants to specify a composite style, such as
SetListBoxFontSettings(1, geneva, 9, bold + outline) for bold and outlined, or SetListBoxFontSettings(1, geneva, 9, 0)
for plain text. Pascal programmers use the Font ManagerÕs constants to specify a style set, such as
SetListBoxFontSettings(1,Êgeneva, 9, [bold, outline]) for bold and outlined, or SetListBoxFontSettings(1, geneva, 9, [
]) for plain text.

A list boxÕs font settings are set when a list box is created, so this routine is not normally used by many applications.

..

GetListBoxFontSettings
Get a list boxÕs font, size and style settings.

C pascal void GetListBoxFontSettings (short ListBox,
short *theFont, short *theSize, Style *theStyle);

Pascal procedure GetListBoxFontSettings (ListBox: INTEGER;
var theFont: INTEGER; var theSize: INTEGER; var theStyle: Style);

ListBox specifies the list box number (from 1 to 511) in the current window whose font settings are being retrieved. If
the current window doesnÕt belong to your application, if no windows are open, or if ListBox specifies a list box that
does not exist, GetListBoxFontSettings returns default values.

TheFont is the list boxÕs font number. The default is 0 which is represented by the systemFont constant.

TheSize is the fontÕs size. The default is 0, which represents the default font size used by the system font, or 12pt in
this case.

TheStyle is the list boxÕs font style. The default is plain text, which is represented by 0 in C and [] in Pascal.

..

10 List Boxes

WaterÕs Edge Software 301

SetListBoxColors
Set a list boxÕs colors.

C pascal void SetListBoxColors (short ListBox,
const RGBColor *TextColor, const RGBColor *BackColor);

Pascal procedure SetListBoxColors (ListBox: INTEGER;
TextColor: RGBColor; BackColor: RGBColor);

ListBox specifies the list box number (from 1 to 511) in the current window whose colors are being set. If the current
window doesnÕt belong to your application, or if no windows are open, SetListBoxColors does nothing. Also, if
ListBox specifies a list box that does not exist, or if Color QuickDraw is unavailable or not used, SetListBoxColors
does nothing. The change is seen immediately, regardless if the list box was originally created with the listColorList
option or not. If the list box is implemented using the listSystemBody option, it ignores color settings.

TextColor is the color of the listÕs text.

BackColor is the list boxÕs background color upon which the text is drawn.

Normally, a list boxÕs colors are set when this list box is created with NewListBox or NewListBoxRect, so this routine
would not be used by many applications.

..

GetListBoxColors
Get a list boxÕs colors.

C pascal void GetListBoxColors (short ListBox,
RGBColor *TextColor, RGBColor *BackColor);

Pascal procedure GetListBoxColors (ListBox: INTEGER;
var TextColor: RGBColor; var BackColor: RGBColor);

ListBox specifies the list box number (from 1 to 511) in the current window whose colors are being retrieved. If the
current window doesnÕt belong to your application, or if no windows are open, or if ListBox specifies a list box that
does not exist, GetListBoxColors returns default color values. If the list box is implemented as a control it ignores
color settings.

TextColor is the color of the listÕs text. The default color is black.

BackColor is the list boxÕs background color upon which the text is drawn. The default color is white.

..

ListBoxLineCount
Determine the number of lines in a list box.

C pascal short ListBoxLineCount (short ListBox);

Pascal function ListBoxLineCount (ListBox): INTEGER;

ListBox specifies the list box number (from 1 to 511) you wish to query in the current window.

The routineÕs value returns the number of lines in the specified list box. If the list box number does not exist, the
routine returns zero.

..

Tools Plus

302

DrawListBox
Turn list box drawing on or off (immediate update when lines are changed).

C pascal void DrawListBox (short ListBox, Boolean DrawIt);

Pascal procedure DrawListBox (ListBox: INTEGER; DrawIt: BOOLEAN);

When your application makes changes to a list box by adding, changing, deleting or inserting lines, the change is
immediately visible. This can become quite unsightly when adding one line at a time to a list box of any significant
length. Whenever changes are going to be made to more than a single line, turn drawing off before making any
changes. After all the changes are completed, turn list drawing back on.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the list box does not exist in the current window,
DrawListBox does nothing.

DrawIt specifies if the drawing is to be turned on or off. The constants on and off may be used. When list drawing is
turned off, any changes made to the lines are not displayed although changes are invisibly accumulated. When list
drawing is turned back on, the list box is drawn instantly with all its lines and selections displayed.

DrawListBox has no effect on hidden list boxes since their drawing mode is always turned off while they are hidden.

CONST {List box's line drawing }
on = true; {Text lines are drawn }
off = false; {Text lines are not drawn }

..

MoveListBox
Move a list box to a new location on the window.

C pascal void MoveListBox (short ListBox, short toHoriz, short toVert);

Pascal procedure MoveListBox (ListBox, toHoriz, toVert: INTEGER);

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if ListBox specifies a list box that does not exist,
MoveListBox does nothing. The change is seen immediately providing that the list box is not hidden. The list boxÕs
width and height are not changed.

ToHoriz is the new horizontal co-ordinate at which the left side of the list box appears.

ToVert is the new vertical co-ordinate at which the top of the list box appears.

Also see: SizeListBox and MoveSizeListBox.

..

10 List Boxes

WaterÕs Edge Software 303

OffsetListBox
Change a list boxÕs co-ordinates without affecting its image on the window.

C pascal void OffsetListBox (short ListBox,
short distHoriz, short distVert);

Pascal procedure OffsetListBox (ListBox, distHoriz, distVert: INTEGER);

When you scroll an area that contains list boxes, first use ScrollRect to scroll the pixel image containing the affected
objects in the window. OffsetListBox is used to offset a list boxÕs co-ordinates without altering its image (since
ScrollRect has already done so). At this point, the list boxÕs co-ordinates match the scrolled image of the list box.
ObscureListBox or KillListBox can be used to hide or delete list boxes that are scrolled out of view.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if ListBox specifies a list box that does not exist,
OffsetListBox does nothing.

DistHoriz and distVert specify the horizontal and vertical amount by which the list boxÕs co-ordinates are offset.
Positive numbers are right and down. The list boxÕs co-ordinates are updated but no change is seen.

..

SizeListBox
Change a list boxÕs size.

C pascal void SizeListBox (short ListBox, short width, short height);

Pascal procedure SizeListBox (ListBox, width, height: INTEGER);

SizeListBox changes a list boxÕs width and/or height without altering the list boxÕs top or left co-ordinate. The change
is seen immediately providing that the list box is not hidden.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if ListBox specifies a list box that does not exist,
SizeListBox does nothing.

Width and height specify the list boxÕs new width and height in pixels. If either parameter is less than 1, SizeListBox
does nothing.

Also see: MoveListBox and MoveSizeListBox.

..

MoveSizeListBox
Change a list boxÕs co-ordinates.

C pascal void MoveSizeListBox (short ListBox,
short left, short top, short right, short bottom);

Pascal procedure MoveSizeListBox (ListBox, left, top, right, bottom: INTEGER);

MoveSizeListBox changes any of the list boxÕs four co-ordinates. The change is seen immediately providing that the
list box is not hidden. This routine combines the functions of MoveListBox and SizeListBox.

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if ListBox specifies a list box that does not exist,
MoveSizeListBox does nothing.

Tools Plus

304

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the list boxÕs size and location in
the window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-
hand corner (right,bottom). If these parameters specify an empty rectangle, MoveSizeListBox does nothing.

Also see: GetListBoxRect.

..

MoveSizeListBoxRect
Change a list boxÕs co-ordinates.

C pascal void MoveSizeListBoxRect (short ListBox, const Rect *Bounds);

Pascal procedure MoveSizeListBoxRect (ListBox: INTEGER; Bounds: RECT);

MoveSizeListBoxRect is identical to the MoveSizeListBox routine, except that it accepts the Bounds rectangle in place
of the individual left, top, right and bottom co-ordinates.

..

AutoMoveSizeListBox
Specify how a list box is automatically moved and/or resized as its windowÕs size is changed.

C pascal void AutoMoveSizeListBox (short ListBox,
Boolean left, Boolean top, Boolean right, Boolean bottom);

Pascal procedure AutoMoveSizeListBox (ListBox: INTEGER;
left, top, right, bottom: BOOLEAN);

ListBox specifies the list box number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, if no windows are open, or if ListBox specifies a list box that does not exist,
AutoMoveSizeListBox does nothing.

The left, top, right and bottom parameters specify if that side of the list box is automatically adjusted when the
windowÕs size changes. These setting are applied to the list box and are used the next time the windowÕs size changes:

left Does the list boxÕs left side track the windowÕs right edge?
top Does the list boxÕs top track the windowÕs bottom edge?
right Does the list boxÕs right side track the windowÕs right edge?
bottom Does the list boxÕs bottom track the windowÕs bottom edge?

You can think of each false value as locking that side of the list box to a fixed co-ordinate regardless of the windowÕs
size (this is the default). Each true value establishes a fixed distance between that side of the list box and the windowÕs
edge. For example, setting only left and right to true makes the list box move horizontally as the window widens and
narrows, but the list box does not move vertically when the windowÕs height changes.

If you are setting these values identically for a group of objects, use AutoMoveSize to define the settings then add the
appropriate xAutoMoveSize constant (such as listAutoMoveSize for list boxes) to the objectsÕ spec as they are created.
The objects will adopt the settings specified by the AutoMoveSize routine.

+ Warning: Make sure that you resize objects in a way that makes sense. DonÕt allow a window to shrink down to a
size where objects become unusable or disappear altogether.

..

10 List Boxes

WaterÕs Edge Software 305

GetListBoxHandle
Get a handle to a list boxÕs list record.

C pascal ListHandle GetListBoxHandle (short ListBox);

Pascal function GetListBoxHandle (ListBox: INTEGER): ListHandle;

This routine returns a standard ListHandle to a list box that was created by a Tools Plus routine. You should never
need to use this routine. It is provided for advanced programmers who may have specialized needs. Always use Tools
Plus routines to create and manipulate list boxes. If you are using an Appearance Manager List Box control, that is a
control created with the listSystemBody option, GetListBoxHandle returns a handle to the control. You can then use
toolbox routines to get a handle to the list itself.

ListBox specifies the list box number (from 1 to 511) in the current window whose handle is being retrieved. If the
current window doesnÕt belong to your application, or if no windows are open, or if ListBox specifies a list box that
does not exist, GetListBoxHandle returns nil.

+ Warning: If you need to lock the handle or change its attributes, do so temporarily then restore the original settings
before using any Tools Plus routines. If you alter this handle or any data that is made accessible by this
handle, you do so at your own risk. The only exception is the list boxÕs reference constant (refCon field)
which can safely be used to store any value you want.

..

Tools Plus

306

11 Pop-Up Menus

WaterÕs Edge Software 307

11 Pop-Up Menus

Pop-up menus are a mechanism that lets the operator make a selection from multiple choices. Where this interface
differs from a set of radio buttons, a set of check boxes, or a list box, is that a pop-up menu requires minimal space on
a window by hiding most of its detail until it is required. Pop-up menus are typically used for lists of items, such as
fonts. See the Macintosh User Interface Guidelines chapter of Inside Macintosh for details on the use of pop-up menus.
The implementation of pop-up menus shares many similarities with pull-down menus, so you will find that this chapter
has a lot of commonalty with the chapter on Menus.

A pop-up menu is typically made up of two components as illustrated below on the left: a title, and a pop-up box. The
pop-up box contains the selected item, and a Òdown arrowÓ which provides the user with a visual cue that the control is
a pop-up menu. When the user clicks and holds the title or the pop-up box, a list of choices is displayed in a pop-up
menu, allowing the user to select one of the items. By default, Tools Plus pop-up menus allow only a single item to be
selected, but you can easily override this behavior.

Title Pop-Up Box

Before Selection During Selection

Inverted Title Pop-up Menu(Selected Item) (Down-Arrow)

Tools PlusÕs pop-up menus provide several options that are not available on ordinary Macintosh pop-up menus, as
illustrated below. One of these options displays the selected itemÕs icon within the pop-up box. As you may notice,
you can also suppress the Òdown arrowÓ if you want. Tools PlusÕs pop-up menus also perform automatic adjustments
to create the perfect looking pop-up menu without having to calculate font heights.

Another feature that is not available in ordinary Macintosh pop-up menus is the Òpop downÓ option. It displays the
menuÕs list below the pop-up menuÕs body. If the pop-up menu has a title, it is displayed within the controlÕs body,
otherwise the first selected item is displayed in the controlÕs body, like a regular pop-up menu. This feature is useful in
a window where space is limited and several Òdo it nowÓ options are required.

Icon in the Pop-Up Box Automatic Adjustment ÒPop-DownÓ Option

In this document, the term pop-up menu refers to the entire control; that is, the pop-up box and its contents, the name
that appears to the left, and the individual items which appear during selection. The term menu item or item refers to
individual items found within a pop-up menu. The item number is determined by counting from the top of the list, the
first item being 1, the second being 2, etc.

Tools Plus

308

A pop-up menu is created on the current window with the NewPopUp routine. Each pop-up menu is referenced by a
unique pop-up menu number that can be from 1 to 511. This number is specified when the pop-up menu is created, and
refers to the specific pop-up menu until it is deleted. Note that the pop-up menu number is related to its associated
window. This means that two different windows can each have a pop-up menu numbered Ò1Ó without interfering with
each other. Whenever the user makes a selection in the pop-up menu, Tools Plus reports this to your application. You
can also create an entire pop-up menu from a ÔMENUÕ resource by using the LoadPopUp routine.

The PopUpMenu routine is used to add items to a specific pop-up menu, or to rename existing items in a pop-up menu.
ResNamesToPopUp inserts resource names (such as fonts or sounds), sorted alphabetically, at a specified item.

Pop-up menu items can also be inserted between others using the InsertPopUpItem routine. This lets your application
maintain a dynamic pop-up menu that may be used, for example, for a list of available font sizes.

An entire pop-up menu can be deleted by using the RemovePopUp routine. This routine reclaims the memory used by
the pop-up menu. Individual items can also be deleted using this routine.

Pop-up menu items can be renamed by using the RenamePopUp routine. This should be done judiciously, since
changes to pop-up menu items may prove to be confusing to the user.

An entire pop-up menu can be enabled or disabled with the EnablePopUp routine, as can individual menu items. When
an entire pop-up menu is disabled, it is dimmed and it cannot be selected. Furthermore, its items cannot be displayed.
When an item is disabled, it becomes dim and cannot be selected. A pop-up menu can be hidden and displayed using
PopUpDisplay.

Various other menu item-related features are supported, such as setting or removing Òcheck marksÓ with the
CheckPopUp routine. You can set or remove other marks with the PopUpMark routine, and determine which mark is
displayed by using GetPopUpMark. You can set and retrieve an itemÕs icon number with PopUpIcon and
GetPopUpIcon. An itemÕs text is retrieved with GetPopUpString, and its style is set with PopUpStyle.

Pop-up menus can be moved to a new location with MovePopUp and have their width changed with SizePopUp.
MoveSizePopUp combines both tasks by letting you specify new co-ordinates for the pop-up menu.

Fonts
All pop-up menus default to using the Chicago 12pt font. When a pop-up menu is created, it can optionally adopt and
remember the windowÕs current font, size and style settings (as set by the TextFont, TextSize, and TextFace routines)
by including the popupUseWFont option. The windowÕs settings can then be changed without affecting the pop-up
menu. You can use the GetPopUpFontSettings and SetPopUpFontSettings routines to get and set the pop-up menuÕs
font, size and style settings.

Colors
By default, a pop-up menu has black text on a white background. The controlÕs frame is also black and the control
body is white. The pop-up menuÕs items are displayed using black text on a white background. Optionally, each pop-
up menu can adopt unique color settings as it is created. The colors for the various parts are defined by the
PopUpColors routine, and are optionally adopted by pop-up menus as they are created. Pop-up menusÕ colors can be
changed afterwards using the SetPopUpColors routine. Conversely, the GetPopUpColors routine retrieves a pop-up
menuÕs color settings. If you want to get or set the colors for a single menu item, use the GetPopUpItemColors and
SetPopUpItemColors routines.

When designing applications, always design them in black and white then apply color (if required) to add value to your
application. DonÕt add color just because you can. In the case of color pop-up menus, test your color selection
thoroughly on a monitor set to 8, 4, and 2-bit color and gray scale, and black and white to ensure that your colors and
window backdrop color map to usable colors. In all cases, use color very judiciously, and only if there is value in
adding colors.

The Appearance Manager does not support the use of colors in pop-up menus (it supplies colors and patterns that are
consistent with the user-selected theme). Initializing Tools Plus with the initPureAppearanceManager option enforces
this principle by ignoring custom color information when the Appearance Manager is available.

11 Pop-Up Menus

WaterÕs Edge Software 309

Command Keys & Hierarchical Pop-Up Menus
Macintosh User Interface Guidelines recommend against using command keys or submenus in a pop-up menu. Tools
Plus enforces this to a great degree, but for developers who insist on creating hierarchical pop-up menus, a solution is
at hand. The AttachPopUpSubMenu routine lets you attach a hierarchical menu to a pop-up menu (see the Menus
chapter for details about creating a hierarchical menu). If you populate your pop-up menu using a ÔMENUÕ resource,
Tools Plus recognizes the submenus and attaches them appropriately to the pop-up menu.

When you create hierarchical menus for a pop-up menu, make sure that the hierarchical menu does not contain
command key equivalents because Tools Plus ignores them. Also make sure that your hierarchical menu number is in
the range of 16 through 200. A hierarchical menu can be shared by numerous pop-up menus, but keep in mind that if
you make a change to a shared hierarchical menu, that change shows up in all the pop-up menus in your application
that use that hierarchical menu.

Creating a Pop-Up Menu Using a ÔCNTLÕ Resource
Tools Plus offers considerable versatility in the way it supports the creation of pop-up menus from ÔCNTLÕ resources.
These features are most often used when opening a dialog (ÔDLOGÕ resource) that contains pop-up menus. In all cases,
the ÔCNTLÕ resource specifies a CDEF ID of 63, which produces a procID of 1008 plus any variants. Just after you
initialize your application, use the SetDialogCNTLPopUpSpec routine to specify the default appearance and behavior
specifications (ÒspecÓ parameter) for pop-up menus that are created by dialogs. A list of possible values can be found
in the NewPopUp description. By default, Tools Plus simply creates a pop-up menu using the systemÕs CDEF, thus
providing you with the ease of use that is provided by Tools PlusÕs pop-up menu routines.

Pure System Pop-Up Menu

For ÒpureÓ pop-up menus, that being without any of the advantages of Tools PlusÕs pop-up menu routines, call
SetDialogCNTLPopUpSpec(-1) just after you initialize your application. This causes ÔCNTLÕ resources that reference
the pop-up menu CDEF to be implemented as ÒbuttonsÓ instead of being implemented as Tools PlusÕs pop-up menus.
Your application has access to the controlÕs handle via the GetButtonHandle routine. This approach gives you the
ultimate control over your pop-up menu. It also makes it the most difficult alternative in terms of programming
because you must do all the toolbox coding for the pop-up menu. In this situation, set up the ÔCNTLÕ resourceÕs fields
with values as detailed in Inside Macintosh.

Tools Plus Pop-Up Menu (CDEF 63)

A much easier alternative is to create a Tools Plus pop-up menu using the ÔCNTLÕ resource. When you open a dialog,
ÔCNTLÕ resources that reference CDEF ID 63 (the pop-up menu) create a Tools Plus pop-up menu. The translation
from a ÔCNTLÕ resource to a Tools Plus pop-up menu takes place as follows:

¥ Tools Plus first looks at the default pop-up menu appearance and behavior specifications, as set by the
SetDialogCNTLPopUpSpec. You will likely set this value to something like popupSystemBody, simply telling
Tools Plus to create a pop-up menu that looks like the systemÕs pop-up menu.

¥ If the Macintosh running your application does not have a pop-up menu CDEF as is the case with System 6, Tools
Plus will create a standard pop-up menu using its own code.

¥ To override the default appearance and behavior specifications for a single pop-up menu, place the replacement
spec value in the ÔCNTLÕ resourceÕs contrlRfCon field, the reference constant. A list of possible values can be
found in the NewPopUp description. A contrlRfCon value of zero (0) indicates that the default appearance and
behavior specification is used, as set by the SetDialogCNTLPopUpSpec routine.

¥ The ÔCNTLÕ resourceÕs contrlMin field (controlÕs minimum limit) is used to specify the ÔMENUÕ resource that is
used to name the pop-up menu and to populate it with items. The menuÕs title is used as the title for the pop-up
menu. The ÔMENUÕ resource ID must be in the range of 16000 through 31999.

¥ If the ÔCNTLÕ resourceÕs contrlMin field (controlÕs minimum limit) is set to zero (0), the contrlTitle field (title) is
used for the pop-up menuÕs title, and the pop-up menu is not populated with menu items. Make sure you disable a
pop-up menu that has no items since the user cannot select anything in it.

Tools Plus

310

Bevel Button Pop-Up Menu (CDEF 2)

The Appearance ManagerÕs bevel button control has a number of options that can be
implemented as pop-up menus. You create this kind of user interface element by using a
ÔCNTLÕ resource in a dialog. When you open the dialog, Tools Plus recognizes this kind of
bevel button control as a Òspecial caseÓ and implements it as a pop-up menu instead of a
button, thereby providing you with all the advantages and ease of use offered by Tools PlusÕs
pop-up menus.

The bevel button is the most versatile control offered by the Appearance Manager. It allows
you to specify the buttonÕs appearance, its content (picture, icon, etc.), its behavior (push
button, toggle, or sticky), and its pop-up menu ID. All these capabilities are invoked by
correctly setting the controlÕs variant code, minimum limit, maximum limit, and value. You
will use CDEF 2 in all cases, therefore the controlÕs procID will be 32 plus a variant code.

Parameter ParameterÕs value is used forÉ

Variant Code Bit 3 = Use windowÕs font
Bit 2 = Pop-up arrowÕs direction
Bits 0-1 = Bevel size

Min Limit High byte = Behavior
Low byte = Type of content

Value Menu ID being attached (16000 to 31999). The menuÕs title,
if one is specified, appears inside the pop-up menuÕs body.

Max Limit Resource ID for resource-based content types

CONST
{Bevel Button ProcIDs: }

kControlBevelButtonSmallBevelProc = 32; {Small bevel }
kControlBevelButtonNormalBevelProc = 33; {Standard size bevel }
kControlBevelButtonLargeBevelProc = 34; {Large bevel }
kControlBevelButtonMenuOnRight = $04; {Pop-up arrow points right }

{Behaviors (in min. limit): }
kControlBehaviorMultiValueMenu = $4000; {Multiple menu items allowed }
kControlBehaviorOffsetContents = $8000; {Contents offset 1 pixel down}

{ and right when clicked. }

{Content (in min. limit): }
kControlContentTextOnly = 0; {Button contains only text }
kControlContentIconSuiteRes = 1; {Image us an icon suite }
kControlContentCIconRes = 2; {Image is a 'cicn' icon }
kControlContentPictRes = 3; {Image is a 'PICT' }
kControlContentIconRef = 132; {Image is an 'ICON' }

Small, Medium and
Large Bevel Buttons

Selected

Deselected

Flag your ÔCNTLÕ and ÔMENUÕ resources as purgeable to save memory. Tools Plus makes a copy of their data. See
the chapters on Buttons, Scroll Bars, Editing Fields, and List Boxes in this user manual for additional Appearance
Manager controls.

Handling Pop-Up Menus
Once a pop-up menu is created, Tools Plus performs all the processing required to maintain it. When a window is
inactive, Tools Plus disables all pop-up menus on that window. When the window is activated again, all the pop-up
menus regain their correct status as specified by your application. Tools Plus constantly inquires about any events that
have occurred, including the user clicking a pop-up menu.

See the Event Management chapter for complete details on the handling of pop-up menus.

..

11 Pop-Up Menus

WaterÕs Edge Software 311

NewPopUp
Create a new pop-up menu.

C pascal void NewPopUp (short MenuNumber,
short left, short top, short right, short bottom,
const Str255 MenuTitle, long Spec, Boolean EnabledFlag);

Pascal procedure NewPopUp (MenuNumber, left, top, right, bottom: INTEGER;
MenuTitle: STRING; Spec: LONGINT; EnabledFlag: BOOLEAN);

This routine just creates the pop-up menu control and its title. Pop-up menu items are created with PopUpMenu.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is created in the current window. Once a pop-up
menu is created, it is referenced by this pop-up menu number. If a pop-up menu has been previously created in the
current window using the same number, it is replaced with a new pop-up menu (without any items) as specified by the
parameters in the NewPopUp routine. If the current window doesnÕt belong to your application, or if no windows are
open, NewPopUp does nothing.

Left, top, right, and bottom define a rectangle in the current windowÕs local co-ordinates that determine the pop-up
menuÕs size and location in the window. These parameters can be seen as two corners; the upper left-hand corner
(left,top) and the bottom right-hand corner (right,bottom) of the pop-up box. The pop-up boxÕs 1-pixel border and its
drop shadow are drawn outside these co-ordinates. Also, the pop-up menuÕs title is drawn to the left of the specified
rectangle. To make a pop-up menu operate at its best, its height (difference between top and bottom) must be
equivalent to the fontÕs height (font height can be determined by calling the GetFontInfo routine and adding Ascent +
Descent + Leading). If you make bottom equal to top, the bottom is adjusted automatically to the exact font height. If
your menu is comprised entirely of icons (no text in the items), set the height of the rectangle to equal the height of the
icon, and add 2.

MenuTitle is the pop-up menuÕs name that appears to the left of the pop-up box, or inside the pop-up box when the
Òpop downÓ option is used. You may specify a null string (ÔÔ) if you do not want to have an external title displayed.

Spec specifies the pop-up menuÕs appearance and behavior characteristics. The value for this 4-byte long integer can
be specified either by adding a set of constants to obtain the desired result, or using a specially defined variant record.
See the section below for details.

EnabledFlag indicates if the newly created pop-up menu is enabled or not. When a pop-up menu is disabled, it
becomes dim and cannot be selected by the user, nor can its items be viewed. All pop-up menus automatically become
disabled when the window containing them is inactive. When the window is activated, the pop-up menus assume their
state as set by the NewPopUp routine and subsequent calls to the EnablePopUp routine. The two constants that can be
used for this flag are enabled and disabled.

Tools Plus

312

Appearance and Behavior

Spec specifies the pop-up menuÕs appearance and behavior characteristics. The value for this 4-byte long integer can
be specified either by adding a set of constants to obtain the desired result, or using a specially defined variant record,
as illustrated below.

Optionally choose only one of the following pop-up menu stylesÉ
popupSystemBody Use CDEF ID = 63. The pop-up menu CDEF is available in

System 7 or later. You can also use a custom CDEF by
setting its ID to 63. In System 7, the pop-up menu CDEF
looks identical to the regular Tools Plus pop-up menu, but it
has fewer features and some bugs (from Apple, not from
us). If a CDEF with ID 63 canÕt be found as is the case in
System 6, the standard Tools Plus pop-up menu is used.

The systemÕs pop-up menu CDEF will likely look
different in future versions of Mac OS. Using this option
will ensure a consistent appearance with Mac OS 8, but you
wonÕt be able to use some of the options offered in Tools
PlusÕs pop-up menus.
Note: Only pop-up menus that use a CDEF can be

embedded into other controls.

popup3DBody Use a 3D pop-up menu that supports all Tools Plus features.
This pop-up menuÕs appearance is designed to mimic a
popular 3D look in Mac OS 8, but it is available on all
system versions.

Optionally choose any of the following optionsÉ
popupUseWFont Use the windowÕs font for the menu. By default, pop-up menus use the

System Font (Chicago 12pt.) You may want to use a smaller font, such as
Geneva 9, in windows where space is scarce.

When using this option, the windowÕs current font, size and style settings
(as set by the TextFont, TextSize, and TextFace routines) are remembered by
the pop-up menu as it is created. The windowÕs font settings (font, size, text-
transfer mode, and style) can then be changed without affecting the pop-up
menu.

popupColorPopUp Adopt the color settings as defined by the PopUpColors routine. By default,
pop-up menus have black text, frame, and items while their body and list
background color are white. Colors are ignored by some pop-up menu CDEFs
if you use the popupSystemBody option.

popupHasBackground The pop-up menu is drawn on a complex (non-solid) background such as a
picture. When this option is used, a doPreRefresh event is generated after the
user uses the pop-up menu in to let your application refresh the image behind
the pop-up menu. Use this option only when necessary because it is slower.
This option is not supported when using popupSystemBody, the systemÕs pop-
up menu CDEF.

popupNeverDimOutline Never dim the pop-up box. By default, the pop-up box is dimmed when the
pop-up menu is disabled or when its parent window is inactive.

popupNeverDimSelection Never dim the selected itemÕs text (and the optional icon and Òdown arrowÓ)
displayed in the pop-up box. By default, the selected item is dimmed when the
pop-up menu is disabled or when its parent window is inactive. This option is
useful when using small fonts on a black and white monitor, since those fonts
tend to look illegible when dithered.

11 Pop-Up Menus

WaterÕs Edge Software 313

popupNeverDimTitle Never dim the external title. By default, the external title is dimmed when the
pop-up menu is disabled or when its parent window is inactive. This option is
useful when using small fonts on a black and white monitor, since those fonts
tend to look illegible when dithered.

popupNoArrow Suppress the Òdown arrow.Ó By default, the Òdown arrowÓ is displayed in the
pop-up box. This option is not supported when using popupSystemBody, the
systemÕs pop-up menu CDEF.

popupMultiSelect Allow multiple items to be selected. By default, pop-up menus allow only a
single item to be selected at a time (selecting another item deselects the
original one).

popupIconTitle Draw the selected itemÕs icon in the pop-up box. By default, the selected
itemÕs icon is not drawn in the pop-up box regardless if icons are used in the
pop-up menu or not. This option is not supported when using
popupSystemBody, the systemÕs pop-up menu CDEF.

popupDropDown Display the list below the pop-up menuÕs control. If the pop-up menu has a
title it is displayed within the control, otherwise the first selected item in the
list is displayed in the controlÕs body.

popupAutoMoveSize Automatically move and/or resize the pop-up menu when the windowÕs size
changes. The AutoMoveSize routine lets you specify which sides are altered
(the top and bottom parameters set the same to retain the pop-up menuÕs
height). You can use the AutoMoveSizePopUp routine as an alternative to
setting this option.

popupHidden Create a hidden pop-up menu. This kind of pop-up menu is accessible to your
application but not to the user.

popupDefaultType This constant, if used alone, produces a standard pop-up menu using Chicago
12 that allows one item to be selected at a time. Adding any of the above
options overrides default behavior.

So, if you want to create a pop-up menu that uses the windowÕs current font settings instead of Chicago 12, and you
wanted the selected itemÕs icon to be displayed in the pop-up box, you should use the combined constants
popupUseWFont + popupIconTitle. Alternatively, a C structure and a Pascal variant record are available to help you
define the Spec in a more intuitive way, as shown below:

C union TPPopUpMenuSpec { /*Pop-Up Menu's appearance and behavior */
/* specifications in 2 formatsÉ */

 struct{ /* ¥ Parsed into components: */
 unsigned short bit31to20: 12; /* (reserved bits) */
 unsigned short UseColor: 1; /* Use color settings */
 unsigned short bit18to16: 3; /* (reserved bits) */
 unsigned short Hidden: 1; /* Create a hidden Pop-Up Menu */
 unsigned short AutoMoveSize: 1; /* Auto-resize as window's size chg */
 unsigned short BodyIs3D: 1; /* Body is drawn in 3D style */
 unsigned short SystemBody: 1; /* Use system's standard body style */
 unsigned short bit11to10: 2; /* (reserved bits) */
 unsigned short HasBackground: 1; /* Pop-Up Menu is drawn over an image */
 unsigned short NeverDimOutline: 1; /* Never dim the control's outline */
 unsigned short NeverDimSelectedItem: 1; /* Never dim the selected item's text */
 unsigned short NeverDimTitle: 1; /* Never dim the title */
 unsigned short NoArrow: 1; /* Is the "down arrow" hidden */
 unsigned short MultipleSelections: 1; /* Allow multiple items to be selected */
 unsigned short UseWindowFont: 1; /* Display using window's font */
 unsigned short IconInTitle: 1; /* Draw icon in the control's title */
 unsigned short DropDown: 1; /* Drop list down from control */
 unsigned short bit0: 1; /* (reserved bit) */
 } Bits; /* */
 long Num; /* ¥ Long equivalent */
}; /* */
typedef union TPPopUpMenuSpec TPPopUpMenuSpec;

Tools Plus

314

Pascal TPPopUpMenuSpec = packed record {Pop-Up Menu's appearance and behavior }
{ specifications in 2 formatsÉ }

 case integer of { }
 0: ({ ¥ Parsed into components: }
 bit31, bit30, bit29, bit28: boolean; { (reserved bits) }
 bit27, bit26, bit25, bit24: boolean; { (reserved bits) }
 bit23, bit22, bit21, bit20: boolean; { (reserved bits) }
 UseColor: boolean; { Use color settings }
 bit18, bit17, bit16: boolean; { (reserved bits) }
 Hidden: boolean; { Create a hidden pop-up menu }
 AutoMoveSize: boolean; { Auto-move/size as window's size changes }
 BodyIs3D: boolean; { Body is drawn in 3D style }
 SystemBody: boolean; { Use the system's standard body style }
 bit11, bit10: boolean; { (reserved bits) }
 HasBackground: boolean; { Pop-up menu is drawn over an image }
 NeverDimOutline: boolean; { Never dim the control's outline }
 NeverDimSelectedItem: boolean; { Never dim the selected item's text }
 NeverDimTitle: boolean; { Never dim the title }
 NoArrow: boolean; { Is the "down arrow" hidden }
 MultipleSelections: boolean; { Allow multiple items to be selected }
 UseWindowFont: boolean; { Display using window's font }
 IconInTitle: boolean; { Draw icon in the control's title }
 DropDown: boolean; { Drop list down from control }
 bit0: boolean; { (reserved bit) }
); { }
 1: ({ ¥ Longint equivalent: }
 Num: longint; { Specification longint }
); { }
 end;

As an example, lets create a pop-up menu that uses the windowÕs current font and displays the icon in the title. The
following code sample illustrates how this is done:

procedure DoItNow;
 var
 Spec: TPPopUpMenuSpec; {Define the variable used for the Spec }
 begin
 Spec.Num := 0; {Initialize all the bits to zero values }
 Spec.UseWindowFont := true; {Specify that the window font is to be used }
 Spec.IconInTitle := true; {Specify that the selected item's icon appears in }

{ the pop-up box. }
{Create the pop-up menu using the integer part of }

 NewPopUp(1, 110, 20, 209, 20, 'Day of Week:', Spec.Num, enabled); { the Spec. }

You can use whatever you like best as the Spec, a single constant, several constants added together, a variable, or the
short or 4-byte integer component of a structure or variant record.

Pop-Up Menus on Color Backgrounds

Sometimes it may be necessary to place a pop-up menu on a color surface, such as a tool bar. If you are creating a pop-
up menu on a color surface, set the windowÕs background color (by using SetBackRGB) to the color on which the pop-
up menu is being created, then create the menu. You may change the windowÕs foreground and background colors at
any time without affecting pop-up menus.

Each pop-up menu remembers the color on which it is created, and uses this color when any erasing is performed by
the pop-up menu. An example of this is when the user clicks and holds the pop-up menu. In such a case, the controlÕs
body temporarily disappears and is replaced by the pop-up menuÕs list of items.

Also see: NewPopUpRect, NewDialogPopUp and PopUpMenu.

Programming Tips:
1 If you want to create a menu that is comprised entirely of icons (without any text items), make sure all the

icons have the same height, then make the pop-up menuÕs height equal to the icon height plus 2.

CONST {Pop-Up Menu Behavior and Appearance Specs: }
popupColorPopUp = $00080000; {Use color settings for this pop-up menu }
popupHidden = $00008000; {Create a hidden pop-up menu? }
popupAutoMoveSize = $00004000; {Auto-resize as window's size changes }
popup3DBody = $00002000; {Draw body using 3D style }

11 Pop-Up Menus

WaterÕs Edge Software 315

popupSystemBody = $00001000; {Draw the system's standard body style }
popupHasBackground = $00000200; {Pop-Up Menu is drawn over an image? }
popupNeverDimOutline = $00000100; {Never dim the control's outline? }
popupNeverDimSelection = $00000080; {Never dim the selected item's text? }
popupNeverDimTitle = $00000040; {Never dim the title? }
popupNoArrow = $00000020; {Is the "down arrow" hidden? }
popupMultiSelect = $00000010; {Allow multiple items to be selected? }
popupUseWFont = $00000008; {Use the window's font for the menu? }
popupIconTitle = $00000004; {Draw icon in the control's title? }
popupDropDown = $00000002; {Drop list down from control }
popupDefaultType = $00000000; {Default menu (sys font, 1 item, no icon) }

..

NewPopUpRect
Create a new pop-up menu.

C pascal void NewPopUpRect (short MenuNumber, const Rect *Bounds,
const Str255 MenuTitle, long Spec, Boolean EnabledFlag);

Pascal procedure NewPopUpRect (MenuNumber: INTEGER; Bounds: RECT;
MenuTitle: STRING; Spec: LONGINT; EnabledFlag: BOOLEAN);

NewPopUpRect is identical to the NewPopUp routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

..

LoadPopUp
Create a new pop-up menu using a ÔMENUÕ resource.

C pascal void LoadPopUp (short MenuNumber, short left, short top, short right,
short bottom, long Spec, short ResID);

Pascal procedure LoadPopUp (MenuNumber, left, top, right, bottom: INTEGER;
Spec: LONGINT; ResID: INTEGER);

LoadPopUp is identical to the NewPopUp routine, except that it uses a ÔMENUÕ resource to populate the pop-up
menu. The ÔMENUÕ resource contains the pop-up menuÕs title. If the title is disabled then the pop-up menu is disabled.
The remainder of the ÔMENUÕ resource specifies the pop-up menuÕs items.

ResID is the ÔMENUÕ resource ID number that is used to create the pop-up menu. If the menu has an ÔmctbÕ color table
resource, it must use the same ID number. The resource ID number must be in the range of 16000 to 31999. These
resource numbers donÕt overlap the range used by menu numbers, so you can think of them as a temporary holding
area for ÔMENUÕ resources that have not become usable menus.

When creating pop-up menus using ÔMENUÕ resources, please note the following:
¥ Flag your ÔMENUÕ and ÔmctbÕ resources as purgeable to save memory. Tools Plus makes a copy of their data.
¥ Submenus must be in the range of 16 to 200.
¥ Command key equivalents are cleared because they are not supported in pop-up menus in Tools Plus.

..

Tools Plus

316

LoadPopUpRect
Create a new pop-up menu using a ÔMENUÕ resource.

C pascal void LoadPopUpRect (short MenuNumber, const Rect *Bounds, long Spec,
short ResID);

Pascal procedure LoadPopUpRect (MenuNumber: INTEGER; Bounds: RECT; Spec: LONGINT;
ResID: INTEGER);

LoadPopUpRect is identical to the LoadPopUp routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

..

LoadDialogPopUp
Create a new pop-up menu in a dialog using a ÔMENUÕ resource and a dialog itemÕs co-ordinates.

C pascal void LoadDialogPopUp (short MenuNumber, long Spec, short ResID);

Pascal procedure LoadDialogPopUp (MenuNumber: INTEGER; Spec: LONGINT;
ResID: INTEGER);

LoadDialogPopUp is identical to the LoadPopUp routine, except that the pop-up menu is created in a dialog (a window
opened with the LoadDialog routine, or one that had a dialog list attached with the LoadDialogList routine). The pop-
up menuÕs co-ordinates are obtained from the dialog item whose number matches the pop-up menu number.

..

EmbedPopUpInButton
Embed a pop-up menu into a button or into the windowÕs root control (Appearance Manager only).

C pascal void EmbedPopUpInButton (short MenuNumber, short ContainerButton);

Pascal procedure EmbedPopUpInButton (MenuNumber, ContainerButton: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedPopUpInButton lets you
manually embed a pop-up menu into a button, or into the windowÕs root control. Note that the term ÒbuttonÓ does not
literally mean a button control. It means any control that is implemented as a button in Tools Plus. The most likely
candidate is a Group Box control. If the Appearance Manager is not available, EmbedPopUpInButton does nothing.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the pop-up menu does not exist in the
current window, EmbedPopUpInButton does nothing. Note that the only pop-up menus that can be embedded are
those that are drawn using a CDEF (use the popupSystemBody option when creating the pop-up menu).

ContainerButton specifies the button number (from 1 to 511) into which MenuNumber is embedded. This control must
exist in the current window, and it must be a ÒcontainerÓ type control such as the Appearance ManagerÕs Group Box.
The pop-up menu must fit entirely within the container control or EmbedPopUpInButton does nothing. If a value of 0
is provided for a container button, MenuNumber is embedded into the windowÕs root control.

Also see: EmbedPopUpInScrollBar and SetAutoEmbed.

..

11 Pop-Up Menus

WaterÕs Edge Software 317

EmbedPopUpInScrollBar
Embed a pop-up menu into a scroll bar or into the windowÕs root control (Appearance Manager only).

C pascal void EmbedPopUpInScrollBar (short MenuNumber,
short ContainerScrollBar);

Pascal procedure EmbedPopUpInScrollBar (MenuNumber, ContainerScrollBar: INTEGER);

The Appearance Manager lets you embed a control into a parent control such that when the parent is hidden or
disabled, all embedded controls are similarly affected. All Tools Plus routines that load a dialog item list (LoadDialog,
LoadSpecDialog, LoadDialogList, etc.) automatically embed controls at all times. EmbedPopUpInScrollBar lets you
manually embed a pop-up menu into a scroll bar, or into the windowÕs root control. Note that the term Òscroll barÓ
does not literally mean a scroll bar control. It means any control that is implemented as a scroll bar in Tools Plus. If the
Appearance Manager is not available, EmbedPopUpInScrollBar does nothing.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the pop-up menu does not exist in the
current window, EmbedPopUpInScrollBar does nothing. Note that the only pop-up menus that can be embedded are
those that are drawn using a CDEF (use the popupSystemBody option when creating the pop-up menu).

ContainerScrollBar specifies the scroll bar number (from 1 to 511) into which MenuNumber is embedded. This control
must exist in the current window, and it must be a ÒcontainerÓ type control. The pop-up menu must fit entirely within
the container control or EmbedPopUpInScrollBar does nothing. If a value of 0 is provided for a container scroll bar,
MenuNumber is embedded into the windowÕs root control.

Also see: EmbedPopUpInButton and SetAutoEmbed.

..

GetFreePopUpNum
Get the first unused pop-up menu number.

C pascal short GetFreePopUpNum (void);

Pascal function GetFreePopUpNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own pop-up
menu number, GetFreePopUpNum returns the first unused (free) pop-up menu number. Using this routine, you can
assign an unused pop-up menu number to a variable, then use that variable throughout your application without
concern for the true pop-up menu number.

GetFreePopUpNum returns the first free pop-up menu number on the current window. If the current window doesnÕt
belong to your application, if no windows are open, or if the maximum number of pop-up menus has already been
created on the current window (no new ones can be created), GetFreePopUpNum returns a value of zero (0).

..

Tools Plus

318

AttachPopUpSubMenu
Attach a hierarchical menu to a pop-up menu item, or detach a hierarchical menu from a pop-up menu item.

C pascal void AttachPopUpSubMenu (short MenuNumber, short ItemNumber,
short SubMenuNumber);

Pascal procedure AttachPopUpSubMenu (MenuNumber, ItemNumber,
SubMenuNumber: INTEGER);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if the specified pop-up menu doesnÕt exist, AttachPopUpSubMenu does
nothing.

ItemNumber specifies the menu item number (from 1 to 32767) that is affected. If the item number does not exist
within the pop-up menu specified by MenuNumber, AttachPopUpSubMenu does nothing.

SubMenuNumber specifies the ÒoffspringÓ menu number (from 16 to 200) that is attached to the pop-up menu. You
can specify zero (0) to detach a submenu from a known parent pop-up menu item. If the submenu number does not
exist, AttachPopUpSubMenu does nothing.

- Note: When a submenu is attached to a parent pop-up menuÕs item, that itemÕs ÒmarkÓ (as defined by MenuMark) is
cleared. Also, if an SICN icon is displayed in the item, it too is cleared. The MacintoshÕs Menu Manager uses
these characters to make hierarchical menus work.

..

PopUpColors
Set the colors for new pop-up menus as they are created.

C pascal PopUpColors (const RGBColor *Title, const RGBColor *Frame,
const RGBColor *Body, const RGBColor *DfltItemText,
const RGBColor *ListBackground);

Pascal procedure PopUpColors (Title, Frame, Body, DfltItemText,
ListBackground: RGBColor);

When new pop-up menus are created, by default they have a black frame and text and the controlÕs body is white. The
listÕs text is black on a white background. When you use the PopUpColors routine, new pop-up menus adopt the colors
specified in this routine (providing that the pop-up menu is created with the popupColorPopUp option in the pop-up
menuÕs spec). This is the most efficient way to color multiple pop-up menus using the same colors.

Title is the color of the pop-up menuÕs title, which may be external to the control or a fixed title within the control.

Frame is the pop-up menuÕs frame color.

Body is the pop-up menuÕs body color. This is the color that is used to fill the controlÕs body.

DfltItemText is the default color used to display items in the pop-up menuÕs list.

ListBackground is the background color used for the pop-up menuÕs list.

Also see: NoPopUpColors and SetPopUpColors.

..

11 Pop-Up Menus

WaterÕs Edge Software 319

NoPopUpColors
Reset the colors for new pop-up menus to the default.

C pascal void NoPopUpColors (void);

Pascal procedure NoPopUpColors;

When new pop-up menus are created, by default they have a black frame and text and the controlÕs body is white. The
listÕs text is black on a white background. When you use the PopUpColors routine, new pop-up menus adopt the colors
specified by that routine (providing that the pop-up menu is created with the popupColorPopUp option in the pop-up
menuÕs spec).

This routine resets the settings of the PopUpColors routine to the default values (black title, frame and item text, white
body and list background). It is seldom required since you can create default pop-up menus by simply excluding the
popupColorPopUp constant from the pop-up menuÕs spec parameter.

Also see: PopUpColors.

..

PopUpMenu
Create a pop-up menu, add more items, or rename existing items.

C pascal void PopUpMenu (short MenuNumber, short ItemNumber,
Boolean EnabledFlag, const Str255 MenuText);

Pascal procedure PopUpMenu (MenuNumber, ItemNumber: INTEGER;
EnabledFlag: BOOLEAN; MenuText: STRING);

After a pop-up menu is created with NewPopUp or NewPopUpRect, pop-up menu items can then be added to the
menu. Your application should define items in their correct order (i.e., top to bottom) in order to use the full power of
this routine.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if the specified pop-up menu doesnÕt exist, PopUpMenu does nothing.

ItemNumber specifies the pop-up menuÕs item number (from 1 to 32767) that is affected.

EnabledFlag specifies whether the menu item is enabled or disabled. The menu item can be selected only when
enabled. When disabled, the pop-up menu item is dimmed and cannot be selected by the user. The two constants that
can be used for this purpose are enabled and disabled. Pop-up menus and their items can be enabled and disabled by
using the EnablePopUp routine.

MenuText is the pop-up menu itemÕs name. If you specify a null string (length equal to zero), Tools Plus will insert a
space to prevent anomalous behavior. When a pop-up menu item is first created, certain metacharacters are recognized
by Tools Plus to provide special instructions to the Menu Manager. You may choose to include or exclude these
characters within MenuText, however, you should be aware of their effects. Pop-up menu items can include multiple
metacharacters.

- Note: The MacintoshÕs Menu Manager allows only the first 31 items of a pop-up menu to be disabled individually.
The entire pop-up menu, however, can always be disabled.

Metacharacters

Metacharacters are symbols that tell the Menu Manager to perform special functions on a menu. They are recognized
and processed only when a menu item is first created, and are ignored (displayed as ordinary characters) when menu
items are renamed. Menu items can include multiple metacharacters or combinations of metacharacters.

Tools Plus

320

Unlike the Macintosh toolboxÕs menu routines, Tools Plus removes the semi-colon (;) and Return character ($0D), and
does not process them as metacharacters.

Metacharacter Meaning

^ Display an icon to the left of the menu item. The number following the caret (^) should be from 1 to 255 (i.e.,
Ò^28Ó). The Menu Manager adds 256 to the number you state to specify a resource ID that is in the range of 257
to 511, so if you specify 28, resource ID 284 is used (28 + 256 = 284). These icon resources are read from your
application.

Tools Plus tries to use a ÔcicnÕ icon if Color QuickDraw is available on the Macintosh running your
application. Otherwise, it will search for an ÔICONÕ (black and white) icon, then an ÔSICNÕ icon.

Unlike the equivalent Macintosh toolbox routine, your menu item will remain unaffected if the specified
icon canÕt be found (i.e., empty space is not reserved in the menu).

Be aware that the Menu Manager drawing a ÔcicnÕ icon in color will do so even if the icon was created using
8-bit colors and the monitor is set to 4-bits. This may produce unsatisfactory results. If possible, use 4-bit colors
or colors that translate well into 4-bit colors.

! Display a special mark to the left of a menu item. The single character that follows the exclamation mark (!) is
displayed. The check mark is the default. (It is best to use the CheckPopUp or PopUpMark routines.)

< The item is displayed in a special character style. The single character that follows this symbol specifies the
style (Bold, Italic, Underline, Outline, or Shadow). Multiple styles can be combined, such as Ò<B<IÓ for Òbold
and italic.Ó It is best to use PopUpStyle to change styles.

To create a Òdividing lineÓ between sections of related pop-up menu items, disable the item and use Ô-Õ (a minus or
dash) as the MenuText value. You can use the constant mDividingLine for this purpose.

Special care should be taken to create pop-up menu items in their correct order. If any items are skipped when defining
a pop-up menu item (i.e., creating item 3 without first creating 1 and 2) the missing pop-up menu items (1 and 2) are
automatically created as blank, disabled items. Consequently, metacharacters will not be recognized when the
PopUpMenu routine references these automatically created items; the PopUpMenu routine will simply rename the
existing item.

Programming Tips:
1 If you are creating a pop-up menu that contains font names, be aware that some Macintoshes have some fonts

in ROM. That means that calling CountResources(ÔFONDÕ) will include not only the number of fonts in your
system, but in ROM too. Before you add a font name to your pop-up menu, check to see if it already exists to
avoid duplicates.

2 If you need any of the metacharacters to appear in an itemÕs text (such as an exclamation mark), first create a
blank item (MenuText equals a space), then change the itemÕs text with the PopUpMenu or RenamePopUp
routine to include the desired characters. Metacharacters are displayed but not specially processed when an
itemÕs name is changed.

3 If your pop-up menu contains icons, and the menu displays the icon in the title, you must exercise some care
in your design of icons. Make sure the icon is no wider than 16 pixels, and two pixels shorter than the font
height you are using. For the System Font, Chicago 12 pt, your icons must be 14 pixels high (or shorter), and
no more than 16 pixels wide.

CONST {Menu and Menu Item status }
enabled = true; {enable the menu/item }
disabled = false; {disable the menu/item }
mDividingLine = '-'; {Dividing line }

..

11 Pop-Up Menus

WaterÕs Edge Software 321

InsertPopUpItem
Insert an item into an existing pop-up menu.

C pascal void InsertPopUpItem (short MenuNumber, short ItemNumber,
Boolean EnabledFlag, const Str255 MenuText);

Pascal procedure InsertPopUpItem (MenuNumber, ItemNumber: INTEGER;
EnabledFlag: BOOLEAN; MenuText: STRING);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if the specified pop-up menu doesnÕt exist, InsertPopUpItem does
nothing.

ItemNumber specifies the pop-up menuÕs item number (from 1 to 32767) where the item is inserted. If the pop-up
menu item does not exist in the specified pop-up menu, InsertPopUpItem does nothing. InsertPopUpItem will append
one item to the end of a pop-up menu if the ItemNumber equals the current number of items plus 1.

EnabledFlag specifies whether the item is enabled or disabled. In the enabled state, the item can be selected whereas in
the disabled state, the item is dimmed and cannot be selected by the user. The two constants that can be used for this
purpose are enabled and disabled. An entire pop-up menu and individual pop-up menu items can be enabled and
disabled by using the EnablePopUp routine.

MenuText is the name of the item. Certain metacharacters are recognized by Tools Plus to provide special instructions
to the Menu Manager. You may choose to include or exclude these characters within MenuText, however, you should
be aware of their effects. See the PopUpMenu routine for details on metacharacters.

When the item is inserted, all existing items starting at ItemNumber are pushed down one space to make room for the
new item. This means that their item number will be changed. The new item is inserted at the location specified by
ItemNumber. The main use for this routine is to let your application maintain a dynamic menu, such as a list of open
document names.

- Note: The MacintoshÕs Menu Manager allows only the first 31 items of a pop-up menu to be disabled individually.
The entire pop-up menu, however, can always be disabled.

CONST {Menu and Menu Item status }
enabled = true; {enable the menu/item }
disabled = false; {disable the menu/item }
mDividingLine = '-'; {Dividing line }

..

ResNamesToPopUp
Insert resource names into a pop-up menu.

C pascal void ResNamesToPopUp (short MenuNumber, short ItemNumber,
ResType rType);

Pascal procedure ResNamesToPopUp (MenuNumber, ItemNumber: INTEGER;
rType: RESTYPE);

This routine finds all named resources of the specified type and inserts those names (sorted alphabetically) into a pop-
up menu. Duplicated names are ignored as are ones that start with Ò.Ó (period) or Ò%Ó.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if the specified pop-up menu doesnÕt exist, ResNamesToPopUp does
nothing.

Tools Plus

322

ItemNumber specifies the pop-up menu item number (from 1 to 32767) where the resource names are inserted. If the
pop-up menu item does not exist in the specified pop-up menu, ResNamesToPopUp does nothing. This routine will
append to the end of a pop-up menu if the ItemNumber equals the current number of items plus 1.

rType is the four character resource type whose names are being inserted into the pop-up menu.

When the resource names are inserted, all existing items starting at ItemNumber are pushed down to make room for
the new items. This means that their item number will be changed. The new items are inserted starting at the location
specified by ItemNumber. If you specify ÔFONDÕ or ÔFONTÕ resources, both are obtained since they are just different
types of fonts.

- Note: If the first character of a resource name is a dash (-), it is added into the menus as an option-dash (character
208) to prevent the Menu Manager from interpreting the name as a dividing line.

..

RemovePopUp
Delete a pop-up menu and its associated items, or delete an individual pop-up menu item.

C pascal void RemovePopUp (short MenuNumber, short ItemNumber);

Pascal procedure RemovePopUp (MenuNumber, ItemNumber: INTEGER);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if the specified pop-up menu doesnÕt exist, RemovePopUp does
nothing.

ItemNumber specifies the pop-up menuÕs item number (from 1 to 32767) that is deleted. If ItemNumber is zero (0),
RemovePopUp refers to the pop-up menu and all its associated items. If ItemNumber is not zero and it does not exist,
RemovePopUp does nothing.

Use KillPopUp if you want to delete the pop-up menu without removing its image from the window.

- Note: Use RemovePopUp to maintain a dynamic menu, such as a list of available font sizes. Do not use it to make
items unavailable. Instead, disable items with EnablePopUp.

..

ClearPopUp
Delete all items from a pop-up menu.

C pascal void ClearPopUp (short MenuNumber);

Pascal procedure ClearPopUp (MenuNumber: INTEGER);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if the specified pop-up menu doesnÕt exist, ClearPopUp does nothing.

..

11 Pop-Up Menus

WaterÕs Edge Software 323

KillPopUp
Delete a pop-up menu without affecting its image on the window.

C pascal void KillPopUp (short MenuNumber);

Pascal procedure KillPopUp (MenuNumber: INTEGER);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is deleted in the current window. If the current
window doesnÕt belong to your application, or if the specified pop-up menu doesnÕt exist, KillPopUp does nothing.

KillPopUp is similar to RemovePopUp except that it does not remove the pop-up menuÕs image from the window.
This routine is useful for scrolling pop-up menus in an area within a window (i.e., not the entire window). ScrollRect is
used to scroll the images in the affected area. OffsetPopUp repositions the pop-up menuÕs co-ordinates without
affecting its image (since ScrollRect has already moved it). KillPopUp then deletes the pop-up menus that are scrolled
out of view without affecting their image (ScrollRect has already scrolled them out of view).

..

GetPopUpRect
Get a pop-up menuÕs co-ordinates.

C pascal void GetPopUpRect (short MenuNumber, Rect *Bounds);

Pascal procedure GetPopUpRect (MenuNumber: INTEGER; var Bounds: RECT);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is queried in the current window.

Bounds returns the pop-up menuÕs bounding rectangle specified in the windowÕs local co-ordinates. These co-ordinates
match those used to create the pop-up menu. If the current window doesnÕt belong to your application, or if no
windows are open, or if the pop-up menu does not exist in the current window, Bounds returns with all co-ordinates set
to zero (0).

..

PopUpDisplay
Hide or show a pop-up menu.

C pascal void PopUpDisplay (short MenuNumber, Boolean Show);

Pascal procedure PopUpDisplay (MenuNumber: INTEGER; Show: BOOLEAN);

PopUpDisplay hides or shows a pop-up menu on the current window. The result is seen immediately. Use discretion
with this routine since pop-up menus should be enabled and disabled to indicate if they are accessible by the user.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the pop-up menu does not exist in the
current window, PopUpDisplay does nothing.

Show indicates if the pop-up menu is being hidden or displayed. The two constants that can be used for this flag are on
and off.

..

Tools Plus

324

PopUpIsVisible
Determine if a pop-up menu is visible.

C pascal Boolean PopUpIsVisible (short MenuNumber);

Pascal function PopUpIsVisible (MenuNumber: INTEGER): BOOLEAN;

PopUpIsVisible reports if a pop-up menu (or a control that is implemented as a pop-up menu) is visible on the current
window, or if it is hidden.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is queried in the current window.

This routineÕs value returns true if the pop-up menu is visible, and false if the pop-up menu is hidden. If the current
window doesnÕt belong to your application, or if no windows are open, or if the pop-up menu does not exist in the
current window, PopUpIsVisible returns false. This routine takes control embedding into account, so it will return false
if the target pop-up menu is embedded and its container control is hidden.

..

ObscurePopUp
Hide a pop-up menu without removing its image from the window.

C pascal void ObscurePopUp (short MenuNumber);

Pascal procedure ObscurePopUp (MenuNumber: INTEGER);

ObscurePopUp hides a pop-up menu on the current window without removing its image from the window. This
routine is useful for scrolling pop-up menus in an area within a window (i.e., not the entire window). ScrollRect is
used to scroll the images in the affected area. OffsetPopUp repositions the pop-up menuÕs co-ordinates without
affecting its image (since ScrollRect has already moved it). ObscurePopUp then hides the pop-up menus that are
scrolled out of view without affecting their image (ScrollRect has already scrolled them out of view).

MenuNumber specifies the pop-up menu number (from 1 to 511) that is hidden in the current window. If the current
window doesnÕt belong to your application, or if no windows are open, or if the pop-up menu does not exist in the
current window, ObscurePopUp does nothing.

..

GetPopUpString
Get a pop-up menu itemÕs text without the metacharacters.

C pascal void GetPopUpString (short MenuNumber, short ItemNumber,
Str255 MenuText);

Pascal procedure GetPopUpString (MenuNumber, ItemNumber: INTEGER;
var MenuText: Str255);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window.

ItemNumber specifies the pop-up menu item number (from 1 to 32767) from which the text is obtained.

MenuText specifies the pop-up menu itemÕs name. If the specified pop-up menu does not exist in the current window,
or the specified item doesnÕt exist, MenuText returns as a null string (length is zero). Note that the string will return as
a single space (Ô Ô) if a null string was specified when the item was created (this happens automatically to prevent the
Menu Manager from crashing).

..

11 Pop-Up Menus

WaterÕs Edge Software 325

RenamePopUp
Rename an existing pop-up menu item.

C pascal void RenamePopUp (short MenuNumber, short ItemNumber,
const Str255 MenuText);

Pascal procedure RenamePopUp (MenuNumber, ItemNumber: INTEGER; MenuText: STRING);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if the specified pop-up menu doesnÕt exist, RenamePopUp does
nothing.

ItemNumber specifies the menu item number (from 1 to 32767) which is changed. If the item number does not exist
within the pop-up menu specified by MenuNumber, RenamePopUp does nothing.

MenuText specifies the pop-up menu itemÕs new name. The itemÕs state (enabled/disabled), style (bold, underline,
etc.), icon and command key equivalent are not changed. Metacharacters are not interpreted by this routine.

RenamePopUp does not change the pop-up menuÕs title. If the pop-up menuÕs title must be changed, the affected pop-
up menu must be removed with the RemovePopUp routine, then re-created as required by using the NewPopUp
routine.

..

EnablePopUp
Enable or disable a pop-up menu or pop-up menu item.

C pascal void EnablePopUp (short MenuNumber, short ItemNumber,
Boolean EnabledFlag);

Pascal procedure EnablePopUp (MenuNumber, ItemNumber: INTEGER;
EnabledFlag: BOOLEAN);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if the specified pop-up menu doesnÕt exist, EnablePopUp does nothing.

ItemNumber specifies the menu item number (from 1 to 32767) which is enabled/disabled. A value of zero (0) affects
the entire pop-up menu. If ItemNumber is not zero and the item number does not exist within the menu specified by
MenuNumber, EnablePopUp does nothing.

EnabledFlag specifies whether the pop-up menu/item is enabled or disabled. In the enabled state, the menu/item can
be selected. The two constants that can used for this purpose are enabled and disabled. If the ItemNumber is zero, the
entire pop-up menu is disabled and the items cannot be viewed. When the pop-up menu later becomes enabled, all
items in the pop-up menu assume their correct enabling/disabling as specified by your application.

- Note: The MacintoshÕs Menu Manager allows only the first 31 items of a pop-up menu to be disabled individually.
The entire pop-up menu, however, can always be disabled.

CONST {Menu and Menu Item status }
enabled = true; {enable the item }
disabled = false; {disable the item }

..

Tools Plus

326

PopUpIsEnabled
Determine if a pop-up menu is enabled or disabled.

C pascal Boolean PopUpIsEnabled (short MenuNumber);

Pascal function PopUpIsEnabled (MenuNumber: INTEGER): BOOLEAN;

MenuNumber specifies the pop-up menu number (from 1 to 511) that is queried in the current window.

The routineÕs value returns true if the pop-up menu is enabled, and false if the pop-up menu is disabled. If the current
window doesnÕt belong to your application, or if no windows are open, or if the pop-up menu does not exist in the
current window, PopUpIsEnabled returns false. PopUpIsEnabled returns the pop-up menuÕs enabled state as it is
currently displayed, so if the pop-up menuÕs window is inactive and has temporarily disabled the pop-up menu,
PopUpIsEnabled returns false.

..

CheckPopUp
Display or hide a check mark to the left of a menu item.

C pascal void CheckPopUp (short MenuNumber, short ItemNumber, Boolean checked);

Pascal procedure CheckPopUp (MenuNumber, ItemNumber: INTEGER; checked: BOOLEAN);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if the specified pop-up menu doesnÕt exist, CheckPopUp does nothing.

ItemNumber specifies the pop-up menu item number (from 1 to 32767) that is affected. If the item number does not
exist within the pop-up menu specified by MenuNumber, CheckPopUp does nothing.

Checked specifies whether the pop-up menu itemÕs check mark is displayed or hidden. The two constants that can be
used for this purpose are on and off. By default, pop-up menus can have only one item selected at a time. Therefore,
placing a check mark beside an item unchecks the previously checked item. See the NewPopUp routine if you want to
override this behavior.

To display characters other than the standard check mark, use the PopUpMark routine.

CONST {Menu Item check mark status }
on = true; {check mark is on }
off = false; {check mark is off }

..

PopUpMark
Display or hide a special character to the left of a pop-up menu itemÕs name. Use this routine instead of CheckPopUp
to display or hide characters other than the standard check mark.

C pascal void PopUpMark (short MenuNumber, short ItemNumber, char markChar);

Pascal procedure PopUpMark (MenuNumber, ItemNumber: INTEGER; markChar: CHAR);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if the specified pop-up menu doesnÕt exist, PopUpMark does nothing.

ItemNumber specifies the pop-up menu item number (from 1 to 32767) that is affected. If the item number does not
exist within the pop-up menu specified by MenuNumber, PopUpMark does nothing.

11 Pop-Up Menus

WaterÕs Edge Software 327

MarkChar specifies the character that is to be displayed. By default, pop-up menus can have only one item selected at
a time. Therefore, placing a mark beside an item unmarks the previously marked item. See the NewPopUp routine if
you want to override this behavior. The following constants are available for pop-up menu marks:

CONST {Menu Item characters }
AppleChar = char($14); {Apple character }
CheckChar = char($12); {Check Mark character }
DiamondChar = char($13); {Diamond character }
DotChar = char($A5); {Dot (or bullet) character }
NoChar = char($00); {No character (remove a character) }

..

GetPopUpMark
Get a pop-up menu itemÕs special character that is optionally displayed to the left of an itemÕs name.

C pascal void GetPopUpMark (short MenuNumber, short ItemNumber,
char *markChar);

Pascal procedure GetPopUpMark (MenuNumber, ItemNumber: INTEGER; var markChar: CHAR);

MenuNumber specifies the pop-up menu number (from 1 to 511) in the current window that contains the desired item.

ItemNumber specifies the pop-up menu item number (from 1 to 32767) whose mark character is obtained.

MarkChar contains the ÒmarkÓ character that is displayed to the left of the itemÕs name. If no mark is displayed by the
specified pop-up menu item, or if the specified pop-up menu or item doesnÕt exist, MarkChar is set to null (char(0)).
The following are useful constants for testing menu marks:

CONST {Menu Item characters }
AppleChar = char($14); {Apple character }
CheckChar = char($12); {Check Mark character }
DiamondChar = char($13); {Diamond character }
DotChar = char($A5); {Dot (or bullet) character }
NoChar = char($00); {No character (remove a character) }

..

PopUpIcon
Set a pop-up menu itemÕs icon.

C pascal void PopUpIcon (short MenuNumber, short ItemNumber,
short IconSelector);

Pascal procedure PopUpIcon (MenuNumber, ItemNumber, IconSelector: INTEGER);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the pop-up
menu does not exist, PopUpIcon does nothing.

ItemNumber specifies the pop-up menu item number (from 1 to 32767) that is affected. If the item number does not
exist within the pop-up menu specified by MenuNumber, PopUpIcon does nothing.

IconSelector identifies the icon that is used, and should be from 1 to 255. The Menu Manager adds 256 to the number
you state to specify a resource ID that is in the range of 257 to 511, so if you specify 28, resource ID 284 is used (28 +
256 = 284). These icon resources are read from your application. If Color QuickDraw is available on the Macintosh
running your application, a ÔcicnÕ (color) icon is used. If a ÔcicnÕ is not available (or Color QuickDraw is unavailable),
an ÔICONÕ or ÔSICNÕ is used. Use zero (0) if you donÕt want an icon displayed.

Unlike the equivalent Macintosh toolbox routine, your menu item will remain unaffected if the specified icon canÕt be
found (i.e., empty space is not reserved in the menu).

Tools Plus

328

Be aware that the Menu Manager drawing a ÔcicnÕ icon in color will do so even if the icon was created using 8-bit
colors and the monitor is set to 4-bits. This may produce unsatisfactory results. If possible, use 4-bit colors or colors
that translate well into 4-bit colors.

..

GetPopUpIcon
Get a pop-up menu itemÕs icon number.

C pascal void GetPopUpIcon (short MenuNumber, short ItemNumber,
short *IconSelector);

Pascal procedure GetPopUpIcon (MenuNumber, ItemNumber: INTEGER;
var IconSelector: INTEGER);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window that contains
the desired menu item.

ItemNumber specifies the pop-up menu item number (from 1 to 32767) whose icon number is obtained.

IconSelector contains the itemÕs icon number. The Menu Manager automatically adds 256 to the IconSelector you
specify, so an IconSelector of 28 means that resource ID 284 is used (28 + 256 = 284). If an icon is not displayed by
the specified pop-up menu item, IconSelector will be equal to zero.

..

PopUpStyle
Set a pop-up menu itemÕs style.

C pascal void PopUpStyle (short MenuNumber, short ItemNumber, Style theStyle);

Pascal procedure PopUpStyle (MenuNumber, ItemNumber: INTEGER; theStyle: Style);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the pop-up
menu does not exist, PopUpStyle does nothing.

ItemNumber specifies the pop-up menu item number (from 1 to 32767) that is affected. If the item number does not
exist within the pop-up menu specified by MenuNumber, PopUpStyle does nothing.

TheStyle specifies the style(s) in which the pop-up menu item is to be displayed. Special character constants defined by
the Font Manager are bold, italic, underline and shadow. C programmers will use the font managerÕs constants to
specify a composite style, such as PopUpStyle(1,1, bold + outline) for bold and outlined, or PopUpStyle(1,1,0) for
plain text. Pascal programmers will use the font managerÕs constants to specify a set, such as
PopUpStyle(1,1,[bold,outline]) for bold and outlined, or PopUpStyle(1,1, []) for plain text.

..

PopUpItemCount
Determine the number of items in a pop-up menu.

C pascal short PopUpItemCount (short MenuNumber);

Pascal function PopUpItemCount (MenuNumber): INTEGER;

MenuNumber specifies the pop-up menu number (from 1 to 511) you wish to query in the current window.

The routineÕs value returns the number of items in the specified pop-up menu. If the pop-up menu number does not
exist, the routine returns zero.

11 Pop-Up Menus

WaterÕs Edge Software 329

GetPopUpSelection
Determine the selected item in a pop-up menu.

C pascal short GetPopUpSelection (short MenuNumber);

Pascal function GetPopUpSelection (MenuNumber: INTEGER): INTEGER;

MenuNumber specifies the pop-up menu number (from 1 to 511) you wish to query in the current window.

The routineÕs value returns the number of the pop-up menu item that is selected by having a ÒmarkÓ (check mark or
otherwise) beside it. If you have defined your pop-up menu to allow multiple selections, PopUpItemCount returns the
number of the first selected item. If the pop-up menu number does not exist, the routine returns zero.

..

MovePopUp
Move a pop-up menu to a new location on the window.

C pascal void MovePopUp (short MenuNumber, short toHoriz, short toVert);

Pascal procedure MovePopUp (MenuNumber, toHoriz, toVert: INTEGER);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, if no windows are open, or if MenuNumber specifies a pop-up menu that
does not exist, MovePopUp does nothing. The change is seen immediately providing that the pop-up menu is not
hidden. The pop-up menuÕs width and height are not changed.

ToHoriz is the new horizontal co-ordinate at which the left side of the pop-up menu appears.

ToVert is the new vertical co-ordinate at which the top of the pop-up menu appears.

Also see: SizePopUp and MoveSizePopUp.

..

OffsetPopUp
Change a pop-up menuÕs co-ordinates without affecting its image on the window.

C pascal void OffsetPopUp (short MenuNumber,
short distHoriz, short distVert);

Pascal procedure OffsetPopUp (MenuNumber, distHoriz, distVert: INTEGER);

When you scroll an area that contains pop-up menus, first use ScrollRect to scroll the pixel image containing the
affected objects in the window. OffsetPopUp is used to offset a pop-up menuÕs co-ordinates without altering its image
(since ScrollRect has already done so). At this point, the pop-up menuÕs co-ordinates match the scrolled image of the
pop-up menu. ObscurePopUp or KillPopUp can be used to hide or delete pop-up menus that are scrolled out of view.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, if no windows are open, or if MenuNumber specifies a pop-up menu that
does not exist, OffsetPopUp does nothing.

DistHoriz and distVert specify the horizontal and vertical amount by which the pop-up menuÕs co-ordinates are offset.
Positive numbers are right and down. The pop-up menuÕs co-ordinates are updated but no change is seen.

..

Tools Plus

330

SizePopUp
Change a pop-up menuÕs size.

C pascal void SizePopUp (short MenuNumber, short width);

Pascal procedure SizePopUp (MenuNumber, width: INTEGER);

SizePopUp changes a pop-up menuÕs width. The height cannot be changed. The change is seen immediately providing
that the pop-up menu is not hidden.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, if no windows are open, or if MenuNumber specifies a pop-up menu that
does not exist, SizePopUp does nothing.

Width specifies the pop-up menuÕs new width in pixels. If the parameter is less than 1, SizePopUp does nothing.

Also see: MovePopUp and MoveSizePopUp.

..

MoveSizePopUp
Change a pop-up menuÕs co-ordinates.

C pascal void MoveSizePopUp (short MenuNumber,
short left, short top, short right, short bottom);

Pascal procedure MoveSizePopUp (MenuNumber, left, top, right, bottom: INTEGER);

MoveSizePopUp changes any of the pop-up menuÕs four co-ordinates. The change is seen immediately providing that
the pop-up menu is not hidden. This routine combines the functions of MovePopUp and SizePopUp.

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, if no windows are open, or if MenuNumber specifies a pop-up menu that
does not exist, MoveSizePopUp does nothing.

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the pop-up menuÕs size and location
in the window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-
hand corner (right,bottom). If these parameters specify an empty rectangle, MoveSizePopUp does nothing. Note that
the bottom co-ordinate is ignored since the pop-up menuÕs height cannot be changed.

Also see: GetPopUpRect.

..

MoveSizePopUpRect
Change a pop-up menuÕs co-ordinates.

C pascal void MoveSizePopUpRect (short MenuNumber, const Rect *Bounds);

Pascal procedure MoveSizePopUpRect (MenuNumber: INTEGER; Bounds: RECT);

MoveSizePopUpRect is identical to the MoveSizePopUp routine, except that it accepts the Bounds rectangle in place
of the individual left, top, right and bottom co-ordinates.

..

11 Pop-Up Menus

WaterÕs Edge Software 331

AutoMoveSizePopUp
Specify how a pop-up menu is automatically moved and/or resized as its windowÕs size is changed.

C pascal void AutoMoveSizePopUp (short MenuNumber,
Boolean left, Boolean top, Boolean right);

Pascal procedure AutoMoveSizePopUp (MenuNumber: INTEGER; left, top, right: BOOLEAN);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, if no windows are open, or if MenuNumber specifies a pop-up menu that
does not exist, AutoMoveSizePopUp does nothing.

The left, top and right parameters specify if that side of the pop-up menu is automatically adjusted when the windowÕs
size changes. These setting are applied to the pop-up menu and are used the next time the windowÕs size changes:

left Does the pop-up menuÕs left side track the windowÕs right edge?
top Do the pop-up menuÕs top and bottom track the windowÕs bottom edge?
right Does the pop-up menuÕs right side track the windowÕs right edge?

Notice that top is used to make both the top and bottom of the menu track the windowÕs bottom. This ensures that the
pop-up menuÕs height does not change.

You can think of each false value as locking that side of the pop-up menu to a fixed co-ordinate regardless of the
windowÕs size (this is the default). Each true value establishes a fixed distance between that side of the pop-up menu
and the windowÕs edge. For example, setting only left and right to true makes the pop-up menu move horizontally as
the window widens and narrows, but the pop-up menu does not move vertically when the windowÕs height changes.

If you are setting these values identically for a group of objects, use AutoMoveSize to define the settings then add the
appropriate xAutoMoveSize constant (such as popupAutoMoveSize for pop-up menus) to the objectsÕ spec as they are
created. The objects will adopt the settings specified by the AutoMoveSize routine.

+ Warning: Make sure that you resize objects in a way that makes sense. DonÕt allow a window to shrink down to a
size where objects become unusable or disappear altogether.

..

SetPopUpFontSettings
Set a pop-up menuÕs font, size and style settings.

C pascal void SetPopUpFontSettings (short MenuNumber,
short theFont, short theSize, Style theStyle);

Pascal procedure SetPopUpFontSettings (MenuNumber: INTEGER;
theFont: INTEGER; theSize: INTEGER; theStyle: Style);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, if no windows are open, or if the pop-up menu does not exist,
SetPopUpFontSettings does nothing. Otherwise, the change is seen immediately.

TheFont specifies the pop-up menuÕs new font. The default is Chicago, which is represented by the systemFont
constant. This font is used to display the pop-up menuÕs title and all the items in the list.

TheSize specifies the fontÕs size. The default is 0, which represents the default font size used by the system font, or
12pt in this case. This size is used to display the pop-up menuÕs title and all the items in the list.

TheStyle specifies the pop-up menuÕs new style. Special character constants defined by the Font Manager are bold,
italic, underline and shadow. C programmers use the Font ManagerÕs constants to specify a composite style, such as
SetPopUpFontSettings(1, geneva, 9, bold + outline) for bold and outlined, or SetPopUpFontSettings(1, geneva, 9, 0)
for plain text. Pascal programmers use the Font ManagerÕs constants to specify a style set, such as

Tools Plus

332

SetPopUpFontSettings(1,Êgeneva, 9, [bold, outline]) for bold and outlined, or SetPopUpFontSettings(1, geneva, 9, [])
for plain text. This style applies only to the pop-up menuÕs title. Items in the pop-up menuÕs list are styled individually.

A pop-up menuÕs font settings are set when a pop-up menu is created, so this routine is not normally used by many
applications.

+ Warning: AppleÕs pop-up menu CDEFs are notorious for misbehaving if you change their font family or font size
(either one affects the fontÕs height). If you are using a CDEF for your pop-up menu, make sure you
thoroughly test the results of using the SetPopUpFontSettings routine. These issues do not affect Tools
PlusÕs standard or 3D pop-up menus.

..

GetPopUpFontSettings
Get a pop-up menuÕs font, size and style settings.

C pascal void GetPopUpFontSettings (short MenuNumber,
short *theFont, short *theSize, Style *theStyle);

Pascal procedure GetPopUpFontSettings (MenuNumber: INTEGER;
var theFont: INTEGER; var theSize: INTEGER; var theStyle: Style);

MenuNumber specifies the pop-up menu number (from 1 to 511) in the current window whose font settings are being
retrieved. If the current window doesnÕt belong to your application, if no windows are open, or if MenuNumber
specifies a pop-up menu that does not exist, GetPopUpFontSettings returns default values.

TheFont is the pop-up menuÕs font number. The default is 0 which is represented by the systemFont constant.

TheSize is the fontÕs size. The default is 0, which represents the default font size used by the system font, or 12pt in
this case.

TheStyle is the fieldÕs font style. The default is plain text, which is represented by 0 in C and [] in Pascal.

..

SetPopUpColors
Set a pop-up menuÕs colors.

C pascal void SetPopUpColors (short MenuNumber, const RGBColor *Title,
const RGBColor *Frame, const RGBColor *Body,
const RGBColor *DfltItemText, const RGBColor *ListBackground);

Pascal procedure SetPopUpColors (MenuNumber: INTEGER;
Title, Frame, Body, DfltItemText, ListBackground: RGBColor);

MenuNumber specifies the pop-up menu number (from 1 to 511) in the current window whose colors are being set. If
the current window doesnÕt belong to your application, or if no windows are open, SetPopUpColors does nothing.
Also, if MenuNumber specifies a pop-up menu that does not exist, SetPopUpColors does nothing. The change is seen
immediately, regardless if the pop-up menu was originally created with the popupColorPopUp option or not.

Title is the color of the pop-up menuÕs title, which may be external to the control or a fixed title within the control.

Frame is the pop-up menuÕs frame color.

Body is the pop-up menuÕs body color. This is the color that is used to fill the controlÕs body.

DfltItemText is the default color used to display items in the pop-up menuÕs list.

ListBackground is the background color used for the pop-up menuÕs list.

11 Pop-Up Menus

WaterÕs Edge Software 333

- Note: Some pop-up menu CDEFs may not respond to all the settings provided by this routine. This is the case with
System 7Õs CDEF 63 and may be the case with third party CDEFs as well.

Also see: PopUpColors and GetPopUpColors.

..

GetPopUpColors
Get a pop-up menuÕs colors.

C pascal void GetPopUpColors (short MenuNumber, RGBColor *Title,
RGBColor *Frame, RGBColor *Body, RGBColor *DfltItemText,
RGBColor *ListBackground);

Pascal procedure GetPopUpColors (MenuNumber: INTEGER; var Title: RGBColor;
var Frame: RGBColor; var Body: RGBColor;
var DfltItemText: RGBColor; var ListBackground: RGBColor);

MenuNumber specifies the pop-up menu number (from 1 to 511) in the current window whose colors are being
retrieved. If the current window doesnÕt belong to your application, or if no windows are open, or if MenuNumber
specifies a pop-up menu that does not exist, GetPopUpColors returns default color values.

Title is the color of the pop-up menuÕs title, which may be external to the control or a fixed title within the control.

Frame is the pop-up menuÕs frame color.

Body is the pop-up menuÕs body color. This is the color that is used to fill the controlÕs body.

DfltItemText is the default color used to display items in the pop-up menuÕs list.

ListBackground is the background color used for the pop-up menuÕs list.

Also see: PopUpColors and SetPopUpColors.

..

SetPopUpItemColors
Set a pop-up menu itemÕs colors.

C pascal void SetPopUpItemColors (short MenuNumber, short ItemNumber,
const RGBColor *MarkColor, const RGBColor *ItemColor);

Pascal procedure SetPopUpItemColors (MenuNumber, ItemNumber: INTEGER;
MarkColor, ItemColor: RGBColor);

MenuNumber specifies the pop-up menu number (from 1 to 511) that is affected in the current window. If the current
window doesnÕt belong to your application, or if the specified pop-up menu doesnÕt exist, SetPopUpItemColors does
nothing.

ItemNumber specifies the pop-up menuÕs item number (from 1 to 32767) that is affected. If ItemNumber does not
exist, SetPopUpItemColors does nothing. If the pop-up menu displays the currently selected item and you are changing
the colors for that item, the change is seen immediately.

MarkColor is the color used to draw the specified menu itemÕs mark character.

ItemColor is the color used to draw the specified menu itemÕs text, command key, and submenu character.

Also see: PopUpColors and GetPopUpItemColors.

..

Tools Plus

334

GetPopUpItemColors
Get a pop-up menu itemÕs colors.

C pascal void GetPopUpItemColors (short MenuNumber, short ItemNumber,
RGBColor *MarkColor, RGBColor *ItemColor);

Pascal procedure GetPopUpItemColors (MenuNumber, ItemNumber: INTEGER;
var MarkColor: RGBColor; var ItemColor: RGBColor);

MenuNumber specifies the pop-up menu number (from 1 to 511) in the current window whose colors are being
retrieved. If the current window doesnÕt belong to your application, or if the specified pop-up menu doesnÕt exist,
GetPopUpItemColors returns default color values.

ItemNumber specifies the pop-up menuÕs item number (from 1 to 32767) whose colors are being retrieved. If
ItemNumber does not exist, GetPopUpItemColors returns default color values.

MarkColor is the color used to draw the specified menu itemÕs mark character.

ItemColor is the color used to draw the specified menu itemÕs text, command key, and submenu character.

Also see: PopUpColors and SetPopUpItemColors.

..

GetPopUpHandle
Get a handle to a pop-up menuÕs control or menu record.

C pascal Handle GetPopUpHandle (short MenuNumber);

Pascal function GetPopUpHandle (MenuNumber: INTEGER): Handle;

This routine returns a standard ControlHandle to a pop-up menu control that was created by a Tools Plus routine if the
popupSystemBody option was used when creating the pop-up menu. If the popupSystemBody option was not used, a
handle to a menu record is returned. You should never need to use this routine. It is provided for advanced
programmers who may have specialized needs. Always use Tools Plus routines to create and manipulate pop-up
menus.

MenuNumber specifies the pop-up menu number (from 1 to 511) in the current window whose handle is being
retrieved. If the current window doesnÕt belong to your application, or if no windows are open, or if MenuNumber
specifies a pop-up menu that does not exist, GetPopUpHandle returns nil.

+ Warning: If you need to lock the handle or change its attributes, do so temporarily then restore the original settings
before using any Tools Plus routines. If you alter this handle or any data that is made accessible by this
handle, you do so at your own risk. The only exception is the controlÕs reference constant (contrlRfCon
field) which can safely be set using the toolboxÕs SetControlReference routine, and retrieved using the
toolbox GetControlReference routine.

..

12 Panels

WaterÕs Edge Software 335

12 Panels

Panels and group boxes are user interface elements designed to give the user a visual cue that multiple objects are
related in some way. They can also be used purely as a cosmetic enhancement to give a window a more contemporary
3D look as seen in many of todayÕs applications. Group boxes are just a panel with a title, so within this manual the
terms ÒpanelÓ and Ògroup boxÓ can be used interchangeably.

If your application is dependent upon the Appearance Manager, you should use the Appearance ManagerÕs Group Box
control through your application in place of Tools PlusÕs panels. The Group Box control is not as versatile as a Tools
Plus panel, but it gives your application a user interface that is consistent with the Appearance ManagerÕs themes. See
the Buttons chapter for information on implementing the Appearance ManagerÕs Group Box control in your
application.

Tools PlusÕs panels do more than just make your user interface look better. Panels map perfectly between windows of
varying depths on color and gray scale monitors as well as monochrome monitors (1-bit black and white). This means
that you can create a panel just like any other Tools Plus user interface element, and it takes care of itself and looks its
best at all times. Panels also enhance radio buttons and picture buttons by making them behave like a related group.
When you place buttons or picture buttons inside a panel you can optionally deselect the other buttons in the group
when a button is selected.

Title Border

Background Content

A panel is comprised of several parts all of which can be tailored to suit your
applicationÕs needs. Any of the parts can be omitted to create a desired affect.

The border defines the panelÕs perimeter. An optional shadow extends inwards from
these co-ordinates to make the panel appear to be either inset into the window or raised
from the window. A channel option produces a 1-pixel wide groove that is cut into the
window or elevated from the window. A variety of styles are available.

If a title is included in the panel, the panel takes on the appearance of a group box. The
title can be set near the left or right edge of the border, or it can be centered. Various
fonts, font sizes and styles can be used for the title. The text can also be inset or raised
using soft or heavy shadows. You can use the GetPanelFontSettings and

SetPanelFontSettings routines to get and set the panelÕs font, size and style settings.

The panelÕs background is always erased before drawing the panel or any of its parts. The background includes the
region occupied by the title and it can optionally include the interior of the panel as well.

A panelÕs content is specified by your application. Typically this is either a set of radio buttons created with the
NewButton routine, or a set of picture buttons created with the NewPictButton routine. When you create a panel you
can set an option that deselects all other buttons inside the panelÕs when one of them is selected.

Panels are created on the current window by the NewPanel routine. Each panel is referenced by a unique panel number
that can be from 1 to 511. This number is specified when the panel is created, and refers to the specific panel until that
panel is deleted. Note that the panel number is related to its associated window. This means that two different windows
can each have a panel numbered Ò1Ó without interfering with each other.

Panels can be moved to a new location with MovePanel and have their width and/or height changed with SizePanel.
MoveSizePanel combines both tasks by letting you specify new co-ordinates for the panel.

When a panel is no longer required, it is deleted by the DeletePanel routine, which releases the memory used by that
panel. This is done automatically if a window is closed. Panels can be hidden or displayed with the PanelDisplay
routine. Hiding, displaying or moving panels does not affect objects you place inside the panel.

Tools Plus

336

Color Tables
Panels provide a lot of versatility in the way that colors are used. Various options are offered to make efficient use of
memory and to ease programming. By default each panel points to a global standard color table for panels that
specifies the following colors:

Text TitleÕs color
Background Color filled behind title and optionally inside the panel
Border Color of panelÕs border
Hilite Color used to draw highlights on the title and panels
Shadow Used for drawing the panelÕs shadows
Text Shadow Used for drawing shadows for the title
Heavy Text Shadow Used for drawing heavy shadows for the title

The standard color table is initialized to a set of light grays that are consistent with Macintosh user interface
guidelines. Your application can get and set these colors using GetStandardPanelColors and SetStandardPanelColors.
If you want most or all panels to share a common set of colors that are different from the standard color table, change
these settings during your applicationÕs initialization routine.

Although the standard color table includes a background color, panels assume that their background is the same as
their windowÕs backdrop color. This lets you use the standard color table on a variety of window colors without having
to change the color table or use custom colors. A panel can optionally use the standard color tableÕs background color
instead of the windowÕs backdrop for the panel background. Using the standard color table is the most memory
efficient option since panels only refer to the global color table and do not make their own copy.

A second option is using the custom color table for panels. The custom color table is similar to the standard color table
in that your application can get and set the colors using GetCustomPanelColors and SetCustomPanelColors. When you
create a panel and instruct it to use the custom color table, the panel makes a copy of the custom color table for its own
use, thereby letting you set custom colors for several panels at a time then change the custom color table without
affecting any panels. Although there is no performance penalty, a panel that uses a custom color table consumes an
additional 42 bytes of memory to store a copy of the custom colors. The custom color table is initialized to a set of
darker grays. They produce an attractive interface but they do not follow the Macintosh tradition of Òlight,
unobstructive colors.Ó

A final set of options let you use the windowÕs foreground color for the panelÕs text or border, and/or use the windowÕs
background color for the panelÕs background. These options cause the panel to create their own copy of the standard
color table or custom color table, then override the specified entries in its own color table.

..

NewPanel
Create a new panel.

C pascal void NewPanel (short Panel, short left, short top, short right,
short bottom, const Str255 Title, long Spec, short ShadowWidth);

Pascal procedure NewPanel (Panel, left, top, right, bottom: INTEGER; Title: STRING;
Spec: LONGINT; ShadowWidth: INTEGER);

Panel specifies the panel number (from 1 to 511) that is created in the current window. Once a panel is created, it is
referenced by this panel number. If a panel has been previously created in the current window using the same number,
it is replaced with a new panel as specified by the parameters in the NewPanel routine. If the current window doesnÕt
belong to your application, or if no windows are open, NewPanel does nothing.

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the panelÕs size and location in the
window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-hand
corner (right,bottom). If you want buttons or picture buttons to be automatically deselected, their co-ordinates must lie
within this rectangle. You can create a line by specifying a rectangle that is 1 pixel wide or high.

12 Panels

WaterÕs Edge Software 337

The Title parameter is the panelÕs title. The title is drawn overlaying the rectangleÕs top line and therefore extends
beyond the boundaries specified by the panelÕs rectangle. You can have a panel without a title by specifying an empty
string.

Spec specifies a panelÕs appearance and behavior. It is a combination of various Tools Plus options detailed later in
this section.

ShadowWidth specifies how wide the panelÕs shadow is. The shadow usually extends in from the panelÕs rectangle.
Use zero (0) when creating a group box. You can then specify you want a raised or inset 1-pixel wide channel, in
which case highlights and shadows are drawn inside and outside the panelÕs rectangle.

Appearance and Behavior Specification

Spec specifies a panelÕs appearance and behavior. The value for this 4-byte long integer can be specified by adding a
set of constants to obtain the desired result. The constants defining the available options are as follows:

Optionally choose any of the following optionsÉ
panFillBack Fill the panelÕs content area with its background color. By default, only the titleÕs

background is filled and the panelÕs interior is hollow allowing objects behind it to
show through.

panOutlined Always draw an outline around the panel. This is done
automatically for group boxes when you specify a shadow
width of zero (0). This outline puts more emphasis on a
raised or inset panel.

The outline is drawn using the border color on monitors
of all depths. Do not use this option if you want a border
displayed only on a monitor depth of 4 bits or less.

without outline (default)

with outline

panBlackBorder This option is identical to the panOutlined option, except that the border is black
instead of using the border color which is usually gray.

panOutline4bit Draw an outline around the panel only when it is displayed on a monitor set to 4-bits
or less. This is done automatically for group boxes when you specify a shadow width
of zero (0). This outline puts more emphasis on a raised or inset panel.

The outline is drawn using the border color. Do not use this option if you want a
border displayed only on a monitor depth of 2 bits or less.

panBWGrayBorder Draw an outline around the panel using a gray pattern to produce a dotted outline.
This occurs only when the panel is drawn on a black and white (1-bit) monitor. By
default, group boxes have a black outline on monochrome monitors, and ordinary
panels have no outline so they disappear because both the shadow and highlight are
mapped to white. Use this option if you do not want your panels to disappear on
monochrome monitors.

panUseWFont Display the panelÕs title using the windowÕs current font, size and style settings (as
set by the TextFont, TextSize, and TextFace routines). The panel stores this
information for future reference. By default, all panels are drawn using the system
font (Chicago, 12 pt).

panCustomColors Make a copy of the custom color table and use those colors when drawing the panel.
By default, panels are drawn using a shared standard color table. Making a copy of
the custom color table consumes an additional 42 bytes but allows the panel to have
its own color scheme.

Tools Plus

338

panColorText Use the windowÕs foreground color for the panelÕs title. By default, the panelÕs title
is drawn using the text color in the standard color table or in the custom color table if
youÕve elected to use the custom table. When you use this option, a copy of the
specified color table is made for this panel and its text color entry is replaced with
the windowÕs foreground color. This option is best used for overriding the text color
used in the standard or custom color table. If you find yourself using this option
frequently, consider changing the standard or custom color table.

panColorBorder Use the windowÕs foreground color for the panelÕs border. By default, the panelÕs
border is drawn using the border color in the standard color table or in the custom
color table if youÕve elected to use the custom table. When you use this option, a
copy of the specified color table is made for this panel and its border color entry is
replaced with the windowÕs foreground color. This option is best used for overriding
the border color used in the standard or custom color table. If you find yourself using
this option frequently, consider changing the standard or custom color table.

panColorBack Use the windowÕs background color for the panelÕs background. By default, the
panelÕs background is drawn using the windowÕs backdrop color. When you use this
option, a copy of the specified color table is made for this panel and its background
color entry is replaced with the windowÕs background color. This option is best used
for overriding the background color used in the standard or custom color table. If you
find yourself using this option frequently, consider changing the standard or custom
color table. If you want to use the color tableÕs background color instead of the
windowÕs backdrop color for the panelÕs background, use the panNoBackdrop
option.

panNoBackdrop Use the color tableÕs background color for the panelÕs background. By default, the
panelÕs background is drawn using the windowÕs backdrop color.

panAutoDeselect Automatically deselect other buttons and picture buttons inside the panel when a
button is selected. This option is ideal for radio button groups or groups of picture
buttons that behave like radio buttons. When your application gets a doButton or
doPictButton event, all it has to do is select the clicked button and all other buttons
inside the panel will be deselected. It is important that the buttons and/or picture
buttons are completely enclosed by the panelÕs rectangle otherwise they are not
considered to be inside the panel. Hidden buttons and picture buttons are not
affected.

panAutoMoveSize Automatically move and/or resize the panel when the windowÕs size changes. The
AutoMoveSize routine lets you specify which sides are altered. You can use the
AutoMoveSizePanel routine as an alternative to setting this option.

panHidden Create a hidden panel. This kind of panel is accessible to your application but not to
the user.

Optionally choose only one of the following title-position optionsÉ
panLeftTitle Position the panelÕs title near the left side. This is the default and it does not need to

be explicitly included.

panRightTitle Position the panelÕs title near the right side. By default, the panelÕs title is positioned
near the left side.

panCenterTitle Position the panelÕs title in the center. By default, the panelÕs title is positioned near
the left side.

12 Panels

WaterÕs Edge Software 339

Optionally choose only one of the following title 3D-style optionsÉ
panPlainTitle Display the panelÕs title without using 3D enhancements. This is the default and it

does not need to be explicitly included.

panRaiseTitle Display the panelÕs title as being raised from the window. Soft shadows are used.
This option works very well with light colored backgrounds, and is a subtle effect
when used on a darker background.

panRaiseTitleDark Display the panelÕs title as being raised from the window. Heavy shadows are used.
This option works very well with darker colored backgrounds but may be too
dramatic on lighter colored backgrounds.

panInsetTitle Display the panelÕs title as being inset into the window. Soft shadows are used. This
option works very well with light colored backgrounds, and is a subtle effect when
used on a darker background.

panInsetTitleDark Display the panelÕs title as being inset into the window. Heavy shadows are used.
This option works very well with darker colored backgrounds but may be too
dramatic on lighter colored backgrounds.

Optionally choose only one of the following shadow style optionsÉ
panNoShadow Draw the panel without any shadows. This option is used most often for plain group

boxes without a 3D effect. This is the default and it does not need to be explicitly
included.

panRaiseShadow Draw the panel as being raised from the window. If you specify this option in
conjunction with a shadow width of zero (0), a 1-pixel wide raised channel is
created, a suitable look for a group box.

panInsetShadow Draw the panel as being inset into the window. If you specify this option in
conjunction with a shadow width of zero (0), a 1-pixel wide inset channel is created,
the default look for a 3D group box.

Optionally choose only one of the following round-corner optionsÉ
panRoundCorner1
panRoundCorner2
panRoundCorner3

ß
panRoundCorner29
panRoundCorner30
panRoundCorner31

Draw the panel as a round-corner rectangle using an oval size that corresponds to the
specified value. By default, panels have square corners. The round-corner rectangle
is created with the toolboxÕs FrameRoundRect routine using an oval height and
width of the specified value. If you are using a gray pattern outline on monochrome
monitors (panBWGrayBorder option), the corners may not look very tidy when
displayed on a 1-bit monitor.

Choose only one of the following popular combinations as a base for a specÉ
panGroupBox Standard group box without any 3D effects. This constant is simply a combination of

the following options: panLeftTitle + panBlackBorder + panNoShadow +
panAutoDeselect.

pan3DGroupBox Standard 3D group box. This constant is simply a combination of the following
options: panLeftTitle + panInsetShadow + panRaiseTitle + panAutoDeselect.

Also see: NewPanelRect and NewDialogPanel.

CONST {Panel appearance/behavior specifications: }
panFillBack = $00000001; {Fill panel with background color }
panOutlined = $00000002; {Always draw outline around panel }
panOutline4bit = $00000004; {Draw outline on 4-bit monitors }
panBlackBorder = $00000008; {Draw black border instead of gray }
panBWGrayBorder = $00000010; {Draw gray pattern border on B&W monitor }
panUseWFont = $00000020; {Draw title using window's font }
panCustomColors = $00000040; {Use custom colors instead of standard ones }

Tools Plus

340

panColorText = $00000080; {Use foreground color for text }
panColorBorder = $00000100; {Use foreground color for border }
panColorBack = $00000200; {Use background color for background }
panNoBackdrop = $00000400; {Use standard or custom background color }

{ instead of window's backdrop color }
panAutoDeselect = $00000800; {Auto-deselect buttons in this group }

{Title alignment: }
panLeftTitle = $00001000; { Left (default) }
panRightTitle = $00002000; { Right }
panCenterTitle = $00003000; { Center }

{Title's 3D styling: }
panPlainTitle = $00000000; { Plain title (no 3D effect) }
panRaiseTitle = $00010000; { Raised with light shadow }
panRaiseTitleDark = $00020000; { Raised with heavy shadow }
panInsetTitle = $00030000; { Inset with light shadow }
panInsetTitleDark = $00040000; { Inset with heavy shadow }

{Shadow styling: }
panNoShadow = $00000000; { No shadow (default) }
panRaiseShadow = $00080000; { Panel raises from window }
panInsetShadow = $00100000; { Panel sinks into window }

{Round-corner Width: }
panRoundCorner1 = $01000000; { RoundRect oval size of 1 pixel }
panRoundCorner2 = $02000000; { RoundRect oval size of 2 pixels }
panRoundCorner3 = $03000000; { RoundRect oval size of 3 pixels }
panRoundCorner4 = $04000000; { RoundRect oval size of 4 pixels }
panRoundCorner5 = $05000000; { RoundRect oval size of 5 pixels }
panRoundCorner6 = $06000000; { RoundRect oval size of 6 pixels }
panRoundCorner7 = $07000000; { RoundRect oval size of 7 pixels }
panRoundCorner8 = $08000000; { RoundRect oval size of 8 pixels }
panRoundCorner9 = $09000000; { RoundRect oval size of 9 pixels }
panRoundCorner10 = $0A000000; { RoundRect oval size of 10 pixels }
panRoundCorner11 = $0B000000; { RoundRect oval size of 11 pixels }
panRoundCorner12 = $0C000000; { RoundRect oval size of 12 pixels }
panRoundCorner13 = $0D000000; { RoundRect oval size of 13 pixels }
panRoundCorner14 = $0E000000; { RoundRect oval size of 14 pixels }
panRoundCorner15 = $0F000000; { RoundRect oval size of 15 pixels }
panRoundCorner16 = $10000000; { RoundRect oval size of 16 pixels }
panRoundCorner17 = $11000000; { RoundRect oval size of 17 pixels }
panRoundCorner18 = $12000000; { RoundRect oval size of 18 pixels }
panRoundCorner19 = $13000000; { RoundRect oval size of 19 pixels }
panRoundCorner20 = $14000000; { RoundRect oval size of 20 pixels }
panRoundCorner21 = $15000000; { RoundRect oval size of 21 pixels }
panRoundCorner22 = $16000000; { RoundRect oval size of 22 pixels }
panRoundCorner23 = $17000000; { RoundRect oval size of 23 pixels }
panRoundCorner24 = $18000000; { RoundRect oval size of 24 pixels }
panRoundCorner25 = $19000000; { RoundRect oval size of 25 pixels }
panRoundCorner26 = $1A000000; { RoundRect oval size of 26 pixels }
panRoundCorner27 = $1B000000; { RoundRect oval size of 27 pixels }
panRoundCorner28 = $1C000000; { RoundRect oval size of 28 pixels }
panRoundCorner29 = $1D000000; { RoundRect oval size of 29 pixels }
panRoundCorner30 = $1E000000; { RoundRect oval size of 30 pixels }
panRoundCorner31 = $1F000000; { RoundRect oval size of 31 pixels }
panAutoMoveSize = $40000000; {Auto-move/size as window's size changes }
panHidden = $80000000; {Panel is hidden }

{Popular combinations: }
{ Standard group box }

panGroupBox = panLeftTitle + panBlackBorder + panNoShadow + panAutoDeselect;
{ 3D group box }

pan3DGroupBox = panLeftTitle + panInsetShadow + panRaiseTitle + panAutoDeselect;

Programming Tips:
1 You can suppress the panelÕs border by specifying a rectangle whose bottom and top have the same vertical

co-ordinate (an empty rectangle). This lets you use a panel to draw 3D text that can be used for titles. Tools
Plus automatically refreshes these titles.

2 You can use panels to create vertical and/or horizontal lines that are automatically refreshed. For a vertical
line, make the panelÕs right co-ordinate equal the left plus one. For a horizontal line, make the panelÕs bottom
co-ordinate equal the top plus one.

..

12 Panels

WaterÕs Edge Software 341

NewPanelRect
Create a new panel.

C pascal void NewPanelRect (short Panel, const Rect *Bounds,
const Str255 Title, long Spec, short ShadowWidth);

Pascal procedure NewPanelRect (Panel: INTEGER; Bounds: RECT;
Title: STRING; Spec: LONGINT; ShadowWidth: INTEGER);

NewPanelRect is identical to the NewPanel routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

..

NewDialogPanel
Create a new panel in a dialog using a dialog item's co-ordinates.

C pascal void NewDialogPanel (short Panel, const Str255 Title, long Spec,
short ShadowWidth);

Pascal procedure NewDialogPanel (Panel: INTEGER; Title: STRING; Spec: LONGINT;
ShadowWidth: INTEGER);

NewDialogPanel is identical to the NewPanel routine, except that the panel is created in a dialog (a window opened
with the LoadDialog routine, or one that had a dialog list attached with the LoadDialogList routine). The panelÕs co-
ordinates are obtained from the dialog item whose number matches the panel number.

..

GetFreePanelNum
Get the first unused panel number.

C pascal short GetFreePanelNum (void);

Pascal function GetFreePanelNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own panel
number, GetFreePanelNum returns the first unused (free) panel number. Using this routine, you can assign an unused
panel number to a variable, then use that variable throughout your application without concern for the true panel
number.

GetFreePanelNum returns the first free panel number on the current window. If the current window doesnÕt belong to
your application, if no windows are open, or if the maximum number of panels has already been created on the current
window (no new ones can be created), GetFreePanelNum returns a value of zero (0).

..

Tools Plus

342

SetStandardPanelColors
Set the standard color tableÕs colors.

C pascal void SetStandardPanelColors (const RGBColor *Text,
const RGBColor *Background, const RGBColor *Border,
const RGBColor *Hilite, const RGBColor *Shadow,
const RGBColor *TextShadow, const RGBColor *TextHeavyShadow);

Pascal procedure SetStandardPanelColors (Text, Background, Border, Hilite, Shadow,
TextShadow, TextHeavyShadow: RGBColor);

The standard color table for panels is used by all panels as a default set of colors. It is initialized to a set of light grays
that are consistent with Macintosh user interface guidelines. If you want to change the standard color table for panels,
do so early in your application, typically during the application initialization routine. Changing these colors does not
automatically force existing panels that use these colors to be redrawn.

Text is the color of the panelÕs title.

Background is the color of the panelÕs background. By default, the panel uses the windowÕs backdrop color but it may
be instructed to use this background color.

Border is the color of the panelÕs border.

Hilite is the color that is used to draw highlights on both the title and the panel. This color is usually white.

Shadow is the color used to draw the panelÕs shadows

TextShadow is the color used to draw soft shadows on the title.

TextHeavyShadow is the color used to draw heavy shadows on the title.

Also see: GetStandardPanelColors, SetCustomPanelColors and GetCustomPanelColors.

..

GetStandardPanelColors
Get the standard color tableÕs colors.

C pascal void GetStandardPanelColors (RGBColor *Text, RGBColor *Background,
RGBColor *Border, RGBColor *Hilite, RGBColor *Shadow,
RGBColor *TextShadow, RGBColor *TextHeavyShadow);

Pascal procedure GetStandardPanelColors (var Text: RGBColor;
var Background: RGBColor; var Border: RGBColor;
var Hilite: RGBColor; var Shadow: RGBColor;
var TextShadow: RGBColor; var TextHeavyShadow: RGBColor);

This routine gets the colors from the standard color table for panels. These colors are used by all panels as a default set
of colors. If you want to change a few of the colors in the table, use GetStandardPanelColors to obtain all the colors in
the table, then use SetStandardPanelColors to update the table with new colors, some of which could be the original
colors obtained by the ÒgetÓ operation.

Text is the color of the panelÕs title.

Background is the color of the panelÕs background. By default, the panel uses the windowÕs backdrop color but it may
be instructed to use this background color.

Border is the color of the panelÕs border.

Hilite is the color that is used to draw highlights on both the title and the panel. This color is usually white.

12 Panels

WaterÕs Edge Software 343

Shadow is the color used to draw the panelÕs shadows

TextShadow is the color used to draw soft shadows on the title.

TextHeavyShadow is the color used to draw heavy shadows on the title.

Also see: SetStandardPanelColors, GetCustomPanelColors and GetCustomPanelColors.

..

SetCustomPanelColors
Set the custom color tableÕs colors.

C pascal void SetCustomPanelColors (const RGBColor *Text,
const RGBColor *Background, const RGBColor *Border,
const RGBColor *Hilite, const RGBColor *Shadow,
const RGBColor *TextShadow, const RGBColor *TextHeavyShadow);

Pascal procedure SetCustomPanelColors (Text, Background, Border, Hilite, Shadow,
TextShadow, TextHeavyShadow: RGBColor);

The custom color table for panels is optionally used by panels that require a custom color table instead of using the
default standard color table. A copy of this color table is made for each panel that uses it. The custom color table is
initialized to a set of darker grays. They produce an attractive interface but they do not follow the Macintosh tradition
of Òlight, unobstructive colors.Ó If you have a standard color theme for panels, use the standard color table to define
those colors. If you want to assign a different set of colors to a number of panels, use this routine to set the custom
panel color and they will be adopted by new panels as they are created.

Text is the color of the panelÕs title.

Background is the color of the panelÕs background. By default, the panel uses the windowÕs backdrop color but it may
be instructed to use this background color.

Border is the color of the panelÕs border.

Hilite is the color that is used to draw highlights on both the title and the panel. This color is usually white.

Shadow is the color used to draw the panelÕs shadows

TextShadow is the color used to draw soft shadows on the title.

TextHeavyShadow is the color used to draw heavy shadows on the title.

Also see: SetStandardPanelColors, GetStandardPanelColors and GetCustomPanelColors.

..

Tools Plus

344

GetCustomPanelColors
Get the custom color tableÕs colors.

C pascal void GetCustomPanelColors (RGBColor *Text, RGBColor *Background,
RGBColor *Border, RGBColor *Hilite, RGBColor *Shadow,
RGBColor *TextShadow, RGBColor *TextHeavyShadow);

Pascal procedure GetCustomPanelColors (var Text: RGBColor;
var Background: RGBColor; var Border: RGBColor;
var Hilite: RGBColor; var Shadow: RGBColor;
var TextShadow: RGBColor; var TextHeavyShadow: RGBColor);

This routine gets the colors from the custom color table for panels. These colors are optionally used by panels for a
customized set of colors. If you want to change a few of the colors in the table, use GetCustomPanelColors to obtain
all the colors in the table, then use SetCustomPanelColors to update the table with new colors, some of which could be
the original colors obtained by the ÒgetÓ operation.

Text is the color of the panelÕs title.

Background is the color of the panelÕs background. By default, the panel uses the windowÕs backdrop color but it may
be instructed to use this background color.

Border is the color of the panelÕs border.

Hilite is the color that is used to draw highlights on both the title and the panel. This color is usually white.

Shadow is the color used to draw the panelÕs shadows

TextShadow is the color used to draw soft shadows on the title.

TextHeavyShadow is the color used to draw heavy shadows on the title.

Also see: SetStandardPanelColors, GetStandardPanelColors and SetCustomPanelColors.

..

DeletePanel
Delete a panel.

C pascal void DeletePanel (short Panel);

Pascal procedure DeletePanel (Panel: INTEGER);

Panel specifies the panel number (from 1 to 511) that is deleted from the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the panel does not exist in the current window,
DeletePanel does nothing. Use KillPanel if you want to delete the panel without removing its image from the window.

..

12 Panels

WaterÕs Edge Software 345

KillPanel
Delete a panel without affecting its image on the window.

C pascal void KillPanel (short Panel);

Pascal procedure KillPanel (Panel: INTEGER);

KillPanel is identical to DeletePanel except that it does not remove the panelÕs image from the window. This routine is
useful for scrolling panels in an area within a window (i.e., not the entire window). ScrollRect is used to scroll the
images in the affected area. OffsetPanel repositions the panelÕs co-ordinates without affecting its image (since
ScrollRect has already moved it). KillPanel then deletes the panels that are scrolled out of view without affecting their
image (ScrollRect has already scrolled them out of view).

..

PanelDisplay
Hide or show a panel.

C pascal void PanelDisplay (short Panel, Boolean Show);

Pascal procedure PanelDisplay (Panel: INTEGER; Show: BOOLEAN);

PanelDisplay hides or shows a panel on the current window. The result is seen immediately.

Panel specifies the panel number (from 1 to 511) that is affected in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the panel does not exist in the current window,
PanelDisplay does nothing.

Show indicates if the panel is being hidden or displayed. The two constants that can be used for this flag are on and off.

..

PanelIsVisible
Determine if a panel is visible.

C pascal Boolean PanelIsVisible (short Panel);

Pascal function PanelIsVisible (Panel: INTEGER): BOOLEAN;

PanelIsVisible reports if a panel is visible on the current window, or if it is hidden.

Panel specifies the panel number (from 1 to 511) that is queried in the current window.

This routineÕs value returns true if the panel is visible, and false if the panel is hidden. If the current window doesnÕt
belong to your application, or if no windows are open, or if the panel does not exist in the current window,
PanelIsVisible returns false.

..

Tools Plus

346

ObscurePanel
Hide a panel without removing its image from the window.

C pascal void ObscurePanel (short Panel);

Pascal procedure ObscurePanel (Panel: INTEGER);

ObscurePanel hides a panel on the current window without removing its image from the window. This routine is useful
for scrolling panels in an area within a window (i.e., not the entire window). ScrollRect is used to scroll the images in
the affected area. OffsetPanel repositions the panelÕs co-ordinates without affecting its image (since ScrollRect has
already moved it). ObscurePanel then hides the panels that are scrolled out of view without affecting their image
(ScrollRect has already scrolled them out of view).

Panel specifies the panel number (from 1 to 511) that is hidden in the current window. If the current window doesnÕt
belong to your application, or if no windows are open, or if the panel does not exist in the current window,
ObscurePanel does nothing.

..

GetPanelRect
Get a panelÕs co-ordinates.

C pascal void GetPanelRect (short Panel, Rect *Bounds);

Pascal procedure GetPanelRect (Panel: INTEGER; var Bounds: RECT);

Panel specifies the panel number (from 1 to 511) that is queried in the current window.

Bounds returns the panelÕs bounding rectangle specified in the windowÕs local co-ordinates. These co-ordinates match
those used to create the panel. If the current window doesnÕt belong to your application, or if no windows are open, or
if the panel does not exist in the current window, Bounds returns with all co-ordinates set to zero (0).

..

MovePanel
Move a panel to a new location on the window.

C pascal void MovePanel (short Panel, short toHoriz, short toVert);

Pascal procedure MovePanel (Panel, toHoriz, toVert: INTEGER);

Panel specifies the panel number (from 1 to 511) that is affected in the current window. If the current window doesnÕt
belong to your application, if no windows are open, or if Panel specifies a panel that does not exist, MovePanel does
nothing. The change is seen immediately providing that the panel is not hidden. The panelÕs width and height are not
changed.

ToHoriz is the new horizontal co-ordinate at which the left side of the panel appears.

ToVert is the new vertical co-ordinate at which the top of the panel appears.

Also see: SizePanel and MoveSizePanel.

..

12 Panels

WaterÕs Edge Software 347

OffsetPanel
Change a panelÕs co-ordinates without affecting its image on the window.

C pascal void OffsetPanel (short Panel, short distHoriz, short distVert);

Pascal procedure OffsetPanel (Panel, distHoriz, distVert: INTEGER);

When you scroll an area that contains panels, first use ScrollRect to scroll the pixel image containing the affected
objects in the window. OffsetPanel is used to offset a panelÕs co-ordinates without altering its image (since ScrollRect
has already done so). At this point, the panelÕs co-ordinates match the scrolled image of the panel. ObscurePanel or
KillPanel can be used to hide or delete panels that are scrolled out of view.

Panel specifies the panel number (from 1 to 511) that is affected in the current window. If the current window doesnÕt
belong to your application, if no windows are open, or if Panel specifies a panel that does not exist, OffsetPanel does
nothing.

DistHoriz and distVert specify the horizontal and vertical amount by which the panelÕs co-ordinates are offset. Positive
numbers are right and down. The panelÕs co-ordinates are updated but no change is seen.

..

SizePanel
Change a panelÕs size.

C pascal void SizePanel (short Panel, short width, short height);

Pascal procedure SizePanel (Panel, width, height: INTEGER);

SizePanel changes a panelÕs width and/or height without altering the panelÕs top or left co-ordinate. The change is seen
immediately providing that the panel is not hidden.

Panel specifies the panel number (from 1 to 511) that is affected in the current window. If the current window doesnÕt
belong to your application, if no windows are open, or if Panel specifies a panel that does not exist, SizePanel does
nothing.

Width and height specify the panelÕs new width and height in pixels. If either parameter is less than 0, SizeButton does
nothing.

Also see: MovePanel and MoveSizePanel.

..

MoveSizePanel
Change a panelÕs co-ordinates.

C pascal void MoveSizePanel (short Panel,
short left, short top, short right, short bottom);

Pascal procedure MoveSizePanel (Panel, left, top, right, bottom: INTEGER);

MoveSizePanel changes any of the panelÕs four co-ordinates. The change is seen immediately providing that the panel
is not hidden. This routine combines the functions of MovePanel and SizePanel.

Panel specifies the panel number (from 1 to 511) that is affected in the current window. If the current window doesnÕt
belong to your application, if no windows are open, or if Panel specifies a panel that does not exist, MoveSizePanel
does nothing.

Tools Plus

348

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the panelÕs size and location in the
window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-hand
corner (right,bottom). If these parameters specify a width or height that is less than zero (0), MoveSizePanel does
nothing.

Also see: GetPanelRect.

..

MoveSizePanelRect
Change a panelÕs co-ordinates.

C pascal void MoveSizePanelRect (short Panel, const Rect *Bounds);

Pascal procedure MoveSizePanelRect (Panel: INTEGER; Bounds: RECT);

MoveSizePanelRect is identical to the MoveSizePanel routine, except that it accepts the Bounds rectangle in place of
the individual left, top, right and bottom co-ordinates.

..

AutoMoveSizePanel
Specify how a panel is automatically moved and/or resized as its windowÕs size is changed.

C pascal void AutoMoveSizePanel (short Panel,
Boolean left, Boolean top, Boolean right, Boolean bottom);

Pascal procedure AutoMoveSizePanel (Panel: INTEGER;
left, top, right, bottom: BOOLEAN);

Panel specifies the panel number (from 1 to 511) that is affected in the current window. If the current window doesnÕt
belong to your application, if no windows are open, or if Panel specifies a panel that does not exist,
AutoMoveSizePanel does nothing.

The left, top, right and bottom parameters specify if that side of the panel is automatically adjusted when the windowÕs
size changes. These setting are applied to the panel and are used the next time the windowÕs size changes:

left Does the panelÕs left side track the windowÕs right edge?
top Does the panelÕs top track the windowÕs bottom edge?
right Does the panelÕs right side track the windowÕs right edge?
bottom Does the panelÕs bottom track the windowÕs bottom edge?

You can think of each false value as locking that side of the panel to a fixed co-ordinate regardless of the windowÕs
size (this is the default). Each true value establishes a fixed distance between that side of the panel and the windowÕs
edge. For example, setting only left and right to true makes the panel move horizontally as the window widens and
narrows, but the panel does not move vertically when the windowÕs height changes.

If you are setting these values identically for a group of objects, use AutoMoveSize to define the settings then add the
appropriate xAutoMoveSize constant (such as panAutoMoveSize for panels) to the objectsÕ spec as they are created.
The objects will adopt the settings specified by the AutoMoveSize routine.

+ Warning: Make sure that you resize objects in a way that makes sense. DonÕt allow a window to shrink down to a
size where objects become unusable or disappear altogether.

..

12 Panels

WaterÕs Edge Software 349

SetPanelFontSettings
Set a panelÕs font, size and style settings.

C pascal void SetPanelFontSettings (short Panel,
short theFont, short theSize, Style theStyle);

Pascal procedure SetPanelFontSettings (Panel: INTEGER;
theFont: INTEGER; theSize: INTEGER; theStyle: Style);

Panel specifies the panel number (from 1 to 511) that is affected in the current window. If the current window doesnÕt
belong to your application, if no windows are open, or if the panel does not exist, SetPanelFontSettings does nothing.
Otherwise, the change is seen immediately.

TheFont specifies the panelÕs new font. The default is Chicago, which is represented by the systemFont constant.

TheSize specifies the fontÕs size. The default is 0, which represents the default font size used by the system font, or
12pt in this case.

TheStyle specifies the panelÕs new style. Special character constants defined by the Font Manager are bold, italic,
underline and shadow. C programmers use the Font ManagerÕs constants to specify a composite style, such as
SetPanelFontSettings(1, geneva, 9, bold + outline) for bold and outlined, or SetPanelFontSettings(1, geneva, 9, 0) for
plain text. Pascal programmers use the Font ManagerÕs constants to specify a style set, such as
SetPanelFontSettings(1,Êgeneva, 9, [bold, outline]) for bold and outlined, or SetPanelFontSettings(1, geneva, 9, []) for
plain text.

A panelÕs font settings are set when a panel is created, so this routine is not normally used by many applications.

..

GetPanelFontSettings
Get a panelÕs font, size and style settings.

C pascal void GetPanelFontSettings (short Panel,
short *theFont, short *theSize, Style *theStyle);

Pascal procedure GetPanelFontSettings (Panel: INTEGER;
var theFont: INTEGER; var theSize: INTEGER; var theStyle: Style);

Panel specifies the panel number (from 1 to 511) in the current window whose font settings are being retrieved. If the
current window doesnÕt belong to your application, if no windows are open, or if Panel specifies a panel that does not
exist, GetPanelFontSettings returns default values.

TheFont is the panelÕs font number. The default is 0 which is represented by the systemFont constant.

TheSize is the fontÕs size. The default is 0, which represents the default font size used by the system font, or 12pt in
this case.

TheStyle is the panelÕs font style. The default is plain text, which is represented by 0 in C and [] in Pascal.

..

Tools Plus

350

SetPanelColors
Set a panelÕs colors.

C pascal void SetPanelColors (short Panel, const RGBColor *Text,
const RGBColor *Background, const RGBColor *Border,
const RGBColor *Hilite, const RGBColor *Shadow,
const RGBColor *TextShadow);

Pascal procedure SetPanelColors (Panel: INTEGER; Text, Background, Border, Hilite,
Shadow, TextShadow: RGBColor);

Panel specifies the panel number (from 1 to 511) in the current window whose colors are being set. If the current
window doesnÕt belong to your application, or if no windows are open, SetPanelColors does nothing. Also, if Panel
specifies a panel that does not exist, SetPanelColors does nothing. The change is seen immediately. SetPanelColors
automatically creates a custom color table if required for the panel.

Text is the color of the panelÕs title.

Background is the color of the panelÕs background. By default, the panel uses the windowÕs backdrop color but it may
be instructed to use this background color.

Border is the color of the panelÕs border.

Hilite is the color that is used to draw highlights on both the title and the panel. This color is usually white.

Shadow is the color used to draw the panelÕs shadows

TextShadow is the color used to draw soft shadows on the title.

TextHeavyShadow is the color used to draw heavy shadows on the title.

Also see: GetPanelColors.

..

GetPanelColors
Get a panelÕs colors.

C pascal void GetPanelColors (short Panel, RGBColor *Text,
RGBColor *Background, RGBColor *Border, RGBColor *Hilite,
RGBColor *Shadow, RGBColor *TextShadow);

Pascal procedure GetPanelColors (Panel: INTEGER; var Text: RGBColor;
var Background: RGBColor; var Border: RGBColor;
var Hilite: RGBColor; var Shadow: RGBColor;
var TextShadow: RGBColor);

Panel specifies the panel number (from 1 to 511) in the current window whose colors are being retrieved. If the current
window doesnÕt belong to your application, or if no windows are open, or if Panel specifies a panel that does not exist,
GetPanelColors returns color values from the standard color table.

Text is the color of the panelÕs title.

Background is the color of the panelÕs background. By default, the panel uses the windowÕs backdrop color but it may
be instructed to use this background color.

Border is the color of the panelÕs border.

Hilite is the color that is used to draw highlights on both the title and the panel. This color is usually white.

Shadow is the color used to draw the panelÕs shadows

12 Panels

WaterÕs Edge Software 351

TextShadow is the color used to draw soft shadows on the title.

TextHeavyShadow is the color used to draw heavy shadows on the title.

Also see: SetPanelColors.

..

Tools Plus

352

13 Menus

WaterÕs Edge Software 353

13 Menus

Tools Plus lets your application implement and support menus with considerably less effort than using the Macintosh
toolboxÕs routines. The fully automated Apple menu (ð) lets you launch, activate, and interact with desk accessories
without having to write any code. Tools Plus also integrates the edit menuÕs Undo, Cut, Copy, Paste, and Clear
commands with editing fields, desk accessories and other applications so you donÕt have to write any code to Cut,
Copy, Paste, or Clear text, or to undo/redo your last operation.

There are two different kinds of menus your application can use, pull-down menus and hierarchical menus, as
illustrated below. When implementing menus, your application should adhere to Macintosh User Interface Guidelines
as expressed throughout the series of Inside Macintosh manuals.

In this document, the term menu refers to the entire menu object; that is, [1] the entire pull-down menu and the name
that appears in the menu bar, or [2] an entire hierarchical menu. The term menu item or item refers to individual items
found within a menu. The item number is determined by counting from the top of the list, the first item being 1, the
second being 2, etc.

Pull-Down menu Hierarchical menu

Menus can be created and maintained on an item by item basis within your application. You can also create an entire
menu from a ÔMENUÕ resource by using the LoadMenu routine. The LoadMenuBar routine reads an ÔMBARÕ menu
bar resource that lists all the menus in a menu bar, and creates those menus.

Your application can create the Apple menu (ð) with the AppleMenu routine. This routine creates the Apple menu,
inserts an optional ÒAboutÉÓ item (first item) that is used to invoke your applicationÕs Òabout box,Ó and populates the
menu with a list of desk accessories.

A pull-down menu is created by the Menu routine. First, your application specifies the menuÕs name (which appears in
the menu bar) and a menu number that can be from 1 to 15. The menu number refers to that specific menu until the
menu is deleted. The Menu routine is then used to add items to a specific menu.

A hierarchical menu is also created by using the Menu routine. A name does not have to be specified for a hierarchical
menu because this type of menu does not appear in the menu bar. Hierarchical menu numbers can be from 16 to 200.
The menu number refers to that specific hierarchical menu until it is deleted. The Menu routine is then used to add
items to a specific hierarchical menu. You attach a hierarchical menu to an item in a pull-down menu or a hierarchical
menu by using the AttachMenu routine. When a hierarchical menu is attached to another menu, it is often called a
submenu. In this relationship where a menu has one or more submenus, the owner of the submenus is often called the
parent menu, and the submenus are sometimes referred to as offspring or child menus.

Menu items can also be inserted between others using the InsertMenuItm routine. This lets your application maintain a
dynamic menu that may be used, for example, for a list of open document names. ResNamesToMenu inserts resource
names (such as fonts or sounds), sorted alphabetically, at a specified item.

Tools Plus

354

An entire menu can be deleted by using the RemoveMenu routine. This routine reclaims the memory used by the
menu. Individual items can also be deleted using this routine. You can delete all menus in a menu bar with the
RemoveMenus routine, or all menus and hierarchical menus with the RemoveAllMenus routine. Your application can
temporarily hide the menu bar then redisplay it with MenuBarDisplay.

Menu items can be renamed by using the RenameItem routine. This should be done judiciously, since changes to
menus and/or menu items may prove to be confusing to the user.

An entire menu can be enabled or disabled with the EnableMenu routine, as can individual menu items. When an
entire menu is disabled, it is dimmed along with all its associated items, and it cannot be selected. When an item is
disabled, it becomes dim and cannot be selected.

Changes made to the menu bar by adding, deleting, enabling or disabling pull-down menus (not individual items),
appear in the menu bar as soon as your application calls ProcessEvents, ProcessToolboxEvent, or
Process1EventWhileBusy. Menu bar changes you make from inside your event handler routine will be seen when your
event handler finishes executing. You can use the UpdateMenuBar routine if you want the changes to appear right
away, such as when your application is starting up and it may be several seconds before you call ProcessEvents.

Various other menu item-related features are supported, such as setting or removing Òcheck marksÓ with the
CheckMenu routine. You can set or remove other marks with the MenuMark routine, and determine which mark is
displayed by using GetMenuMark. You can set and retrieve an itemÕs Command-key character with MenuCmd and
GetMenuCmd. The same applies for icons that are displayed in menus, which are set and retrieved with MenuIcon and
GetMenuIcon. An itemÕs text is retrieved with GetMenuString, and its style is set with MenuStyle.

- Note: For the sake of consistency with other applications, your application should have the following menus even if
they are not accessed:
¥ Apple menu (ð)
¥ File menu (first menu). The last item should be ÒQuitÓ
¥ Edit menu (second menu) with the standard items as defined later is this chapter.

Menus in Plug-Ins
If you are writing a plug-in, the host application will have created its menus before calling your plug-in. Do not create
new menus, or delete or modify the host applicationÕs menus. By default, opening a modal window will disallow
access to the host applicationÕs pull-down menus. If the host applicationÕs Edit menu follows the standards defined in
this manual, you can use the wAllowEditMenu option when opening your modal window.

Colors
By default, menus have black text on a white background. The menu bar is white and the titles in the menu bar are
black. You can get and set the default menu colors for your application using GetMenuBarColors and
SetMenuBarColors. These defaults apply to all pull-down and hierarchical menus in your application. You can also get
and set the colors for a specific menu by using he GetMenuColors and SetMenuColors routines. If you want to get or
set the colors for a single menu item, use the GetMenuItemColors and SetMenuItemColors routines. In all cases, use
color very judiciously, and only if there is value in adding colors.

The Appearance Manager does not support the use of colors in menus (it supplies colors and patterns that are
consistent with the user-selected theme). Initializing Tools Plus with the initPureAppearanceManager option enforces
this principle by ignoring custom color information when the Appearance Manager is available.

Menus Accessed by MultiFinder and System 7 or higher
This section describes how MultiFinder and System 7 or higher automatically interact with your applicationÕs menus if
your application does not support high-level events (also called Apple Events). You should set the appropriate bit in
your applicationÕs ÔSIZEÕ resource to indicate if it supports Apple Events or not. See the Completing Your Application
chapter for details about the ÔSIZEÕ resource.

13 Menus

WaterÕs Edge Software 355

Both MultiFinder (running under System 5 or 6) and System 7 or higher can automatically interact with your
application through its menus. If your application is running while the user double-clicks (or select-opens) one of your
applicationÕs documents from the Finder, the affected document is automatically opened by your application. Also, if
the user selects the Special menuÕs Restart or Shut Down command while your application is running, your application
is instructed to quit.

In both these cases, the system simulates the selection of a menu item. You must have a File menu with an item named
ÒOpenÉÓ (including the ellipsis, created using Option-;), and the last item named ÒQuitÓ. In the case of opening a
document, Tools Plus reports a doMenu event to your application indicating that the File menuÕs ÒOpenÉÓ command
was selected, in which case your application would do whatever is appropriate, likely display an SFGetFile dialog to
let the user choose which file to open. The system fools your application into thinking that the double-clicked file was
selected from an SFGetFile dialog (which is not actually displayed). When the user selects Restart or Shut Down,
Tools Plus reports a doMenu event to your application indicating that the File menuÕs ÒQuitÓ command was selected,
in which case your application would do whatever is appropriate, such as asking the user if open documents should be
saved before quitting.

If your application does not [1] open files by using the File menuÕs ÒOpenÉÓ command, or [2] quit by using the File
menuÕs ÒQuitÓ command, see the Completing Your Application chapter where you can remap these functions to other
menu items.

See the Completing Your Application chapter. The section on ÒbundlesÓ defines the association between your
application and the files it creates, while the section on ÔmstrÕ resources details remapping the ÒOpenÉÓ and ÒQuitÓ
functions to menus and menu items that are differently named.

Edit Menu
The Edit menu has a high degree of consistency across all Macintosh applications in appearance and function. Your
application should have an Edit menu if your application:

¥ has two or more menus in the menu bar (excluding the Apple menu (ð))
¥ uses editing fields
¥ supports desk accessories and runs under systems prior to System 7

It is good form to include an Edit menu in your application even if it doesnÕt support its functions, just for the userÕs
familiarity.

Your applicationÕs second menu must be called ÒEdit.Ó The Edit menu must contain the
items ÒUndoÓ, ÒCutÓ, ÒCopyÓ, ÒPasteÓ and ÒClearÓ as the first five items in the listed order.
A dividing line must exist between ÒUndoÓ and ÒCutÓ. Tools Plus automatically enables and
disables items in the Edit menu as described in the Editing Fields chapter under The Edit
Menu whenever an editing field is active. It also automatically changes the ÒUndoÓ item to
ÒCanÕt UndoÓ when:

¥ a window that allows access to pull-down menus is opened or closed
¥ an inactive window is activated
¥ an editing field is deactivated or activated (including selecting a new editing field)
¥ a desk accessory performs a Cut or Copy operation which affects the clipboard

Your application is responsible for maintaining the Edit menu whenever it is not interacting with an active editing
field. For example, if your application performs a function that canÕt be undone, it should set the ÒUndoÓ item to
ÒCanÕt Undo.Ó Also, if it performs an operation that can be undone, it should change the ÒUndoÓ item to whatever is
appropriate, such as ÒUndo Merging.Ó The other items in the Edit menu, namely ÒCutÓ, ÒCopyÓ, ÒPasteÓ, and ÒClearÓ
should be enabled/disabled as required by your application. Your application can have additional items in the Edit
menu after the Clear command.

If you are localizing your application for a language other than English, you will likely want to use menu titles that are
different from those stated here. You may feel free to do so. See the Multiple Languages chapter for details on how to
make the ÒUndoÓ menu display its status in the language(s) of your choice.

Tools Plus

356

Select All

An item commonly found in many applicationsÕ Edit menu is ÒSelect AllÓ which is used to select all objects or text.
Tools Plus supports this feature by letting you create a ÒSelect AllÓ item in the Edit menu anywhere after the ÒClearÓ
item. By using SetSelectAllItem, your application informs Tools Plus that a ÒSelect AllÓ item exists in the Edit menu.
Tools Plus then enables/disables the item appropriately and selects all text in the active field when this menu item is
used.

- Note: Do not rename the Edit menuÕs ÒUndoÓ item, or change the enabled/disabled state of the Edit menuÕs ÒUndoÓ,
ÒCutÓ, ÒCopyÓ, ÒPasteÓ, or ÒClearÓ items if the active window allows access to pull-down menus and it
contains an active editing field. Tools Plus maintains these menu items automatically. If you are going to make
such a change, preface it by a call to GetEditString (to retrieve the active fieldÕs edited text for validation by
your application), a call to SaveFieldString (to save the edited text as the fieldÕs associated string), then to
DeactivateField (to deactivate the windowÕs active field and end Tools Plus automatic maintenance of the Edit
menu).

Menus and Editing Fields
If your application is going to use editing fields, an ÒEditÓ menu will greatly assist in text editing. The Edit menu
automatically performs all text transfer operations between the active editing field and the Clipboard. This includes:

¥ Cutting the selected text from the active editing field and placing it on the Clipboard
¥ Copying the active editing fieldÕs selected text to the Clipboard
¥ Pasting the ClipboardÕs contents into the active editing field
¥ Undoing the last operation, including the Edit menuÕs Cut, Copy, Paste, and Clear operations, as well as typing

and using the Delete (or Backspace) key
¥ Undoing the last Undo operation (i.e. Redo)

This functionality is detailed in the Editing Fields chapter of this manual.

When a window that allows access to pull-down menus is activated, or when an editing field is activated on the active
window, the Edit menu is automatically updated to reflect the operations that can be performed on the active field. Any
editing done in the field automatically updates the Edit menuÕs items. If you deactivate such a window containing an
active editing field, either by closing the window or by activating another window that allows access to pull-down
menus without an active field, all five Edit menu items are disabled.

Opening and closing a window that disallows access to pull-down menus does not affect the Edit menu, since menus
cannot be accessed while that window is active.

Apple Menu and Desk Accessories
You can give your application the ability to use desk accessories (DAs) by installing the Apple menu (ð). Although
desk accessory activity is handled entirely by Tools Plus, your application must adhere to some very strict rules. Your
application must have at least two menus to ensure compatibility with System 5 and System 6. The first menu is called
ÒFileÓ, and must contain ÒQuitÓ as the last item. The second menu must be the ÒEditÓ menu, as described above. The
edit menu must exist as described, even if your application does not support these commands. Lastly, you must ensure
that sufficient free space exists in the menu bar to accommodate additional menus, since some DAs create their own
menus when running under Finder in System 5 and System 6. Complying with these requirements will ensure that your
application is compatible with desk accessories in all system versions.

Desk accessories affect the Edit menu as described later in this chapter in the ÒMenus and Desk AccessoriesÓ section.

See the Event Management chapter For more details about desk accessory interaction.

13 Menus

WaterÕs Edge Software 357

Menus and Desk Accessories (Using Finder under System 5 or 6)
This section applies only when your application is running under Finder (not MultiFinder) in System 5 or System 6.
Tools Plus automatically maintains menus according to Macintosh User Interface Guidelines (described below).

When a desk accessory is activated, Tools Plus does the following things:
¥ your applicationÕs menus are memorized so they can be restored to their original state when your application

becomes active again
¥ all items in your applicationÕs File menu are disabled, except for the last item, ÒQuitÓ
¥ the Edit menuÕs Undo item is renamed to ÒUndoÓ. This is done in view that the item may have read ÒUndo

TypingÓ or some other specific action that does not pertain to a desk accessory
¥ the Edit menuÕs ÒUndoÓ, ÒCutÓ, ÒCopyÓ, ÒPasteÓ and ÒClearÓ items are all enabled for the desk accessoryÕs use
¥ all other Edit menu items are disabled
¥ all other menus in your application are disabled.

When the desk accessory becomes inactive, either by being closed or by activating a window in your application, your
applicationÕs menus are restored to their original state.

Menus and Desk Accessories (Using MultiFinder or System 7 or higher)
This section applies only when your application is running under MultiFinder (not Finder) in System 5 or System 6, or
System 7 or higher. Each application has its own menu bar including desk accessories. When your application is active
its menu bar is displayed. When another application (including System 5 or System 6Õs MultiFinder, and System 7Õs or
higher Finder), or a desk accessory is active, the other applicationÕs menu bar is displayed. So if your application will
run only on MultiFinder in System 5 or 6, and/or System 7 or higher you can be certain that desk accessories will not
be adding menus to your menu bar and that they will not be interacting with your menus.

Help Menu and Applications Menu
System 7 or higher automatically installs two menus that appear as icons on the right side of your applicationÕs menu
bar. They are the Help menu and the Applications menu. All functions in the Applications menu are handled
automatically, so the only access Tools Plus provides to this menu is to enable it or disable it. It is unlikely you will
ever need to use this feature.

The Help menu is installed in your applicationÕs menu bar when your application creates the Apple menu in System 7
or higher. The Help menu contains several items that are automatically handled by the system. The number of these
items and their function depends on which version of the System you are running. It is not important that you know
what they are. If your application does not add any functionality to the default Help menu, you should never access the
Help menu with any menu management routines and Tools Plus will never report any events from the Help menu.

If your application needs to add its own items to the help menu, first use the MenuItemCount routine to determine the
number of items in the Help menu (the mHelpMenu constant provides a convenient way to identify the Help menuÕs
menu number). The first time your application accesses the Help menu through any Tools Plus menu routine, a
dividing line is automatically appended to end of the help menu (this is done by the MacintoshÕs toolbox and cannot be
overridden). You may then add and maintain items in the Help menu using Tools PlusÕs menu routines. Tools Plus
does not allow you to affect the items that are automatically installed and handled by the system. When the user selects
an item from the Help menu, Tools Plus reports a doMenu event telling your application the menu number
(mHelpMenu) and item number selected by the user. Your application will only be informed when the use selects
items you have installed in the Help menu, and not when the user selects any of the system-installed items.

If your application is running under System 6 or earlier, menu routines referring to the Help menu or Applications
menu will not do anything.

Tools Plus

358

Command Key Equivalents
Menus can be invoked from the keyboard by setting up a Command key (1-) equivalent. The character you specify for
a Command key equivalent will likely be a letter, however, other characters may be used. When the user holds down
the Command key and types a letter, whether in upper or lower case, the equivalent menu item is invoked as if the
menu had been pulled down and the required item selected. The appropriate name in the menu bar is highlighted while
the operation takes place.

The system responds equally to shifted or non-shifted characters. For example, 1-C and 1-c both invoke the same
menu item. Consequently, 1-+ is read by the system as 1-=. For consistency between applications, upper case letters
should be used.

1-Shift-number combinations are not Command key equivalents, because they are processed as a separate type of
event (this is why 1-Shift-1 and 2 eject the internal and external floppy disk). Although unshifted 1-number
equivalents can be used, they should be used judiciously to avoid confusion.

- Note: Several Command key equivalents are reserved for specific purposes, as listed below:
File menu
1-N (New)
1-O (OpenÉ)
1-W (Close)
1-S (Save)
1-P (PrintÉ)
1-Q (Quit)

Edit menu
1-Z (Undo)
1-X (Cut)
1-C (Copy)
1-V (Paste)
1-A (Select All)

Style menu
1-P (Plain, less common)
1-B (Bold)
1-I (Italic)
1-U (Underline)

- Note: The MacintoshÕs Menu Manager has some inherent properties that Tools Plus cannot override:
¥ menu items that have submenus cannot have a command key, nor can they display an SICN icon
¥ menu items that display an SICN icon cannot have a command key.

Planning for Balloon Help
The Help Manager implementatiion of Balloon Help has a limitation you should consider when designing your
application: Balloon Help for menus cannot be implemented dynamically. You must create an ÔhmnuÕ resource, and
Tools Plus will attach it to the ÔMENUÕ resource with the same resource ID.

Handling Menus
Tools Plus takes care of maintaining the Edit menu when an editing field is active on a window that allows access to
pull-down menus. When a menu item is selected by the user, either by using the mouse or by typing a Command key
equivalent, the corresponding menu name in the menu bar is highlighted and Tools Plus reports a doMenu event with
the menu number and item number selected by the user. After your application has responded to the selection, call
MenuHilite(0) to un-highlight the menu bar.

Hierarchical menus are handled identically to pull-down menus, except when they are selected by the user, the name of
their ultimate parent is highlighted in the menu bar. If the user types a Command key equivalent for a hierarchical
menu that is not attached to a pull-down menu, Tools Plus reports a doKeyDown or doAutoKey event for that
keyboard event.

If the Edit menuÕs Undo, Cut, Copy, Paste, or Clear are selected while an editing field is active, Tools Plus
automatically processes the command and an event is not reported to your application.

If your application does not respond to Apple Events and is running under System 5 or 6Õs MultiFinder (not Finder) or
System 7 or higher, the user can double-click one of your applicationÕs documents while your application is running.
This generates a doMenu event that is equivalent to the File menuÕs ÒOpenÉÓ item in your application. The user can
also select the Special menuÕs Restart or Shut Down commands, which generates a doMenu event that is equivalent to
the File menuÕs ÒQuitÓ item, instructing your application to quit. See the Event Management chapter for complete
details on the handling of menus.

13 Menus

WaterÕs Edge Software 359

AppleMenu
Create the ÒAppleÓ menu.

C pascal void AppleMenu (const Str255 AboutName);

Pascal procedure AppleMenu (AboutName: STRING);

This routine creates the Apple menu (ð), inserts an optional ÒAboutÉÓ item that is used to invoke your applicationÕs
Òabout box,Ó and populates the menu with a list of desk accessories. AppleMenu should be called before defining any
other menus.

AboutName specifies the title of the Apple menuÕs ÒAboutÓ item, such as ÒAbout my application...Ó This item is first in
the Apple menu, followed by a dividing line, then by the desk accessories listed in alphabetic order. If AboutName is a
null string, only the desk accessory names will appear in the Apple menu.

This routine does not immediately display the Apple menu in the menu bar to prevent the menu bar from flickering
each time a new menu is added. Instead, all changes to the menu bar appear simultaneously when your application
calls starts processing events, or when it finishes executing an event handler routine. Call UpdateMenuBar if you need
the changes to appear right away.

See ÒDesk AccessoriesÓ at the beginning of Menus for desk accessory menu requirements.

..

Menu
Create a menu (pull-down or hierarchical), add more menu items, or rename existing menu items.

C pascal void Menu (short MenuNumber, short ItemNumber, Boolean EnabledFlag,
const Str255 MenuText);

Pascal procedure Menu (MenuNumber, ItemNumber: INTEGER; EnabledFlag: BOOLEAN;
MenuText: STRING);

When a pull-down menu is first created, the menuÕs name (which appears in the menu bar) must be defined first. This
is done by calling the Menu routine with ItemNumber having a value of zero (0). Menu items can then be added to the
menu. Your application should define menu items in their correct order (i.e., top to bottom) in order to use the full
power of this routine. A hierarchical menu is created the same way as a pull-down menu, except that you donÕt need to
create a menu name because hierarchical menus never appear in the menu bar.

MenuNumber specifies the menu number that is affected. The numbers 1 through 15 are reserved for pull-down menus,
and the numbers 16 through 200 are reserved for hierarchical menus. Once a menu is created, it is referenced by this
menu number. Menu names for pull-down menus are displayed in your applicationÕs menu bar with the Apple (ð)
menu (if one was created) in the leftmost position, followed by the other pull-down menus in the ascending order of
their MenuNumber. Use mHelpMenu to work with the Help menu.

ItemNumber specifies the menuÕs item number (from 1 to 32767) that is affected. If ItemNumber is zero (0) for a pull-
down menu, the Menu routine refers to the menuÕs name in the menu bar. The first two menus (usually File and Edit)
are limited to 31 items. You cannot change the items installed by the system in the Help menu.

EnabledFlag specifies whether the menu or menu item is enabled or disabled. The menu or menu item can be selected
only when enabled. When disabled, the menu or menu item is dimmed and cannot be selected by the user. The two
constants that can be used for this purpose are enabled and disabled. If the ItemNumber is zero, the action applies to all
items within the specified menu. When the menu later becomes enabled, all items in the menu assume their correct
enabling/disabling as specified by your application. Menus and menu items can be enabled and disabled by using the
EnableMenu routine.

Tools Plus

360

MenuText is the menuÕs name that appears in the menu bar (if ItemNumber is zero), or the menu itemÕs name (if
ItemNumber is not zero). When a menu item is first created, certain metacharacters are recognized by Tools Plus to
provide special instructions to the Menu Manager. You may choose to include or exclude these characters within
MenuText, however, you should be aware of their effects. A menuÕs name (which appears in the menu bar) should not
have any metacharacters. Menu items can include multiple metacharacters.

- Note: The MacintoshÕs Menu Manager allows only the first 31 items of a menu to be disabled individually. The
entire menu, however, can always be disabled.

Metacharacters

Metacharacters are symbols that tell the Menu Manager to perform special functions on a menu. They are recognized
and processed only when a menu item is first created, and are ignored (displayed as ordinary characters) when menu
items are renamed. A menuÕs name (which appears in the menu bar) should not have any metacharacters. Menu items
can include multiple metacharacters or combinations of metacharacters.

Unlike the Macintosh toolboxÕs menu routines, Tools Plus removes the semi-colon (;) and Return character ($0D), and
does not process them as metacharacters.

Metacharacter Meaning

^ Display an icon to the left of the menu item. The number following the caret (^) should be from 1 to 255 (i.e.,
Ò^28Ó). The Menu Manager adds 256 to the number you state to specify a resource ID that is in the range of 257
to 511, so if you specify 28, resource ID 284 is used (28 + 256 = 284). These icon resources are read from your
application.

Tools Plus tries to use a ÔcicnÕ icon if Color QuickDraw is available on the Macintosh running your
application. Otherwise, it will search for an ÔICONÕ (black and white) icon, then an ÔSICNÕ icon.

Unlike the equivalent Macintosh toolbox routine, your menu item will remain unaffected if the specified
icon canÕt be found (i.e., empty space is not reserved in the menu).

Be aware that the Menu Manager drawing a ÔcicnÕ icon in color will do so even if the icon was created using
8-bit colors and the monitor is set to 4-bits. This may produce unsatisfactory results. If possible, use 4-bit colors
or colors that translate well into 4-bit colors.

! Display a special mark to the left of a menu item. The single character that follows the exclamation mark (!) is
displayed. The check mark is the default. (It is best to use the CheckMenu or MenuMark routines.)

< The item is displayed in a special character style. The single character that follows this symbol specifies the
style (Bold, Italic, Underline, Outline, or Shadow). Multiple styles can be combined, such as Ò<B<IÓ for Òbold
and italic.Ó It is best to use MenuStyle to change styles.

/ The slash (/) indicates that a menu item may be invoked by using a keyboard equivalent. The single character
that follows the slash specifies the Command key equivalent to a menu item. For consistency, use upper case
letters (shifted characters are ignored, so 1-+ is interpreted as 1-=). Do not use Control characters, since older
Macintosh keyboards such as those found on the Macintosh Plus donÕt have a Control key.

Tools Plus prevents you from using characters $1B through $1F (Control-[, Control-\, Control-],
Control-UpÊArrow, and Control--), because these characters are reserved by Apple for the systemÕs use.

- Note: The MacintoshÕs Menu Manager has some inherent properties that Tools Plus cannot override:
¥ menu items that have submenus cannot have a command key, nor can they display an SICN icon
¥ menu items that display an SICN icon cannot have a command key.

To create a Òdividing lineÓ between sections of related menu items, disable the menu item and use Ô-Õ (a minus or dash)
as the MenuText value. You can use the constant mDividingLine for this purpose.

Special care should be taken to define the menuÕs name in the menu bar first, then to define menu items in their correct
sequential order. If a pull-down menu item is defined without first defining the menuÕs name, the name in the menu
bar is automatically defined as ÒMenu xÓ where x is the menu number. Also, if any menu items are skipped when
defining a menu item (i.e., creating menu item 3 without first creating 1 and 2) the missing menu items (1 and 2) are
automatically created as blank, disabled items. Consequently, metacharacters will not be recognized when the Menu
routine references these automatically created items; the Menu routine will simply rename the existing item.

13 Menus

WaterÕs Edge Software 361

A menuÕs name (which appears in the menu bar) cannot be changed. If the menuÕs name must be changed, the affected
menu must be removed with the RemoveMenu routine, then re-created as required by using the Menu routine.

This routine does not immediately display the newly added menu in the menu bar to prevent the menu bar from
flickering each time a new menu is added. Instead, all changes to the menu bar appear simultaneously when your
application calls starts processing events, or when it finishes executing an event handler routine. Use UpdateMenuBar
if you need the changes to appear right away.

Programming Tips:
1 If you want to add resource names to a menu, such as fonts, use the ResNamesToMenu routine.

2 Tools Plus assumes that menu number two is the Edit menu. If your application does not have an Edit menu,
make sure your application does not have a menu numbered two.

3 If you need any of the metacharacters to appear in a menuÕs text (such as an exclamation mark), first create a
blank menu item (MenuText equals a space), then change the itemÕs text with the Menu or RenameItem
routine to include the desired characters. Metacharacters are displayed but not specially processed when a
menu itemÕs name is changed.

+ Warning: The first two menus (usually File and Edit) are limited to 31 items each. This limit has been imposed to
ensure that an application running under Finder (System 5 and 6) can adhere to Macintosh User Interface
Guidelines.

CONST {Menu constants: }
mFileMenu = 1; {File menu number }
mEditMenu = 2; {Edit menu number }
mHelpMenu = -2; {Help menu number (System 7.0 or higher) }
mDividingLine = '-'; {Dividing line }

enabled = true; {Enable the menu/item }
disabled = false; {Disable the menu/item }

..

LoadMenu
Create a menu using a ÔMENUÕ resource.

C pascal void LoadMenu (short MenuNumber, short ResID);

Pascal procedure LoadMenu (MenuNumber, ResID: INTEGER);

LoadMenu lets you create a menu along with all its items using a ÔMENUÕ resource. If the ÔMENUÕ resource contains
references to hierarchical menus, those submenus are also loaded and attached to the menu. LoadMenu also loads the
corresponding ÔmctbÕ menu color table resource if it is available. You can create both the ÔMENUÕ resource and its
related ÔmctbÕ resource using a resource editor such as AppleÕs ResEdit.

MenuNumber specifies the menu number that is created. The numbers 1 through 15 are reserved for pull-down menus,
and the numbers 16 through 200 are reserved for hierarchical menus. Once a menu is created, it is referenced by this
menu number. Menu names for pull-down menus are displayed in your applicationÕs menu bar with the Apple (ð)
menu (if one was created) in the leftmost position, followed by the other pull-down menus in the ascending order of
their MenuNumber. Use the mAppleMenu constant to specify that the Apple menu is being created from a resource. If
a menu already exists that is using the same menu number, it is deleted before the new menu is created.

ResID is the ÔMENUÕ resource ID number that is used to create the menu. If the menu has an ÔmctbÕ color table
resource, it must use the same ID number. The resource ID number can be the same as the menu number, that being 1
through 15 for pull-down menus and 16 through 200 for hierarchical menus. In the case of the Apple menu, the
resource number can be zero (0) as well. If your application creates only one set of menus and stays with them, it is
best to number your ResID the same as your MenuNumber. If your application deletes and creates menus during
execution, use ResIDs that are in the range of 16000 to 31999. These resource numbers donÕt overlap the range used
by menu numbers, so you can think of them as a temporary holding area for ÔMENUÕ resources that have not become

Tools Plus

362

usable menus.

When creating menus using ÔMENUÕ resources, please note the following:
¥ Flag your ÔMENUÕ and ÔmctbÕ resources as purgeable to save memory. Tools Plus makes a copy of their data.
¥ The Apple, File and Edit menu must be the first menus in your menu bar.
¥ The File and Edit menus use menu numbers 1 and 2. The constants mFileMenu and mEditMenu are available.
¥ The File and Edit menu are limited to 31 items. Subsequent items are not installed.
¥ Hierarchical menus lose their title when they are installed. Tools Plus uses this field for a reference to the parent

menu.
¥ If your menu has a reference to a submenu, that submenu resource ID must be in the range of 16 through 200, just

like hierarchical menu numbers. If the reference to the submenuÕs resource ID is outside this range, the submenu
is not loaded.

¥ If your Edit menu has a ÒSelect AllÓ item, use the SetSelectAllItem routine to tell Tools Plus which item it is after
using LoadMenu.

¥ You can create menus using resources and/or programatically with the Menu routine.
¥ MacintoshÕs Menu Manager automatically loads ÔmctbÕ resource with and ID of zero (0) when your application

starts and applies the resourceÕs setting to all menus in your application. For this reason, if you create an Apple
menu with a ÔMENUÕ resource ID of zero (0), LoadMenu will not load the ÔmctbÕ resource with an ID of zero (0).

..

LoadMenuBar
Create a set of menus using an ÔMBARÕ resource.

C pascal void LoadMenuBar (short ResID);

Pascal procedure LoadMenuBar (ResID: INTEGER);

ResID is the ÔMBARÕ resource ID number that is used to create the set of menus. You can create the ÔMBARÕ resource
using a resource editor such as AppleÕs ResEdit. The ÔMBARÕ resource lists resource IDs for ÔMENUÕ resources that
are used to create the menu barÕs pull-down menus. See the LoadMenu routine for details about ÔMENUÕ resources
and their ID numbering requirements.

LoadMenuBar first calls RemoveAllMenus to remove all existing pull-down menus from the menu bar and all
hierarchical menus. It then reads sequentially through the ÔMBARÕ resource to determine the ÔMENUÕ resource IDs,
and loads those resources to make them into menus using the LoadMenu routine. Pull-down menu numbers are
assigned sequentially starting at one (1) and incrementing by one.

If your application has only one menu bar, it is best to number your ÔMENUÕ resource IDs the same as your menu
numbers. For example, use 0 for your Apple menu, 1 for your File menu, 2 for your Edit menu, and so on. Subsequent
menu bars must use ÔMENUÕ resource IDs that are in the range of 16000 to 31999 for all pull-down menus other than
the Apple menu. These resource numbers donÕt overlap the range used by menu numbers (1 through 15), so you can
think of them as a temporary holding area for ÔMENUÕ resources that have not become usable menus yet. ÔMENUÕ
resource IDs for submenus must be in the range of 16 to 200.

LoadMenuBar recognizes the Apple menu as a special case and does not include it as a sequentially numbered menu.
It is most convenient to always use ÔMENUÕ ID 0 for the Apple menu. Flag ÔMBARÕ resources as purgeable to
conserve memory. The following are examples of typical ÔMENUÕ resource ID specified in an ÔMBARÕ resource:

ÔMBARÕ ID = 128
AppÕs first menu

ÔMBARÕ ID = 129
Second menu bar

ÔMBARÕ ID = 130
Third menu bar

0 = Apple
1 = File
2 = Edit
3 = LogOn

0 = Apple
16000 = File
16001 = Edit
16002 = Styles
16003 = Colors
16004 = Models

0 = Apple
1 = File
2 = Edit

16010 = Security
16011 = Users

13 Menus

WaterÕs Edge Software 363

SetSelectAllItem
Identify the Edit menuÕs ÒSelect AllÓ item.

C pascal void SetSelectAllItem (short ItemNumber);

Pascal procedure SetSelectAllItem (ItemNumber: INTEGER);

If you want to include a ÒSelect AllÓ item in your applications Edit menu, first create the item using the Menu routine
then use SetSelectAllItem to identify the item number in the Edit menu. Tools Plus then enables/disables the item
appropriately and selects all text in the active field when this menu item is used.

ItemNumber specifies the menu item number (from 7 to 31) where the ÒSelect AllÓ item is located in the Edit menu. If
the menu item does not exist in the Edit menu, or if the Edit menu does not exist, SetSelectAllItem does nothing. Use
Ò0Ó if you want Tools Plus to ignore a previously set item.

SetSelectAllItem is automatically invoked if you create an Edit menu and it has an item named ÒSelect AllÓ. YouÕll
need to use this routine if you have a ÒSelect AllÓ item that is named differently, which may be the case if your
application is localized to a non-English language.

..

GetFreeMenuNum
Get the first unused pull-down menu number.

C pascal short GetFreeMenuNum (void);

Pascal function GetFreeMenuNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own pull-down
menu number, GetFreeMenuNum returns the first unused (free) menu number. Using this routine, you can assign an
unused menu number to a variable, then use that variable throughout your application without concern for the true
menu number.

If the maximum number of pull-down menus has already been created (no new ones can be created),
GetFreeMenuNum returns a value of zero (0).

..

GetFreeHMenuNum
Get the first unused hierarchical menu number.

C pascal short GetFreeHMenuNum (void);

Pascal function GetFreeHMenuNum: INTEGER;

This routine is identical to GetFreeMenuNum, except that it returns a hierarchical menu number.

..

Tools Plus

364

AttachMenu
Attach a hierarchical menu to a menu item, or detach a hierarchical menu from a menu item.

C pascal void AttachMenu (short MenuNumber, short ItemNumber,
short SubMenuNumber);

Pascal procedure AttachMenu (MenuNumber, ItemNumber, SubMenuNumber: INTEGER);

A hierarchical menu can be attached to a pull-down menu or to another hierarchical menu. When attaching a
hierarchical menu to a ÒparentÓ (or if you prefer to view it the other way, providing a ÒparentÓ menu with an
ÒoffspringÓ hierarchical menu), you must specify the parent menuÕs menu number and item number, and the
submenuÕs (offspring) menu number.

You can detach a submenu from its parent in two different ways:
[1] you can state that the Òparent menu has no offspringÓ: AttachMenu (3, 14, none)
[2] you can state that the Òhierarchical menu has no parentÓ: AttachMenu (0, 0, 105)

Notice that you can use the constant none to make your code more readable.

MenuNumber specifies the ÒparentÓ menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical
menus) to which the hierarchical menu is attached. You can specify zero (0) to detach a parent menu from a known
submenu. If the menu number does not exist, AttachMenu does nothing. You cannot attach hierarchical menus to the
Apple Menu or System 7Õs (or higher) Help menu or Applications menu.

ItemNumber specifies the menu item number (from 1 to 32767) to which the hierarchical menu is attached. You can
specify zero (0) to detach a parent menu from a known submenu. If the menu item does not exist in the specified
menu, AttachMenu does nothing.

SubMenuNumber specifies the ÒoffspringÓ menu number (from 16 to 200) which is attached to the parent menu. You
can specify zero (0) to detach a known parent menu from its submenu. If the menu number does not exist, AttachMenu
does nothing.

- Note: AttachMenu ensures that a hierarchical menu is attached to only one parent menu item at a time by
automatically detaching it from the old parent menu. Tools Plus will not allow a hierarchical menu to be
attached to itself, or to result in a Òcyclical hierarchyÓ in which the parent menus eventually lead back to a
submenu. AttachMenu will beep if you attempt to define a cyclical hierarchy.

- Note: When a submenu is attached to a parent menuÕs item, that itemÕs Command key and ÒmarkÓ (as defined by
MenuMark) are cleared. Also, if an SICN icon is displayed in the item, it too is cleared. The MacintoshÕs Menu
Manager uses these characters to make hierarchical menus work.

..

InsertMenuItm
Insert a menu item into an existing menu.

C pascal void InsertMenuItm (short MenuNumber, short ItemNumber,
Boolean EnabledFlag, const Str255 MenuText);

Pascal procedure InsertMenuItm (MenuNumber, ItemNumber: INTEGER;
EnabledFlag: BOOLEAN; MenuText: STRING);

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
where the menu item is created. If the menu does not exist, InsertMenuItm does nothing. Use mHelpMenu to work
with the Help menu. You cannot insert items into the Apple Menu or System 7Õs (or higher) Applications menu.

ItemNumber specifies the menu item number (from 1 to 32767) where the item is inserted. If the menu item does not
exist in the specified menu, InsertMenuItm does nothing. InsertMenuItm will append one item to the end of a menu if
the ItemNumber equals the current number of items plus 1.

13 Menus

WaterÕs Edge Software 365

EnabledFlag specifies whether the item is enabled or disabled. In the enabled state, the item can be selected whereas in
the disabled state, the item is dimmed and cannot be selected by the user. The two constants that can be used for this
purpose are enabled and disabled. Menus and menu items can be enabled and disabled by using the EnableMenu
routine.

MenuText is the name of the item. Certain metacharacters are recognized by Tools Plus to provide special instructions
to the Menu Manager. You may choose to include or exclude these characters within MenuText, however, you should
be aware of their effects. See the Menu routine for details on metacharacters.

When the item is inserted, all existing items starting at ItemNumber are pushed down one space to make room for the
new item. This means that their item number will be changed. The new item is inserted at the location specified by
ItemNumber. The main use for this routine is to let your application maintain a dynamic menu, such as a list of open
document names.

- Note: The MacintoshÕs Menu Manager allows only the first 31 items of a menu to be disabled individually. The
entire menu, however, can always be disabled.

If a menu item that owns a submenu is disabled, either by disabling the item individually or by disabling
the entire menu, the submenu cannot be viewed by the user.

+ Warning: The first two menus (File and Edit) are limited to 31 items each. This limit has been imposed to ensure that
an application running under Finder (System 5 and 6) can adhere to Macintosh User Interface Guidelines.

CONST {Menu and Menu Item status }
mHelpMenu = -2; {Help menu number (System 7.0 or higher) }
mDividingLine = '-'; {Dividing line }
enabled = true; {enable the menu/item }
disabled = false; {disable the menu/item }

..

ResNamesToMenu
Insert resource names into a menu.

C pascal void ResNamesToMenu (short MenuNumber, short ItemNumber,
ResType rType);

Pascal procedure ResNamesToMenu (MenuNumber, ItemNumber: INTEGER;
rType: RESTYPE);

This routine finds all named resources of the specified type and inserts those names (sorted alphabetically) into a
menu. Duplicated names are ignored as are ones that start with Ò.Ó (period) or Ò%Ó.

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
that is affected. If the menu does not exist, ResNamesToMenu does nothing. Use mHelpMenu to work with the Help
menu. You cannot perform this operation on the Apple Menu or System 7Õs (or higher) Applications menu.

ItemNumber specifies the menu item number (from 1 to 32767) where the resource names are inserted. If the menu
item does not exist in the specified menu, ResNamesToMenu does nothing. ResNamesToMenu will append to the end
of a menu if the ItemNumber equals the current number of items plus 1. You cannot change the items installed by the
system in the Help menu.

rType is the four character resource type whose names are being inserted into the menu. If you specify ÔFONDÕ or
ÔFONTÕ resources, both are obtained since they are just different types of fonts.

When the resource names are inserted, all existing items starting at ItemNumber are pushed down to make room for the
new items. This means that their item number will be changed. The new items are inserted starting at the location
specified by ItemNumber.

Tools Plus

366

- Note: If the first character of a resource name is a dash (-), it is added into the menus as an option-dash (character
208) to prevent the Menu Manager from interpreting the name as a dividing line.

+ Warning: The first two menus (File and Edit) are limited to 31 items each. This limit has been imposed to ensure that
an application running under Finder (System 5 and 6) can adhere to Macintosh User Interface Guidelines.

..

RemoveMenu
Delete a menu and its associated items, or delete an individual menu item.

C pascal void RemoveMenu (short MenuNumber, short ItemNumber);

Pascal procedure RemoveMenu (MenuNumber, ItemNumber: INTEGER);

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
that is affected. If the menu does not exist, RemoveMenu does nothing. Use mHelpMenu to work with the Help menu.
You cannot remove the Apple Menu or System 7Õs (or higher) Help menu or Applications menu.

ItemNumber specifies the menu item number (from 1 to 32767) that is deleted. If ItemNumber is zero (0),
RemoveMenu refers to the menuÕs name in the menu bar and all its associated items. If the menu item is not zero and
it does not exist, RemoveMenu does nothing. You cannot remove the items automatically installed by System 7 or
higher in the Help menu.

If a menu is deleted along with its associated items (i.e., when ItemNumber = 0), any menus with higher menu
numbers is shifted to the left to fill in the space occupied by the deleted menu. Their menu numbers, however, remain
unchanged. If the affected menu has submenus, those submenus are automatically detached but not deleted. If the
affected menu is a submenu, it is automatically detached from its parent menu.

This routine does not immediately update the menu bar when a menu is deleted (to prevent the menu bar from
flickering each time a change is made). Instead, all changes to the menu bar appear simultaneously when your
application calls starts processing events, or when it finishes executing an event handler routine. Use UpdateMenuBar
if you need the changes to appear right away.

- Note: Use RemoveMenu to maintain a dynamic menu, such as a list of open windows. Do not use it to make items
unavailable. Instead, disable items with EnableMenu

+ Warning: If you delete the File or Edit menu, make sure you replace it immediately. Failure to do so will result not
only in user interface inconsistencies, but may also make your application unstable.

..

RemoveMenus
Delete all menus in the menu bar.

C pascal void RemoveMenus (void);

Pascal procedure RemoveMenus;

This routine simply calls RemoveMenu for each menu in the menu bar. Hierarchical menus, the Apple menu, and
System 7Õs (or higher) Help menu and Applications menus are not affected. The menu bar is updated when your
application finishes executing an event handler routine. Use UpdateMenuBar if you need the changes to appear right
away.

..

13 Menus

WaterÕs Edge Software 367

RemoveAllMenus
Delete all menus in the menu bar and hierarchical menus.

C pascal void RemoveAllMenus (void);

Pascal procedure RemoveAllMenus;

This routine simply calls RemoveMenu for each menu in the menu bar and all hierarchical menus. The Apple menu,
and System 7Õs (or higher) Help menu and Applications menus are not affected. The menu bar is updated when your
application finishes executing an event handler routine. Use UpdateMenuBar if you need the changes to appear right
away.

..

UpdateMenuBar
Display the menu bar with the changes made by the AppleMenu routine, Menu routine, RemoveMenu routine, or
EnableMenu routine (when enabling/disabling an entire menu).

C pascal void UpdateMenuBar (void);

Pascal procedure UpdateMenuBar;

When any changes are made that affect the menu bar, all changes are displayed simultaneously when your application
finishes executing an event handler routine (to prevent the menu bar from flickering with each change). Without this
feature, several updates performed in a row such as creating several new pull-down menus at the beginning of a
program or enabling/disabling several menus, would produce an annoying flicker with each change.

Normally, your application will not need to call UpdateMenuBar because the changes will be displayed when your
application finishes executing an event handler routine. This routine is available for situations where you want to
display the menu bar right away, such as when your application is starting up and you want to see menus as your
application initializes and displays a splash screen.

UpdateMenuBar automatically resets a highlighted menu in the menu bar.

..

MenuBarDisplay
Hide or show the menu bar.

C pascal void MenuBarDisplay (Boolean Show);

Pascal procedure MenuBarDisplay (Show: BOOLEAN);

Multimedia and presentation applications sometimes need to hide the menu bar and make use of the entire monitor.
MenuBarDisplay lets you temporarily hide your applicationÕs menu bar while your application is active. As a fail-safe
precaution, the menu bar is automatically displayed when your application is suspended. It returns to the state set by
your application when your application is activated. Even though the menu bar may be hidden, all command keys still
work and command keys for menus will generate doMenu events.

Show indicates if the menu bar is being hidden or displayed. The two constants that can be used for this flag are on and
off.

+ Warning: Some development environments may act up if you try stepping through your program while the menu bar
is hidden. Make sure you show the menu bar before quitting your application.

Tools Plus

368

Programming Tips:
1 Hiding or showing a menu bar does not move windows. Your application must move windows if required.

2 The tool bar is automatically repositioned such that it appears below the menu bar if it is displayed, or at the
top of the main monitor if the menu bar is hidden.

3 Provide the user with some way to display the menu bar if required.

..

GetMenuBarColors
Get the default menu colors for your application.

C pascal void GetMenuBarColors (RGBColor *TitleColor, RGBColor *BackColor,
RGBColor *ItemColor, RGBColor *BarColor);

Pascal procedure GetMenuBarColors (var TitleColor: RGBColor;
var BackColor: RGBColor; var ItemColor: RGBColor;
var BarColor: RGBColor);

GetMenuBarColors obtains the default menu colors used by your application. These defaults can be overridden by
setting the colors for specific menus, or specific menu items.

TitleColor is the color of pull-down menusÕ titles as they appear in the menu bar. The default is black.

BackColor is the background color of pull-down menus and hierarchical menus. The default is white.

ItemColor is the color that is used to display the menu itemsÕ text in pull-down menus and hierarchical menus. The
default is black.

BarColor is the menu barÕs color. The default is white.

..

SetMenuBarColors
Set the default menu colors for your application.

C pascal void SetMenuBarColors (const RGBColor *TitleColor,
const RGBColor *BackColor, const RGBColor *ItemColor,
const RGBColor *BarColor);

Pascal procedure SetMenuBarColors (TitleColor, BackColor, ItemColor,
BarColor: RGBColor);

SetMenuBarColors sets the default menu colors used by your application. These defaults can be overridden by setting
the colors for specific menus, or specific menu items.

TitleColor is the color of pull-down menusÕ titles as they appear in the menu bar. The default is black.

BackColor is the background color of pull-down menus and hierarchical menus. The default is white.

ItemColor is the color that is used to display the menu itemsÕ text in pull-down menus and hierarchical menus. The
default is black.

BarColor is the menu barÕs color. The default is white.

..

13 Menus

WaterÕs Edge Software 369

GetMenuColors
Get a menuÕs colors.

C pascal void GetMenuColors (short MenuNumber, RGBColor *TitleColor,
RGBColor *BackColor, RGBColor *ItemColor);

Pascal procedure GetMenuColors (MenuNumber: INTEGER; var TitleColor: RGBColor;
var BackColor: RGBColor; var ItemColor: RGBColor);

GetMenuColors obtains a menuÕs colors. These settings override colors set by SetMenuBarColors, your applicationÕs
default menu colors. These settings can be overridden by setting the colors for specific menu items.

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
that is being queried. Use mHelpMenu to work with the Help menu, or mAppleMenu to work with the Apple menu.
You cannot perform this operation on System 7Õs (or higher) Applications menu. If the menu does not exist,
GetMenuColors returns default colors.

TitleColor is the specified menuÕs title color as it appears in the menu bar. The default is black.

BackColor is the specified menuÕs background color. The default is white.

ItemColor is the color that is used to display the menu itemsÕ text in the specified menu. The default is black.

..

SetMenuColors
Set a menuÕs colors.

C pascal void SetMenuColors (short MenuNumber, const RGBColor *TitleColor,
const RGBColor *BackColor, const RGBColor *ItemColor);

Pascal procedure SetMenuColors (MenuNumber: INTEGER;
TitleColor, BackColor, ItemColor: RGBColor);

SetMenuColors sets a menuÕs colors. These settings override colors set by SetMenuBarColors, your applicationÕs
default menu colors. These settings can be overridden by setting the colors for specific menu items.

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
that is affected. Use mHelpMenu to work with the Help menu, or mAppleMenu to work with the Apple menu. You
cannot perform this operation on System 7Õs (or higher) Applications menu. If the menu does not exist,
SetMenuColors does nothing.

TitleColor specifies the menuÕs title color as it appears in the menu bar. The default is black.

BackColor specifies the menuÕs background color. The default is white.

ItemColor specifies the color that is used to display the menu itemsÕ text in the menu. The default is black.

..

Tools Plus

370

GetMenuItemColors
Get a menu itemÕs colors.

C pascal void GetMenuItemColors (short MenuNumber, short ItemNumber,
RGBColor *MarkColor, RGBColor *ItemColor);

Pascal procedure GetMenuItemColors (MenuNumber, ItemNumber: INTEGER;
var MarkColor: RGBColor; var ItemColor: RGBColor);

GetMenuItemColors obtains a menu itemÕs colors. These settings override colors set by SetMenuBarColors, your
applicationÕs default menu colors, or SetMenuColors, the defaults for a specific menu.

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
that is being queried. Use mHelpMenu to work with the Help menu item, or mAppleMenu to work with the Apple
menu item. You cannot perform this operation on System 7Õs (or higher) Applications menu. If the menu does not
exist, GetMenuItemColors returns default colors.

ItemNumber specifies the menu item number (from 1 to 32767) that is queried. If the menu item does not exist,
GetMenuItemColors returns default colors.

MarkColor is the color that is used to display the menu itemÕs mark character. The default is black.

ItemColor is the color that is used to display the menu itemÕs text. The default is black.

..

SetMenuItemColors
Set a menu itemÕs colors.

C pascal void SetMenuItemColors (short MenuNumber, short ItemNumber,
const RGBColor *MarkColor, const RGBColor *ItemColor);

Pascal procedure SetMenuItemColors (MenuNumber, ItemNumber: INTEGER;
MarkColor, ItemColor: RGBColor);

SetMenuItemColors sets a menu itemÕs colors. These settings override colors set by SetMenuBarColors, your
applicationÕs default menu colors, or SetMenuColors, the defaults for a specific menu.

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
that is affected. Use mHelpMenu to work with the Help menu item, or mAppleMenu to work with the Apple menu
item. You cannot perform this operation on System 7Õs (or higher) Applications menu. If the menu does not exist,
SetMenuItemColors does nothing.

ItemNumber specifies the menu item number (from 1 to 32767) that is affected. If the menu item does not exist,
SetMenuItemColors does nothing.

MarkColor is the color that is used to display the menu itemÕs mark character. The default is black.

ItemColor is the color that is used to display the menu itemÕs text. The default is black.

..

13 Menus

WaterÕs Edge Software 371

GetMenuString
Get a menu itemÕs text without the metacharacters.

C pascal void GetMenuString (short MenuNumber, short ItemNumber,
Str255 MenuText);

Pascal procedure GetMenuString (MenuNumber, ItemNumber: INTEGER;
var MenuText: Str255);

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
containing the required menu item. Use mHelpMenu to work with the Help menu. You cannot perform this operation
on the Apple Menu or System 7Õs (or higher) Applications menu.

ItemNumber specifies the menu item number (from 1 to 32767) from which the text is obtained.

MenuText specifies the menu itemÕs name. If the specified menu number or item number doesnÕt exist, MenuText
returns as a null string (length is zero). Note that the string will return as a single space (Ô Ô) if a null string was
specified when the item was created (this happens automatically to prevent the Menu Manager from crashing).

..

RenameItem
Rename an existing menu item.

C pascal void RenameItem (short MenuNumber, short ItemNumber,
const Str255 MenuText);

Pascal procedure RenameItem (MenuNumber, ItemNumber: INTEGER; MenuText: STRING);

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus) in
which the menu item is changed. If the menu number does not exist, RenameItem does nothing. Use the mHelpMenu
or mAppleMenu constants to work with the Help menu or Apple menu respectively. You cannot perform this
operation on the System 7Õs (or higher) Applications menu.

ItemNumber specifies the menu item number (from 1 to 32767) which is changed. If the item number does not exist
within the menu specified by MenuNumber, RenameItem does nothing. You cannot change the items installed by the
system in the Help menu. You can only rename the ÒAboutÉÓ item in the Apple menu.

MenuText specifies the menu itemÕs new name. MenuText may be blank, but should never be a null string. The itemÕs
state (enabled/disabled), style (bold, underline, etc.), icon and Command key equivalent are not changed.
Metacharacters are not interpreted by this routine.

RenameItem does not change the menuÕs name in the menu bar. If the menuÕs name must be changed, the affected
menu must be removed with the RemoveMenu routine, then re-created as required by using the Menu routine.

..

Tools Plus

372

EnableMenu
Enable or disable a menu or menu item.

C pascal void EnableMenu (short MenuNumber, short ItemNumber,
Boolean EnabledFlag);

Pascal procedure EnableMenu (MenuNumber, ItemNumber: INTEGER; EnabledFlag: BOOLEAN);

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus) in
which the enabling/disabling will take place. If the menu number does not exist, EnableMenu does nothing.

ItemNumber specifies the menu item number (from 1 to 32767) which is enabled/disabled. A value of zero (0) affects
the entire menu. If ItemNumber is not zero and the item number does not exist within the menu specified by
MenuNumber, EnableMenu does nothing. You cannot disable individual items in the Apple menu or System 7Õs (or
higher) Applications menu, nor can you disable the items installed by the system in the Help menu. In all cases,
however, you can disable the entire menu.

EnabledFlag specifies whether the menu/item is enabled or disabled. In the enabled state, the menu/item can be
selected. In the disabled state, the menu/item is dimmed and cannot be selected by the user. The two constants that can
be used for this purpose are enabled and disabled. If the ItemNumber is zero, the disabling of the menu applies to all
items within that menu. When the menu later becomes enabled, all items in the menu assume their correct
enabling/disabling as specified by your application. In a disabled pull-down menu, the name in the menu bar is
dimmed along with all its items. In a hierarchical menu, all the items in the submenu are dimmed and cannot be
selected.

This routine does not immediately update the menu bar if any of the pull-down menus are enabled/disabled by using an
ItemNumber equal to zero (0). This is done to prevent the menu bar from flickering each time a menu is enabled or
disabled. Instead, all changes to the menu bar appear simultaneously when your application finishes executing an event
handler routine. Use UpdateMenuBar if you need the changes to appear right away.

- Note: The MacintoshÕs Menu Manager allows only the first 31 items of a menu to be disabled individually. The
entire menu, however, can always be disabled.

If a menu item that owns a submenu is disabled, either by disabling the item individually or by disabling
the entire menu, the submenu cannot be viewed by the user.

CONST {Menu constants: }
mFileMenu = 1; {File menu number }
mEditMenu = 2; {Edit menu number }
mAppleMenu = -1; {Apple menu number }
mHelpMenu = -2; {Help menu number (System 7.0 or higher) }
mApplicationsMenu = -3; {Applications menu num (Sys 7 or higher) }
mDividingLine = '-'; {Dividing line }

enabled = true; {Enable the menu/item }
disabled = false; {Disable the menu/item }

..

CheckMenu
Display or hide a check mark to the left of a menu item.

C pascal void CheckMenu (short MenuNumber, short ItemNumber, Boolean checked);

Pascal procedure CheckMenu (MenuNumber, ItemNumber: INTEGER; checked: BOOLEAN);

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
that is affected. If the menu number does not exist, CheckMenu does nothing. Use mHelpMenu to work with the Help
menu. You cannot perform this operation on the Apple Menu or System 7Õs (or higher) Applications menu.

13 Menus

WaterÕs Edge Software 373

ItemNumber specifies the menu item number (from 1 to 32767) that is affected. If the item number does not exist
within the menu specified by MenuNumber, or if this item owns a submenu, CheckMenu does nothing. You cannot
change the items installed by the system in the Help menu.

Checked specifies whether the menu itemÕs check mark is displayed or hidden. The two constants that can be used for
this purpose are on and off.

To display characters other than the standard check mark, use the MenuMark routine.

CONST {Menu Item check mark status }
on = true; {check mark is on }
off = false; {check mark is off }

..

MenuMark
Display or hide a special character to the left of a menu itemÕs name. Use this routine instead of CheckMenu to display
or hide characters other than the standard check mark.

C pascal void MenuMark (short MenuNumber, short ItemNumber, char markChar);

Pascal procedure MenuMark (MenuNumber, ItemNumber: INTEGER; markChar: CHAR);

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
that is affected. If the menu number does not exist, MenuMark does nothing. Use mHelpMenu to work with the Help
menu. You cannot perform this operation on the Apple Menu or System 7Õs (or higher) Applications menu.

ItemNumber specifies the menu item number (from 1 to 32767) that is affected. If the item number does not exist
within the menu specified by MenuNumber, or if this item owns a submenu, MenuMark does nothing.

MarkChar specifies the character that is to be displayed. The following constants are available for menu marks:

CONST {Menu Item characters }
AppleChar = char($14); {Apple character }
CheckChar = char($12); {Check Mark character }
DiamondChar = char($13); {Diamond character }
DotChar = char($A5); {Dot (or bullet) character }
NoChar = char($00); {No character (remove a character) }

..

GetMenuMark
Get a menu itemÕs special character that is optionally displayed to the left of an itemÕs name.

C pascal void GetMenuMark (short MenuNumber, short ItemNumber, char *markChar);

Pascal procedure GetMenuMark (MenuNumber, ItemNumber: INTEGER; var markChar: CHAR);

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
that contains the desired menu item. Use mHelpMenu to work with the Help menu. You cannot perform this operation
on the Apple Menu or System 7Õs (or higher) Applications menu.

ItemNumber specifies the menu item number (from 1 to 32767) whose mark character is obtained.

MarkChar contains the ÒmarkÓ character that is displayed to the left of the itemÕs name. If no mark is displayed by the
specified menu item, or if the specified menu or menu item doesnÕt exist, markChar is set to null (char(0)). The
following are useful constants for testing menu marks:

CONST {Menu Item characters }
AppleChar = char($14); {Apple character }
CheckChar = char($12); {Check Mark character }
DiamondChar = char($13); {Diamond character }
DotChar = char($A5); {Dot (or bullet) character }
NoChar = char($00); {No character (remove a character) }

Tools Plus

374

MenuCmd
Set a menu itemÕs Command-key keyboard equivalent.

C pascal void MenuCmd (short MenuNumber, short ItemNumber, char cmdChar);

Pascal procedure MenuCmd (MenuNumber, ItemNumber: INTEGER; cmdChar: CHAR);

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
that is affected. If the menu number does not exist, MenuCmd does nothing. You cannot perform this operation on the
Apple Menu or System 7Õs (or higher) Help menu or Applications menu.

ItemNumber specifies the menu item number (from 1 to 32767) that is affected. If the item number does not exist
within the menu specified by MenuNumber, or if this item owns a submenu, MenuCmd does nothing. You cannot
change the items installed by the system in the Help menu.

CmdChar specifies the menu itemÕs Command-key keyboard equivalent. For consistency, use upper case letters
(shifted characters are ignored, so 1-+ is interpreted as 1-=). Do not use Control characters, since older Macintosh
keyboards such as those found on the Macintosh Plus donÕt have a Control key. Tools Plus prevents you from using
characters $1B through $1F (Control-[, Control-\, Control-], Control-UpÊArrow, and Control--), because these
characters are reserved by Apple for the systemÕs use.

- Note: A command key cannot be assigned to a menu item if it has a submenu or if it displays an SICN icon. This is a
limitation imposed by the MacintoshÕs Menu Manager.

..

GetMenuCmd
Get a menu itemÕs Command-key keyboard equivalent.

C pascal void GetMenuCmd (short MenuNumber, short ItemNumber, char *cmdChar);

Pascal procedure GetMenuCmd (MenuNumber, ItemNumber: INTEGER; var cmdChar: CHAR);

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
that contains the desired menu item. You cannot perform this operation on the Apple Menu or System 7Õs (or higher)
Help menu or Applications menu.

ItemNumber specifies the menu item number (from 1 to 32767) whose Command-key character is obtained.

CmdChar contains the itemÕs Command-key character. If the menu item doesnÕt have a Command-key equivalent, or
if the specified menu or menu item doesnÕt exist, cmdChar is set to null (char(0)). This is the case if the menu item
owns a submenu.

..

MenuIcon
Set a menu itemÕs icon.

C pascal void MenuIcon (short MenuNumber, short ItemNumber,
short IconSelector);

Pascal procedure MenuIcon (MenuNumber, ItemNumber, IconSelector: INTEGER);

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
that is affected. If the menu number does not exist, MenuIcon does nothing. Use mHelpMenu to work with the Help
menu. You cannot perform this operation on the Apple Menu or System 7Õs (or higher) Applications menu.

13 Menus

WaterÕs Edge Software 375

ItemNumber specifies the menu item number (from 1 to 32767) that is affected. If the item number does not exist
within the menu specified by MenuNumber, MenuIcon does nothing. You cannot change the items installed by the
system in the Help menu.

IconSelector identifies the icon that is used, and should be from 1 to 255. The Menu Manager adds 256 to the number
you state to specify a resource ID that is in the range of 257 to 511, so if you specify 28, resource ID 284 is used (28 +
256 = 284). These icon resources are read from your application. If Color QuickDraw is available on the Macintosh
running your application, a ÔcicnÕ (color) icon is used. If a ÔcicnÕ is not available (or Color QuickDraw is unavailable),
an ÔICONÕ or ÔSICNÕ is used. Use zero (0) if you donÕt want an icon displayed.

Unlike the equivalent Macintosh toolbox routine, your menu item will remain unaffected if the specified icon canÕt be
found (i.e., empty space is not reserved in the menu).

Be aware that the Menu Manager drawing a ÔcicnÕ icon in color will do so even if the icon was created using 8-bit
colors and the monitor is set to 4-bits. This may produce unsatisfactory results. If possible, use 4-bit colors or colors
that translate well into 4-bit colors.

- Note: Due to limitations imposed by the MacintoshÕs Menu Manager, assigning an ÔSICNÕ icon to a menu item clears
the command key for that item. Also, an ÔSICNÕ icon canÕt be assigned to a menu item that owns a submenu.

..

GetMenuIcon
Get a menu itemÕs icon number.

C pascal void GetMenuIcon (short MenuNumber, short ItemNumber,
short *IconSelector);

Pascal procedure GetMenuIcon (MenuNumber, ItemNumber: INTEGER;
var IconSelector: INTEGER);

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
that contains the desired menu item. Use mHelpMenu to work with the Help menu. You cannot perform this operation
on the Apple Menu or System 7Õs (or higher) Applications menu.

ItemNumber specifies the menu item number (from 1 to 32767) whose icon number is obtained.

IconSelector contains the itemÕs icon number. The Menu Manager automatically adds 256 to the IconSelector you
specify, so an IconSelector of 28 means that resource ID 284 is used (28 + 256 = 284). If an icon is not displayed by
the specified menu item, IconSelector is equal to zero.

..

MenuStyle
Set a menu itemÕs style.

C pascal void MenuStyle (short MenuNumber, short ItemNumber, Style theStyle);

Pascal procedure MenuStyle (MenuNumber, ItemNumber: INTEGER; theStyle: Style);

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
that is affected. If the menu number does not exist, MenuStyle does nothing. Use mHelpMenu to work with the Help
menu. You cannot perform this operation on the Apple Menu or System 7Õs (or higher) Applications menu.

ItemNumber specifies the menu item number (from 1 to 32767) that is affected. If the item number does not exist
within the menu specified by MenuNumber, MenuStyle does nothing. You cannot change the items installed by the
system in the Help menu.

Tools Plus

376

TheStyle specifies the style(s) in which the menu item is to be displayed. Special character constants defined by the
Font Manager are bold, italic, underline and shadow. C programmers will use the font managerÕs constants to specify a
composite style, such as MenuStyle(1,1, bold + outline) for bold and outlined, or MenuStyle(1,1,0) for plain text.
Pascal programmers will use the font managerÕs constants to specify a set, such as MenuStyle(1,1,[bold,outline]) for
bold and outlined, or MenuStyle(1,1, []) for plain text.

..

MenuItemCount
Determine the number of items in a menu.

C pascal short MenuItemCount (short MenuNumber);

Pascal function MenuItemCount (MenuNumber: INTEGER): INTEGER;

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
you wish to query.

The routineÕs value returns the number of menu items in the specified menu. If the menu number does not exist, the
routine returns zero.

CONST {Menu constants: }
mFileMenu = 1; {File menu number }
mEditMenu = 2; {Edit menu number }
mAppleMenu = -1; {Apple menu number }
mHelpMenu = -2; {Help menu number (System 7.0 or higher) }
mApplicationsMenu = -3; {Applications menu num (Sys 7 or higher) }

..

GetParentMenu
Determine a menuÕs ÒparentÓ menu number.

C pascal void GetParentMenu (short *MenuNumber, short *ItemNumber,
short SubMenuNumber);

Pascal procedure GetParentMenu (var MenuNumber: INTEGER; var ItemNumber: INTEGER;
SubMenuNumber: INTEGER);

A hierarchical menu can be attached to a pull-down menu or to another hierarchical menu. When attaching a
hierarchical menu to a ÒparentÓ (or if you prefer to view it the other way, providing a ÒparentÓ menu with an
ÒoffspringÓ hierarchical menu), the owner of the submenu is called a ÒparentÓ menu, and this routine is used to
determine a parent menu and item number for a known submenu.

MenuNumber contains the ÒparentÓ menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical
menus) which owns the specified submenu. If the specified submenu does not exist, or if it is not attached to a parent
menu, MenuNumber is set to zero (0).

ItemNumber contains the menu item number (from 1 to 32767) which owns the specified submenu. If the specified
submenu does not exist, or if it is not attached to a parent menu, ItemNumber is set to zero (0).

SubMenuNumber specifies a hierarchical menu number (from 16 to 200) being queried. If the specified menu does not
exist, MenuNumber and ItemNumber will both return with zero (0) values. You can specify a pull-down menu number
(from 1 to 15), but its parent menu and item number will always return with a value of zero (0).

..

13 Menus

WaterÕs Edge Software 377

GetSubMenu
Determine a menu itemÕs submenu number.

C pascal void GetSubMenu (short MenuNumber, short ItemNumber,
short *SubMenuNumber);

Pascal procedure GetSubMenu (MenuNumber, ItemNumber: INTEGER;
var SubMenuNumber: INTEGER);

A hierarchical menu can be attached to a pull-down menu or to another hierarchical menu. When attaching a
hierarchical menu to a ÒparentÓ (or if you prefer to view it the other way, providing a ÒparentÓ menu with an
ÒoffspringÓ hierarchical menu), the owned hierarchical menu is called a Òsubmenu,Ó and this routine is used to
determine a submenu for a known parent menu and item number.

MenuNumber specifies the ÒparentÓ menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical
menus) being queried.

ItemNumber specifies the menu item number (from 1 to 32767) being queried.

SubMenuNumber returns with a hierarchical menu number (from 16 to 200) which is the submenu for the specified
MenuNumber and ItemNumber. If the menu specified by MenuNumber does not exist, or if the specified ItemNumber
does not exist within the menu, SubMenuNumber returns with a value of zero (0). SubMenuNumber also returns with a
value of zero (0) if the specified menu and item do not own a submenu.

..

MenuHilite
Highlight a menu in the menu bar, or remove the current highlight from the menu bar.

C pascal void MenuHilite (short MenuNumber);

Pascal procedure MenuHilite (MenuNumber: INTEGER);

MenuNumber specifies the pull-down menu number (from 1 to 15) that is highlighted. Since only one menu can be
highlighted at a time, any other highlighted menu is automatically unhighlighted. Specifying a MenuNumber of zero
(0) unhighlights the currently highlighted menu. If the menu number does not exist and is not zero (0), MenuHilite
does nothing.

..

GetMenuHandleFromMemory
Get a handle to a menu that is currently in memory.

C pascal MenuHandle GetMenuHandleFromMemory (short MenuNumber);

Pascal function GetMenuHandleFromMemory (MenuNumber: INTEGER): MenuHandle;

This routine returns a standard MenuHandle to a pull-down or hierarchical menu that is currently in memory. It does
not load the menu from disk if it is not already in memory. You should never need to use this routine. It is provided for
advanced programmers who may have specialized needs. Always use Tools Plus routines to create and manipulate
menus.

MenuNumber specifies the menu number (from 1 to 15 for pull-down menus, and 16 to 200 for hierarchical menus)
you wish to query. Alternatively you can specify one of three menu constants mAppleMenu, mHelpMenu or
mApplicationsMenu.

Tools Plus

378

The routine returns a handle to the menu. If the specified menu is not in memory then the routine returns with a value
of nil.

CONST {Menu constants: }
mAppleMenu = -1; {Apple menu number }
mHelpMenu = -2; {Help menu number (System 7.0 or higher) }
mApplicationsMenu = -3; {Applications menu num (Sys 7 or higher) }

+ Warning: Do not attach or detach hierarchical menus manually. Always use Tools Plus routines to do this. If you
need to lock the handle or change its attributes, do so temporarily then restore the original settings before
using any Tools Plus routines. If you alter this handle or any data that is made accessible by this handle,
you do so at your own risk.

..

14 Cursors

WaterÕs Edge Software 379

14 Cursors

Tools Plus gives your application the ability to change the cursorÕs shape as required. The five standard Macintosh
cursors are immediately available for use, though you may create your own custom cursors (including color cursors)
by using a resource editor such as AppleÕs ResEdit. Cursors are identified by a number (0 through 4 are reserved for
the standard cursors), and are best referenced by their constants, as indicated below:

arrowCursor iBeamCursor crossCursor plusCursor watchCursor

A cursorÕs shape can be changed as required by using the CursorShape routine.

Three additional features have been added which make the cursor an integral part of Tools Plus:

¥ The cursor changes shape automatically depending on its position on the screen and its
orientation to the active window(s), including the tool bar and floating palettes.

¥ Tools Plus recognizes that the watchCursor is an indicator of a lengthy process, and acts
accordingly.

¥ When the watchCursor is displayed, you can have an cursor animation similar to the FinderÕs
spinning wrist watch.

Color Cursors
Color cursors are fully supported regardless if the Macintosh running your application has (or uses) Color QuickDraw
or not. If you want to use a color cursor, create the required ÔcrsrÕ (color cursors) resources instead of ÔCURSÕ (black
and white cursor) resources. Each color cursor includes a black and white equivalent that is used by Tools Plus if Color
QuickDraw is not available or not used at run time.

You can replace the default arrow and wrist watch with color cursors in your application by including ÔcrsrÕ resources
with IDs that are identical to those cursors you are replacing. Tools Plus is shipped with replacement color cursors
which you may install in your application at your own discretion.

Automatic Cursor Changes
The cursor changes shape automatically only if your application has not set the watchCursor. If it has, see ÒThe Watch
CursorÓ below. Each time that your application finishes executing an event handler routine, the cursorÕs position is
checked and changed if necessary. The change is in accordance to the following rules:

1 If no windows are open, or if a desk accessory is the active window, the cursor is displayed as the standard
Macintosh arrow. Desk accessories can manipulate the cursor as they see fit.

When your application has an active standard window, and/or open tool bar and/or floating palettesÉ
2 While the cursor is outside of the active window(s), it is displayed as the standard Macintosh arrow.
3 While the cursor is in a windowÕs title bar (including the close box and zoom box), or in a documents Òsize

box,Ó it is displayed as the standard Macintosh arrow.

When the cursor is within one of your applicationÕs active windowÕs content areaÉ
4 When a cursor is within any editing field, it is displayed as an I-beam.
5 When the cursor is outside all editing fields, then it is displayed as the standard Macintosh arrow providing

the window is not using a Cursor Table.
6 If the window is using a Cursor Table, the tableÕs default cursor is displayed when the cursor is not in any of

the zones but within the windowÕs content region. When the cursor enters one of the zones, it changes to the
shape specified for that zone. See ÒThe Cursor TableÓ for details.

Tools Plus

380

Tools Plus generates a doMoveCursor event when the cursor moves between cursor zones and between active
windows. Most applications will ignore this event. It is needed for situations when you want a Òstatus areaÓ to tell the
user what they are pointing at. In such situations, the GetCurrentCursorZone routine can be used to quickly determine
the window, cursor table and cursor zone that contains the cursor.

- Note: The cursor will not change while a drag is in progress (i.e., pressing and holding the mouse button). This also
includes moving a scroll barÕs thumb, or clicking and holding a scroll barÕs up arrow, Òpage upÓ region, down
arrow, or Òpage downÓ region.

The Watch Cursor
The watch cursor is used to indicate a long wait, such as when a lengthy process is being conducted or when printing is
being done. Your application can display the watch cursor by using the CursorShape routine.

While the watch cursor is displayed, your application may spend a long time in the event handler routine, and it may
not care about getting any events since it doesnÕt care what the user is doing and will want to ignore mouse clicks and
typing anyway. Unfortunately, this does not give the user the opportunity to halt a lengthy process, nor does it give
other applications running under MultiFinder or System 7 or higher any processing time. The watch cursor solves this
dilemma by making Tools Plus shift into a busy mode, where it filters out (discards) unwanted events.

As soon as the watch cursor is displayed, the caret in an active editing field stops flashing. The watch cursor will not
be automatically altered as described in Automatic Cursor Changes until your application changes the cursor to some
other shape. Tools Plus will stop reporting mouse clicks and typing, except 1-. which tells your application to halt the
process. This lets your application call Process1EventWhileBusy regularly while it is busy conducting a lengthy task,
knowing that any key or mouse event it receives is meaningful (i.e., halt the process). Your application may choose not
to call Process1EventWhileBusy or to ignore the 1-. key if it is busy only for a short time.

When your application is finished its lengthy process, it can either change the cursor using CursorShape, or call
ResetCursor which changes the cursor to its appropriate shape according to its position on the screen.

Advanced programmers can take Òbeing busyÓ one step further. While your application is busy, it can display a modal
window with a descriptive message and a ÒCancelÓ push button. By setting the WatchCursorButtons routine on, the
watch cursor will have the ability to click any push button on the active window. Furthermore, if a button has been
designated as the Òdefault,Ó it is activated by pressing the Return or Enter key. A good illustration of this is in a word
processing program that has ÒPauseÓ and ÒCancelÓ buttons available during printing. When ÒPauseÓ is clicked, printing
is temporarily suspended and the button changes to ÒResume.Ó Clicking ÒResumeÓ continues the printing process and
switches the button back to ÒPause.Ó The ÒCancelÓ button has the same affect as typing 1-. to halt the process. Note
that typing 1-. will always be reported by Tools Plus. Remember to switch the WatchCursorButtons routine off when
you no longer need it, or else the watch cursor will be able to indiscriminately select buttons on any active window.

See the Event Management chapter for details pertaining to the watch cursor and events that are reported while the
watch cursor is displayed.

+ Warning: If your application is running under MultiFinder or System 7 or higher, it is possible to switch to another
application while a watch cursor is displayed unless your active window is of type dBoxProc.

Starting your application
When starting your application, you may notice a difference between working in your development environment and
your finished (double-clickable) application. THINK Pascal, for example, changes the cursor to a cross-hair, whereas
any program launched from The Finder will have a watch cursor.

To Tools Plus, both of these cursors are treated the same way: the cursor is considered to be undefined. This is not a
problem because Tools Plus will change the cursorÕs shape as required. In applications launched by The Finder, this
undefined cursor does not behave like a watch cursor to prevent clicking and typing. Your application must explicitly
use the CursorShape routine to set the watch cursor to a true busy state.

14 Cursors

WaterÕs Edge Software 381

When your application calls InitToolsPlus, the cursor is temporarily set to a watch cursor (without Tools Plus entering
a busy mode). As soon as your application calls ProcessEvents, ProcessToolboxEvent, or Process1EventWhileBusy,
the cursor is reset to its correct shape according to its position on the monitor.

The Cursor Table
A cursor table is comprised of one or more cursor zones, each being a region in a windowÕs local co-ordinates. When
the cursor enters a cursor zone, it changes to the shape specified for that zone. Cursor tables are created independently
of windows, thereby allowing many windows to use the same cursor table.

A cursor table is created by the NewCursorTable routine. Each cursor table is referenced by a unique number called
the cursor table number. This number is specified when the cursor table is created, and refers to the specific table until
it is deleted. A default cursor shape is specified for the entire table, in case the cursor does not fall into any of the
tableÕs zones.

Cursor zones are added to the table by using the CursorZone (CursorZoneRect or CursorZoneRgn) routine. Each zone
specifies a region in a windowÕs local co-ordinates, and the type of cursor that is displayed within those co-ordinates.
Individual cursor zones are deleted by using the DeleteCursorZone routine. Cursor zones can be added or deleted in
any order.

The UseCursorTable routine is used to make a window use a specific cursor table. The window will continue to use the
same cursor table until it is closed or the cursor table is deleted. If the cursor table is changed in any way, all windows
using that table will incorporate those changes.

When a cursor table is no longer required, it is deleted by the DeleteCursorTable routine.

When the cursor is outside all editing fields, the windowÕs cursor table is checked to see if the cursor is in any of the
tableÕs zones (see ÒAutomatic Cursor ChangesÓ). Cursor zones are checked sequentially starting at the lowest
numbered zone. If the cursorÕs Òhot spotÓ is within a zoneÕs region, the cursorÕs shape changes to the cursor defined
for that zone. Otherwise, it is drawn using the tableÕs default cursor.

Any changes made to cursor tables or zones (such as adding, changing, or deleting) which affect the active window
will be in effect when your application finishes executing an event handler routine.

Advanced Features
Cursor zones can be made to ÒoverlapÓ one another with higher numbered zones being placed on top of lower
numbered zones (cursor zone numbers ascend from back to front). The highest numbered zone that encloses the cursor
is the containing zone, even if another lower numbered zone encloses the higher numbered zone. This is useful if you
want to have several smaller zones on top of a large one. Zones can also be considered Òclick sensitive.Ó You can
determine if a click occurred in any cursor zone on the current window by using the FindCursorZone routine and
handing it the clickÕs location. By doing this, your application can treat icons or pictures as click-sensitive objects (like
buttons).

Normally, the cursor changes to the arrow when it is over the windowÕs grow box. You can change this by creating a
cursor zone that is exactly the same size as the grow box, that being with the right and bottom side corresponding to
the windowÕs right and bottom edge, and the top and left side of the cursor zone being 15 pixels back from the
opposite edge.

- Note: Cursor tables, and specifically the cursor zonesÕ co-ordinates and shapes are not changed automatically when a
windowÕs size is altered. Your application must maintain cursor zones as required. Keep in mind that several
windows may be sharing the same cursor table.

Tools Plus

382

Cursor Animation
Tools Plus provides cursor animation, a process where the
cursor changes its shape over time. A good example of an
animated cursor is System 7Õs (or higher) Finder. It displays a
wrist watch whose minute hand moves clockwise while the
Finder copies files. To animate a cursor, you will need to be
familiar with a resource editor such as AppleÕs ResEdit.

First, create the cursors (ÔcrsrÕ or ÔCURSÕ resources) you need
for your animation. The example below uses the systemÕs watch
cursor (ID = 4), plus seven custom cursors. When creating new
cursors, used IDs 128 or higher.

4 150 151 152 153 154 155 156

Second, create an ÔacurÕ resource (shown at right) with an ID of
128 or higher. The ÔacurÕ resource, when included in your
application, tells Tools Plus which cursors to use and how
quickly they should be animated.

Number of ÒframesÓ (cursors) specifies the number of cursors
you use in a single cycle of the animation sequence.

Used a ÒframeÓ counter specifies the time in clock ticks
between frames (cursors). A clock tick is 1/60 of a second.

The ÔCURSÕ Resource ID section is repeated once for each
cursor frame in the sequence. It specifies the ID number of the
ÔcrsrÕ or ÔCURSÕ resource used per frame.

When your application calls CursorShape(watchCursor), the
watch cursor is immediately displayed. Any time thereafter
when your application finishes executing an event handler
routine or calls AnimateCursor, it automatically steps through
the animation sequence at the specified frame rate.

If CursorShape(watchCursor) is called again, it manually advances the cursor animation to the next step. If you have
an animated cursor that is not a wrist watch (perhaps it is the spinning beach ball used in many applications), your
ÔacurÕ resource should exclude the watch cursor.

Tools Plus includes several complete sets of animated cursors (including all cursor resources and the matching ÔacurÕ
resource) in the ÒOptional ResourcesÓ folder. You may include any (or all) of these sets in your application. By
default, Tools Plus uses the lowest numbered ÔacurÕ resource for cursor animation. You can change the cursor
animation sequence at any time with the SetCursorAnimation routine.

Summary: Before you start.......... : Make sure your application contains a valid ÔacurÕ resource
To start animation : Call CursorShape(watchCursor)
Animating the cursor . : Do any of the following -- call AnimateCursor, call CursorShape(watchCursor) to

manually step to next cursor frame, call Process1EventWhileBusy, or finish
executing an event handler routine.

New cursor sequence . : Use SetCursorAnimation
End cursor animation .. Use ResetCursor or CursorShape (and donÕt specify a watch cursor)

+ Warning: Do not modify, delete, or use ReleaseResource on your ÔacurÕ resource or cursor resources while your
application is running.

14 Cursors

WaterÕs Edge Software 383

Handling Cursors
The cursor can be set to any shape by calling the CursorShape routine. Tools Plus automatically changes the cursorÕs
shape as described in Automatic Cursor Changes using a cursor table if one has been assigned to the active window.
Whenever your application sets the watchCursor, Tools Plus filters out unwanted typing and mouse clicks. Filtering
continues until your application resets the cursor by using ResetCursor, or changes the cursor by using the
CursorShape routine.

..

CursorShape
Change cursor shape.

C pascal void CursorShape (short CursorType);

Pascal procedure CursorShape (CursorType: INTEGER);

The cursor is changed to the shape specified by CursorType. The five standard Macintosh cursors defined below are
always available to your application. Additional cursors can be used, providing you create these resources and add
them to your application. This routine displays the cursor in case it has been hidden by HideCursor or ObscureCursor.
CursorShape first tries to find a color cursor (ÔcrsrÕ) resource whose ID matches CursorType. If it canÕt be found, it
looks for a black and white cursor (ÔCURSÕ) resource. If the specified resource canÕt be found, the standard arrow
cursor is displayed. This operation works properly regardless if the Macintosh running your application has (or uses)
Color QuickDraw or not.

When the watch cursor is displayed, Tools Plus shifts into a busy mode where it filters out (discards) unwanted events
such as the user typing or clicking the mouse. Use ResetCursor to conclude the busy mode, or simply change the
cursor to anything other than the watch. There is a section at the beginning of this chapter that details the watch cursor.
Also see the WatchCursorButtons routine which disallows or allows a watch cursor to click push buttons.

If your application calls CursorShape(watchCursor) when the watch cursor is already displayed, and your application
has an acur resource (for cursor animation), then the cursor changes shape by advancing to the next frame in your
cursor animation sequence.

- Note: If you specify any cursor other than the watchCursor, it will automatically be reset (as defined in Òautomatic
cursor changesÓ earlier in this chapter) when your application finishes executing an event handler routine. If
you want the window to have a different default cursor, or to display a specific cursor within a certain area, see
the section on The Cursor Table earlier in this chapter.

CONST {Cursor Types }
arrowCursor =0; {the standard Macintosh arrow }
iBeamCursor =1; {text insertion I-beam }
crossCursor =2; {cross-hair }
plusCursor =3; {select cells in structured documents }
watchCursor =4; {to indicate a long wait }

+ Warning: The InitCursor routine must not be called at any time by your program. To achieve the same affect, use
CursorShape(arrowCursor) instead.

Programming Tips:
1 If you want to temporarily display a watch cursor and have it automatically reset to its normal shape, create a

watch cursor and give it an ID other than 4 (1004 is a good choice), and create a related constant named
TempWatchCursor. When you use CursorShape(TempWatchCursor), a watch is displayed even though Tools
Plus does not enter its busy mode. As soon as your application finishes executing an event handler routine,
the cursor is reset to its normal shape. This is useful at the beginning of a window refreshing routine.

..

Tools Plus

384

ResetCursor
Reset the cursor to its correct shape according to its orientation to the active window.

C pascal void ResetCursor (void);

Pascal procedure ResetCursor;

After calling this routine, the cursorÕs shape automatically changes according to the rules stated in Automatic Cursor
Changes. Call ResetCursor to negate the effects of CursorShape(watchCursor).

..

SetCursorAnimation
Set the cursor animation sequence.

C pascal void SetCursorAnimation (short acurResID);

Pascal procedure SetCursorAnimation (acurResID: INTEGER);

AcurResID specifies the resource ID of the cursor animation (ÔacurÕ) resource that will be invoked whenever cursor
animation is used. If you want to turn off cursor animation (i.e., display only a watch cursor), specify a value of 0 or
use Tools PlusÕs none constant.

When Tools Plus is initialized, it finds a default cursor animation sequence (an ÔacurÕ resource). This cursor animation
sequence is invoked whenever your application calls CursorShape(watchCursor) then makes subsequent calls to either
CursorShape(watchCursor), or AnimateCursor, or when it finishes executing an event handler routine.

The SetCursorAnimation routine lets you start a sequence, change the sequence, or turn off cursor animation at any
time, even if another sequence is in progress.

..

AnimateCursor
Force the cursor to animate.

C pascal void AnimateCursor (void);

Pascal procedure AnimateCursor;

AnimateCursor advances an animated cursor to the next frame providing that the appropriate amount of time has
elapsed since the last cursor change. Tools Plus automatically calls AnimateCursor when your application finishes
executing an event handler routine, and your application will normally not need to do so.

The only time your application needs to use the AnimateCursor routine is when you want to keep cursor animation
running without calling Process1EventWhileBusy, such as during the reading or writing of a file.

..

14 Cursors

WaterÕs Edge Software 385

NewCursorTable
Create a new cursor table.

C pascal void NewCursorTable (short CursorTable, short CursorType);

Pascal procedure NewCursorTable (CursorTable, CursorType: INTEGER);

CursorTable specifies the cursor table number (from 1 to 255) that is created. Your application will reference the
cursor table by this number. If a cursor table has been previously created using the same number, it is deleted along
with its zones. Any windows using the deleted table are reset to not reference a cursor table.

CursorType specifies the default cursor shape for the table. It is the shape the cursor takes when it is within the
windowÕs region, but outside editing fields and cursor zones. If watchCursor is specified for this value, Tools Plus
changes it to arrowCursor since the watch can only be displayed explicitly by your application.

CONST {Cursor Types }
arrowCursor =0; {the standard Macintosh arrow }
iBeamCursor =1; {text insertion I-beam }
crossCursor =2; {cross-hair }
plusCursor =3; {select cells in structured documents }

..

GetFreeCursorTableNum
Get the first unused cursor table number.

C pascal short GetFreeCursorTableNum (void);

Pascal function GetFreeCursorTableNum: INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own cursor
table number, GetFreeCursorTableNum returns the first unused (free) cursor table number. Using this routine, you can
assign an unused cursor table number to a variable, then use that variable throughout your application without concern
for the true cursor table number.

If the maximum number of cursor tables has already been created (no new ones can be created),
GetFreeCursorTableNum returns a value of zero (0).

..

DeleteCursorTable
Delete an existing cursor table.

C pascal void DeleteCursorTable (short CursorTable);

Pascal procedure DeleteCursorTable (CursorTable: INTEGER);

CursorTable specifies the cursor table number (from 1 to 255) that is deleted, along with its associated cursor zones.
Any windows using the deleted table are reset such that they donÕt reference a cursor table. If the cursor table does not
exist, DeleteCursorTable does nothing.

..

Tools Plus

386

CursorZone
Add a new cursor zone to an existing table, or replace an existing zone.

C pascal void CursorZone (short CursorTable, short Zone, short CursorType,
short left, short top, short right, short bottom);

Pascal procedure CursorZone (CursorTable, Zone, CursorType,
left, top, right, bottom: INTEGER);

CursorTable specifies the cursor table number (from 1 to 255) that is to be affected. If the cursor table does not exist,
CursorZone does nothing.

Zone specifies the cursor zone number (from 1 to 32767) within the table that is created. If the zone already exists, it is
deleted and recreated according to the values of the CursorZone routine. If two or more cursor zones overlap, the
highest numbered one is considered to be topmost.

CursorType specifies the cursor shape for the zone. Windows using this table display this type of cursor when the
cursor enters this zone. If watchCursor is specified for this value, Tools Plus changes it to arrowCursor since the watch
can only be displayed explicitly by your application.

Left, top, right, and bottom define the zoneÕs size and location in a window. If the cursorÕs location falls within these
co-ordinates on the active window, it is said to be within the zone.

Also see: CursorZoneRect.

CONST {Cursor Types }
arrowCursor =0; {the standard Macintosh arrow }
iBeamCursor =1; {text insertion I-beam }
crossCursor =2; {cross-hair }
plusCursor =3; {select cells in structured documents }

..

CursorZoneRect
Add a new cursor zone to an existing table, or replace an existing zone (co-ordinates specified using a rectangle).

C pascal void CursorZoneRect (short CursorTable, short Zone, short CursorType,
const Rect *Bounds);

Pascal procedure CursorZoneRect (CursorTable, Zone, CursorType: INTEGER;
Bounds: RECT);

CursorZoneRect is identical to the CursorZone routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

..

CursorZoneRgn
Add a new cursor zone to an existing table, or replace an existing zone (co-ordinates specified using a region).

C pascal void CursorZoneRgn (short CursorTable, short Zone, short CursorType,
RgnHandle ZoneRgn);

Pascal procedure CursorZoneRgn (CursorTable, Zone, CursorType: INTEGER;
ZoneRgn: RGNHANDLE);

CursorZoneRgn is identical to the CursorZone routine, except that it accepts the ZoneRgn region handle in place of the
individual left, top, right and bottom co-ordinates. CursorZoneRgn makes a copy of the region specified by the
ZoneRgn handle, so you can dispose or alter the original region without affecting the cursor zone.

14 Cursors

WaterÕs Edge Software 387

GetFreeCursorZoneNum
Get the first unused cursor zone number.

C pascal short GetFreeCursorZoneNum (short CursorTable);

Pascal function GetFreeCursorZoneNum (CursorTable: INTEGER): INTEGER;

Some developers may prefer to write code that more closely resembles a traditional Macintosh application, in that
creating an object returns a reference to it such as a handle or pointer. Instead of having to assign your own cursor zone
number, GetFreeCursorZoneNum returns the first unused (free) cursor zone number in a specified cursor table. Using
this routine, you can assign an unused cursor zone number to a variable, then use that variable throughout your
application without concern for the true cursor zone number.

CursorTable specifies the cursor table number (from 1 to 255) that is to be queried. If the cursor table does not exist,
GetFreeCursorZone returns with a value of zero (0).

If the maximum number of cursor zones has already been created in the specified cursor table (no new ones can be
created), GetFreeCursorZoneNum returns a value of zero (0).

..

DeleteCursorZone
Delete an existing cursor zone.

C pascal void DeleteCursorZone (short CursorTable, short Zone);

Pascal procedure DeleteCursorZone (CursorTable, Zone: INTEGER);

CursorTable specifies the cursor table number (from 1 to 255) that is affected. If the cursor table does not exist,
DeleteCursorZone does nothing.

Zone specifies the cursor zone number (from 1 to 32767) that is to be deleted within the table. If the zone does not
exist, DeleteCursorZone does nothing.

..

SetCursorZoneCurs
Change the cursor displayed in a cursor table or cursor zone.

C pascal void SetCursorZoneCurs (short CursorTable, short Zone,
short CursorType);

Pascal procedure SetCursorZoneCurs (CursorTable, Zone, CursorType: INTEGER);

CursorTable specifies the cursor table number (from 1 to 255) that is affected. If the cursor table does not exist,
SetCursorZoneCurs does nothing.

Zone specifies the affected cursor zone number (from 1 to 32767). If you specify zero (0), the operation applies to the
cursor tableÕs default cursor. If the zone does not exist, SetCursorZoneCurs does nothing.

CursorType specifies the cursor shape for the table or zone. It is the shape the cursor takes when it is within the
windowÕs region, but outside editing fields and cursor zones. If watchCursor is specified for this value,
SetCursorZoneCurs does nothing. The change will becomes visible the next time you call ResetCursor or when your
application finishes executing an event handler routine.

..

Tools Plus

388

GetCursorZone
Get the bounding rectangle for a cursor zone.

C pascal void GetCursorZone (short CursorTable, short Zone, Rect *Bounds);

Pascal procedure GetCursorZone (CursorTable, Zone: INTEGER;var Bounds: RECT);

CursorTable specifies the cursor table number (from 1 to 255) that is used.

Zone specifies the cursor zone number (from 1 to 32767) within the table being queried.

Bounds returns the cursor zoneÕs bounding rectangle using the windowÕs local co-ordinates. If the specified zone does
not exist in the specified table, Bounds returns as an empty rectangle with the co-ordinates (0,0,0,0).

..

GetCursorZoneRgn
Get a handle to a specified cursor zoneÕs region.

C pascal RgnHandle GetCursorZoneRgn (short CursorTable, short Zone);

Pascal function GetCursorZoneRgn (CursorTable, Zone: INTEGER): RGNHANDLE;

CursorTable specifies the cursor table number (from 1 to 255) that is used.

Zone specifies the cursor zone number (from 1 to 32767) within the table being queried.

The routineÕs value returns a region handle to the cursor zoneÕs region. If the specified zone does not exist in the
specified table, the routine returns nil. Once you have obtained a region handle to a cursor zone, you may perform
region operations on it, such as OffsetRgn, InsetRgn, MapRgn, etc. These operations will affect the related cursor
zone. When you are finished making all the necessary changes, use ChangedCursorZone to inform Tools Plus that the
cursorÕs shape may have to be recalculated.

- Note: Use this routine only to get a handle to a cursor zoneÕs region. Do not initialize the receiving region handle
variable by using NewRgn (just create a variable that is a RgnHandle type). When you have finished using the
handle, do not use DisposeRgn.

..

ChangedCursorZone
Indicate that one or more cursor zone regions have been manually altered.

C pascal void ChangedCursorZone (void);

Pascal procedure ChangedCursorZone;

If any cursor zoneÕs regions have been altered (by obtaining the cursor zoneÕs region handle and altering the region),
you must call ChangedCursorZone. This routine informs Tools Plus that the cursorÕs shape may have to be
recalculated because of cursor zone changes. Next time your application processes and event or when it finishes
executing an event handler routine, the cursorÕs shape is updated (if necessary).

..

14 Cursors

WaterÕs Edge Software 389

UseCursorTable
Make the current window use a cursor table, or stop it from using any cursor table.

C pascal void UseCursorTable (short CursorTable);

Pascal procedure UseCursorTable (CursorTable: INTEGER);

CursorTable specifies the cursor table number (from 1 to 255) that is used by the current window. If the current
window does not belong to your application, if no windows are open, or if the cursor table does not exist,
UseCursorTable does nothing. If CursorTable has a value of 0, the current window will stop using its present cursor
table. The table, however, remains unaffected.

..

FindCursorZone
Determine which cursor zone contains a specified point in the current window.

C pascal short FindCursorZone (Point thePoint);

Pascal function FindCursorZone (thePoint: POINT): INTEGER;

ThePoint is a location in the current windowÕs local co-ordinates.

The routineÕs value returns the cursor zone that contains the specified point. If the current window does not belong to
your application, or if no windows are open, or if the current window does not use a cursor table, the routine returns a
value of zero (0). Zero will also be returned if the point is not contained in any cursor zone in the windowÕs cursor
table.

In situations where cursor zones overlap one another and the specified point is in the intersecting region of multiple
zones, FindCursorZone returns the highest numbered zone which is equivalent to the topmost of the overlapping
zones.

This routine ignores the placement of buttons, scroll bars, edit fields, list boxes, custom controls, etc. It reports strictly
on the relationship between the provided point and the current windowÕs cursor table. If you obtained thePoint as a
Òmouse downÓ event from Tools PlusÕs doClick event, you can be sure that the click did not occur in a button, scroll
bar, edit field, list box or custom control.

..

GetCurrentCursorZone
Determine which window, cursor table and cursor zone contains the cursor.

C pascal void GetCurrentCursorZone (short *Window, short *CursorTable,
short *Zone);

Pascal procedure GetCurrentCursorZone (var Window: INTEGER;
var CursorTable: INTEGER; var Zone: INTEGER);

Most applications never need to use this routine. GetCurrentCursorZone is typically used after a doMoveCursor event
informs your application that the cursor has moved into a new cursor zone. A good example is a situation when an
application has a Òstatus lineÓ that tells the user something about the object they are pointing at. Each object is
enclosed by a cursor zone, so when the user moves the cursor over an object, a doMoveCursor event is generated and
your application can determine exactly which window and cursor zone contains the cursor. The values returned by this
routine are always available to your application, and they are updated each time your application finishes executing an
event handler routine.

Tools Plus

390

Window indicates the active window number containing the cursor. The cursor can be over any part of the window
including the title bar or grow box. A value of zero indicates the cursor is not over an active Tools Plus window.

CursorTable returns the cursor table number used by the window containing the cursor. If the cursor is anywhere in
the windowÕs content region and the window uses a cursor table, the tableÕs value is returned. Otherwise zero (0) is
returned.

Zone returns the cursor zone number containing the cursor. If the cursor is not within a cursor zone, zero (0) is
returned. If your cursor zone encloses an editing field and the cursor is inside the field, the cursor zone number is still
returned.

..

WatchCursorButtons
Allow or disallow buttons to be clicked when the cursor is a wrist watch.

C pascal void WatchCursorButtons (Boolean Allowed);

Pascal procedure WatchCursorButtons (Allowed: BOOLEAN);

Allowed specifies if buttons can be clicked on the active window while the wrist-watch cursor is displayed. With a
value of true, push buttons can be clicked. With a value of false, they cannot. WatchCursorButtons is set to false when
Tools Plus is initialized.

This feature is best used when a modal window is displayed with one or more push buttons while the Macintosh is
busy with some lengthy process. Turn WatchCursorButtons on, then continue continue normally during the process.
This lets the user click a ÒCancelÓ button, or to press 1-. to halt the process. Remember to turn WatchCursorButtons
back off when you no longer need it, or else the watch cursor will be able to click any push buttons indiscriminately.

CONST {click push buttons with watchCursor? }
on = true; {allow push buttons to be clicked when }
enabled = true; { the watchCursor is displayed. }
off = false; {do not allow push buttons to be clicked }
disabled = false; { when the watchCursor is displayed. }

..

15 Balloon Help

WaterÕs Edge Software 391

15 Balloon Help

Tools Plus implements the MacintoshÕs Help Manager by automating a number of its services, and by making it much
easier for you to implement those services. Tools Plus also integrates the Help Manager into Tools PlusÕs model of
specialized objects, such as buttons, list boxes, sliders, editing fields, and so on. This lets you apply Help to specific
objects instead of setting Help for areas on a dialog. Even though Tools Plus makes it easy to add Help to your
application, the Help Manager has some design constraints that are inherited by Tools Plus. These constraints are
detailed in this chapter.

Within this chapter, you will see the word ÒhelpÓ (no capitalization) which is used to indicate assistance of some sort.
When you see the word ÒHelpÓ (capitalized), it is an abbreviation for the proper name Balloon Help, and refers
specifically to AppleÕs Balloon Help services and resources.

The most common approach to adding help to an application or plug-in is to first create the app, then to add Balloon
Help later. With Tools PlusÕs implementation of Balloon Help, this is usually the best approach, although you should
still devote appropriate thought to the wording in each Help item.

Before you continue with this chapter, please note:
¥ You should already be familiar with the Help Manager as documented in Inside Macintosh. This will teach you

the basic principles of Balloon Help, and it will give you an understanding of how your Help messages are related
to specific objects. It also details various resources that are used for Balloon Help. This chapter refers to those
resources, but does not detail their structure or contents. If you are a moderate programmer or better and have not
read about Balloon Help in Inside Macintosh, you can probably get away with just reading this chapter.

¥ You will almost certainly need to use a powerful resource editor to create the required suite of Help resources for
your application or plug-in. We recommend that you use Resorcerer, or an equally powerful editor. Lesser
resource editors such as ResEdit, may not be able to edit the necessary Help resources, thereby not allowing you
to implement most of the Help ManagerÕs functionality.

¥ The Help Manager was implemented by Apple as being almost exclusively resource driven. Consequently, if
youÕve been avoiding resources until now, then you will either have to start using a powerful resource editor, or
forgo having Balloon Help for pull-down menus, hierarchical menus, pop-up menu lists, the application icon, and
window parts outside of the content region. Without the use of resources, you will only be able to assign Help to
user interface elements in windows.

Tools Plus automatically associates Help data (the information that appears in a Help balloon as well as details about
its appearance and behavior) with a specific user interface element. That way, if you ever show, hide, move, resize,
delete, or scroll a user interface element, Tools Plus makes sure that the related Balloon Help data and Òhot rectangleÓ
follows the object. When you are relating this chapter to Inside Macintosh, Tools Plus incorporates the more advanced
ÒDynamic WindowÓ model for Help.

As you create your Help resources (ÔhdlgÕ, ÔhrctÕ and ÔhmnuÕ), realize that Tools Plus ignores the tip location and Òhot
rectangleÓ specified in the resource because Tools Plus calculates these two items in real time when the user points to
an object. Tools Plus automatically takes care of showing and hiding Help balloons depending on whether the user has
selected the showing or hiding of balloons in the Help menu. Tools Plus also takes care of displaying Help balloons as
the user moves the cursor over various objects, clicks in a menu, and points at various menu items without selecting
them. All you need to do is assign the right Help data to various objects, and Tools Plus takes care of showing the Help
balloons.

Tools Plus

392

Help Inheritance
Tools Plus includes the optional ability for user interface elements to inherit Help messages from their parent object, or
the object behind them. This works with the Appearance ManagerÕs control embedding, as well as with standard Tools
Plus user interface elements. The following examples show you how Help Inheritance works:

¥ The mouse if moved over a radio button control that has no Help messages. Tools Plus knows the radio button is
embedded in a group box control that has Help messages, so it uses those messages for the radio button as well.

¥ The developer has an identical Help disabled message for all user interface elements embedded in a Placard
control. Each of the embedded elements does not include a disabled Help message, but the Placard does. When the
mouse is over any disabled element in the Placard control, Help is displayed using the Placard controlÕs disabled
Help message.

Help Inheritance is off by default. You turn it on by including the initInheritHelp option in the InitToolsPlus routineÕs
spec parameter when you initialize Tools Plus. By default, Tools Plus determines which Help message to use by
checking the object under the mouse in the order listed below. Once it finds an object, it stops searching and uses that
objectÕs Help message. When you turn Help Inheritance on, Tools Plus keeps searching down the list (detailed below)
until it finds an object under the mouse that has the required Help message.

¥ Control (including Edit Text, Static Text, List Box, and Pop-Up Menu control)
¥ Parent control if the Appearance Manager is available (searching stops at the ultimate parent control, excluding

the windowÕs root control)
¥ TextEdit field (editable or static)
¥ List Manager list box
¥ Tools Plus pop-up menu (not using a control)
¥ Tools Plus picture button
¥ Tools Plus panel
¥ Tools Plus cursor zone
¥ Tools Plus cursor table

Balloon Help for the Finder (ÔhfdrÕ resource)
The ÔhfdrÕ resource is used exclusively by the Finder to describe your application when the user point to it. This
service is provided entirely by the Finder and the Help Manager, so there are no special Tools Plus services associated
with this element. If you create an ÔhfdrÕ resource, assign it resource ID -5696.

Balloon Help for Menus (ÔhmnuÕ resource)
Balloon Help for menus is provided exclusively through the ÔhmnuÕ resource (this is a Macintosh toolbox requirement,
and not specific to Tools Plus). Each ÔhmnuÕ resource relates to a single ÔMENUÕ resource with an identical resource
ID. When you call any Tools Plus routine that loads a ÔMENUÕ resource, Tools Plus also loads the related ÔhmnuÕ
Help resource and attaches it to the menu. This applies to all menus: pull-down, hierarchical, and pop-up menus. When
you delete the menu, Tools Plus automatically detaches the related Balloon Help, and correctly disposes the Help data.

Balloon Help for Objects in Windows
Help can be assigned to user interface elements in a window in three different ways:

¥ Use an ÔhdlgÕ or ÔhrctÕ Help resource with your dialog (ÔDLOGÕ) or dialog item list (ÔDITLÕ) resource to have
Help automatically assigned to the windowÕs objects.

¥ Programatically assign help to a single user interface element using an ÔhdlgÕ, ÔhrctÕ and/or ÔhmnuÕ Help
resources.

¥ Programatically assign help to a single user interface element without using a Help resource.

15 Balloon Help

WaterÕs Edge Software 393

Using ÔhdlgÕ and/or ÔhrctÕ Resources in Dialogs or Dialog Lists

This approach most closely resembles standard Macintosh Help Manager support. It lets you create standard
Macintosh Help resources, and automatically attach their Help data to user interface elements when you open your
dialog using Tools PlusÕs LoadDialog routine or equivalent. Similarly, you can have a Help resource that parallels a
dialog item list (ÔDITLÕ resource), so when you load or append that dialog item list by using Tools PlusÕs
AppendDialogList routine, Tools Plus automatically copies that Help resourceÕs Help data to the user interface
elements as they are being created.

The ÔhdlgÕ Dialog Help resource contains Help data for four object states:
¥ Enabled and not checked (value = 0)
¥ Disabled (checked or unchecked)
¥ Enabled and checked (value = 1)
¥ Enabled, other (value is not 0 or 1)

Objects like buttons, scroll bars, and picture buttons have associated values, so they can potentially display all four
Help messages at some time. Other objects like Tools Plus Panels and Cursor Zones have only a single state (enabled).
When objects are disabled on an inactive window, Balloon Help does not explain individual objects, but rather, it tells
the user that the window is inactive, and that it can be activated by clicking on it.

When you create an ÔhdlgÕ Dialog Help resource, set its resource ID to be the same as the related ÔDLOGÕ resource or
ÔDITLÕ resource. Each item in the ÔhdlgÕ resource corresponds to the same item number in the dialog (i.e., first item in
ÔhdlgÕ provides Help for the first item in the dialog). Remember that each Help itemÕs point and Òhot rectangleÓ in the
ÔhdlgÕ resource are ignored because Tools Plus calculates this information dynamically as required.

Alternatively, you can use an ÔhrctÕ Help Rectangle resource. Unlike the ÔhdlgÕ resource, each item in the Help
Rectangle resource has a message for only a single state. This is ideal for providing help for Cursor Zones and Panels
if required. When you load a dialog or append a dialog item list, Tools Plus first looks for Help data in an ÔhdlgÕ
resource. If it does not find the required help for the object, Tools Plus then tries to find the required Help data in an
ÔhrctÕ resource. If you are confused as to which resource you should use, use the more robust ÔhdlgÕ resource.

The following is a list of all dialog items, and the various Help states they can support. Notice that some dialog items
to not translate into Tools Plus Òobjects,Ó and therefore, Help is not assigned to them.

Supported
States

ÔDITLÕ Item E
na

bl
ed

D
is

ab
le

d

C
he

ck
ed

O
th

er

Button, or any control that is
implemented as a button

4 4 4 4

Scroll Bar, or any control that is
implemented as a scroll bar

4 4 4 4

Static Text (srcCopy) 4 4 4 4
Static Text (other than srcCopy)
Edit Text 4 4
List Box (implemented using a
CNTL)

4 4

Pop-Up Menu (implemented
using a CNTL)

4 4

Icon
Picture
User Item

You will notice in the table above, that Tools Plus does not automatically assign Help data to icons, pictures and user
items in a dialog or dialog item list. This is because these items have no direct equivalent to a Tools Plus object, and
are therefore incapable of ÒowningÓ Help data. The easiest work around is to create Icon controls and Picture controls
using the Appearance Manager (see the Buttons chapter for details). You can also use Tools Plus routines to create a
cursor zone for any of these objects, and attach Help data to the cursor zone. The user will experience the same result

Tools Plus

394

in that they can point to an icon and a Help balloon will pop up.

Manually Assigning Help Resources Data to a User Interface Element

You can assign Help to any user interface object that you create in a window using a Tools Plus routine. In each case,
when you create a user interface object, youÕll be able to refer to it later by an object number. For example, panels and
cursor zones each have their own unique number that you use when you want to move, resize, or delete that object
later. It is critically important that you distinguish these types of objects from Tools Plus routines that simply draw
something, such as the DrawPict routine which draws a picture and the DrawIcon routine that draws an icon. Neither
of these routines create an object that can be referenced later. They simply draw something (a picture or an icon) when
you call them. You cannot associate Help with the image they create (although you can associate Help with a cursor
zone that overlays that image).

A number of Tools Plus routines are available to let you associate the Help data in a standard Help resource with a user
interface element. For example, the SetButtonHelpRes routine lets you associate Help data in a Help resource with a
button, or any control that is implemented as a button. Similar routines are available for scroll bars, picture buttons, list
boxes, and all other user interface elements. These routines can read any or all of the following Help resources: ÔhdlgÕ
(dialog or dialog item list), ÔhrctÕ (rectangle), and ÔhmnuÕ (menu). You specify a resource ID, and index (i.e., the first
item in the Help resource is indexed as 1, the second item is indexed as 2, and so on), and you specify which of the
resources you want to access, and for which object state.

Use the following constants to access any or all of the three Help resources:
helpUseHdlgRsrc = $00000001; {Reference 'hdlg' resource to get Help info }
helpUseHrctRsrc = $00000002; {Reference 'hrct' resource to get Help info }
helpUseHmnuRsrc = $00000004; {Reference 'hmnu' resource to get Help info }
helpUseAllRsrc = $0000000F; {Reference all resources to get Help info }

The Tools Plus routines access the resource(s) specified above that have the required resource ID, and searches for
Help data for any of the following states:
helpEnabledState = $00000100; {Get Help for 'enabled' state }
helpDisabledState = $00000200; {Get Help for 'disabled' state }
helpEnabledCheckedState = $00000400; {Get Help for 'enabled and checked' state }
helpEnabledOtherState = $00000800; {Get Help for 'enabled, other' state }
helpAllStates = $00000F00; {Get Help info for all object states }

The inner functioning of the routines are as follows:
1. Reference the first specified resource type (in the order of ÔhdlgÕ, ÔhrctÕ, ÔhmnuÕ) whose resource ID matches the

one you specify in the Tools Plus routine.
2. Search for the first required Help data state (in the order of Enabled, Disabled, Enabled and Checked, Enabled

Other).
3. If that Help data exists, take either a copy of that Help data, or a reference to that Help data (which ever is more

memory efficient) and store it as part of the user interface object such as a button or scroll bar.
4. If the required Help data does not exist for that state, or if you did not ask for Help data for that state, then

advance to the next state until all your specified states have been tested or obtained.
5. If Help data has not been obtained for all the Help states you specified, the routine then tries the next Help

resource. It skips Help data for the states that it obtained in previously.

The table below lists all the user interface elements that you can create with Tools Plus, and which Help states they
support. Note that a user interface element is an object that can later be referenced by unique number, such as a button
(you can later delete that button by calling Tools PlusÕs DeleteButton routine and passing the button number as a
parameter). Images that are drawn in a window, such as an icon or a picture, can not directly support Help. You can
indirectly associate Help with these items by using a cursor zone and associating Help to the cursor zone. If certain
Help states are not supported in the table below, do not bother creating Help messages for those states because those
messages will never be displayed.

15 Balloon Help

WaterÕs Edge Software 395

Supported
States

User Interface Element E
na

bl
ed

D
is

ab
le

d

C
he

ck
ed

O
th

er

Button, or any control that is
implemented as a button

4 4 4 4

Picture button 4 4 4 4
Scroll Bar, or any control that is
implemented as a scroll bar

4 4 4 4

Field (any kind) 4 4
List Box 4 4
Pop-Up Menu 4 4
Panel 4
Cursor Table 4
Cursor Zone 4

Manually Assigning Help Data Without Using Resources

In some cases, you may want to assign Help data to a user interface element without first having to define that data in a
Help resource. Tools Plus provides a routine for each user interface element, such as SetButtonHelp for a button, that
lets you assign any kind of Help data to that object. The routine requires a number of parameters that ultimately give
you absolute control over an objectÕs Help data and how it is displayed. When you use this kind of routine, you set the
Help data for a single object one state at a time (i.e., once for the enabled state, once for the disabled state, and so on).

The following parameters are required to set an objectÕs Help data for a single state:
¥ Object Number: The unique number that identifies the button, scroll bar, or other object.
¥ State: Enabled, disabled, enabled and checked, enabled other (see constants defined earlier)
¥ Tip Proc: A UPP to the routine that is used to determine where the balloonÕs tip appears (nil = default). Inside

Macintosh details how to write your own Balloon Tip Proc. In pure 680x0 code, this is just the address to the
routine. In code that compiles to a PowerPC executable and optionally 680x0, use the toolboxÕs
NewTipFunctionProc routine to convert your Balloon Tip Proc to a UPP.

¥ Window Resource ID: The ÔWDEFÕ resource ID for the balloon window (0 = default)
¥ Window Variant: The balloon windowÕs variant code (0 = default)
¥ Method: The method for displaying a Help balloon (0 = default)É

kHMRegularWindow = 0; {Create a regular window floating above all windows }
kHMSaveBitsNoWindow = 1; {Save the image behind the balloon and draw (like a menu) }
kHMSaveBitsWindow = 2; {Save the image behind the balloon + generate update event }

Do not mix different methods within the same window or you will get improper window refreshing.
¥ Message: A Help Manager Message Record (detailed below)

The Help Manager Message Record is a variant record that is used to specify the message that is displayed by the Help
balloon. This message can contain anything from a simple Pascal string, to reference to an STR# resource or a handle
to a picture that can be created or obtained in real time. The Help Manager Message Record is defined in AppleÕs
Balloons.h C/C++ header and Balloons.p Pascal interface file as follows:

Tools Plus

396

C struct HMStringResType { // Record for accessing ÔSTR#Õ resourcesÉ
short hmmResID; // STR# resource ID
short hmmIndex; // String number in ÔSTR#Õ resource

};
typedef struct HMStringResType HMStringResType;

struct HMMessageRecord { // Balloon Help Message RecordÉ
short hmmHelpType; // Type of data (khmmString, khmmPict, etc.)
union {

Str255 hmmString; // Pascal string
short hmmPict; // ÔPICTÕ resource ID
TEHandle hmmTEHandle; // Handle to a TextEdit record
HMStringResType hmmStringRes; // Reference to a ÔSTR#Õ resourceÕs string
PicHandle hmmPictHandle; // Handle to a picture
short hmmTERes; // ÔstylÕ/ÔTEXTÕ resource ID
short hmmSTRRes; // ÔSTR Õ resource ID

} u;
};

Pascal HMStringResType = record {Record for accessing ÔSTR#Õ resourcesÉ }
hmmResID: integer; {STR# resource ID }
hmmIndex: integer; {String number in ÔSTR#Õ resource }

end;

HMMessageRecord = record {Balloon Help Message RecordÉ }
hmmHelpType: integer; {Type of data (khmmString, khmmPict, etc.) }
case integer of { }

khmmString: ({ }
hmmString: Str255; {Pascal string }

); { }
khmmPict: ({ }

hmmPict: integer; {ÔPICTÕ resource ID }
); { }
khmmTEHandle: ({ }

hmmTEHandle: TEHandle; {Handle to a TextEdit record }
); { }
khmmStringRes: ({ }

hmmStringRes: HMStringResType; {Reference to a ÔSTR#Õ resourceÕs string }
); { }
khmmPictHandle: ({ }

hmmPictHandle: PicHandle; {Handle to a picture }
); { }
khmmTERes: ({ }

hmmTERes: integer; {ÔstylÕ/ÔTEXTÕ resource ID }
); { }
khmmSTRRes: ({ }

hmmSTRRes: integer; {ÔSTR Õ resource ID }
); { }

end; { }

When you populate the HMMessageRecord record, the hmmHelpType field is used to indicate what type of data is
being stored in the record. The following constants are defined in AppleÕs Balloons.h C/C++ header and Balloons.p
Pascal interface file for this purpose:
khmmString 1; {Help message contains a Pascal String }
khmmPict 2; {Help message contains a resource ID to a ÔPICTÕ resource }
khmmStringRes 3; {Help message contains a resource ID & index to an ÔSTR#Õ resource }
khmmTEHandle 4; {Help message contains a Text Edit handle }
khmmPictHandle 5; {Help message contains a Picture handle }
khmmTERes 6; {Help message contains a resource ID to ÔTEXTÕ & ÔstylÕ resources }
khmmSTRRes 7; {Help message contains a resource ID to an ÔSTR Õ resource }

15 Balloon Help

WaterÕs Edge Software 397

If you do a lot of programming in which you manually set an objectÕs Help data, you may want to write your own
specialized routine that has very few parameters (button number, object state, Pascal Help string), and internally, it
populates the required fields in the HMMessageRecord record, then calls the required Tools Plus routine such as
SetButtonHelp.

ÔhdlgÕ and ÔhmnuÕ Resource Settings
The first Help entry in a dialog list help (ÔhdlgÕ) resource and a menu help (ÔhmnuÕ) resource is for missing messages.
A Òmissing messageÓ occurs when the Help resource states that it has Help data for a specific item number, but it is
missing the Help message for a specific state for that item. For example, if item #8 in the Help resource contains
Pascal strings, and no string is supplied for the disabled state, then the Òmissing messageÓ data is used for the disabled
state. This is useful if you have a default message that is applicable to many items, and you do not want to repeat
entering that message.

When using an ÔhdlgÕ resource, realize that you can change the starting point from which Tools Plus reads Help
messages. The ÒItem offset for first messageÓ field in the ÔhdlgÕ resource has a default value of 0, meaning that item
number 0, or the Òmissing messageÓ data, is considered the first readable item. This data will be used for the first item
in the dialog item list if you have an ÔhdlgÕ Help resource for a dialog.

We recommend that you change the value of the ÒItem offset for first messageÓ field in the ÔhdlgÕ resource to 1 so that
anything accessing the ÔhdlgÕ resource will initially ignore the Òmissing messageÓ data, and look to the next entry in
the resource as the first Help message.

Efficiently Storing Numerous Help Messages
All Help resources (ÔhmnuÕ, ÔhdlgÕ and ÔhmnuÕ) have the ability to refer another resource for Help data rather than
storing the data in the resource itself. For example, instead of storing the same Help data for 40 editing fields as 40
separate Pascal strings in an ÔhdlgÕ resource, each with the same text, it is wiser to have each of the 40 items simply
reference a single ÔSTR Õ resource that contains that string. In this case, the ÒMessage TypeÓ in the Help resource
would be ÒUse ÔSTR Õ resource=7Ó, and you would provide an ÔSTR Õ resource ID number where the string can be
found. The disadvantage of this strategy is that you may end up creating a lot of ÔSTR Õ resources, and you may end up
exceeding the Mac OS limit of approximately 2700 individual resources in a single file.

Another strategy that is more effective in reducing the number and volume of resources in your application, is to use
an ÔSTR#Õ indexed string resource to store Help messages that are repeated. A single ÔSTR#Õ resource can store up to
32,737 Pascal strings. You have a single occurrence of the repeating string in the ÔSTR#Õ resource, and the ÔhdlgÕ
resource simply references that ÔSTR#Õ entry. The disadvantage of using an ÔSTR#Õ resource is that the entire resource
must be loaded into memory even though the caller only wants to extract a single string. You can easily account for
this by flagging the ÔSTR#Õ string as preloaded and non-purgeable so you wonÕt be surprised by a sudden consumption
of memory as the resource is loaded because the resource will always reside in memory.

Balloon Help Performance Issues
When the user turns Balloon Help on (by selecting the Help menuÕs Show Balloons item), your application will
experience a periodic performance decrease while Tools Plus searches for the appropriate Help message and displays a
Help balloon. This is normal behavior. The performance decrease takes place each time that Tools Plus needs to check
the mouseÕs location, determine which object is under the mouse, build optimizing data structures, search for the Help
message, and finally display the Help balloon. Tools Plus takes every possible precaution to minimize the frequency of
these occurrences as well as their duration to make your application run as quickly as possible while still providing
Balloon Help services. When the user turns Balloon Help off, Tools Plus resumes its maximum performance.

For those developers who strive for peak performance while Balloon Help is on, the following items detail the factors
that influence performance:

¥ Where ever it is possible, use Appearance Manager controls in place of Tools Plus equivalents (i.e., use a Group
Box control instead of a Tools Plus Panel, use an Edit Text control in place of a standard Tools Plus editing field,
use a Static Text control in place of a standard Tools Plus read-only field). This lets Tools Plus identify the object

Tools Plus

398

requiring Help a little faster.
¥ Provide Help for all objects in a window rather than using Help inheritance. This lets Tools Plus find the

appropriate Help message a little faster.
¥ The "worst case scenario" is when Tools Plus spends the most time looking for Help in a window that has many

objects and the cursor is not over any item. The more complex the window, the longer it takes. Even so, with
Tools Plus's optimization, the impact is minimized.

When Balloon Help is on, the following actions will cause Tools Plus to recalculate the Help message and display a
Help balloon if a message is available:

¥ Suspend or resume your application
¥ Open, close, move or resize a window
¥ Activate an inactive window
¥ Create, delete, show, hide or obscure a user interface element
¥ Resize, move, or offset a user interface element
¥ Enable or disable a user interface element
¥ Change a user interface element's value. Tools Plus has special optimization that quickly determines if a Help state

change resulted from the value change, and recalculates the Help message and redisplays the Help balloon only if
the state has changed. With an enabled scroll bar, for example, a Help state of "enabled" is used when the scroll
bar's value is 0. When it's value is 1, a Help state of "enabled and checked" is used. For all other values, a Help
state of "enabled, other" is used. Therefore, as the scroll bar's value progresses from 2 through 32767, Tools Plus
uses the "enabled, other" Help message and it does not need to recalculate Help.

Issues with THINK Pascal
If you are working in the THINK Pascal development environment (not when you run a double-clickable application
that was created with THINK Pascal), you will experience several bugs that are related to THINK PascalÕs interaction
with the Help Manager:

¥ When you turn Balloon Help off (Help Menu: Hide Balloons) or on (Help Menu: Show Balloons), you will
experience a delay of several seconds before your application responds to events. These events are queued, but
THINK Pascal becomes ÒdormantÓ for a short time. If you want immediate response, the work-around is to simply
wait a few seconds before typing or clicking your mouse.

¥ If you switch between having Balloon Help on and off, and you quit your application without quitting THINK
Pascal (i.e., you are running your application within THINK PascalÕs development environment), the next time
you run your application, you will notice that your Apple Menu contains multiple copies of its items. This is
compounded each time your run your application inside the THINK Pascal development environment. You may
eventually crash THINK Pascal while it is running or when you quit THINK Pascal. To resolve this problem,
simply quit THINK Pascal and restart it again. A better work-around is to leave Balloon Help on all the time while
you are developing and testing Help.

¥ When running your application in the THINK Pascal development environment, Balloon Help may not be
displayed for menu titles in the menu bar (i.e., Apple, File, Edit, etc.) There is no known work-around for this.

These issues do not appear in any other development environment that is upported by Tools Plus, or in double-
clickable applications you create with THINK Pascal.

..

15 Balloon Help

WaterÕs Edge Software 399

SetButtonHelp
Set Help data for a button without using Help resources.

C pascal void SetButtonHelp (short Button, short State,
TipFunctionUPP TipProc, short WinResID, short Variant,
short Method, const HMMessageRecord *HelpMessage);

Pascal procedure SetButtonHelp (Button, State: INTEGER; TipProc: TipFunctionUPP;
WinResID, Variant, Method: INTEGER; HelpMessage: HMMessageRecord);

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the button does not exist in the current window,
SetButtonHelp does nothing.

State is the single object state for which you are setting the Help data. If the button already has Help data for that state,
the old data is overwritten with the new data. If you want to set Help data for multiple states, use the SetButtonHelp
routine once for each state. Use one of the following constants as defined in AppleÕs C/C++ Balloons.h header and in
the Pascal Balloons.p interface file:

kHMEnabledItem Item is enabled but not checked (control value = 0).
kHMDisabledItem Item is disabled.
kHMCheckedItem Item is enabled and checked (control value = 1).
kHMOtherItem Item is enabled (control value > 1).

TipProc is a UPP to the routine that is used to determine where the balloonÕs tip appears (nil = default). Inside
Macintosh details how to write your own Balloon Tip Proc. In pure 680x0 code, this is just the address to the routine.
In code that compiles to a PowerPC executable and optionally 680x0, use the toolboxÕs NewTipFunctionProc routine
to convert your Balloon Tip Proc to a UPP.

WinResID is the window (ÔWDEFÕ) resource ID that is used for the balloonÕs window (0 = default).

Variant is the variant code for the balloonÕs window (0 = default).

Method describes how the Help balloon is drawn, and even more important, how your application refreshes a window
when the balloon is removed. Use one of the following constants as defined in AppleÕs C/C++ Balloons.h header and
in the Pascal Balloons.p interface file:

kHMRegularWindow Create a regular window floating above all windows. When the balloon window is
removed, your application gets doPreRefresh and doRefresh events for the region
that used to be occupied by the balloon (0 = default).

kHMSaveBitsNoWindow Save the image behind the balloon before drawing the balloon. When the balloon
is removed, the image behind it is quickly restored, like with a pull-down menu.
No refreshing events are generated. This method is very quick, but it can only be
used in windows where the elements cannot change while the balloon is displayed.

kHMSaveBitsWindow Save the image behind the balloon before drawing the balloon. When the balloon
is removed, the image behind it is quickly restored, like with a pull-down menu,
then your application gets doPreRefresh and doRefresh events for the region that
used to be occupied by the balloon. This method is very quick at replacing the
image behind the balloon, but it can only be used in windows where the elements
cannot change while the balloon is displayed.

HelpMessage is the Balloon Help Message Record that contains the data that is attached to the button. You need to
populate this recordÕs hmmHelpType to tell it the kind of data it contains, then populate a second field with the
specified data. You can find details on how to do this earlier in this chapter.

CONST {Object States: }
kHMEnabledItem = 0; {Item is enabled, but not checked or control value = 0 }
kHMDisabledItem = 1; {Item is disabled }
kHMCheckedItem = 2; {Item is enabled, and checked or control value = 1 }
kHMOtherItem = 3; {Item is enabled, and control value > 1 }

Tools Plus

400

{Methods for displaying Help balloons:}
kHMRegularWindow = 0; {Create a regular window floating above all windows }
kHMSaveBitsNoWindow = 1; {Save the image behind the balloon and draw (like a menu) }
kHMSaveBitsWindow = 2; {Save the image behind the balloon + generate update event}

..

SetButtonHelpRes
Set Help data for a button using Help resources.

C pascal void SetButtonHelpRes (short Button, short ResID, short ResIdx,
long Spec);

Pascal procedure SetButtonHelpRes (Button, ResID, ResIdx: INTEGER; Spec: LONGINT);

The SetButtonHelpRes routine reads one or more Help resources, and copies their data or a reference to their data
(which ever is more efficient) to a button, or a control that is implemented as a button. This routine is used to manually
connect Help resources to user interface elements. It is especially useful for elements that are exclusive to Tools Plus:
panels, cursor tables and cursor zones, because these items cannot have Help assigned to them automatically when a
dialog is opened.

Button specifies the button number (from 1 to 511) that is affected in the current window. If the current window
doesnÕt belong to your application, or if no windows are open, or if the button does not exist in the current window,
SetButtonHelpRes does nothing.

ResID specifies the resource ID that is accessed in the search for Help data. Note that up to three resources may be
checked for the required data: ÔhdlgÕ, ÔhrctÕ, and ÔhmnuÕ. The Spec parameter is used to specify which Help resources
are accessed.

ResIdx is the item index number that is searched for Help data in the resource(s) specified by ResID. A value of 1
searches the first item in the Help resource, a value of 2 searches the second, and so on.

The Spec parameter is used to specify which Help resources are used, and which object states require Help data from
the resource(s). The constants defining the available options are as follows:

Optionally choose any of the following resource searching optionsÉ
helpUseHdlgRsrc Reference the ÔhdlgÕ (dialog item) Help resource to get Help data.

helpUseHrctRsrc Reference the ÔhrctÕ (rectangles) Help resource to get Help data.

helpUseHmnuRsrc Reference the ÔhmnuÕ (menu) Help resource to get Help data.

Optionally choose the following resource searching option if none of the previous ones were usedÉ
helpUseAllRsrc Reference all Help resource (ÔhdlgÕ, ÔhrctÕ and ÔhmnuÕ) to get Help data.

Optionally choose any of the following object state searching optionsÉ
helpEnabledState Get Help for the enabled state (control value = 0).

helpDisabledState Get Help for the disabled state.

helpEnabledCheckedState Get Help for the enabled and checked state (control value = 1).

helpEnabledOtherState Get Help for the enabled, other state (control value > 1).

Optionally choose the following state searching option if none of the previous ones were usedÉ
helpAllStates Get Help for all object states.

Optionally choose the following searching option if none of the previous options were usedÉ
helpUseAllHelp Get Help for all object states, using all resource types.

15 Balloon Help

WaterÕs Edge Software 401

CONST {Object States: }
helpUseHdlgRsrc = $00000001; {Reference 'hdlg' resource to get Help info }
helpUseHrctRsrc = $00000002; {Reference 'hrct' resource to get Help info }
helpUseHmnuRsrc = $00000004; {Reference 'hmnu' resource to get Help info }
helpUseAllRsrc = $000000FF; {Reference all resources to get Help info }
helpEnabledState = $00000100; {Get Help for 'enabled' state }
helpDisabledState = $00000200; {Get Help for 'disabled' state }
helpEnabledCheckedState = $00000400; {Get Help for 'enabled and checked' state }
helpEnabledOtherState = $00000800; {Get Help for 'enabled, other' state }
helpAllStates = $0000FF00; {Get Help info for all object states }
helpUseAllHelp = $0000FFFF; {Get Help for all states, using all rsrc types }

..

SetPictButtonHelp
Set Help data for a picture button without using Help resources.

C pascal void SetPictButtonHelp (short Button, short State,
TipFunctionUPP TipProc, short WinResID, short Variant,
short Method, const HMMessageRecord *HelpMessage);

Pascal procedure SetPictButtonHelp (Button, State: INTEGER; TipProc: TipFunctionUPP;
WinResID, Variant, Method: INTEGER; HelpMessage: HMMessageRecord);

SetPictButtonHelp is identical to the SetButtonHelp routine, except that this routine works on a picture button rather
than a button. See the SetButtonHelp routine for details about the routineÕs parameters.

..

SetPictButtonHelpRes
Set Help data for a picture button using Help resources.

C pascal void SetPictButtonHelpRes (short Button, short ResID, short ResIdx,
long Spec);

Pascal procedure SetPictButtonHelpRes (Button, ResID, ResIdx: INTEGER;
Spec: LONGINT);

SetPictButtonHelpRes is identical to the SetButtonHelpRes routine, except that this routine works on a picture button
rather than a button. See the SetButtonHelpRes routine for details about the routineÕs parameters.

..

SetScrollBarHelp
Set Help data for a scroll bar without using Help resources.

C pascal void SetScrollBarHelp (short ScrollBar, short State,
TipFunctionUPP TipProc, short WinResID, short Variant,
short Method, const HMMessageRecord *HelpMessage);

Pascal procedure SetScrollBarHelp (ScrollBar, State: INTEGER;
TipProc: TipFunctionUPP; WinResID, Variant, Method: INTEGER;
HelpMessage: HMMessageRecord);

SetScrollBarHelp is identical to the SetButtonHelp routine, except that this routine works on a scroll bar rather than a
button. See the SetButtonHelp routine for details about the routineÕs parameters.

..

Tools Plus

402

SetScrollBarHelpRes
Set Help data for a scroll bar using Help resources.

C pascal void SetScrollBarHelpRes (short ScrollBar, short ResID, short ResIdx,
long Spec);

Pascal procedure SetScrollBarHelpRes (ScrollBar, ResID, ResIdx: INTEGER; Spec:
LONGINT);

SetScrollBarHelpRes is identical to the SetButtonHelpRes routine, except that this routine works on a scroll bar rather
than a button. See the SetButtonHelpRes routine for details about the routineÕs parameters.

..

SetFieldHelp
Set Help data for a field without using Help resources.

C pascal void SetFieldHelp (short Field, short State, TipFunctionUPP TipProc,
short WinResID, short Variant, short Method,
const HMMessageRecord *HelpMessage);

Pascal procedure SetFieldHelp (Field, State: INTEGER; TipProc: TipFunctionUPP;
WinResID, Variant, Method: INTEGER; HelpMessage: HMMessageRecord);

SetFieldHelp is identical to the SetButtonHelp routine, except that this routine works on a field rather than a button.
See the SetButtonHelp routine for details about the routineÕs parameters.

..

SetFieldHelpRes
Set Help data for a field using Help resources.

C pascal void SetFieldHelpRes (short Field, short ResID, short ResIdx,
long Spec);

Pascal procedure SetFieldHelpRes (Field, ResID, ResIdx: INTEGER; Spec: LONGINT);

SetFieldHelpRes is identical to the SetButtonHelpRes routine, except that this routine works on a field rather than a
button. See the SetButtonHelpRes routine for details about the routineÕs parameters.

..

SetListBoxHelp
Set Help data for a list box without using Help resources.

C pascal void SetListBoxHelp (short ListBox, short State,
TipFunctionUPP TipProc, short WinResID, short Variant,
short Method, const HMMessageRecord *HelpMessage);

Pascal procedure SetListBoxHelp (ListBox, State: INTEGER; TipProc: TipFunctionUPP;
WinResID, Variant, Method: INTEGER; HelpMessage: HMMessageRecord);

SetListBoxHelp is identical to the SetButtonHelp routine, except that this routine works on a list box rather than a
button. See the SetButtonHelp routine for details about the routineÕs parameters.

15 Balloon Help

WaterÕs Edge Software 403

SetListBoxHelpRes
Set Help data for a list box using Help resources.

C pascal void SetListBoxHelpRes (short ListBox, short ResID, short ResIdx,
long Spec);

Pascal procedure SetListBoxHelpRes (ListBox, ResID, ResIdx: INTEGER; Spec: LONGINT);

SetListBoxHelpRes is identical to the SetButtonHelpRes routine, except that this routine works on a list box rather
than a button. See the SetButtonHelpRes routine for details about the routineÕs parameters.

..

SetPopUpHelp
Set Help data for a pop-up menu without using Help resources.

C pascal void SetPopUpHelp (short MenuNumber, short State,
TipFunctionUPP TipProc, short WinResID, short Variant,
short Method, const HMMessageRecord *HelpMessage);

Pascal procedure SetPopUpHelp (MenuNumber, State: INTEGER; TipProc: TipFunctionUPP;
WinResID, Variant, Method: INTEGER; HelpMessage: HMMessageRecord);

SetPopUpHelp is identical to the SetButtonHelp routine, except that this routine works on a pop-up menu rather than a
button. See the SetButtonHelp routine for details about the routineÕs parameters. Note that this routine only sets Help
for the pop-up menuÕs body, and not the list that is displayed when the user clicks on the pop-up menu. To set Help for
the list items, see the ÔhmnuÕ resource earlier in this chapter.

..

SetPopUpHelpRes
Set Help data for a pop-up menu using Help resources.

C pascal void SetPopUpHelpRes (short MenuNumber, short ResID, short ResIdx,
long Spec);

Pascal procedure SetPopUpHelpRes (MenuNumber, ResID, ResIdx: INTEGER;
Spec: LONGINT);

SetPopUpHelpRes is identical to the SetButtonHelpRes routine, except that this routine works on a pop-up menu
rather than a button. See the SetButtonHelpRes routine for details about the routineÕs parameters. Note that this routine
only sets Help for the pop-up menuÕs body, and not the list that is displayed when the user clicks on the pop-up menu.
To set Help for the list items, see the ÔhmnuÕ resource earlier in this chapter.

..

Tools Plus

404

SetPanelHelp
Set Help data for a panel without using Help resources.

C pascal void SetPanelHelp (short Panel, short State, TipFunctionUPP TipProc,
short WinResID, short Variant, short Method,
const HMMessageRecord *HelpMessage);

Pascal procedure SetPanelHelp (Panel, State: INTEGER; TipProc: TipFunctionUPP;
WinResID, Variant, Method: INTEGER; HelpMessage: HMMessageRecord);

SetPanelHelp is identical to the SetButtonHelp routine, except that this routine works on a panel rather than a button.
See the SetButtonHelp routine for details about the routineÕs parameters.

..

SetPanelHelpRes
Set Help data for a panel using Help resources.

C pascal void SetPanelHelpRes (short Panel, short ResID, short ResIdx,
long Spec);

Pascal procedure SetPanelHelpRes (Panel, ResID, ResIdx: INTEGER; Spec: LONGINT);

SetPanelHelpRes is identical to the SetButtonHelpRes routine, except that this routine works on a panel rather than a
button. See the SetButtonHelpRes routine for details about the routineÕs parameters.

..

SetCursorTableHelp
Set Help data for a Cursor Table without using Help resources.

C pascal void SetCursorTableHelp (short CursorTable, short State,
TipFunctionUPP TipProc, short WinResID, short Variant,
short Method, const HMMessageRecord *HelpMessage);

Pascal procedure SetCursorTableHelp (CursorTable, State: INTEGER;
TipProc: TipFunctionUPP; WinResID, Variant, Method: INTEGER;
HelpMessage: HMMessageRecord);

SetCursorTableHelp is identical to the SetButtonHelp routine, except that this routine works on a Cursor Table rather
than a button. See the SetButtonHelp routine for details about the routineÕs parameters.

CursorTable specifies the cursor table number that is affected. This cursor table may be shared by any number of
windows. If the cursor table does not exist, SetCursorTableHelp does nothing.

..

SetCursorTableHelpRes
Set Help data for a Cursor Table using Help resources.

C pascal void SetCursorTableHelpRes (short CursorTable, short ResID,
short ResIdx, long Spec);

Pascal procedure SetCursorTableHelpRes (CursorTable, ResID, ResIdx: INTEGER;
Spec: LONGINT);

15 Balloon Help

WaterÕs Edge Software 405

SetCursorTableHelpRes is identical to the SetButtonHelpRes routine, except that this routine works on a Cursor Table
rather than a button. See the SetButtonHelpRes routine for details about the routineÕs parameters.

CursorTable specifies the cursor table number that is affected. This cursor table may be shared by any number of
windows. If the cursor table does not exist, SetCursorTableHelpRes does nothing.

..

SetCursorZoneHelp
Set Help data for a Cursor Zone without using Help resources.

C pascal void SetCursorZoneHelp (short CursorTable, short CursorZone,
short State, TipFunctionUPP TipProc, short WinResID,
short Variant, short Method, const HMMessageRecord *HelpMessage);

Pascal procedure SetCursorZoneHelp (CursorTable, CursorZone, State: INTEGER;
TipProc: TipFunctionUPP; WinResID, Variant, Method: INTEGER;
HelpMessage: HMMessageRecord);

SetCursorZoneHelp is identical to the SetButtonHelp routine, except that this routine works on a Cursor Zone rather
than a button. See the SetButtonHelp routine for details about the routineÕs parameters.

CursorTable specifies the cursor table number that is affected. This cursor table may be shared by any number of
windows. If the cursor table does not exist, SetCursorZoneHelp does nothing.

CursorZone specifies the cursor zone number that is affected within the cursor table. If the cursor zone does not exist
within the cursor table specified by CursorTable, SetCursorZoneHelp does nothing.

..

SetCursorZoneHelpRes
Set Help data for a Cursor Zone using Help resources.

C pascal void SetCursorZoneHelpRes (short CursorTable, short CursorZone,
short ResID, short ResIdx, long Spec);

Pascal procedure SetCursorZoneHelpRes (CursorTable, CursorZone, ResID,
ResIdx: INTEGER; Spec: LONGINT);

SetCursorZoneHelpRes is identical to the SetButtonHelpRes routine, except that this routine works on a Cursor Zone
rather than a button. See the SetButtonHelpRes routine for details about the routineÕs parameters.

CursorTable specifies the cursor table number that is affected. This cursor table may be shared by any number of
windows. If the cursor table does not exist, SetCursorZoneHelpRes does nothing.

CursorZone specifies the cursor zone number that is affected within the cursor table. If the cursor zone does not exist
within the cursor table specified by CursorTable, SetCursorZoneHelpRes does nothing.

..

Tools Plus

406

SetControlHelp
Set Help data for a non-Tools Plus control without using Help resources.

C pascal void SetControlHelp (ControlHandle hControl, short State,
TipFunctionUPP TipProc, short WinResID, short Variant,
short Method, const HMMessageRecord *HelpMessage);

Pascal procedure SetControlHelp (hControl ControlHandle; State: INTEGER;
TipProc: TipFunctionUPP; WinResID, Variant, Method: INTEGER;
HelpMessage: HMMessageRecord);

Use SetControlHelp to set Help for a control that you have created without using a Tools Plus routine. This can happen
when you use a toolbox routine to create your own controls. If you use SetControlHelp, remember to use Tools PlusÕs
DeleteControl routine to manually delete the control, or allow Tools Plus to delete the control when the window is
closed.

SetControlHelp is identical to the SetButtonHelp routine, except that this routine works on a non-Tools Plus control
rather than a button. See the SetButtonHelp routine for details about the routineÕs parameters.

hControl is a handle to a non-Tools Plus control.

..

SetControlHelpRes
Set Help data for a non-Tools Plus control using Help resources.

C pascal void SetControlHelpRes (ControlHandle hControl, short ResID,
short ResIdx, long Spec);

Pascal procedure SetControlHelpRes (hControl ControlHandle; ResID, ResIdx: INTEGER;
Spec: LONGINT);

Use SetControlHelpRes to set Help for a control that you have created without using a Tools Plus routine. This can
happen when you use a toolbox routine to create your own controls. If you use SetControlHelpRes, remember to use
Tools PlusÕs DeleteControl routine to manually delete the control, or allow Tools Plus to delete the control when the
window is closed.

SetControlHelpRes is identical to the SetButtonHelp routine, except that this routine works on a non-Tools Plus
control rather than a button. See the SetButtonHelp routine for details about the routineÕs parameters.

hControl is a handle to a non-Tools Plus control.

..

DeleteControl
Delete a non-Tools Plus control.

C pascal void DeleteControl (ControlHandle hControl);

Pascal procedure DeleteControl (hControl ControlHandle);

Use the DeleteControl routine to manually delete a control that was not created with a Tools Plus routine (i.e., you
used a toolbox routine to create the control, or the control was created by a third-party package other than Tools Plus).
When you use Tools PlusÕs SetControlHelp or SetControlHelpRes routine, Tools Plus allocates private data that is
associated with the control. Toolbox routines are not aware of this data, and therefore, they cannot deallocate it. When
you call the DeleteControl routine, it deallocates the private data, and deletes the control by calling the toolboxÕs
DisposeControl routine. If the control is an Appearance Manager container control, DeleteControl also deallocates

15 Balloon Help

WaterÕs Edge Software 407

private Tools Plus data for all subcontrols before deleting them.

hControl is a handle to a non-Tools Plus control. If hControl is nil, hControl is control that is not in a Tools Plus
window, or hControl is a control that was created by a Tools Plus routine, DeleteControl does nothing.

..

ChangedHelp
Force recalculation of Balloon Help.

C pascal void ChangedHelp (void);

Pascal procedure ChangedHelp;

The ChangedHelp routine forces Tools Plus to recalculate the Help balloon and Help message based on the current
cursor position and the latest Help data. The new Help balloon is displayed when your event handler routine finishes
executing. Normally, your application never needs to call this routine. It is provided as a Òback doorÓ for developers
who may have this special need.

..

Tools Plus

408

16 Event Management

WaterÕs Edge Software 409

16 Event Management

This chapter deals entirely with managing and processing events. In a traditional Macintosh application, it is referred
to as ÒpollingÓ for events, or an Òevent loop.Ó Although a Tools Plus application does not poll for events, it still does
have to respond to events. This chapter details how Tools Plus reports events, and how your application should
respond to them. It details the following:

¥ Polling versus Dispatching
¥ Task switching
¥ The MacintoshÕs event reporting and queuing mechanism
¥ The watch cursor
¥ Tools PlusÕs event record and its fields
¥ Event modifiers (Caps Lock, Shift, Option, Command and Control)
¥ Background processing
¥ Event handler routine
¥ Filtering events (the Event Filter routine)
¥ Serial events
¥ Tools Plus event codes
¥ Apple Event support
¥ Routines for handling and processing events
¥ Timer events
¥ Each possible event is detailed, along with the correct response that should be taken by your application
¥ A Field To Event Cross Reference table quickly identifies when each field in the Tools Plus event record

is used

Polling versus Dispatching
In the purest sense, polling is a periodic process a tradition Macintosh application performs in which it asks what has
happened? This gives the application the ability to respond to the userÕs actions and to MacintoshÕs own internal
mechanisms. The Macintosh toolboxÕs Event Manager generates events that describe what has happened. An example
of an event that is reported by the Event Manager is a mouse-down event, which contains only the time of the event
and global co-ordinates at which the mouse-down occurred.

Normally, without the benefit of Tools Plus, your application must decode the event structure, interpret its meaning,
and account for all possible interpretations of the event. Here is a simple example of what a traditional application, that
is one without Tools Plus, would have to do:

1 Get an event using the toolboxÕs GetNextEvent or WaitNextEvent

2 Based on the type of event received, the application follows a particular path of logic to decode the event
structureÕs data and to interpret it. In this example weÕll use a relatively simple mouse-down event. The event
recordÕs Event.what field contains a value equal to the mouseDown constant.

3 Determine the location of the mouse-down event using the toolboxÕs FindWindow routine. FindWindow returns
two pieces of information: the type of mouse down event, and a pointer to a window if the mouse-down event
occurred in a window. The possible mouse-down types are: inDesk, inMenuBar, inSysWindow, inContent,
inDrag, inGrow, inGoAway, inZoomIn, and inZoomOut. The traditional application needs to account for each
one of these and do additional processing based on the type. In this example, letÕs choose the simple ÒinContentÓ
type that indicates the mouse-down event is inside a windowÕs content region. The application now has a pointer
to a window that it must somehow relate back to the original window, and it knows the mouse went down
somewhere inside the windowÕs content region. LetÕs also assume, for the sake of simplicity, that the target
window is already active.

4 Determine where in the window the mouse-down occurred. A traditional application needs to check all objects in
the window to determine in which object, if any, the mouse-down occurred. Without Tools Plus, the application
needs to account for list boxes, buttons and scroll bars, editing fields, pop-up menus, picture buttons, and

Tools Plus

410

possibly the beginning of a click or drag in the window. WeÕll explore an easy example in which the user
interacts with a simple push button. A traditional application uses the toolboxÕs FindControl routine to determine
which control is affected. FindControl returns a handle to the control in which the mouse-down event occurred.
Realize that the handle could point to virtually any kind of control: a push button, radio button, check box, scroll
bar, or a less common custom control. Let us assume that the traditional application somehow determines through
its own logic that the control is a simple push button.

5 The traditional application now needs to track the mouse in and out of the push button control while the mouse
button is down using the toolboxÕs TrackControl routine. This routine highlights the button while the mouse is in
it, and unhighlights it while the mouse is out of the button. The TrackControl routine returns control to the
application when the user releases the mouse button, and it informs the application if the mouse was inside the
control when the mouse button was released.

6 If TrackControl returns true, the application can now process the action resulting from the user clicking the push
button. Otherwise it ignores the mouse-down event.

7 When processing the button click, the traditional application knows only the following information:
¥ a mouse-down event occurred
¥ in a window (it has a pointer to the window)
¥ in a control (it has a handle to the control)

The traditional application must still relate the pointer and handle back to what they represent, such as an ÒOrder
EntryÓ window and a ÒCancelÓ button inside that window.

In sharp contrast to all the drudgery that is found in a traditional application, Tools Plus automatically does the vast
majority of the work for you. In a Tools Plus application, you simply write an event handler routine (detailed later) that
responds to a specific occurrence in your application, such as the user clicking a button. Tools Plus calls your event
handler routine each time it has an event that needs to be processed. This is called Òevent dispatchingÓ because Tools
Plus does all the getting and processing of events, and it hands the resulting occurrence (dispatches it) to your
application for an appropriate response. Here is how an application written with Tools Plus processes the same mouse-
down event that took a page to detail earlier:

1 Tools Plus calls your event handler routine.

2 Your event handler routine has access to a global event record that tells your application what happened:
¥ a doButton event occurred (user selected a button)
¥ window #2
¥ button #10
¥ modifier keys such as Caps Lock, Control, Command, Shift, etc.
¥ toolbox event record (in case you want it)

A window number and button number are provided since you create and reference all Tools Plus objects by a
number instead of by a pointer or handle.

Your application simply does what should be done in response to the user clicking the button, such as closing the
window after a ÒCancelÓ button is clicked. Tools Plus does similar event processing for all other elements of your user
interface, thus making your interface work automatically.

Task Switching
With the introduction of System 5, MultiFinder made cooperative multitasking a reality on the Macintosh.
Cooperative, or ÒswitchedÓ multitasking as it is often called, lets several applications appear to run simultaneously by
having the processor cycle amongst all the applications (or tasks). Even though only one task is being executed at any
given moment, the cycling happens so quickly that it gives a user the impression that they are happening
simultaneously. The term ÒcooperativeÓ is used because each application must cooperate with all others by
relinquishing control to give the others adequate processing time.

Only one application can be active (the frontmost window) at a time even though, potentially, you may be able to see
dozens of windows from multiple applications simultaneously. Therefore, the active application is temporarily
ÒsuspendedÓ when another application or desk accessory is activated. Suspended applications can also receive events
and processing time to let them perform operations while they are suspended, such as refreshing a window after it has
been uncovered.

16 Event Management

WaterÕs Edge Software 411

There are two kinds of ÒswitchesÓ that occur in cooperative multitasking: minor and major. In a major switch, your
application is either suspended when another application or desk accessory is activated, or resumed when your
application is activated. The doSuspend and doResume events report this occurrence to your application. In a minor
switch, your application is given some processing time, then it releases control to another application or desk
accessory.

Tools Plus takes care of task switching. Every time your application finishes processing the code in its event handler
routine, a major or minor switch will always occur. You only need to concern yourself with minor switches by making
sure that the code in your event handler routine does not take too long to run. In other words, donÕt write your event
handler routine so that it takes ten seconds to execute, or other applications will work jerkily, or worse yet, they may
appear to mysteriously ÒhangÓ when in actuality they just arenÕt getting enough cooperation from your application.
The doSuspend and doResume events detail how your application should respond to a major switch.

See the SIZE resource to specify how your application will behave while suspended, and during the transition from
being active to inactive or vice versa.

Macintosh Events
This section is included for reference purposes only. Your application will likely never need to interact directly with
the toolboxÕs Event Manager or its data since Tools Plus reads, decodes, interprets and processes these events
automatically.

The Event Manager, as described in Inside Macintosh, is the link between your application and its user, and its
machine environment. Whenever the user types a key on the keyboard or numeric keypad, presses the mouse button, or
inserts a floppy disk in the disk drive, the Event Manager reports an event to the application. In addition to monitoring
the userÕs actions, the Event Manager also detects other types of events that serve to inform your application as to
Òwhat is happening.Ó Such an event is reported when a partially obscured window is uncovered and its contents need
to be redrawn (update event).

The Event ManagerÕs event record contains an event code that identifies the type of event. Event codes are available as
constants. Later, you will learn how the Event ManagerÕs events are automatically translated into Tools Plus events.
The following is a list of events that can be generated by the Event Manager:

CONST nullEvent = 0; {no event detected }
mouseDown = 1; {mouse button was pressed down }
mouseUp = 2; {mouse button was released }
keyDown = 3; {a key was pressed }
keyUp = 4; {a key was released }
autoKey = 5; {a key was held down and is repeating }
updateEvt = 6; {a window must be updated (refreshed) }
diskEvt = 7; {a disk was inserted }
activateEvt = 8; {a window was activated or deactivated }
networkEvt = 10; {network }
driverEvt = 11; {device driver }
app1Evt = 12; {application-defined event number 1 }
app2Evt = 13; {application-defined event number 2 }
app3Evt = 14; {application-defined event number 3 }
app4Evt = 15; {appl-defined event 4 / MultiFinder's }

{ and Switcher's Suspend/Resume event }
osEvt = 15; {Operating-system event (System 7+) }
kHighLevelEvent = 23; {High-level event (System 7+) }

The Event Queue
When events are generated, they are stored in a ÒFirst In First OutÓ (FIFO) event queue until your application can
retrieve and process them. When your application is ready to process an event, the oldest event is removed from the
queue and processed first. This journaling mechanism lets the Macintosh remember a series of rapidly occurring events
and store them until your application is ready to process them.

Events have a certain priority, meaning that some events will be processed before others, regardless of when they were
generated. Their priority is as follows:

1. activate/deactivate a window
2. mouse-down/up, key down/up, disk insert, network driver, application-defined events (first in first out)

Tools Plus

412

3. auto-key (key pressed and held, causing it to repeat)
4. update a window (refresh a window in front-to-back order)

The priority of events insures that illogical events are not reported. For instance, the user may click twice in a
windowÕs close box before an application gets around to processing the event. The first click signals your application
to close the window. The second click will not be reported as a click in a non-existent (closed) window. The second
clickÕs location is analyzed after the window is closed, and reported accordingly.

Tools Plus works in an identical manner when interacting with the event queue. In fact, Tools Plus obtains events from
the Event Manager and translates them into something useful before reporting them to your application.

- Note: The event queue can store a maximum of 20 events. If your application is so busy that it lets more than 20
events accumulate in the queue, the oldest events are discarded to make room for the new ones. Your
application may lose events and may misbehave if it takes a long time to execute the code in your event
handler routine. If this is the case, call Process1EventWhileBusy during long processes.

Watch Cursor -- a busy system
The watch cursor is used to indicate a long wait, such as when a lengthy process is being conducted or when printing is
being done. Your application can display the watch cursor by calling CursorShape(watchCursor).

While the watch cursor is displayed, your application may choose not to process events, since it doesnÕt care what the
user is doing and it will want to ignore the userÕs mouse clicks and typing anyway. Unfortunately, this does not give
the user the opportunity to halt a lengthy process, nor does it give other applications any processing time. Tools Plus
solves this dilemma by shifting into a busy mode when the watch cursor is displayed.

When your application displays the watch cursor, Tools Plus automatically filters out (discard) the mouse and typing
events generated by the user. The exception to this, of course, is when the user types 1-. that tells your application to
halt the process. This lets your application process events regularly while it is busy conducting a lengthy task, knowing
that any key or mouse event is meaningful (it indicates that the user wants to halt the process).

When your application finishes its lengthy process, it can either change the cursor itself or call ResetCursor to change
the cursor to its appropriate shape according to its position on the screen.

- Note: When the watch cursor is displayed, your application can still receive Tools Plus events that are unrelated to
mouse clicks or typing, such as redrawing a window (doRefresh) or a disk insert event.

+ Warning: If your application is running under MultiFinder or System 7 (or later), it is possible to switch to another
application while a watch cursor is displayed unless your active window is modal across all applications,
like the dBoxProc type window.

Tools Plus Event Record
When you create your application, you declare a global Tools Plus event record variable (TPEventRecord type) that is
used by both Tools Plus and your application. Tools Plus populates the global event record with information about the
most recent event, and your application can reference this information at any time. The Designing Your Application
chapter details how to define the global event record, and the Initialization chapter details how Tools Plus becomes
aware of this record in order to populate it. Although the event record looks cumbersome, it is logically organized and
it is very easy to use.

The entire Tools Plus event record accounts for every type of event that can possibly occur. During any one specific
event, your application will need to access only one or two of these fields. Later in this chapter when you are told how
to respond to the various Tools Plus events, you will also be told which fields in the event record hold information that
is pertinent to the event.

The event record is defined as follows:

16 Event Management

WaterÕs Edge Software 413

C /* Event record's "event modifiers" info*/
 union TPModifiersRec { /*This variable record contains an event's */

/* "modifiers" in 2 formatsÉ */
/* ¥ Macintosh Event: */

 short Num; /* integer (bit operations required) */
 struct { /* ¥ Modifier short parsed into components: */
 unsigned short bit15 :1; /* (reserved bit) */
 unsigned short bit14 :1; /* (reserved bit) */
 unsigned short bit13 :1; /* (reserved bit) */
 unsigned short ControlKey :1; /* Control key was down at event (=1) */
 unsigned short OptionKey :1; /* Option key was down at event (=1) */
 unsigned short CapsLock :1; /* Caps Lock was down at event (=1) */
 unsigned short ShiftKey :1; /* Shift key was down at event (=1) */
 unsigned short CmdKey :1; /* Command key was down at event (=1) */
 unsigned short MouseUp :1; /* Mouse button was UP at event (=1) */
 unsigned short bit6 :1; /* (reserved bit) */
 unsigned short bit5 :1; /* (reserved bit) */
 unsigned short bit4 :1; /* (reserved bit) */
 unsigned short bit3 :1; /* (reserved bit) */
 unsigned short bit2 :1; /* (reserved bit) */
 unsigned short bit1 :1; /* (reserved bit) */
 unsigned short bit0 :1; /* (reserved bit) */
 } Bits; /* */
 };
 typedef union TPModifiersRec TPModifiersRec;
/*= Event record's "button" info*/
 struct TPEventButtonRec {
 short Num; /*Button number */
 short Part; /*Button's part code (usually ignored) */
 Boolean DoubleClick; /*Did a double-click occur? */
 };
 typedef struct TPEventButtonRec TPEventButtonRec;
/*= Event record's "scroll bar" info*/
 struct TPEventScrollBarRec {
 short Num; /*Scroll bar number */
 short Part; /*Scroll bar's part */
 };
 typedef struct TPEventScrollBarRec TPEventScrollBarRec;
/*= Event record's "list box" info*/
 struct TPEventListBoxRec {
 short Num; /*List box number */
 Boolean DoubleClick; /*Did a double-click occur? */
 };
 typedef struct TPEventListBoxRec TPEventListBoxRec;
/*= Event record's "menu" info*/
 struct TPEventMenuRec {
 short Num; /*Menu number */
 short Item; /*Menu item number */
 short SubMenu; /*Submenu number (for pop-up menus) */
 };
 typedef struct TPEventMenuRec TPEventMenuRec;
/*= Event record's "key-stroke" info*/
 struct TPEventKeyRec {
 short Code; /*Logical key number of the typed key */
 char Chr; /*ASCII character generated by typed key */
 Byte Unused; /* (reserved byte) */
 };
 typedef struct TPEventKeyRec TPEventKeyRec;
/*= Event record's "mouse location and time" info for mouse-down and mouse-up events*/
 struct TPEventMousePointRec {
 Point Where; /*Event location in local co-ordinates */
 long When; /*Event time in clock ticks from boot (1/60 sec) */
 TPModifiersRec Modifiers; /*Event modifiers */
 };
 typedef struct TPEventMousePointRec TPEventMousePointRec;
/*= Event record's "mouse click/drag" info*/
 struct TPEventMouseRec {
 short What; /*What type of mouse event? (click or drag) */
 TPEventMousePointRec Down[3]; /*Where & when did the mouse-down occur */
 TPEventMousePointRec Up[3]; /*Where & when did the mouse-up occur */
 Point Where; /*Current mouse location in local co-ordinates */
 short DialogItem; /*Dialog item number "hit" with first mouse-down */
 };
 typedef struct TPEventMouseRec TPEventMouseRec;
/*= Event record's "Timer" info*/
 struct TPTimerRec {
 short Num; /*Timer number */
 long Count; /*Number of events reported */
 long NextTime; /*Time of next event */
 };
 typedef struct TPTimerRec TPTimerRec;
/*= EVENT record for Tools Plus*/
 struct TPEventRecord { /*Tools Plus Event recordÉ */
 short What; /*What type of event has occurred? */
 short Window; /*Window number of the event */
 TPEventButtonRec Button; /*Button number/double-click status */
 TPEventScrollBarRec ScrollBar; /*Scroll bar number/scroll bar part */
 short Field; /*Field number of event */
 TPEventListBoxRec ListBox; /*List box number/double-click status */
 TPEventMenuRec Menu; /*Menu number/menu item of an event */
 TPEventKeyRec Key; /*Logical key number & character of typed key */
 TPEventMouseRec Mouse; /*Click/drag info: [1..3] where & when */
 TPTimerRec Timer; /*Timer info */
 TPModifiersRec Modifiers; /*Modifier flags */
 EventRecord Event; /*Macintosh Toolbox Event (raw) */
 };
 typedef struct TPEventRecord TPEventRecord;
 typedef TPEventRecord *TPEventPointer; /*Pointer to a Event record */

Tools Plus

414

Pascal type
{= Event record's "event modifiers" info}
 TPModifiersRec = packed record {This variable record contains an event's }
 case integer of { "modifiers" in 2 formatsÉ }
 0: ({ ¥ Macintosh Event: }
 Num: integer { integer (bit operations required) }
); { }
 1: ({ ¥ Modifier integer parsed into components: }
 bit15, bit14, bit13: boolean; { (reserved bits) }
 ControlKey: boolean; { Control key was down at event (=1) }
 OptionKey: boolean; { Option key was down at event (=1) }
 CapsLock: boolean; { Caps Lock was down at event (=1) }
 ShiftKey: boolean; { Shift key was down at event (=1) }
 CmdKey: boolean; { Command key was down at event (=1) }
 MouseUp: boolean; { Mouse button was UP at event (=1) }
 bit6, bit5, bit4, bit3, bit2, bit1, { (reserved bits) }
 bit0: boolean { }
); { }
 end;
{= Event record's "button" info}
 TPEventButtonRec = record
 Num: integer; {Button number }
 Part: integer; {Button's part code (usually ignored) }
 DoubleClick: boolean {Did a double-click occur in the button? }
 end;
{= Event record's "scroll bar" info}
 TPEventScrollBarRec = record
 Num: integer; {Scroll bar number }
 Part: integer {Scroll bar's part }
 end;
{= Event record's "list box" info}
 TPEventListBoxRec = record
 Num: integer; {List box number }
 DoubleClick: boolean {Did a double-click occur in a line? }
 end;
{= Event record's "menu" info}
 TPEventMenuRec = record
 Num: integer; {Menu number }
 Item: integer; {Menu item number }
 SubMenu: integer {Submenu number (for pop-up menus) }
 end;
{= Event record's "key-stroke" info}
 TPEventKeyRec = packed record
 Code: integer; {Key number of key-stroke }
 Chr: char; {Character generated by key-stroke }
 Unused: byte { (reserved byte) }
 end;
{= Event record's "mouse location and time" info for mouse-down and mouse-up events}
 TPEventMousePointRec = record
 Where: point; {Event location in local co-ordinates }
 When: longint; {Event time in ticks from boot (1/60 sec) }
 Modifiers: TPModifiersRec {Event modifiers }
 end;
{= Event record's "mouse click/drag" info}
 TPEventMouseRec = record
 What: integer; {What type of mouse event (click or drag)? }
 Down: array[1..3] of TPEventMousePointRec; {Where & when did the mouse-down occur }
 Up: array[1..3] of TPEventMousePointRec; {Where & when did the mouse-up occur }
 Where: point; {Current mouse location in local co-ordinates }
 DialogItem: integer; {Dialog item number "hit" with first mouse-down }
 end;
{= Event record's "Timer" info}
 TPTimerRec = record
 Num: integer; {Timer number }
 Count: longint; {Number of events reported }
 NextTime: longint; {Time of next event }
 end;

{= EVENT record for "Tools Plus" }
 TPEventRecord = record
 What: integer; {What type of event has occurred? }
 Window: integer; {Window number of the event }
 Button: TPEventButtonRec; {Button number/double-click status }
 ScrollBar: TPEventScrollBarRec; {Scroll bar number/scroll bar part }
 Field: integer; {Field number of event }
 ListBox: TPEventListBoxRec; {List box number/double-click status }
 Menu: TPEventMenuRec; {Menu number/menu item of an event }
 Key: TPEventKeyRec; {Key number & character of key-stroke }
 Mouse: TPEventMouseRec; {Click/drag info: [1..3] where & when }
 Timer: TPTimerRec; {Timer info }
 Modifiers: TPModifiersRec; {Modifier flags }
 Event: EventRecord {Macintosh Toolbox Event (raw) }
 end;
 TPEventPointer = ^TPEventRecord; {Pointer to a Event record, in case you }

{ want to reduce global variable memory. }

16 Event Management

WaterÕs Edge Software 415

Event Record Fields
The event recordÕs structure is best explained by detailing each subrecord and field with a programmerÕs approach.
This explanation looks at the event record in detail, starting from the record level and ending with fields. Your
application should define a global variable or global pointer than lets it use the event record. In the following text, the
assumption is made that the global variable is called Event. If your application uses a pointer, replace Event with
Event^ in the text.

Note that all fields are not valid at the same time. For example, the window field does not contain a valid number when
a pull-down menu event is reported because menus work independently of windows. A ÒField to Event Cross
ReferenceÓ is included later in this section and it lists each field and the events that make use of it.

Event This variable is the entire tools plus event record, and is of TPEventRecord type
(it is a TPEventPointer type if your application uses a pointer to the record)

Event.What Event Code: Explains what type of event has occurred. This field is used by your application to
decide what action should be taken, and what other fields contain pertinent event
information.

Event.Window Window Number: Window number on which the event occurred.

Event.Button Button Record
Event.Button.Num Button Number: Button number that was clicked by the user.
Event.Button.Part Button Part: Part of the button that was clicked by the user (usually ignored).
Event.Button.DoubleClick ButtonÕs Double-Click Status: Was the button double-clicked?

Event.ScrollBar Scroll Bar Record
Event.ScrollBar.Num Scroll Bar Number: Scroll bar number that was clicked by the user. This does not include a

scroll bar that is part of a list box or editing field, as they work automatically.
Event.ScrollBar.Part Scroll Bar Part: Part of scroll bar that was clicked by user (up arrow, down arrow, Òpage

upÓ region, Òpage downÓ region, thumb)

Event.Field Editing Field Number: Editing field that was clicked by the user.

Event.ListBox List Box Record
Event.ListBox.Num List Box Number: List box number that was clicked by the user.
Event.ListBox.DoubleClick List BoxÕs Double-Click Status: Was a line in the list box double-clicked?

Event.Menu Menu Record
Event.Menu.Num Menu Number: Menu number that was selected by the user. This could be a pull-down

menu, a hierarchical menu, or a pop-up menu.
Event.Menu.Item Menu Item: Item number that was selected by the user.
Event.Menu.SubMenu Submenu Number: Hierarchical menu number selected from a pop-up menu.

Event.Key Key Record
Event.Key.Code Key Number: Number of the key that was pressed, released, or is auto-repeating. This key

code is a key number that is not affected by the Caps Lock, Shift, Option, Command and
Control modifiers.

Event.Key.Chr Key Character: Character resulting from a key that was pressed, released, or is auto-
repeating. This character is altered by the Caps Lock, Shift, Option, Command and
Control modifiers.

Event.Mouse Mouse Activity Record
Event.Mouse.What Mouse Event Code: Type of mouse event has occurred (i.e., single, double, triple-click,

dragging, etc.). This field is used by your application to decide what action should be
taken, and which other fields in the mouse record contain pertinent information.

Event.Mouse.Down Mouse-Down Array Record: The elements of the array contain the first, second and third
mouse-down events of a single, double, or triple-click, or drag.

Event.Mouse.Down[1].Where Mouse Down Location: Location of 1st mouse-down in a single, double, or triple-click,
or drag. WindowÕs local co-ordinates are used.

Event.Mouse.Down[1].When Mouse Down Time: Time of 1st mouse-down. Number of ÒticksÓ since startup.
Event.Mouse.Down[1].Modifiers Mouse Down Modifier Record: Event modifiers at the time of the 1st mouse-down

event. See the note on modifiers below.
Event.Mouse.Down[2]É Mouse-Down Array Record: Same fields, but for 2nd mouse-down in a double, or

triple-click, or drag.

Tools Plus

416

Event.Mouse.Down[3]É Mouse-Down Array Record: Same fields, but for 3rd mouse-down in a triple-click, or
drag.

Event.Mouse.Up Mouse-Up Array Record: The elements of the array contain the first, second and third
mouse-up events of a single, double, or triple-click, or drag.

Event.Mouse.Up[1].Where Mouse Up Location: Location of 1st mouse-up in a single, double, or triple-click, or
drag. WindowÕs local co-ordinates are used.

Event.Mouse.Up[1].When Mouse Up Time: Time of 1st mouse-up. Number of ÒticksÓ since startup.
Event.Mouse.Up[1].Modifiers Mouse Up Modifier Record: Event modifiers at the time of the 1st mouse-up event.

See the note on modifiers below.
Event.Mouse.Up[2]É Mouse-Up Array Record: Same fields, but for 2nd mouse-up in a double, or triple-

click, or drag.
Event.Mouse.Up[3]É Mouse-Up Array Record: Same fields, but for 3rd mouse-up in a triple-click, or drag.
Event.Mouse.Where Mouse Location: Current mouse location in windowÕs local co-ordinates.
Event.Mouse.DialogItem Dialog Item Number: Item number that was ÒhitÓ by the first mouse-down event in a

window that has a dialog item list.

Event.Timer Timer Record
Event.Timer.Num Timer Number: Timer number that generated the Timer event.
Event.Timer.Count TimerÕs Event Count: Sequential event counter (i.e., the number of times this Timer

reported an event).
Event.Timer.NextTime Next time Timer will report an event: Time in ticks from boot time when this Timer will

report its next event.

Event.Modifiers Modifier Record: Event modifiers at the time when the event occurred. See the note on
modifiers below.

Event.Event The Event ManagerÕs Event Record: A completely unaltered event record as retrieved from
the Event Manager. This is used for applications that want to process their own custom
events or custom controls.

- Note: For C programmersÉ The event recordÕs arrays are documented as using Pascal nomenclature (the elements
are numbered 1, 2 and 3). In C, the same arrayÕs elements are numbered 0, 1 and 2 (they start at zero). In this
manual, when C programmers read:

Event.Mouse.Down[1].Where
it indicates the first element of the array, which translates to the following C source code:

Event.Mouse.Down[0].Where

Event Modifiers
Tools PlusÕs event modifier field provides information identical to that obtained directly from the MacintoshÕs Event
Manager. To reiterate, the Modifiers field of the event record contains information about the position of the Caps
Lock, Shift, Option, Command and Control keys at the time of the event, as well as the position of the mouse button.
This can be used, for example, to detect if the Command key was down when a key was typed (i.e., a 1-key
sequence). In effect, your application could respond to command key sequences that are not menu equivalents by using
this method. Your application could also place special significance on Option-Clicks. The most common use, however,
is Shift-Tab that indicates the user wants to tab to the previous field.

In the MacintoshÕs Event Manager, the Modifiers field of the event record is an integer. Several of the bits indicate the
state of the various modifiers as detailed in Inside Macintosh. Tools Plus goes a step further and automatically decodes
individual modifiers in the field. This is handled through a union in C, and a variant record in Pascal.

16 Event Management

WaterÕs Edge Software 417

C Event Modifiers Using C
When programming in C, Tools PlusÕs Modifiers structure is a union that lets you access both the integer (16-bit short)
obtained from the MacintoshÕs Event Manager, as well as the individual flags (bits) within the integer. Tools PlusÕs
Modifiers structure looks like this:

 union TPModifiersRec { /*This variable record contains an event's */
/* "modifiers" in 2 formatsÉ */
/* ¥ Macintosh Event: */

 short Num; /* integer (bit operations required) */
 struct { /* ¥ Modifier short parsed into components: */
 unsigned short bit15 :1; /* (reserved bit) */
 unsigned short bit14 :1; /* (reserved bit) */
 unsigned short bit13 :1; /* (reserved bit) */
 unsigned short ControlKey :1; /* Control key was down at event (=1) */
 unsigned short OptionKey :1; /* Option key was down at event (=1) */
 unsigned short CapsLock :1; /* Caps Lock was down at event (=1) */
 unsigned short ShiftKey :1; /* Shift key was down at event (=1) */
 unsigned short CmdKey :1; /* Command key was down at event (=1) */
 unsigned short MouseUp :1; /* Mouse button was UP at event (=1) */
 unsigned short bit6 :1; /* (reserved bit) */
 unsigned short bit5 :1; /* (reserved bit) */
 unsigned short bit4 :1; /* (reserved bit) */
 unsigned short bit3 :1; /* (reserved bit) */
 unsigned short bit2 :1; /* (reserved bit) */
 unsigned short bit1 :1; /* (reserved bit) */
 unsigned short bit0 :1; /* (reserved bit) */
 } Bits; /* */
 };

Whenever you access any of the individual modifier flags, you reference the ÒbitsÓ part of the structure. For example,
if you want to check if the Command key was down and the Option key was up when a key was typed, you can use an
expression such as this:

if ((Event.Modifiers.Bits.CmdKey) && (!Event.Modifiers.Bits.OptionKey))

In contrast, the Modifiers field provided by the MacintoshÕs Event Manager requires bitwise ÒAndÓ operations to
determine if a bit is set or not, thereby resulting in source code that looks more cryptic. The following line duplicates
the previous exampleÕs functionality using bitwise ÒAndÓ operations instead of the available bits. Note that we are
using the toolboxÕs event record, theEvent, in place of Tools PlusÕs event record.

if ((theEvent.modifiers & cmdKey) && !(theEvent.modifiers & optionKey))

When you are working with the Modifiers structure, you may perform operations exclusively on the integer variant of
the structure, on the bits variant, or if you choose, you can mix and match as needed. Several constants representing
the Òbit-equivalentsÓ for the various flags contained in the Modifiers integer are available as follows:

/*Modifier masks */
#define btnState 0x0080 /*set to 1 if mouse button is up */
#define cmdKey 0x0100 /*set to 1 if Command key is down */
#define shiftKey 0x0200 /*set to 1 if Shift key is down */
#define alphaLock 0x0400 /*set to 1 if the Caps Lock key is down */
#define optionKey 0x0800 /*set to 1 if the option key is down */
#define controlKey 0x1000 /*set to 1 if the control key is down */

Tools Plus

418

Pascal Event Modifiers Using Pascal
When programming in Pascal, Tools PlusÕs Modifiers structure is a variant record that lets you access both the integer
(16 bits) obtained from the MacintoshÕs Event Manager, as well as the individual flags (bits) within the integer. Tools
PlusÕs Modifiers record looks like this:

 TPModifiersRec = packed record {This variable record contains an event's }
 case integer of { "modifiers" in 2 formatsÉ }
 0: ({ ¥ Macintosh Event: }
 Num: integer { integer (bit operations required) }
); { }
 1: ({ ¥ Modifier integer parsed into components: }
 bit15, bit14, bit13: boolean; { (reserved bits) }
 ControlKey: boolean; { Control key was down at event (=1) }
 OptionKey: boolean; { Option key was down at event (=1) }
 CapsLock: boolean; { Caps Lock was down at event (=1) }
 ShiftKey: boolean; { Shift key was down at event (=1) }
 CmdKey: boolean; { Command key was down at event (=1) }
 MouseUp: boolean; { Mouse button was UP at event (=1) }
 bit6, bit5, bit4, bit3, bit2, bit1, { (reserved bits) }
 bit0: boolean { }
); { }
 end;

You use each field in the record as an individual modifier variable. For example, if you want to check if the Command
key was down and the Option key was up when a key was typed, you can use an expression such as this:

if Event.Modifiers.CmdKey and not Event.Modifiers.OptionKey then

In contrast, the Modifiers field provided by the MacintoshÕs Event Manager requires bitwise ÒAndÓ operations to
determine if a bit is set or not, thereby resulting in source code that looks more cryptic. The following line duplicates
the previous exampleÕs functionality using bitwise ÒAndÓ operations instead of the available bits. Note that we are
using the toolboxÕs event record, theEvent, in place of Tools PlusÕs event record.

if (BitAnd(theEvent.modifiers,cmdKey) <> 0) and (BitAnd(theEvent.modifiers,optionKey) = 0) then

When you are working with the Modifiers record, you may perform operations exclusively on the integer variant of the
record, on the bits variant, or if you choose, you can mix and match as needed. Several constants representing the Òbit-
equivalentsÓ for the various flags contained in the Modifiers integer are available as follows:

CONST {Modifier masks }
btnState = $0080; {set to 1 if mouse button is up }
cmdKey = $0100; {set to 1 if Command key is down }
shiftKey = $0200; {set to 1 if Shift key is down }
alphaLock = $0400; {set to 1 if the Caps Lock key is down }
optionKey = $0800; {set to 1 if the option key is down }
controlKey = $1000; {set to 1 if the control key is down }

Background Processing
Applications written with Tools Plus can easily be made to do Òbackground processing,Ó that is, performing an on-
going process while waiting for events. An example of this is repaginating a word-processing document or searching a
database for specific records.

When Tools Plus calls your event handler routine and the global event recordÕs Event.What field has a value of zero
(doNothing), it indicates that no event has occurred. This is commonly called a Ònull event.Ó Usually, your application
wonÕt do anything when it receives a null event. If your application does background processing, it should do its work
only when it receives a doNothing event. A single cycle of your applicationÕs background process should be rather
short, ideally about 1/60 of a second or less. A background process that takes 1/20 of a second (about 3 clock ticks) is
on the threshold of human perception. Any longer and other applications may run sluggishly or in spurts and jumps.

When no events are available for your application, Tools Plus calls your event handler routine and reports a doNothing
event. This can consume a fair amount of processor capacity just to tell your application that nothing has happened. An
average Macintosh is capable of getting several hundred doNothing events per second, and a Power Macintosh is
capable of over one thousand per second. To reduce or eliminate this waste of processing power, your application can
schedule how often it receives doNothing events by using the SetNullTime routine.

16 Event Management

WaterÕs Edge Software 419

If your applicationÉ
¥ requires significant processing power for a background process
¥ requires uninterrupted execution for its background process
¥ has multiple background processes running simultaneously,

consider writing the background process as a thread using the Thread Manager, or as a Òserver taskÓ under Mac OS 8
or later. This is documented in Inside Macintosh.

There are situations when your application simply cannot avoid having a lengthy process running, such as when your
applicationÕs event handler routine calls a printing routine. During the lengthy printing process, it is necessary to give
other applications some processing time as well as to process events in your own application, such as the user typing
1-. to halt the lengthy process. In such situations, your application should periodically call the
Process1EventWhileBusy routine. The Process1EventWhileBusy routine temporarily lets Tools Plus check for an
event, process it, give some processing time to other application, then return control to your application.

If your application needs to do background processing, and it needs more precise control over the frequency with
which the background process is called, see ÒTimer EventsÓ later in this chapter. The Tools Plus Timer lets you easily
set periodic or timed tasks.

The Event Handler Routine
Traditional Macintosh applications have an Òevent loopÓ where the application repeatedly asks what has happened
(gets an event), responds to the event (translates and processes it) then gets another event. This logic can become rather
difficult to manage in more complex applications that need multiple event loops, or those that need to process events
from within a routine that is already responding to an event, such as a printing routine or sorting routine.

In Tools Plus, you write an event handler routine for your application. Tools Plus calls your routine to respond to high-
level Tools Plus events as well as to some toolbox events that cannot be processed by Tools Plus. Your event handler
routine has the following C/C++ prototype or Pascal interface:

C pascal void MyEventHandler (Ptr CustomDataPtr)
{
}

Pascal procedure MyEventHandler (CustomDataPtr: Ptr);
begin
end;

CustomDataPtr is a pointer to your own custom data structure, just in case you want to write your application to call
its own event handler. Most applications will ignore this parameter. The CustomDataPtr pointer is always set to nil
when Tools Plus calls your event handler routine. Inside your event handler routine, all you need is a C/C++ switch
statement or a Pascal case statement to respond to your applicationÕs global event record. The way you write your
event handler is very much a matter of personal taste, so there isnÕt a ÒstandardÓ way of writing an event handler. The
simplest event handler responds to only one window. Here is an example:

C pascal void MainEventHandler (Ptr CustomDataPtr)
 {
 switch (Event.What) /*Respond to each type of eventÉ */
 {
 case doActivate: /*User wants to activate the windowÉ */
 MyActivateRoutine();
 break;
 case doRefresh: /*Window needs to be refreshedÉ */
 MyRefreshRoutine();
 break;
 case doGoAway: /*User clicked window's close box */
 MyCloseRoutine();
 break;
 case doButton: /*User clicked a buttonÉ */
 switch (Event.Button.Num) /*Respond to specific type of buttonÉ */
 {
 case kOKbutton: /*User clicked OK buttonÉ */
 myOKroutine(); /* */
 break;
 case kCancelButton: /*User clicked Cancel button */

Tools Plus

420

 myCancelRoutine(); /* */
 break;
 /*cases for other buttons*/
 }
 break;
 case doMenu: /*User selected a menuÉ */
 MyMenuRoutine();
 break;
 case doNothing: /*No event available. If your app does any */
 MyBackgroundRoutine(); /* background processing, execute one Òcycle.Ó */
 break;

 /*cases for other events*/
 default: /*Ignore events that are not listed in the cases */
 break;
 }
 }

Pascal procedure MainEventHandler (CustomDataPtr: Ptr);
 begin
 case Event.What of {Respond to each type of eventÉ }
 doActivate: {User wants to activate the windowÉ }
 MyActivateRoutine;
 doRefresh: {Window needs to be refreshedÉ }
 MyRefreshRoutine;
 doGoAway: {User clicked window's close box }
 MyCloseRoutine;
 doButton: {User clicked a buttonÉ }
 case Event.Button.Num of {Respond to specific type of buttonÉ }
 kOKbutton: {User clicked OK buttonÉ }
 myOKroutine; { }
 kCancelButton: {User clicked Cancel button }
 myCancelRoutine; { }
 {cases for other buttons}
 end;
 doMenu: {User selected a menuÉ }
 MyMenuRoutine;
 doNothing: {No event available. If your app does any }
 MyBackgroundRoutine; { background processing, execute one Òcycle.Ó }

 {cases for other events}
 otherwise {Ignore events that are not listed in the cases }
 end;
 end;

As you can see above, your application does not have to do much more than respond to a specific occurrence. When
you are writing your event handler, you can pose the question: what does my application do when the user interacts
with this item? See the tutorials for various examples of event handler code where the application responds to clicks in
buttons, interaction with list boxes, and so on. When Tools Plus calls your event handler routine and the event pertains
to a specific window (Event.Window is not zero), Tools Plus makes the target window the current window for your
convenience.

Ideally, your event handler should execute its code rather quickly, especially in response to doNothing events. An ideal
application finishes its event handler code is less than 1/60 of a second, or one tick. If your event handler takes a while
to finish, your application will be perceived as a ÒCPU hogÓ and make other applications run sluggishly or in spurts
and jumps. The Process1EventWhileBusy routine alleviates this problem during lengthy operations.

The Window Event Handler Routine
So far, we have discussed how to use a single event handler routine to handle events for your entire application. Your
application installs its main event handler when it initializes Tools Plus (InitToolsPlus routine). When your application
becomes more complex and has multiple windows, you will likely want to have a separate event handler routine that is
customized for each window. This makes for small, tidy, and highly specialized window event handler routines. Tools
Plus lets you install window event handler routines using the NewEventHandlerProc and SetWindowEventHandler
routines.

Each window can have its own window event handler routine, share a common event handler with another window, or
have no window event handler routine in which case its events are passed to the applicationÕs main event handler. The

16 Event Management

WaterÕs Edge Software 421

logic for determining which event handler routine is called by Tools Plus is simple:
¥ When the event does not pertain to a window (Event.Window is zero), your applicationÕs main event

handler is called.
¥ When the event pertains to a specific window (Event.Window is not zero), and that window has an event

handler installed, that windowÕs event handler routine is called.
¥ When the event pertains to a specific window (Event.Window is not zero), and that window does not have

an event handler installed, your applicationÕs main event handler is called.

See the end of this chapter for a list of all events that pertain to windows. That way, youÕll know which events are sent
to window event handlers, and which events are sent to the main (default) event handler.

Modal Event Handling
Your application handles events for modal windows in exactly the same manner as for modeless windows, and that by
responding to those events in either your applicationÕs main event handler routine, or in a window event handler
routine. Some developers who have come from traditional Macintosh toolbox development are used to calling a
toolbox routine that opens a modal dialog, calls the appropriate event processing routines, and continues only when the
user dismisses the modal dialog. A similar effect can be accomplished as follows:

¥ Open the modal dialog.
¥ Install a window event handler for the modal dialog.
¥ Your application resumes with the understanding that the dialog has been closed and all appropriate actions

have been taken.

With the strategy outlined above, you write your modal dialogÕs window event handler to carry out the appropriate
actions in response to the userÕs interaction rather than having the caller carry out those actions. Your modal dialogÕs
window event handler also closes the dialog when it is done. For example, you may have a modal dialog whose actions
include a ÒCancelÓ button and a ÒSave DataÓ button. Your modal dialogÕs window event handler would respond to
these buttons as follows:

¥ Cancel button: Close the modal dialog window.
¥ Save Data button: Save the data, and if no errors occurred, close the modal dialog window.

Some developers much prefer to write their code as a sequence of steps knowing that the following step will be
executed only when the current step is completed, and that the Òcurrent stepÓ could be the processing of a modal
dialog. This coding style is consistent with traditional Macintosh coding in which the code calls a toolbox modal
dialog routine that returns control to the caller only when the user dismisses the dialog. To do this, you can write your
code as follows:

Open the modal dialog (letÕs say it is window #15 in this example)
Install a window event handler for the modal dialog (this step is optional)
while WindowIsOpen(15) do

Process1EventWhileBusy({true or false})
Execute actions after the modal dialog is dismissed

In the pseudo code above, your event handler routine populates global variables based on the userÕs interactions, such
as Òwhich button was clicked.Ó The event handler routine also closes the dialog when it is done, thereby signaling to
WindowIsOpen(15) that it can continue to the next step.

Filtering Events (the Event Filter Routine)
By default, Tools Plus gets an event from the MacintoshÕs Event Manager, does all its internal processing, then only if
it is necessary, reports the event to your application by calling your event handler routine. Advanced developers may
want to have their application do some work before Tools Plus processes the event. An example is an application that
has numerous menus whose items are constantly enabled and disabled as the user clicks on objects in a window. The
developer, wanting to get the absolute maximum performance from his application, does not want to enable and
disable sixty menu items in response to each mouse click in the window. Instead, the developer chooses to set boolean
flags that correspond to each affected menu item. When the user clicks in the menu bar, the application correctly
enables and disabled the sixty menu items before Tools Plus processes the mouse-down event and shows the user the
correctly enabled or disabled menu items. In another example, the programmer may want to convert all straight

Tools Plus

422

apostrophes (') to curly ones (Õ) as the user types.

Your application can do this if you write an event filter. An event filter lets your application inspect each toolbox
event, optionally modify it, and optionally send it to Tools Plus for processing, or discard the event. If you are writing
a plug-in where your plug-in is the master, this is where you can send events such as window updating events back to
your host application instead of having them processed by Tools Plus. Your application installs its event filter when it
initializes Tools Plus (InitToolsPlus routine). An event filter routine is written as follows:

C pascal Boolean MyEventFilter (EventRecord *theEvent)
 {
 /* Inspect and possibly modify the toolbox event record */

 return(1); /*Should Tools Plus process the event? */
 }

Pascal function MyEventFilter (var theEvent: EventRecord): Boolean;
 begin
 {Inspect and possibly modify the toolbox event record}

 MyEventFilter := true; {Should Tools Plus process the event? }
 end;

If your event filter routine wants to pass the toolbox event to Tools Plus for processing, your event filter routine should
return with a value of true, or 1 in C/C++. Returning with a value of false, or 0 in C/C++, indicates that Tools Plus
should ignore the toolbox event because your event filter routine has either processed the event itself, or it wants to
filter out that event.

You should be careful of creating multiply re-entrant code or recursive code when writing your event filter routine. If
your event filter opens a Dynamic Alert, then you must realize that the event being analyzed by your event filter
routine will not be reported to Tools Plus until after the Dynamic Alert is dismissed by the user. In essence, the
Dynamic Alert is holding up the event from being reported. Furthermore, your event filter routine will be called while
the Dynamic Alert is displayed, meaning that your event filter routine can be entered multiple times before exiting
(i.e., it is multiply re-entrant). You need to account for this in some way.

You also need to be aware of doing any other event processing within the event filter routine, such as calling Tools
PlusÕs Process1EventWhileBusy routine or ProcessToolboxEvent routine, because they too will call your event filter
routine to filter a toolbox event before passing it to Tools Plus. Similarly to the condition that was described earlier,
Process1EventWhileBusy and ProcessToolboxEvent will delay the reporting of the event until after these routines
have finished executing.

The easiest ways to avoid potential pitfalls when writing your event filter routine are as follows:
¥ Avoid calling Tools PlusÕs AlertBox, AlertBox3, Process1EventWhileBusy and ProcessToolboxEvent

routine.
¥ Avoid opening ÒSave AsÉÓ or ÒOpenÉÓ dialogs

In most cases, you can circumvent the above actions by setting a global flag within the event filter routine, then
responding to that flag in your event handler routine.

Serial Events
Tools Plus does much more than just translating a toolbox event to a Tools Plus event. It can generate a number of
Tools Plus events from a single toolbox event. This series of events is called Òserial events,Ó and it represents some
sort of sustained activity. A simple example of this is the toolboxÕs update event that informs an ordinary Macintosh
application that it needs to update a window. When Tools Plus detects a toolbox update event, it reports a
doPreRefresh event to your event handler to tell it to draw any background elements. Tools Plus then refreshes its own
elements such as buttons, scroll bars and list boxes, then it reports a doRefresh event to let your application refresh any
elements after it has refreshed its own.

Another example of serial events can be seen when the user holds the mouse down in the line down region of a scroll
bar. Event though the MacintoshÕs toolbox reports only one mouse-down event, Tools Plus translates this into a stream
of doScrollBar events for as long as the user holds the mouse button down and keeps the mouse in the line down
region of the scroll bar. Picture buttons can also behave similarly.

16 Event Management

WaterÕs Edge Software 423

Your application can determine if Tools Plus is generating serial events by calling GetTPSerialEvent which reports the
type of serial event being generated, such as doScrollBar. Your application can also terminate serial events by calling
KillTPSerialEvent. In the case of scroll bars and picture buttons generating serial events, calling KillTPSerialEvent has
the equivalent effect of the user releasing the mouse button. Most applications will never need to use these two
routines.

Tools Plus Event Codes
Each event reported by Tools Plus is identified by the first field of the global event record, Event.What. The
Event.What field contains an event code that tells your application what to do with the event recordÕs information.
Constants are used to identify event codes as follows:

CONST {Tools Plus event codes }
doNothing = 0; {No event }
doChgWindow = 1; {User clicked in an inactive window }
doRefresh = 2; {A window has to be refreshed }
doGoAway = 3; {The close box was clicked }
doButton = 4; {Button was clicked }
doMenu = 5; {Menu was selected }
doKeyDown = 6; {A keyboard key was pressed }
doAutoKey = 7; {A keyboard key is auto-repeating }
doKeyUp = 8; {A keyboard key was released }
doClickToFocus = 9; {Mouse clicked in inactive editing field }
doScrollBar = 10; {Mouse clicked in a scroll bar }
doListBox = 11; {Some sort of List Box activity }
doClick = 12; {Mouse click/drag [1..3] }
doPopUpMenu = 13; {Pop-up menu was selected }
doPictButton = 14; {Picture button activity }

doClickControl = 101; {Mouse clicked in a custom control }
doManualEvent = 102; {Manually processed events }
doMoveWindow = 103; {A window was moved by user }
doGrowWindow = 104; {A window was "grown" by user }
doClickDesk = 105; {Mouse clicked in the desk top }
doZoomWindow = 106; {Zoom box was clicked by user }
doSuspend = 107; {Application suspended (in background) }
doResume = 108; {Application resumed (now active appl.) }
doChgInField = 109; {Contents of active edit field was changed }
doPreRefresh = 110; {A window may be refreshed before Tools }

{ Plus objects are drawn) }
doActivate = 111; {A window was activated }
doDeactivate = 112; {A window was deactivated }
doMoveCursor = 113; {Cursor has entered a new Cursor Zone }
doKeyInControl = 114; {A keystroke was applied to an Appearance }

{ Manager control }
doChgMonitorSettings = 115; {Monitor settings were changed }
doTimer = 120; {Timer event }

{Apple Event from Finder or other apps: }
doOpenApplication = 200; { ¥ Your app was launched with no open docs }
doOpenDocuments = 201; { ¥ Your app should open 1 or more docs }
doPrintDocuments = 202; { ¥ Your app should print 1 or more docs }
doQuitApplication = 203; { ¥ Your app should quit }

Event codes in the 100Õs will likely be ignored by most applications. Event codes in the 200Õs result from Tools Plus
reporting an Apple Event to your application. If you install your own event handler for a specific Apple Event, the
corresponding Tools Plus event will not be reported to your main event handler. All events are detailed later in this
chapter, telling you how to respond to the event and which fields in the event record contain valid information.

Tools Plus

424

Translating Toolbox events to Tools Plus events
Internally, Tools Plus gets low level events from the toolboxÕs Event Manager and translates them into high-level
Tools Plus events that your application can use right away. This may seem like a simple translation on the surface,
however, the recognition and processing of internal events is quite an extensive duty for Tools Plus. The table below
describes this formidable task by listing the Event ManagerÕs event, the internal processes that follow, and the Tools
Plus event that finally reaches your application. Keep in mind that that some toolbox events are processed internally by
Tools Plus and are never reported to your application, and your application may choose to ignore some events that are
reported.

Toolbox Event Conditions / Tools PlusÕs Internal Processing Tools Plus Event
nullEvent none doNothing

doTimer
mouseDown If the watch cursor is displayed then the event is ignored (clicks in push buttons are

optionally exempted)
Outside a modal window (beep)
In an inactive window that belongs to your application (does not apply to the tool bar or
floating palettes which are always active)

doChgWindow

In a floating palette that is not the frontmost palette, and is partially obscured by
another palette. After refreshing the window, the mouse-down event is processed.

doPreRefresh
doRefresh

In a floating paletteÕs title bar
In an inactive window that belongs to another application or desk accessory doSuspend
In Apple menu, except for ÒAboutÉÓ item (selected item is opened or activated)
In Apple menuÕs ÒAboutÉÓ item doMenu
Edit menuÕs Undo/Redo, Cut, Paste, or Clear item is selected for an active editing field
in your application. Operation is done automatically. Your application is informed of
the change.

doChgInField

Edit menuÕs Copy item is selected for an active editing field in your application
(operation is done automatically)
Edit menuÕs Undo, Cut, Copy, Paste, or Clear item is selected for an active editing field
in your application (Operation is done automatically)
In other (pull-down or hierarchical) menu selection doMenu
In a pop-up menu doPopUpMenu
In an active desk accessory or other application (clicking, dragging, or closing, etc.)
Selecting or deselecting lines in a list box doListBox
In a button in the active window (only if mouse was released inside the buttonÕs area) doButton
In an Appearance Manager-savvy control in the active window, providing that the
control only wants a mouse click to indicate that it assumed the keyboard focus, and the
control is not tracked (such as the Clock) control.
Picture button in the active window: buttons with the Òrepeating eventsÓ option turned
on produce events while the picture button is held down, as long as the button does not
reach the end of its range. Those without the Òrepeating eventsÓ option produce an
event only if mouse was released inside the buttonÕs area.

doPictButton

Scroll bar in the active window (while in up arrow, down arrow, Page up region, or
Page Down region, or if thumb was moved)

doScrollBar

Active editing field, when setting a new insertion point or selection range (Edit menuÕs
items are enabled/ disabled according to the insertion point or selection)
Inactive editing field or an item that wants the keyboard focus doClickToFocus
Single-click, double-click, triple-click, and/or dragging doClick
Active window is dragged by user doMoveWindow
Active windowÕs size is changed by using the size box doGrowWindow
Active windowÕs close box was clicked doGoAway
Active windowÕs Òzoom boxÓ was clicked doZoomWindow
Custom control doClickControl
On the desk top doClickDesk

mouseUp End of a single-click, double-click, triple-click, and/or dragging doClick
All other mouse-up events doNothing

16 Event Management

WaterÕs Edge Software 425

Toolbox Event Conditions / Tools PlusÕs Internal Processing Tools Plus Event
keyDown
autoKey

If the watch cursor is displayed then the event is ignored (except for 1-. which halts
lengthy processes)
Command key invoking Edit menuÕs Undo/Redo, Cut, or Paste item in an active field
in your application. Operation is done automatically. Your application is informed of
the change.

doChgInField

Command key invoking Edit menuÕs Copy item is selected for an active editing field in
your application (operation is done automatically)
Command key invoking Edit menuÕs Undo, Cut, Copy, or Paste item in an active desk
accessory under Finder (the editing operation is done automatically)
Command key invoking a menu doMenu
Command key not invoking a menu doKeyDown or

doAutoKey
Enter or Return key invoking a default push-button doButton
Keystroke applied to an Appearance Manager list box resulting a in different line being
selected

doListBox

Keystroke applied to an Appearance Manager-savvy control such as the clock (the
affected control has the keyboard focus)

doKeyInControl

Active editing field processing keys (Edit menuÕs items are enabled/disabled according
to the selection in the editing field. Undo item is changed according to fieldÕs contents,
such as ÒUndo TypingÓ)

doChgInField

Other key strokes doKeyDown or
doAutoKey

keyUp If the watch cursor is displayed then the event is ignored
Active editing field ignores key up events
Other key-ups, providing that SetEventMask has not masked out key up events doKeyUp

updateEvt An updateEvt for a Tools Plus window is reported as a doPreRefresh followed by a
doRefresh event.

doPreRefresh
doRefresh

If a tool bar is open (though possibly hidden), and the user changes the main monitorÕs
resolution or size, Tools Plus automatically resizes the tool bar to the width of the main
monitor, and generates a doGrowWindow event for the tool bar.

doGrowWindow

If a tool bar is open (though possibly hidden), and the user moves the menu bar to
another monitor thereby changing its co-ordinates, Tools Plus generates a
doMoveWindow event for the tool bar.

doMoveWindow

An updateEvt for a window or dialog created by toolbox routines (not by Tools Plus) is
reported as a doManual event. You will only need to take this into account if you create
true dialogs such as custom ÒOpenÉÓ or ÒSave AsÉÓ dialogs, or if you create a plug-
in. You can think of this as telling your application or plug-in that a foreign window
need to be updated

doManualEvent

activateEvt When a window is deactivated, the following happens automatically:
[1] text in the active editing field is deselected and the insertion point is removed
[2] list box lines are deselected
[3] scroll bars are displayed using a ÒframeÓ for the control (a hollow control)
[4] buttons and picture buttons are disabled
[5] pop-up menus are disabled
[6] if the window has a Ògrow box,Ó it is hidden.

doDeactivate

When a window is activated, the following happens automatically (objects are restored
to their original state that existed prior to deactivating the window):
[1] if the window needs to be refreshed, a doPreRefresh event is generated
[2] text in the active editing field is selected or the insertion point is restored
[3] list box lines are restored to their normal state
[4] scroll bars are restored to their normal state
[5] buttons and picture buttons are restored to their normal state
[6] pop-up menus are restored to their normal state
[7] if the window has a Ògrow box,Ó it is displayed
[8[Tools PlusÕs objects are refreshed
[9] a doRefresh event is generated

doActivate
(doPreRefresh)
(doRefresh)

Tools Plus

426

Toolbox Event Conditions / Tools PlusÕs Internal Processing Tools Plus Event
diskEvt
networkEvt
driverEvt
app1Evt
app2Evt
app3Evt

no internal processing doManualEvent

kHighLevel-
 Event

No internal processing occurs if any of the following are true:
¥ Your applicationÕs SIZE resource is set to not respond to High Level events, and it

posted a High Level event.
¥ Your application is running under System 6 or older, and it posted a High Level

event.
¥ Your applicationÕs SIZE resource is set to respond to High Level events, it is

running under System 7 or later, but you have not defined an Apple Event handler
for a specific Apple Event, and the event is not one of the four core events for
which Tools Plus has a default event handler (i.e., Òopen applicationÓ, Òopen
documentsÓ, Òprint documentsÓ, and Òquit applicationÓ)

doManualEvent

An Apple Event of class ÔaevtÕ and ID ÔoappÕ (the core Òopen applicationÓ event) is
detected, and you have not overridden this Apple Event with your own Event Handler
routine.

doOpen-
 Application

An Apple Event of class ÔaevtÕ and ID ÔodocÕ (the core Òopen documentsÓ event) is
detected, and you have not overridden this Apple Event with your own Event Handler
routine.

doOpen-
 Documents

An Apple Event of class ÔaevtÕ and ID ÔpdocÕ (the core Òprint documentsÓ event) is
detected, and you have not overridden this Apple Event with your own Event Handler
routine.

doPrint-
 Documents

An Apple Event of class ÔaevtÕ and ID ÔquitÕ (the core Òquit applicationÓ event) is
detected, and you have not overridden this Apple Event with your own Event Handler
routine.

doQuit-
 Application

If your applicationÕs SIZE resource is set to not respond to Suspend/Resume events,
then no internal processing occurs.

doManualEvent

If your applicationÕs SIZE resource is set to respond to Suspend/Resume events, then
these event are reported to your application. In System 7 (or later), the osEvt
representing the Òmouse movedÓ event.

doSuspend or
doResume

When your application resumes: if a tool bar is open (though possibly hidden), and the
user changes the main monitorÕs resolution or size, Tools Plus automatically resizes the
tool bar to the width of the main monitor, and generates a doGrowWindow event for
the tool bar.

doGrowWindow

When your application resumes: if a tool bar is open (though possibly hidden), and the
user moves the menu bar to another monitor thereby changing its co-ordinates, Tools
Plus generates a doMoveWindow event for the tool bar.

doMoveWindow

In System 7 (or later) the osEvt also carries the Òmouse movedÓ status, thereby
becoming a Òmouse moved event.Ó Tools Plus uses these events to automatically
change the cursorÕs shape.

Automatic Apple Event Support
By default, Tools Plus provides automatic support for all four required Apple Event as listed below:

Class ID Action
aevt oapp Open Application: Tools Plus reports a doOpenApplication event to your main event handler
aevt odoc Open Documents: Tools Plus reports a doOpenDocuments event to your main event handler
aevt pdoc Print Documents: Tools Plus reports a doPrintDocuments event to your main event handler
aevt quit Quit Application: Tools Plus reports a doQuitApplication event to your main event handler

An application that is written with Tools Plus does not have to be Apple Event aware, but we strongly recommend that
you make it so, especially if it will run on Mac OS 8.5 or later. Users of Mac OS 8.5 and later can dynamically change
the system font, small system font, and views font, and if you enable Apple Event processing, Tools Plus can
automatically correct user interface discrepancies due to these changes.

16 Event Management

WaterÕs Edge Software 427

To make your application Apple Event aware, use your development environment (except THINK Pascal users who
must use a resource editor) to access your projectÕs ÔSIZEÕ resource settings, and set the ÒHigh level event awareÓ flag
on. This enables your application to respond to Apple Events when it is running under System 7 or later. Apple Events
are not available under System 6 or older (they werenÕt invented yet). Even so, Tools Plus still generates equivalent
Tools Plus events for virtually all the required events.

As soon as your application starts processing events, it will always receive one of the following Apple Events: Òopen
applicationÓ, Òopen documentsÓ, or Òprint documentsÓ.

Tools Plus automatically processes the following Apple Events which indicate that the user has changed a font in the
user interface:

Class ID Action
appr sysf System font was changed
appr ssfn Small system font was changed
appr vfnt Views font was changed
appr thme Theme was changed

The Apple Events listed above are generated exclusively as a result of the user making changes to one or more settings
in the Appearance Manager. Tools Plus takes the appropriate corrective action when it detects these Apple Events, but
it does not report them to your application unless you install an Apple Event Handler routine for the required event(s).

Tools Plus automatically processes Apple Events by (i) reporting an equivalent Tools Plus event as stated for all four
required Apple Events this section, (ii) quietly applying corrective measures without informing your application as
stated above, and (iii) dispatching the Apple Event to your own Apple Event Handler routine if you have written and
installed one. Inside Macintosh details how to write an Apple Event Handler routine, and how to install it in an
application. The same rules apply in Tools Plus. You can provide extended support for as many Apple Events as you
want. You can also override Tools PlusÕs default support for any or all of the four required Apple Events by installing
your own Apple Event Handler routine(s).

Simulated Apple Event Support
Tools Plus accounts for applications (not plug-ins) that are not Apple Event aware, and for those running under
SystemÊ6 or older in which Apple Event are not available. Under such conditions, Tools PlusÕs ProcessEvents routine
generates the following synthesized events before it starts processing real events:

doOpenApplication Who gets it : ¥ 680x0 and PowerPC applications that are not Apple Event aware
¥ 680x0 applications running under System 6 or older

Under what conditions .. : ¥ As soon as your application starts processing events by calling
the ProcessEvents routine. This happens only if the Finder does
not want your application to open or print any documents.

doOpenDocuments Who gets it : ¥ 680x0 applications that are not Apple Event aware
¥ 680x0 applications running under System 6 or older

Under what conditions .. : Before your application is launched, any of the following may
occurÉ
¥ The user selects one or more of your applicationÕs documents,

then selects the File menuÕs Open item from the Finder
¥ The user double-clicks one of your applicationÕs documents
¥ The user selects one or more of your applicationÕs documents

then double-clicks one
¥ The user drags one or more documents that your application can

open, and drops them on your application

Tools Plus

428

doPrintDocuments Who gets it : ¥ 680x0 applications that are not Apple Event aware
¥ 680x0 applications running under System 6 or older

Under what conditions .. : ¥ The user selects one or more of your applicationÕs documents,
then selects the File menuÕs Print item from the Finder

doQuitApplication Who gets it : ¥ 680x0 applications that are not Apple Event aware
¥ 680x0 applications running under System 6 or older

Under what conditions .. : ¥ Following the completion of your applicationÕs response to a
doPrintDocuments event.

680x0 applications that are not Apple Event aware, or those that run on System 6 or older, can receive their ÒOpen
DocumentÓ instructions from the Finder after the application is launched, but from the your perspective of coding your
application, itÕs as though the user opened a document by selecting your applicationÕs File menuÕs ÒOpenÉÓ item. See
the Completing Your Application chapter for details. It is strongly recommended that applications running on System
7 or later be Apple Event aware and take advantage of Apple Event services.

16 Event Management

WaterÕs Edge Software 429

Routines for Handling and Processing Events

The following routines are used to process events, or to assist in their processing. This includes everything from
creating event handler UPPs, to starting Tools PlusÕs event-processing services, to parsing an Apple Event list into file
specifications.

..

SetWindowEventHandler
Set an event handler routine for a window.

C pascal void SetWindowEventHandler (short Window,
EventHandlerUPP EventHandler);

Pascal procedure SetWindowEventHandler (Window: INTEGER;
EventHandler: EventHandlerUPP);

SetWindowEventHandler sets a routine that is called by Tools Plus to handle an event for a specific window. Each
window can have its own event handler routine, or several windows can share the same routine. If a window does not
have an event handler routine, then it uses the applicationÕs event handler.

Window specifies the window number to which the event handler is attached. If the specified window is not open,
SetWindowEventHandler does nothing.

EventHandler is a UPP to the event handler routine that is called by Tools Plus to respond to an event in the window.
See the NewEventHandlerProc routine for details about UPPs and how to create them. If you are writing a 680x0
application and the source code will never be compiled to generated PowerPC native code, you can specify the address
of the event handler routine as follows in C/C++:

SetWindowEventHandler(5, myEventHandler);

In Pascal, a similar statement is used except the Ò@Ó symbol indicates the address of a routine which is the same thing
as a pointer to a routine:

SetWindowEventHandler(5, @myEventHandler);

Also see: NewEventHandlerProc

..

NewEventHandlerProc
Create a UPP for an event handler routine.

C pascal EventHandlerUPP NewEventHandlerProc (ProcPtr userRoutine);

Pascal function NewEventHandlerProc (userRoutine: ProcPtr): EventHandlerUPP;

The EventHandlerUPP type is a Universal Procedure Pointer used for consistency across all interfaces (C/C++ and
Pascal using the original Apple interfaces or the newer universal interfaces required for PowerMacs). In 680x0
applications, the EventHandlerUPP is nothing more than a ProcPtr, or a pointer to a Pascal routine. In PowerMac
applications, the EventHandlerUPP is a pointer to a structure that is allocated using the NewEventHandlerProc routine.
If you are writing a PowerMac application, or if your source code will compile to both 680x0 and PowerMac-native
code, you need to use the new universal headers (or universal interfaces for Pascal) and do the following to ensure that
your source code compiles and executes correctly when running under a 680x0 or PowerPC processort:

Tools Plus

430

1. Create a global variable for each event handler routine you will use throughout your application. If you are using
the same event handler routine for several windows, all the windows can share a single global variable. Declare
the variable as an EventHandlerUPP type. In 680x0 applications, this variable is used as a pointer to an event
handler routine. In PowerMac applications, it is used as a pointer to a universal procedure structure. In this
example, define a global variable named myEventHandlerUPP of type EventHandlerUPP.

2. Populate myEventHandlerUPP so that it points to your event handler routine. In this example, the event handler
routine is named myEventHandler. In C/C++, the code looks like this:

myEventHandlerUPP = NewEventHandlerProc(myEventHandler);

In Pascal, the code is identical except the Ò@Ó symbol indicated the address of a routine:
myEventHandlerUPP := NewEventHandlerProc(@myEventHandler);

Do this very early in your application, likely immediately after calling InitToolsPlus, because you are creating a
non-relocatable structure, and allocating it early prevents memory fragmentation.

3. After you create your window, you can associate the event handler routine with the window using the following
code. This example assumes the event handler routine is being installed into window number 5:

SetWindowEventHandler(5, myEventHandlerUPP);

The definition and writing of the event handler routine is detailed earlier in this chapter under ÒThe Event Handler
Routine.Ó If you want to deallocate the UPP for an event handler routine in a PowerMac application or plug-in, use the
toolboxÕs DisposeRoutineDescriptor routine. PowerMac plug-ins will certainly want to do this as part of their quitting
logic along with calling DeinitToolsPlus.

..

ProcessEvents
Process events continuously.

C pascal void ProcessEvents (void);

Pascal procedure ProcessEvents;

Your application calls the ProcessEvents routine once in its main routine. Once called, ProcessEvents continuously
gets events from the Macintosh toolboxÕs Event Manager, processes them, and calls your event handler routine(s) as
required. When your application signals that it wants to quit by calling QuitToolsPlus, likely in response to the user
selecting the File menuÕs Quit item or in response to a doQuitApplication event, ProcessEvents stops processing events
and returns control to your application.

Under normal circumstances, those being when your Apple Event aware application is running under System 7 or
later, Tools Plus starts off by reporting one of the following Apple Events: Òopen applicationÓ, Òopen documentsÓ, or
Òprint documentsÓ. If your application (not a plug-in) is not Apple Event aware, or if it is running under System 6 or
older in which Apple Events are not available, the ProcessEvents routine can synthesize these core Apple Events.
These synthesized events are reported just after your applicationÕs startup to let you know if your application was
launched without any open files, with files that need to be opened, or with files that need to be printed. Tools Plus
reports these as doOpenApplication, doOpenDocuments, and doPrintDocuments events.

..

Process1EventWhileBusy
Process a single event while the application is busy.

C pascal void Process1EventWhileBusy (Boolean skipNullEvents);

Pascal procedure Process1EventWhileBusy (skipNullEvents: BOOLEAN);

Due to the nature of Mac OS, Tools Plus does all its multitasking when your applicationÕs event handler routine
finishes executing. Unfortunately, your event handler may call a routine that runs a long time, such as a printing
routine or a sorting routine. When your application is busy with a lengthy process, it should periodically call the

16 Event Management

WaterÕs Edge Software 431

Process1EventWhileBusy routine to briefly allow some processing time to other applications, and to process a single
event within your own application, such as the user typing 1-. to halt the lengthy process.

Internally, Process1EventWhileBusy is exactly like the ProcessEvents routine except that is only gets one event from
the Event Manager, processes it, and returns to your application whereas ProcessEvents continuously gets and
processes events. Ideally, your application should call Process1EventWhileBusy about 60 times or more per second.
At 20 times per second, the user will begin to notice very minor delays.

The skipNullEvents flag is used to indicate is your event handler should be called when a doNothing event is
generated. This may be an issue if your application is calling Process1EventWhileBusy from within your main event
handlerÕs doNothing logic, in which case it is possible to call Process1EventWhileBusy recursively and exhaust your
applicationÕs stack. When the skipNullEvents flag is set to true (the default), Tools Plus will not call your event handler
if a doNothing event is generated as a result of calling Process1EventWhileBusy. If the skipNullEvents flag is set to
false, your main event handler may be called with a doNothing event.

+ Warning: Be careful to prevent situations in which Process1EventWhileBusy is called recursively. For example,
your main event handlerÕs doNothing case executes a length process that periodically calls
Process1EventWhileBusy(false), and the Process1EventWhileBusy routine calls your main event handler
with a doNothing event which causes it to call Process1EventWhileBusy(false) again. This condition will
rapidly exhaust your applicationÕs stack and crash your application.

..

ProcessToolboxEvent
Process a single toolbox event.

C pascal void ProcessToolboxEvent (EventRecord *theEvent);

Pascal procedure ProcessToolboxEvent (theEvent: EventRecord);

This routine processes a single toolbox event, theEvent, which was obtained by some other means. Most applications
never need to use this routine. Plug-ins, on the other hand, may get their events from their host application and use
ProcessToolboxEvent to apply an event to the Tools Plus-built plug-in.

ProcessToolboxEvent returns to your application when it has finished processing the toolbox event. Realize that this
may not be immediate because ProcessToolboxEvent may be busy tracking a control or dragging a window for a
while.

..

SetEventError
Set an event error code in response to an Apple Event. For applications only (not plug-ins).

C pascal void SetEventError (short ErrNum, const Str255 ErrStr);

Pascal procedure SetEventError (ErrNum: INTEGER; ErrStr: STRING);

You can use the SetEventError routine only in response to the following events: doOpenApplication,
doOpenDocuments, doPrintDocuments, and doQuitApplication. SetEventError provides a reply to the sender of an
Apple Event to inform the sender that your application could not respond appropriately. An example is when your
application receives a doOpenDocuments event and it determines that an error occurred while reading the file. Using
SetEventError has no effect if your application is responding to a custom Apple Event handler routine that replaces
Tools PlusÕs default Apple Event handling.

ErrNum is an Apple Event error number that is sent back to the caller. Typically, it is the errAEEventNotHandled error
(-1708).

Tools Plus

432

ErrStr is an optional string describing the error. If you specify a non-empty string and an error code of zero (0),
SetEventError overrides ErrNum with a value of errAEEventNotHandled error (-1708).

..

CountNumberOfFiles
Determine the number of documents that need to be opened or printed. For applications only (not plug-ins).

C pascal long CountNumberOfFiles (void);

Pascal function CountNumberOfFiles: LONGINT;

CountNumberOfFiles reports the number of files that your application is asked to open or print. Use this routine only
in response to a doOpenDocuments event or a doPrintDocuments event. It returns a value of zero (0) at all other times.
When your main event handler responds to a doOpenDocuments event or a doPrintDocuments event, it should run a
loop from 1 to the value of CountNumberOfFiles, and in that loop, use GetIndexFileFSS or GetIndexFile to get
information about each file in the list, thereby allowing you to open each file.

Also see: GetIndexFileFSS and GetIndexFile.

..

GetIndexFile
Retrieve file information for a file that needs to be opened or printed. For 680x0 applications only (not plug-ins).

C pascal Boolean GetIndexFile (long Index, AppFile *FileInfo);

Pascal function GetIndexFile (Index: LONGINT; var FileInfo: AppFile): BOOLEAN;

When your 680x0 Apple Event unaware application gets a doOpenDocuments event or a doPrintDocuments event, it
first calls CountNumberOfFiles to determine the number of documents it is being asked to open or print. It then uses
GetIndexFile to obtain information about a specific file before opening it. For Apple Event aware applications running
on System 7 or later, and for all PowerPC applications, use the more advanced GetIndexFileFSS routine instead of
GetIndexFile.

Index specifies the relative file number for which you want to obtain information. The value of Index must be in the
range of 1 through the limit returned by the CountNumberOfFiles routine.

FileInfo returns file information that your application needs to open the file. You can use this recordÕs values in a
toolbox routine such as FSOpen to open the fileÕs data fork, or OpenRF to open the fileÕs resource fork. See Inside
MacintoshÕs File Manager chapter for details on opening, reading, writing, and sharing files.

GetIndexFile returns with a value of true if it successfully retrieves information for the specified file. It returns with a
value of false if your Index has an invalid value, or if you use the GetIndexFile routine at any time other than in
response to a doOpenDocuments event or a doPrintDocuments event. In this case, FileInfo is zeroed out and should
not be used.

Also see: GetIndexFileFSS.

..

16 Event Management

WaterÕs Edge Software 433

GetIndexFileFSS
Retrieve file information for a file that needs to be opened or printed. For applications running on System 7 or later
only (not plug-ins).

C pascal Boolean GetIndexFileFSS (long Index, FSSpec *FSS);

Pascal function GetIndexFileFSS (Index: LONGINT; var FSS: FSSpec): BOOLEAN;

When your application gets a doOpenDocuments event or a doPrintDocuments event, it first calls
CountNumberOfFiles to determine the number of documents it is being asked to open or print. It then uses
GetIndexFileFSS to obtain information about a specific file before opening it. This routine works on System 7 or later,
on all 680x0 applications (Apple Event aware or not), and on Apple Event aware PowerPC applications. If your 680x0
application is Apple Event unaware or it is running on System 6 or older, use the older GetIndexFile routine instead of
GetIndexFileFSS.

Index specifies the relative file number for which you want to obtain information. The value of Index must be in the
range of 1 through the limit returned by the CountNumberOfFiles routine.

FSS returns file information that your application needs to open the file. The FSSpec is available only in System 7 or
later. You can use this recordÕs values in a toolbox routine such as FSpOpenDF to open the fileÕs data fork, or
FSpOpenRF to open the fileÕs resource fork. You can also get information about the file type and other details from the
toolboxÕs FSpGetFInfo routine. See Inside MacintoshÕs File Manager chapter for details on opening, reading, writing,
and sharing files.

GetIndexFileFSS returns with a value of true if it successfully retrieves information for the specified file. It returns
with a value of false if your Index has an invalid value, if your application is running under System 6 or older, or if you
use the GetIndexFileFSS routine at any time other than in response to a doOpenDocuments event or a
doPrintDocuments event. In this case, FSS is zeroed out and should not be used.

Also see: GetIndexFile.

..

QuitToolsPlus
Stop processing events and return control to the main application.

C pascal void QuitToolsPlus (void);

Pascal procedure QuitToolsPlus;

Your application calls QuitToolsPlus to signal that it wants to quit, likely in response to the user selecting the File
menuÕs Quit item, or in response to a doQuitApplication Apple Event. When your application calls QuitToolsPlus, the
ProcessEvents routine (in your applicationÕs main routine) stops processing events and allows your application to
continue to its own Òexit applicationÓ code. All other event processing routines are not affected by QuitToolsPlus.
They are:

¥ ProcessToolboxEvent
¥ Process1EventWhileBusy
¥ AlertBox
¥ AlertBox3

..

Tools Plus

434

ToolsPlusIsQuitting
Determine if Tools Plus has been instructed to stop processing events.

C pascal Boolean ToolsPlusIsQuitting (void);

Pascal function ToolsPlusIsQuitting: BOOLEAN;

ToolsPlusIsQuitting is used to determine if the QuitToolsPlus routine was called. It can be used throughout your
application as a global flag to terminate loops and bypass certain logic if the application is in the process of quitting.

..

SetNullTime
Set the number of ticks (1/60 sec) your application can wait between receiving a doNothing event and can perform one
cycle of its background process. Optionally set event interleave to maximize performance.

C pascal void SetNullTime (long ActiveTime; long SuspendedTime);

Pascal procedure SetNullTime (ActiveTime, SuspendedTime: LONGINT);

ActiveTime is the amount of time (in 1/60 second ÒticksÓ) your application can wait between receiving doNothing
events while it is the active application. You can specify a value in the range of 0 to 15. A value of 0 provides
maximum background processing speed for your application at the expense of other applicationsÕ background
processing capability. A value of 15 provides maximum benefit to other applications by allotting minimum time for
background processes in your application. If your application does not do anything in response to a doNothing event,
as is the case with most application, you can safely be a good citizen by specifying a value of 2 or 3. At this setting,
your application gets a doNothing event every 2 or 3 ticks (20 or 30 times per second) which is more than enough for
Tools Plus to do its own administration such as keeping a fieldÕs insertion point flashing at a regular rate, or animating
controls.

When ActiveTime is set to zero, your application gets plenty of background processing time at the expense of
suspended applications and system extensions. If your application demands even more processing speed, specify a
negative value for the ActiveTime parameter. A value of -1 establishes an event interleave such that your application
gets an event (and surrenders processor time) only once per tick (60 times per second). This can result in a dramatic
performance improvement. Values of -2 and -3 can also be specified to get an event every two or three ticks. This will
give your application ultimate processing power short of turning off system extensions, but you may notice other
processes slow down.

SuspendedTime is the amount of time your application can wait between receiving doNothing events while it is
suspended (i.e., when another application is active under MultiFinder or System 7 or later).

Tools Plus is initialized with ActiveTime and SuspendedTime set to 0, meaning your application will have high
performance at the expense of other applications and processes. Normally, applications that do background processing
will set ActiveTime to 0 or 1 and set SuspendedTime to a higher value, thus slowing down the background processing
when your application is suspended. If your application doesnÕt do any background processing, use the maxNullTime
constant for the SuspendedTime parameter to allow other applications and process the maximum utilization of the
processor.

Your application can change the values of ActiveTime and SuspendedTime at any time.

Also see: WaitAvail.

CONST {Background process scheduling }
maxNullTime = $7FFFFFFF; {Infinite time between doNothing events }

..

16 Event Management

WaterÕs Edge Software 435

WaitAvail
Determine if the Macintosh running your application supports scheduled processing. This determines if SetNullTimeÕs
settings will have any effect on your application.

C pascal Boolean WaitAvail (void);

Pascal function WaitAvail: BOOLEAN;

This routine returns a value of true if scheduled background processing is supported, or false if it is not. If the
Macintosh running your application doesnÕt support scheduled background processing, then SetNullTimeÕs settings
will have no effect, and your application will receive a doNothing events as frequently as the processor can handle it.
Internally, this routine reports if the WaitNextEvent trap is available to your application. WaitNextEvent has been
available since later versions of System 6, and all versions of System 7 and later.

..

WaitForMultiClicks
Wait or donÕt wait for subsequent mouse events to detect a single, double or triple-click.

C pascal void WaitForMultiClicks (Boolean WaitFlag);

Pascal procedure WaitForMultiClicks (WaitFlag: BOOLEAN);

WaitFlag specifies if waiting for subsequent mouse-down and mouse-up events is turned on or off. You can use the
constants on and off for this purpose.

Tools Plus reports single-clicks, double-clicks, and triple-clicks, as well as dragging that occurs between a mouse-
down and mouse-up event. Normally, it reports mouse-down and mouse-up events as they occur, so if the user double-
clicked the windowÕs content region, your application would receive the following mouse event codes:

inClick1Drag single-click started (mouse still down)
inClick1 single-click completed
inClick2Drag double-click started (mouse still down)
inClick2 double-click completed

When you use WaitForMultiClicks(true), Tools Plus reports an event only after the user completes a single, double, or
triple-click. At the end of a double-click, for example, your application would receive an inClick2 event (double-click
completed). Although this is a convenient feature, you may not like the brief delay that is experienced while Tools Plus
determines when a click is completed.

..

ResetMouseClicks
Discontinue a mouseÕs ÒdragÓ or multiple clicks in progress.

C pascal void ResetMouseClicks (void);

Pascal procedure ResetMouseClicks;

Tools Plus reports single-clicks, double-clicks, and triple-clicks, as well as dragging that occurs between a mouse-
down and mouse-up event. In some applications, it may suffice to know that the user pressed the mouse button with
the cursor being within a specific region or cursor zone, without concern for the mouse buttonÕs release. Alternatively,
an application may allow a single-click only, thereby disallowing double or triple clicks.

Tools Plus

436

In such cases, the ResetMouseClicks routine can be used to tell Tools Plus that sufficient mouse information has been
obtained, and to reset the click and drag mechanism. This reset will clear the current click or drag from Tools PlusÕs
event queue. The next time the mouse button in pressed down, it will be considered to be a first mouse-down of either
a single-click, double-click, triple-click, or drag.

..

IgnoreFirstMouseClick
Ignore the first click of a multiple click sequence.

C pascal void IgnoreFirstMouseClick (void);

Pascal procedure IgnoreFirstMouseClick;

Tools Plus reports single-clicks, double-clicks, and triple-clicks, as well as dragging which occurs between a mouse-
down and mouse-up event. Applications typically select an object when it is first clicked, then open or activate that
object when it is double-clicked. If your application detects a double-click (in a doClick event), and it determines that
both clicks did not occur on the same objects (thereby not constituting a double-click), you may elect to discard the
first click after it has been processed, then wait for the next double-click to determine if the object should be opened.

First Click Second Click

In the example above, the user rapidly clicks Object 1 then Object 2. The first click is used to select Object 1. The
second click is used to select Object 2. Even though the second mouse-down event occurred quickly enough to be a
double-click, it occurred on a different object. When your application gets the second click, you can use
IgnoreFirstMouseClick to discard the first clickÕs information and to re-establish the clicking of Object 2 as the first
click. If the user clicks Object 2 again quickly enough, your application will receive a double-click in Object 2.

IgnoreFirstMouseClick can be used in response to any doClick variation, regardless of whether the first, second, or
third mouse-down event has been detected, or whether the mouse button is up or down.

..

ApplicationSuspended
Determine if your application has been suspended (i.e., not the active application).

C pascal Boolean ApplicationSuspended (void);

Pascal function ApplicationSuspended: BOOLEAN;

This routine returns a value of true if a desk accessory or another application is active under MultiFinder or System 7
(or later). A value of false is returned if your application is active, even though your application may not have any
windows open.

When running under MultiFinder or System 7 (or later), your application needs to have a SIZE resource with the
ÒAcceptSuspendEventsÓ bit set to Ò1.Ó See the SIZE resource for details.

..

16 Event Management

WaterÕs Edge Software 437

GetTPSerialEvent
Determine if Tools Plus is processing a series of events. (For advanced event processing only.)

C pascal short GetTPSerialEvent (void);

Pascal function GetTPSerialEvent: INTEGER;

GetTPSerialEvent is typically used only by applications that need to examine, filter or alter events before allowing
Tools Plus to process them. Tools Plus can generate a series of Tools Plus events in response to a single toolbox event
obtained from the Event Manager.

GetTPSerialEvent returns with a value that represents a task that is responsible for generating multiple Tools Plus
events. The following constants can be used:

CONST {Tasks that can generate multiple events: }
none = 0; {No "serial event" task is in progress }
doChgWindow = 1; {User clicked on an inactive floating window }
doClick = 9; {Single/double/triple click/drag in progress }
doScrollBar = 10; {User is interacting with a scroll bar }
doPictButton = 14; {User is interacting with a picture button }
doPreRefresh = 110; {Window needs refreshing (doPreRefresh / doRefresh) }
doActivate = 111; {Window is being activated and refreshed }

..

KillTPSerialEvent
Terminate Tools PlusÕs generation of a series of events. (For advanced event processing only)

C pascal void KillTPSerialEvent (void);

Pascal procedure KillTPSerialEvent;

Tools Plus can generate a series of Tools Plus events in response to a single event obtained from the Event Manager,
as shown in the GetTPSerialEvent routine. An example of this is a single mouse-down event from the Event Manager
being used to generate a series of timed doScrollBar events as the user holds the mouse down over a scroll barÕs up
button.

KillTPSerialEvent terminates the operation that is generating a series of events. In the case of a doScrollBar event, it
behaves as though the user released the mouse button and stopped interacting with the scroll bar.

Also see: GetTPSerialEvent.

..

Tools Plus

438

Timers and Timer Events

Tools Plus incorporates a sophisticated Timer that is very simple to use even though it provides considerable
versatility. Even though a Timer is easy to use, we recommend that you read this entire section on Timers if you are in
the least bit interested in the accuracy of Timer events, or in factors that may influence the regularity with which your
Timer events are reported. The following are some reasons you may want to use a Timer:

¥ A much more controlled way of doing background processing than waiting for null events, which may not
be available frequently enough or regularly enough.

¥ Allows you to have thousands of timed processes running while being efficient with memory and the CPU.
¥ Lets you easily manage many timed processes. Doing so manually would be complex.

The following are some examples of when you may want to use a Timer:
¥ A display object that updates regularly, like a clock.
¥ A cancel button on a log-on screen that is automatically selected after thirty seconds of inactivity to prevent

the userÕs name from being displayed too long or left up accidentally while the computer is unattended.
¥ Automatically terminating a server session after ten minutes of inactivity.
¥ Triggering animation frames.
¥ An appointment application that reminds you of bookings with a dialog, scrolling banner and or sound.
¥ A Òremind me laterÓ feature that triggers once after a preset time.
¥ Flash any object, such as a static text item like ÒInitializing database. Process cannot be canceled.Ó
¥ Virtually any background process, like searching or sorting a database.
¥ Virtually any timed or periodic process.

To start a Timer, call the NewTimer routine and supply it with the parameters that detail the nature of the TimerÕs
behavior. Each Timer is referenced using a unique Timer number. This number is specified when the Timer is created,
and refers to the specific Timer until it is deleted. After a Timer is created, it will report one or more events (doTimer
events) to your application.

Normally, all Timer events are reported to your applicationÕs main event handler routine. You can optionally specify a
window number for a Timer, and that Timer will generate events that report the specified window number, thereby
routing the events to your windowÕs event handler routine. The most convenient and elegant solution is to write an
event handler routine specifically for a Timer. This way, the Timer just calls your specialized event handler routine
when it needs to.

One of the parameters that are used to create a Timer is its value, which can be expressed as either Òevents per unit of
timeÓ (frequency), or Òtime between eventsÓ (period). A TimerÕs frequency can be expressed as events per tick, events
per second, events per minute, events per hour, or events per day. Alternatively, a TimerÕs period can be expressed as
ticks between events, seconds between events, minutes between events, hours between events, or days between events.
An initial delay can optionally be specified to tell the Timer that it should remain dormant for a specified time, then
start reporting events regularly after the initial delay has lapsed.

Timers can optionally be synchronized to other Timers such that two or more Timers will always report their events
the same time apart. This is useful, for example, when the first event hides an object and the following one turns it
back on to produce a flashing object. You can synchronize many Timers to a single parent Timer.

Timers are automatically deleted when your application quits, or when you call DeinitToolsPlus. If you assigned a
Timer to a window, that Timer is deleted when the window is closed, or optionally, when the window is hidden. You
can manually delete a Timer with the DeleteTimer routine, which also deletes all ÒchildÓ Timers that are synchronized
to that master. Timers can also be deleted automatically after generating a single event. These are called Òone shotÓ
Timers.

If you are running a faceless process such as a sorting routine, you may want to consider writing a multi-threaded
application. This takes more effort than using Timers, but you will likely get better performance. Please consult the
relevant document (not this User Manual) for information on how to write a multi-threaded application.

16 Event Management

WaterÕs Edge Software 439

How Tools Plus Generates Timer Events

In order to maintain the highest accuracy, Timers have the highest priority in the event queue. When a Timer is due to
generate a doTimer event, Tools Plus does the following:

¥ Memorizes the current time
¥ Determines the oldest (created first) Timer that needs to report an event at this time
¥ Calls your event handler routine to report a doTimer event
¥ Waits for your event handler routine to finish processing
¥ Calculates the TimerÕs next event time
¥ Looks for other Timers that need to report an event at the memorized time, and reports those events. The

sequence of Timers is always from oldest to newest.
¥ Deletes all one shot Timers that have reported an event
¥ Proceeds with normal Tools Plus event processing by getting an event from the toolboxÕs Event Manager

and processing it.
To the user, it will appear that your application is doing many things at the same time when in fact, it is only cycling
between those things, doing only one thing at a time. As a programmer, it is important to remember that a Timer event,
just like any other event, can only be reported when your event handler routine has finished processing and has
returned control to Tools Plus. The exception to this is if your event handler routine is busy for a while and it calls the
Process1EventWhileBusy routine, which may generate additional events.

More sophisticated timing mechanisms can be implemented in Macintosh by other means, all of which require you to
write your application in a fundamentally different and more complex manner. Tools Plus has opted for the much
simpler approach that lets you get very respectable functionality and performance with very little effort or
programming considerations. We reason that developers who need the ultra high performance, precision, or true
multitasking, will have the skills necessary to implement those features, and to revised their application to handle the
complexities that are introduced when implementing those features.

Timer Accuracy

When asking how accurate Tools PlusÕs Timers are, the answer ranges from Òvery accurateÓ to Òit depends.Ó The
things that influence a TimerÕs ability to report an event on time are:

¥ Calling a routine that takes a long time to complete. Timers canÕt report their events until your routines
finish executing and control is returned to Tools Plus. The solution is to call Process1EventWhileBusy if
your application is busy for any length of time.

¥ Event handlers that take a long time to complete. Ideally, an event handler should finish its work in 1/60 of
a second or less.

¥ Natural processes, like Tools Plus refreshing controls and user interface objects in a window. This may take
a few seconds in a complex window.

¥ Reading and writing large blocks of data to and from disk.
¥ Reading and writing to slow media, like a floppy disk, CD-ROM, or through a LocalTalk network.
¥ Tracking a control, such as the time between a mouse-down and mouse-up in a control.
¥ Selecting a pull-down, hierarchical, or pop-up menu.
¥ Appearance Manager controls that need idling, like the clock control and the busy progress indicator (the

Òbarber poleÓ thermometer)
¥ Many Timers trying to report events at the same time (the next Timer can only report its event after the

previously invoked event handler routine completes).
¥ Other applications or processes that are poor citizens and do not share the processor enough.

As you can see, the things that conspire to prevent a Timer from reporting an event on time are the same things that
affect all other aspects of you applicationÕs performance. ItÕs just that Timers are more time critical, and therefore, you
notice it more when they are affected. This will be the nature of Macintosh until Mac OS becomes a fully preemptive
multitasking system some time in the future, likely with Mac OS X.

Tools Plus addresses the issue of timing accuracy by letting you choose the relationship between a physical Timer
event and logical Timer event. Physical Timer events are the actual events that are reported to your application. Each
time a doTimer event is reported, thatÕs a physical event. Logical events are the number of times a Timer event should

Tools Plus

440

have been reported. This is reported with each physical Timer event as the count field in the event record. In the
example below, a Timer is supposed to report 4 events per second. A delay, perhaps caused by some poorly behaved
application that holds onto the processor for too long, holds up event processing in your application for almost a
second, during which time no Timer events can be reported. As soon as your application is able, it receives a rapid
series of Timer events to catch up to where it should be.

Time
(seconds)

0 1 2 3 4

Delay
(no events can be reported)

1 2 3 4 5 6 7 8 9,10,11 12 13 14 15 16
Events Reported
(same as count)

In the example above, the delay introduced at around the two second mark prevents any events from being reported.
The delay lasts about three quarters of a second, during which time events 9 and 10 should have been reported. When
your application gets its first chance, events 9 and 10 are reported (the ones that should have been reported during the
delay), followed by event 11 that is now due. At this point, the Timer has caught up with your application, and it
resumes the regular reporting of events, the next of which is event 12 at the 3 second mark.

Certain kinds of timed processes, such as movies or animation that need to be played at a precise frame rate, need to
know where they should be along the time line rather than how many events have passed. A movie is like this because
if the Macintosh experiences a brief inability to draw all the frames, it wants to jump to the correct frame as soon as it
can rather than Òfast forwardingÓ to get to where it should be. The example below is similar to the previous one, except
that we have allowed the Timer to report where it should be if it cannot deliver events on time, rather than sending a
series of events in an attempt to catch up.

Time
(seconds)

0 1 2 3 4

Delay
(no events can be reported)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Physical Events

(a doTimer event)

1 2 3 4 5 6 7 8 11 12 13 14 15 16
Logical Events

(eventÕs Count field)

In the example above, the ÒPhysical EventsÓ line indicates when events are actually reported to your application. The
ÒLogical EventsÓ line indicates the event number that should have been reported (the Event.Timer.Count field of the
event record). As you notice, right up to the two second mark, the physical events and logical events are matching.
Each time your application should get an event, it did. At the two second mark, a delay is introduced during which
time events 9 and 10 should have been reported but could not. As soon as your application is able, the Timer reports
and event. In this example, a Timer event just happens to be due, so the Timer reports the 9th physical Timer event.
Logically, the Timer should be on the 11th event, as indicated by the event recordÕs Event.Timer.Count field.

This relationship between physical and logical events is the default behavior for a Timer. It is also the safer behavior,
especially if there is a chance that the amount of work that needs to be done in response to each Timer event may take
longer to carry out than when the next Timer event is due.

Timer Resolution

The Tools Plus TimerÕs highest resolution is 1/60 of a second (a ÒTickÓ). This means that the Timer uses the
MacintoshÕs internal mechanisms (the TickCount routine) to determine if it is time to report a Timer event or not. As
you would expect, Timers honor AppleÕs recommendations regarding the use of the TickCount routine. Even though a
TimerÕs highest resolution is 1/60 of a second, it does not mean that a Timer cannot generate more than 60 events per
second. Rather, a Timer checks itself once per Tick, or 60 times per second, and reports the correct number of events
that are needed to keep in on track. The example below illustrates a Timer that is running at 90 events per second, or

16 Event Management

WaterÕs Edge Software 441

one and a half events per tick.

Time
in Ticks

0 1 2 3 4

1,2 3 4,5 6Events Reported

As you can see in the example above, the TimerÕs highest resolution of 1/60 second means that the Timer can only
check to see if it is time to report an event once per tick, or 60 times per second. When the Timer does check, it
periodically determines that it needs to report two events since the last time it reported an event, about one tick ago.
The timer then reports two events, one after another, to catch up to where it should be. You can see this behavior at the
1 and 3 tick marks. After the 4th tick has elapsed, a total of 6 events have been reported for an average of one and a
half events every tick, or 90 events per second, our originally specified frequency.

Timers and doNothing (null) Events

Due to architectural constraints of Mac OS, a doTimer event will often be followed by a doNothing or ÒnullÓ event.
You only need to be aware of this insofar as your application will likely receive doNothing events more frequently
than it expects when a Timer is used. You may decide to have your event handler routine not respond to doNothing
events (i.e., not have a case for the doNothing event in your event handler) and instead, use a Timer to invoke
background processes that would normally be run in response to a doNothing event.

If a Timer is used, also be aware that any event time stamp (the myEvent.Event.when field) indicates when the event
was generated by the Event Manager, and not when it was reported to your application. Timers actually Òjump intoÓ
the event queue and are reported before any toolbox event is reported.

The Possibility of a Timer Overflow

A Timer uses long integer precision (a 32-bit signed integer) to keep track of its next event time, and the number of
events reported (the Event.Timer.Count field of the event record). In virtually all cases, using long integer precision is
a benefit because the Macintosh processorÕs performs calculations on long integers very quickly. There are three very
rare situations in which a timer overflow will result, those being a condition that cause a mathematical overflow to
occur. When these conditions arise, the TimerÕs calculated Ònext timeÓ may not be accurate, meaning that the Timer
may report its next event too early, too late, too frequently or too infrequently. Also, the TimerÕs event count may
overflow to report a negative number of events.

Fortunately, the conditions that cause a Timer overflow are very rare. The first condition is one in which the TimerÕs
Ònext timeÓ overflows. The TimerÕs Ònext time,Ó or the Event.Timer.NextTime field of the event record, is a
counterpart for the value returned by the toolboxÕs TickCount routine (TickCount returns the number of ticks, or 1/60
second intervals that have transpired since your Macintosh was booted). A little bit of math tells us that the largest
number that can be represented by a signed long integer is a little over two trillion, therefore, the time calculated for
the TimerÕs next event cannot exceed:

2,147,483,647 ticks or
35,791,394 seconds or

596,523 minutes or
9942 hours or
414 days

from the instant that your Macintosh was booted. You can cause the Timer to overflow either by specifying that the
TimerÕs period exceeds the limits defined above (i.e., 415 days), or, while the Timer is running, it calculated its next
time beyond the legal range. An example of this is a Timer whose period is 210 days: it will report its first event
correctly 210 days later, but the subsequent event will be calculated to occur on day 420 (2 x 210 day period), and this
will cause the Timer to overflow.

The second condition that can trigger a Timer overflow is when the total number of events reported, either logically or
physically, exceed the limit of 2,147,483,647. Just use a calculator to calculate the total number of events a Timer is
ever expected to report, and make sure it does not exceed this limit. If your application will certainly exceed this limit
after running for a number of days, consider creating a one shot Timer that recreates the other Timer, and sets a global

Tools Plus

442

variable to indicate that the Timer is now on its second cycle.

The last condition is one in which the calculations internal to the Timer overflow. This can only happen when your
Timer is set to a frequency (eg: 30 events per hour) as opposed to a period (eg. 20 seconds between events). Make sure
that the following formula does not result in a value that exceeds 2,147,483,647:

MaxEvents x TicksPerUnitOfMeasure = X
MaxEvents is the maximum number of events you application will ever receive before it quits, and
TicksPerUnitOfMeasure is the number of ticks (1/60 second intervals) within the unit of measure specified in your
Spec parameter when calling the NewTimer routine. The following is an example of this formula:

EventsPerMeasure x TicksPerUnitOfMeasure x RunningTimeInMeasures = X
or 1,000 events x per day x 7 days = X
or 1,000 x 24 hours x 60 minutes x 7 = X
or 1,000 x 1,440 minutes x 60 secs x 7 = X
or 1,000 x 86,400 seconds x 60 ticks x 7 = X
or 1,000 x 5,184,000 tick (in a day) x 7 = 36,288,000,000

In the example above if you have a Timer running at 1,000 events per day, it will overflow before it reaches the
seventh day (36,288,000,000 exceeds the limit of 2,147,483,647).

Fortunately, the ÒreasonableÓ way to create a Timer avoids these potential issues. For example, instead of creating a
Timer that generates 2400 events per day, create one that generates 100 events per hour. Another alternative is to
revise a high frequency/high unit of measure specification to a period. For example, 5000 events per day is equivalent
to 1036.8 ticks between events, so a period of 1037 ticks between events would likely be accurate enough. A little
reasoning and planning will let you create a Timer that suits your needs.

The table below will assist you in converting a high frequency/high unit of measure specification to a period.
1 tick = 1 tick
1 second = 60 ticks
1 minute = 3,600 ticks
1 hour = 216,000 ticks
1 day = 5,184,000 ticks

To convert a frequency into a period, take the number of ticks and divide by the number of events in the unit of
measure. For example:

8,400 events per day is the same asÉ
8,400 events per 5,184,000 ticks, thereforeÉ
5,184,000 ticks in a day ¸ 8,400 events is equivalent toÉ
617 ticks between events.

..

NewTimer
Create a new Timer.

C pascal void NewTimer (short Timer, long DelayTicks, long Value, long Spec,
short Window; EventHandlerUPP EventHandler);

Pascal procedure NewTimer (Timer: INTEGER; DelayTicks, Value, Spec: LONGINT;
Window: INTEGER; EventHandler: EventHandlerUPP);

The NewTimer routine creates a Timer, an automated process that reports a doTimer event at a specified frequency or
period.

Timer specifies the Timer number that is created (from 1 to 32767). Once a Timer is created, it is referenced by this
Timer number. If a Timer using the same Timer number already exists, it is deleted, then a new Timer is created as
specified by the parameters in the NewTimer routine, thereby re-using the Timer number. Tools Plus allows up to
32767 Timers to be created simultaneously, however, your MacintoshÕs processor and the amount of work that is done

16 Event Management

WaterÕs Edge Software 443

by your application in response to Timer events will determine the number of Timers that can run concurrently, and
how frequently they can generate events.

DelayTicks specifies the time in ticks (1/60 of a second) that the Timer will remain dormant before it reports its first
event. The default value of -1 (the timerStandardInitDelay constant) makes the Timer behave as you would expect,
reporting its first event at the same period or frequency as every subsequent event. A value of 0 (the timerInstantEvent
constant) tells the Timer that it should report an event as soon as possible, then report subsequent events in a normal
manner. Any other value specified for DelayTicks results in the Timer ÒsleepingÓ for that many ticks before it reports
its first event. If you synchronize this Timer with another Timer by using the timerSyncToTimer option in the Spec
parameter, this Timer becomes the ÒchildÓ and it reports each event DelayTicks ticks after the parent Timer reports its
event.

The Value parameter specifies the frequency or period of the Timer, such as 30 events per second, or 20 seconds
between events. If you synchronize this Timer with another Timer by using the timerSyncToTimer option in the Spec
parameter, this Timer becomes the ÒchildÓ and it synchronizes to a parent Timer whose number is specified in Value.
The parent Timer must already exist when synchronizing Timers.

Spec specifies a TimerÕs behavior. The value for this 4-byte long integer can be specified by adding a set of constants
to obtain the desired result. For example, a Timer that runs at 20 events per second and is deleted automatically when
the window is hidden would have a spec of timerEventsPerSecond + timerDeleteForHiddenWindow. The constants
defining the available options are as follows:

Optionally choose any of the following behavior optionsÉ
timerOneShot The Timer reports a single event, then it is automatically deleted. If this Timer is

synchronized to a parent Timer that is a one shot Timer, then this timer automatically
becomes a one shot Timer.

timerDeleteForHiddenWindow
The Timer is deleted when its window is hidden. This option is ignored if the Window
parameter is set to zero.

timerSyncToTimer
Synchronize to a parent Timer. This Timer always reports an event after the parent Timer,
separated in time by the number of ticks (1/60 second) specified in the DelayTicks
parameter. The Value parameter specifies the parent TimerÕs number.

timerLockTimerToCount
When this option is used, a physical Timer event is always reported for each event that is
required (i.e., your event handler routine is called each time the event recordÕs
Event.Timer.Count field is incremented). When the system is busy and the required
number of events cannot be reported, all backlogged events are reported as soon as the
system is able to do so. The risk is that the system may be too busy to ever catch up to
where it should be if your event handler routine does a lot of work, or if the events are
reported very frequently.

If this option is not used and the system gets too busy to report the required number
of events, the Timer simply resumes reporting events at the normal rate when the system
is able to do so, and for each reported event, the event recordÕs Event.Timer.Count field
indicates that number of events that should have been reported. This default behavior is
attained by not using this option.

This option is ignored if you use any of the following options (detailed below):
timerTicksBetweenEvents, timerSecondsBetweenEvents, timerMinutesBetweenEvents,
timerHoursBetweenEvents, or timerDaysBetweenEvents.

Choose only one of the following timing options if the timerSynchToTimer option is not usedÉ
timerEventsPerTick

Report the number of Timer events specified in the Value parameter for each passing tick
(1/60 second).

timerEventsPerSecond
Report the number of Timer events specified in the Value parameter for each passing
second.

Tools Plus

444

timerEventsPerMinute
Report the number of Timer events specified in the Value parameter for each passing
minute.

timerEventsPerHour
Report the number of Timer events specified in the Value parameter for each passing
hour.

timerEventsPerDay
Report the number of Timer events specified in the Value parameter for each passing day.

timerTicksBetweenEvents
Report Timer events that are separated by the number of ticks (1/60 second) specified in
the Value parameter.

timerSecondsBetweenEvents
Report Timer events that are separated by the number of seconds specified in the Value
parameter.

timerMinutesBetweenEvents
Report Timer events that are separated by the number of seconds specified in the Value
parameter.

timerHoursBetweenEvents
Report Timer events that are separated by the number of seconds specified in the Value
parameter.

timerDaysBetweenEvents
Report Timer events that are separated by the number of seconds specified in the Value
parameter.

Window specifies the window number for which the Timer event is generated. If a value of zero (0) is specified, the
event is reported to your applicationÕs main event handler routine. If a window number is specified, then the Timer
event is reported to that windowÕs event handler routine. The specified window must be open when the Timer is
created, although it may be hidden. If the specified window is not open, NewTimer does nothing.

EventHandler is a UPP to an event handler routine. If you specify nil, the Timer reports its event to the window
number specified by the Window parameter. If you specify a UPP, Tools Plus calls that routine to handle the Timer
event. See the NewEventHandlerProc for details about UPPs, and the section named ÒThe Event Handler RoutineÓ
earlier in this chapter for details on how to write and event handler routine.

CONST {Delay For First Event: }
timerInstantEvent = 0; {First event is reported immediately }
timerStandardInitDelay = -1; {No special timing for first event }

{Optional Settings: }
timerOneShot = $00010000; {Delete timer after reporting an event }
timerDeleteForHiddenWindow = $00020000; {Delete timer when its window is hidden }
timerSyncToTimer = $00040000; {Synchronize with another timer }
timerLockTimerToCount = $00080000; {Report physical event for each logical }

{ event (count) }

{Timer's Unit Of Measure: }
timerEventsPerTick = $00000001; {Events per tick (1/60 second) }
timerEventsPerSecond = $00000002; {Events per second }
timerEventsPerMinute = $00000003; {Events per minute }
timerEventsPerHour = $00000004; {Events per hour }
timerEventsPerDay = $00000005; {Events per day }
timerTicksBetweenEvents = $00000006; {Number of ticks between events }
timerSecondsBetweenEvents = $00000007; {Number of seconds between events }
timerMinutesBetweenEvents = $00000008; {Number of minutes between events }
timerHoursBetweenEvents = $00000009; {Number of hours between events }
timerDaysBetweenEvents = $0000000A; {Number of days between events }

..

16 Event Management

WaterÕs Edge Software 445

DeleteTimer
Delete a timer.

C pascal void DeleteTimer (short Timer);

Pascal procedure DeleteTimer (Timer: INTEGER);

Timer specifies the timer number (from 1 to 32767) that is deleted. If the timer does not exist, DeleteTimer does
nothing. If this Timer is a ÒparentÓ Timer that is synchronized to one or more ÒchildÓ Timers, the children are deleted
as well.

Note that Timers that are associated with a window are deleted automatically when the window is closed, or
optionally, when the window is hidden. A Timer can also be deleted automatically after reporting a single event. See
the NewTimer routineÕs Spec parameter for details.

..

Tools Plus

446

Responding to Events

This section details how your application should respond after receiving an event from Tools Plus. Typically, your
application will respond to these events by having a C/C++ switch statement (or Pascal case statement) in your
applicationÕs main event handler routine with a case for each event that it chooses to respond to. You may also elect to
have a window event handler routine that processes events for one or more windows. Abundant details are provided
herein, but most applications will only need to observe a small number of the listed programming considerations.
Much of the volume that you will see is intended to inform you of what is happening, as opposed to being a list of
rules that you must follow.

All Tools Plus events are listed alphabetically by event name for quicker reference.

..

doActivate event
Indicator that a window has been activated.

The doActivate event is reported whenever an inactive window is activated. Unlike the Event Manager, Tools Plus
queues doActivate events and reports them correctly regardless of the number of windows that are opened, closed,
activated, deactivated, hidden or displayed (or the sequence in which any of these actions occur). The only applications
that need to respond to doActivate events are those that manually activate objects when a window becomes active.
Most applications will ignore this event.

Programming Considerations

¥ When your application receives a doActivate event, a doPreRefresh and doRefresh will follow if any portion of the
window needs to be refreshed.

¥ Unlike ordinary Macintosh applications, a doActivate event is not generated when a window is first opened. You can
override this behavior when opening a window.

¥ Your application receives a doActivate event when a standard window (not a tool bar or floating palette) becomes
active. This can occur under any of the following conditions:

¥ your application calls ActivateWindow to activate a standard window
¥ a window is closed to activate the window behind it
¥ your application calls WindowDisplay to unhide a standard window
¥ your application is resumed after being suspended
¥ when running under Finder (pre-System 7), and a desk accessory is closed

¥ Your application receives a doActivate event when a tool bar or floating palette becomes active. This can occur
under any of the following conditions:

¥ a modal window was closed and you have a tool bar and/or floating palettes open
¥ when running under Finder (pre-System 7), and a desk accessory is closed

¥ Your application may decide to open (or unhide) a related floating palette when a window is activated, or to close (or
hide) a floating palette that is no longer relevant to the window that is being activated.

¥ A doActivate event is only generated for windows in your application. It is not generated for desk accessories, the
Dialog ManagerÕs dialogs, alerts, or Dynamic Alerts. These events are handled automatically.

Valid Event Record Fields

Event.Window Window Number: Window number that was activated

..

16 Event Management

WaterÕs Edge Software 447

doAutoKey event
Indicator that the user held down a key, and it is repeating.

The user has pressed down a key on the keyboard or numeric pad, and the key is repeating. The key cannot be
processed internally by Tools Plus. In most cases, this event should be treated identically to a doKeyDown event. Each
doAutoKey event will follow a doKeyDown of the same sort, so your application may want to make some repeating
Command key sequences illegal.

Programming Considerations
¥ This event is generated only if the key can not be processed internally by Tools Plus.

¥ Command key sequences that are equivalents to menu items generate doMenu events.

¥ If a Command key equivalent for a hierarchical menu item is typed, and the hierarchical menu is not ultimately
attached to a pull-down menu, a doKeyDown or doAutoKey event is reported instead (as though the hierarchical
menu did not exist).

¥ The Modifiers field tells your application if the repeating key down event was a Command key sequence. All
Command key sequences that are not menu equivalents are returned to your application as doKeyDown or
doAutoKey events. If your application gets such a Command key sequence, it should carry out the appropriate
action, or beep the user if the Command key sequence is illegal.

¥ If Return or Enter are typed and held down when the active window has a default button, a doButton event is
reported for the default button.

¥ If an active editing field exists on the active window, repeating keys will affect the field and will not generate events.
This applies even if the fieldÕs length is limited, or if Return has been disallowed in a field.

¥ The HaveTabInFocus routine can be used to detect if the user hit the Tab or Shift-Tab key in an active field or in an
object that has the keyboard focus, and therefore want to move to the next/previous item that wants the keyboard
focus. The TabToFocus routine moves the focus to the next/previous item. If you initialized Tools Plus with the
initAutoFocusChanges option, tabbing to the next/previous field or keyboard focus item is automatic.

¥ If Tab is typed and the window contains an active editing field, it indicates that the user wants to tab to another field
or keyboard focus item. You may want to validate the active fieldÕs edited text before allowing the user to tab to the
new item. If this is the case, use GetEditString (or GetEditHandle) to obtain a copy of the edited text, then your
application can check the string for errors. If an error is detected, display an appropriate alert box and ignore the
doKeyDown event. If no error is detected, call the SaveFieldString routine to save the edited text as the fieldÕs string,
then call the TabToFocus routine. If you initialized Tools Plus with the initAutoFocusChanges or
initAutoSaveFieldString options, an active fieldÕs edited text is automatically saved without having to call
SaveFieldString.

¥ A Return key is reported only if the window does not have a default button or active field.

¥ If Enter is typed, it usually indicates that the user wants to enter the screenÕs data. This is the same process that is
carried out by clicking an OK button. See ÒTabÓ above, regarding validating and saving a fieldÕs edited text. An
Enter key is reported only if the window does not have a default button. The repeating Enter key may be considered
illegal because a doKeyDown event will report the first Enter, after which your application should have acted
accordingly. An Enter key is reported only if the window does not have a default button.

¥ When the watch cursor is displayed, the only doAutoKey event that is reported is a 1-., which is the userÕs request
to halt a lengthy process. Other doAutoKey events are discarded.

¥ If the active window has an active editing field, Tools Plus automatically processes the Command key equivalents
for the Edit menuÕs Undo, Cut, Copy, and Paste commands. These selections do not generate events.

¥ There are two situations where several keys produce the same key character: the Clear and Escape keys, and the F1
through F15 keys. In these cases, use the key code to differentiate the keys. Constants are provided for these key
characters and key codes.

¥ A doAutoKey event is not generated when the user types in a desk accessory. These key strokes are handled
automatically.

Tools Plus

448

Valid Event Record Fields

Event.Window Window Number: Active window number (frontmost standard window, tool
bar, or a floating palette)

Event.Key.Code Key Number: Number of the key that is repeating. This key code is a key
number that is not affected by the Caps Lock, Shift, Option, Command or
Control modifiers.

Event.Key.Chr Key Character: Character resulting from a key that is repeating. This character
is affected by the Caps Lock, Shift, Option, and/or Command modifiers.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down immediately before the key was pressed
down.

Event.Field Editing Field Number: Active editing field number when key was pressed.

CONST {Key characters and key codesÉ }
EnterKey = char($03); {KEYS: Key characters (ASCII) for common }
BackSpaceKey = char($08); { non alpha-numeric keys. }
DeleteKey = BackSpaceKey; { In some cases, several keys }
TabKey = char($09); { produce the same ASCII character. }
ReturnKey = char($0D); { They can be differentiated by }
EscClearKey = char($1B); { ($1B) using the key code as indicated }
LeftArrowKey = char($1C); { below. Some keys are available }
RightArrowKey = char($1D); { only on an extended keyboard. }
UpArrowKey = char($1E); { }
DownArrowKey = char($1F); { }
HelpKey = char($05); { }
HomeKey = char($01); { }
DeleteFwdKey = char($7F); { }
EndKey = char($04); { }
PageUpKey = char($0B); { }
PageDownKey = char($0C); { }
FKey = char($10); { ($10) Function keys F1 to F15 }
EscKeyCode = $35; { ($1B) KEY CODES used to differentiate }
ClearKeyCode = $47; { ($1B) between keys which produce }
F1KeyCode = $7A; { the same key characters. }
F2KeyCode = $78; { }
F3KeyCode = $63; { }
F4KeyCode = $76; { }
F5KeyCode = $60; { }
F6KeyCode = $61; { }
F7KeyCode = $62; { }
F8KeyCode = $64; { }
F9KeyCode = $65; { }
F10KeyCode = $6D; { }
F11KeyCode = $67; { }
F12KeyCode = $6F; { }
F13KeyCode = $69; { }
F14KeyCode = $6B; { }
F15KeyCode = $71; { }

..

doButton event
Indicator that user has clicked a button.

The doButton event reports that the user has clicked a button in the active window. This includes push buttons, check
boxes and radio buttons as well as custom CDEFs that are made to behave like buttons by Tools Plus. The doButton
event is also reported if the active window has a default push-button, and the user pressed the Return or Enter key to
invoke the default. If this is the case, the windowÕs default button will already have been ÒflashedÓ as if the user had
clicked it.

Programming Considerations

¥ If the user clicked a check box, use SelectButton to reverse the check boxÕs selection (i.e., select or deselect it).

¥ If the user clicked a radio button, use SelectButton to select the radio button, and to deselect the other buttons in the
radio buttonÕs group. Note that a panel can be used to automatically deselect other radio buttons in the group.

16 Event Management

WaterÕs Edge Software 449

¥ This event will never occur when the watch cursor is displayed, since buttons cannot be clicked. The exception is if
the WatchCursorButtons routine has been used to allow the watch cursor to click push-buttons.

¥ If your application responds to double-clicks in radio buttons and Event.Button.DoubleClick is true, consider the
event to mean Òclick button and OK,Ó in which case the default button should be flashed and the appropriate action
taken.

¥ A doButton event is not generated when the user clicks buttons in a dialog box, alert box, or desk accessory. These
events are handled automatically.

Valid Event Record Fields

Event.Window Window Number: Window number containing the selected button (frontmost
standard window, tool bar, or a floating palette).

Event.Button.Num Button Number: Button number that was clicked by the user.

Event.Button.Part Button Part: Part of button that was clicked by user. This field is ignored in
most cases. Buttons with multiple parts began to appear with the
introduction of the Appearance Manager, such as the ÒLittle ArrowsÓ
control which can be clicked inUpButton or inDownButton.

Event.Button.DoubleClick ButtonÕs Double-click Status: Was the button double-clicked? (radio buttons
only).

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down when the button was clicked (during the
mouse-down).

CONST {Typical button partsÉ }
inButton = 10; {A standard push button }
inCheckBox = 11; {A check box or radio button }
inUpButton = 20; {Up arrow }
inDownButton = 21; {Down arrow }

..

doChgInField event
Indicator that the contents of your applicationÕs active editing field have been changed.

The doChgInField event is reported whenever the active field in your application is altered, either through typing,
cutting, pasting (including the use of the PasteIntoField routine), clearing, or undoing/redoing (using the Edit menu).
Most applications will ignore this event.

Valid Event Record Fields

Event.Window Window Number: Window number containing the changed field

Event.Field Editing Field Number: Editing field that was changed.

Programming Tips:
1 Your application can use the FieldIsEmpty routine to quickly determine if an editing field contains any

characters (including spaces). If the field is empty, you may want to disable a ÒsaveÓ button or equivalent.

..

Tools Plus

450

doChgMonitorSettings event
Indicator that the user has changed monitor settings, which includes alterations to any of the following settings on any
monitor:

¥ number of colors or grays
¥ monitor size
¥ monitor resolution
¥ orientation of multiple monitors (side by side, 1=left/2=right or 2=left/1=right, height offsets, etc.)
¥ moving menu bar to another monitor
¥ changing the menu barÕs height (available in Mac OS 8.5 and later when a different theme is selected)

Mac OS does not have any direct way of informing your application that the user has changed monitor settings.
Instead, Tools Plus checks for these changes whenever a window needs to be refreshed, or when your suspended
application resumes. If Tools Plus detects any changes then, it reports a doChgMonitorSettings event. See the
CheckForMonitorChanges routine (in the Color Drawing & Multiple Monitors chapter) if you need to check for
monitor changes at any other time. In most cases, your application will want to ignore this event.

If the menu barÕs height is changed by a different theme, Tools Plus automatically moves all your open (and possibly
hidden) windows down or up to accounts for the slight change in the menu bar height.

..

doChgWindow event
Request to activate an inactive window that belongs to your application.

The request to activate an inactive window is made in response to the user clicking anywhere on an inactive window
that belongs to your application. However, there is one exception. If the user clicks in an inactive windowÕs title bar
while holding the Command key, the window is dragged without being activated.

Programming Considerations

¥ A window can be activated by using the ActivateWindow routine.

¥ If the active window has an active editing field, you may want to validate the edited text before allowing the user to
activate another window. If this is the case, use GetEditString (or GetEditHandle) to obtain a copy of the edited text,
then your application can check the string for errors. If an error is detected, display an appropriate alert box and
ignore the doChgWindow event. If no error is detected, call the SaveFieldString routine to save the edited text as the
fieldÕs string, then activate the required window.

¥ If your application decides not to allow the user to activate a window, it should display an appropriate alert box to
explain why.

¥ The doChgWindow event will never occur when a modal window is active, or when the watch cursor is displayed
since other windows belonging to your application cannot be clicked.

¥ A doChgWindow event does not occur if the user clicks on a tool bar or floating palettes.

¥ If your application is running under Finder (System 6 or prior), a doChgWindow event will not occur when the user
[1] clicks a desk accessory from an active window, [2] clicks a desk accessory from another active desk accessory, or
[3] clicks the previously active window from an active desk accessory. These are all handled automatically.

Valid Event Record Fields

Event.Window Window Number: Window number that the user is trying to activate.

Event.Event The Event ManagerÕs Event Record: Event record as retrieved from the
Event Manager.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down when the window was clicked (during the
mouse-down).

..

16 Event Management

WaterÕs Edge Software 451

doClick event
Indicator that the user has completed or is in the midst of a single-click, double-click, triple-click, or drag.

A single-click, double-click, triple-click, or drag has been reported in the active window. The event may still be in
progress when Tools Plus calls your event handler routine, such as a double-click with the mouse button still down on
the second click. The Mouse part of the event record contains a field called What, which is the mouse event code that
tells your application what type of mouse click has occurred. The rest of the mouse record contains details on each
mouse-down and mouse-up event.

When WaitForMultiClicks(off) is used (this is the default), mouse-related events are reported as they occur. When
WaitForMultiClicks is turned on, Tools Plus makes a series of decisions to calculate the single-click and multiple-click
information, as well as dragging information. It reports an event only after it has determined that a single-click,
double-click, or triple-click is in progress or has been completed. The decisions made by Tools Plus when
WaitForMultiClicks is turned on are as follows:

1 If the first mouse-down is in an active windowÕs content region, and it is not in a button, picture button,
scroll bar, editing field, list box, pop-up menu or custom control, a click has begun but no event is reported.

2 If the user holds the mouse button down too long during the first click to begin the second click of a double-
click, a doClick event is generated with Event.Mouse.What set to inClick1Drag (single-click started, mouse
still down). When the user releases the mouse a doClick event is generated with Event.Mouse.What set to
inClick1 (single-click completed). Subsequent clicks start counting at one again.

3 If the user releases the mouse button after the first click and leaves it up too long for the next mouse-down to
be considered a double-click, a doClick event is generated with Event.Mouse.What set to inClick1 (single-
click completed).

4 If the second mouse-down is in an active windowÕs content region, and it is not in a button, picture button,
scroll bar, editing field, list box, pop-up menu or custom control, and the mouse-down occurred within the
time limit for a multiple click, then Tools Plus continues.

5 If the user holds the mouse button down too long during the second click to begin the third click of a triple-
click, a doClick event is generated with Event.Mouse.What set to inClick2Drag (double-click started, mouse
still down). When the user releases the mouse a doClick event is generated with Event.Mouse.What set to
inClick2 (double-click completed). Subsequent clicks start counting at one again.

6 If the user releases the mouse button after the second click and leaves it up too long for the next mouse-
down to be considered a triple-click, a doClick event is generated with Event.Mouse.What set to inClick2
(double-click completed).

7 If the third mouse-down of a click is in an active windowÕs content region, and it is not in a button, picture
button, scroll bar, editing field, list box, pop-up menu or custom control, and the mouse-down occurred
within the time limit for a multiple click, then Tools Plus continues.

8 If the user holds the mouse button down too long during the third click, a doClick event is generated with
Event.Mouse.What set to inClick3Drag (triple-click started, mouse still down). When the user releases the
mouse a doClick event is generated with Event.Mouse.What set to inClick3 (triple-click completed).
Subsequent clicks start counting at one again.

9 If the user releases the mouse button after the third click, a doClick event is generated with
Event.Mouse.What set to inClick3 (triple-click completed).

The easiest way to remember how mouse clicks are reported to your application is as follows:

WaitForMultiClicks(on) Tools Plus waits until it knows that a single-click, double-click, or triple-click is
completed before reporting it to your application.

WaitForMultiClicks(off) Each mouse-down and mouse-up is immediately reported to your application even if
there are mouse-down or mouse-up events in the event queue. For example, by the end
of a double-click your application will have received the following mouse events:

inClick1Drag single-click, mouse still down
inClick1 single-click completed
inClick2Drag double-click, mouse still down
inClick2 double-click completed

Tools Plus

452

Programming Considerations

¥ If at some point your application is only concerned with a mouse down in a certain area, or a single-click only, or a
double-click only, you can disrupt the click as soon as you have obtained enough information by using
ResetMouseClicks. For example, if your application only cares about a single-click and it gets an inClick1 mouse
event code (single-click completed), ResetMouseClicks will tell Tools Plus Òforget the rest of this click.Ó

¥ If your application wants to beep the user once when he clicks in an illegal area, call WaitForMultiClicks(false) early
in your application. When your application gets a doClick event and it determines the click is illegal, call
ResetMouseClicks and wait until the mouse is released. You can wait with an empty loop that keeps running while
the toolboxÕs StillDown routine returns true (i.e., while StillDown do;)

¥ If you detect a double click and you determine the first two clicks did not occur within the same object, you can use
the IgnoreFirstMouseClick routine to discard the first clickÕs information and continue processing for multiple
clicks.

¥ A double-click and triple-click should be scrutinized by your application because the time between the last mouse-
down and mouse-up event may exceed the allowable time limit for consecutive clicks. Use the toolboxÕs
GetDblTime routine to determine the maximum number of clock ticks that can transpire between mouse-down and
mouse-up events to constitute a consecutive click, then compare it to the time of your clicks.

¥ You can choose to either wait for subsequent mouse-down and mouse-up events or have the beginning and end of a
click/drag reported right away by using the WaitForMultiClicks routine.

¥ Your application can place cursor zones on a window, then use FindCursorZone to determine if a click occurred in
one of those zones. This can make parts of your window, such as pictures or icons, click-sensitive. See ÒCursorsÓ for
information about Cursor Tables and Cursor Zones.

¥ This event will never occur when the watch cursor is displayed, since only buttons can be (optionally) clicked.

¥ Event.Event is populated with the mouse-down event (as obtained from the Event Manager) that is responsible for
the doClick event. Some applications need this event to drive custom controls.

¥ A doClick event is not generated when the user clicks in a desk accessory. The process is handled automatically.

Valid Event Record Fields

Event.Window Window Number: Window number containing the click(s) (frontmost
standard window, tool bar, or a floating palette)

Event.Mouse.What Mouse Event Code: Type of mouse event that occurred (inClick1,
inClick2, etc., listed below)

Event.Mouse.Down[1].Where 1st Mouse Down Location: Location of 1st mouse-down event (in the
active windowÕs local co-ordinates)

Event.Mouse.Down[1].When 1st Mouse Down Time: Time of 1st mouse-down (number of ÒticksÓ
since startup)

Event.Mouse.Down[1].Modifiers 1st Mouse Down Modifier Record: Event modifiers for the mouse-down
event.

Event.Event The Event ManagerÕs Event Record: Event record for first mouse-down
event only.

The next three fields are valid only if the mouse event code is inClick1, inClick2Drag, inClick2, inClick3Drag, or inClick3.

Event.Mouse.Up[1].Where 1st Mouse Up Location: Location of 1st mouse-up event (in the active
windowÕs local co-ordinates)

Event.Mouse.Up[1].When 1st Mouse Up Time: Time of 1st mouse-up (number of ÒticksÓ since
startup)

Event.Mouse.Up[1].Modifiers 1st Mouse Up Modifier Record: Event modifiers for the mouse-up
event.

16 Event Management

WaterÕs Edge Software 453

The next three fields are valid only if the mouse event code is inClick2Drag, inClick2, inClick3Drag, or inClick3.

Event.Mouse.Down[2].Where 2nd Mouse Down Location: Location of 2nd mouse-down event (in the
active windowÕs local co-ordinates)

Event.Mouse.Down[2].When 2nd Mouse Down Time: Time of 2nd mouse-down (number of ÒticksÓ
since startup)

Event.Mouse.Down[2].Modifiers 2nd Mouse Down Modifier Record: Event modifiers for the mouse-
down event.

The next three fields are valid only if the mouse event code is inClick2, inClick3Drag, or inClick3.

Event.Mouse.Up[2].Where 2nd Mouse Up Location: Location of 2nd mouse-up event (in the active
windowÕs local co-ordinates)

Event.Mouse.Up[2].When 2nd Mouse Up Time: Time of 2nd mouse-up (number of ÒticksÓ since
startup)

Event.Mouse.Up[2].Modifiers 2nd Mouse Up Modifier Record: Event modifiers for the mouse-up
event

The next three fields are valid only if the mouse event code is inClick3Drag, or inClick3.

Event.Mouse.Down[3].Where 3rd Mouse Down Location: Location of 3rd mouse-down event (in the
active windowÕs local co-ordinates)

Event.Mouse.Down[3].When 3rd Mouse Down Time: Time of 3rd mouse-down (number of ÒticksÓ
since startup)

Event.Mouse.Down[3].Modifiers 3rd Mouse Down Modifier Record: Event modifiers for the mouse-
down event.

The next three fields are valid only if the mouse event code is inClick3.

Event.Mouse.Up[3].Where 3rd Mouse Up Location: Location of 3rd mouse-up event (in the active
windowÕs local co-ordinates)

Event.Mouse.Up[3].When 3rd Mouse Up Time: Time of 3rd mouse-up (number of ÒticksÓ since
startup)

Event.Mouse.Up[3].Modifiers 3rd Mouse Up Modifier Record: Event modifiers for the mouse-up
event.

Event.Mouse.Where Mouse Location: Mouse location when your event handler routine was
last called by Tools Plus (in the active windowÕs local co-ordinates)

CONST {Mouse Event Codes }
inClick1 = 1; {single-click completed }
inClick2 = 2; {double-click completed }
inClick3 = 3; {triple-click completed }
inClick1Drag = -1; {single-click, mouse still down }
inClick2Drag = -2; {double-click, mouse still down }
inClick3Drag = -3; {triple-click, mouse still down }

- Note: For C programmersÉ The event recordÕs arrays are documented using Pascal nomenclature (the elements are
numbered 1, 2 and 3). In C, the same arrayÕs elements are numbered 0, 1 and 2 (they start at zero). When C
programmers read:

Event.Mouse.Down[1].Where
it indicates the first element of the array, which translates to the following C source code:

Event.Mouse.Down[0].Where

..

Tools Plus

454

doClickControl event
Indicator that user clicked a custom control.

The doClickControl event reports that the user has clicked in a custom control. This event must be handled entirely by
your application, since only you know how your custom control should behave.

Programming Considerations

¥ This event will never occur when the watch cursor is displayed, since custom controls cannot be clicked.

¥ This event is not generated for a custom CDEF that is made to behave like a button or scroll bar (i.e., one that is
created with Tools PlusÕs NewButton or NewScrollBar routines). Tools Plus reports activity in those controls
through doButton and doScrollBar events.

Valid Event Record Fields

Event.Window Window Number: Window number containing the affected control (frontmost
standard window, tool bar, or a floating palette)

Event.Event The Event ManagerÕs Event Record: Event record as retrieved from the
Event Manager.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down when the close box was clicked (during
the mouse-down).

..

doClickDesk event
Indicator that user clicked in the desk top.

The doClickDesk event reports that the user has clicked in the desk top. Most applications will choose to ignore this
event, however, it can be used to deselect objects on the active window.

Programming Considerations

¥ This event will never occur when a modal window is active, since clicks cannot occur outside of the window.

¥ This event will never occur when the watch cursor is displayed, since the desk top cannot be clicked.

Valid Event Record Fields

All fields in the event record, except What, are undefined.

..

doClickToFocus event
Indicator that the user clicked in an inactive editing field or in an inactive item that wants the keyboard focus.
Normally, your application just calls ClickToFocus in response to this event.

Programming Considerations

¥ The ClickToFocus routine is used to process a userÕs click in an inactive editing field. It could be in the same
window that the user is working in, or it could be in a tool bar or floating palette.

¥ If you initialized Tools Plus with the initAutoFocusChanges option, clicking to another field or keyboard focus item
is automatic.

¥ If an editing field is active when you receive a doClickToFocus event, you may want to validate its edited text before
allowing the user to click to the new field. If this is the case, use GetEditString (or GetEditHandle) to obtain a copy
of the edited text, then your application can check the string for errors. If an error is detected, display an appropriate

16 Event Management

WaterÕs Edge Software 455

alert box and ignore the doClickToFocus event. If no error is detected, call the SaveFieldString routine to save the
edited text as the fieldÕs string, then call the ClickToFocus routine to process the userÕs click in the new field. If you
initialized Tools Plus with the initAutoFocusChanges or initAutoSaveFieldString options, an active fieldÕs edited
text is automatically saved without having to call SaveFieldString.

¥ Between the time when the doClickToFocus event is reported and when your application calls ClickToFocus is
called, observe the following rules:

¥ do not call Process1EventWhileBusy or ProcessToolboxEvent
¥ do not open or close any windows, including alerts and dialogs
¥ do not hide or show any windows
¥ do not activate any windows
¥ do not activate, deactivate, enable, disable or delete any user interface elements

If these rules are not observed, ClickToFocus will do nothing and the userÕs click is ignored.

¥ An event will not occur if the user clicks in an editing field that is already active.

¥ This event will never occur when the watch cursor is displayed, since editing fields cannot be clicked.

¥ A doClickToFocus event is not generated when the user clicks in a desk accessoryÕs editing fields. The process is
handled automatically.

Valid Event Record Fields

Event.Window Window Number: Window number containing the clicked keyboard focus
item (the frontmost standard window, tool bar, or a floating palette)

Event.Button.Num Button Number: Button number that was clicked by the user. Zero (0)
indicates that the item clicked is not implemented as a button.

Event.Button.Part Button Part: Part of button that was clicked by user. This field is ignored in
most cases. Buttons with multiple parts began to appear with the
introduction of the Appearance Manager, such as the ÒLittle ArrowsÓ
control which can be clicked inUpButton or inDownButton.

Event.ScrollBar.Num Scroll Bar Number: Scroll bar number that was clicked by the user. Zero (0)
indicates that the item clicked is not implemented as a scroll bar.

Event.ScrollBar.Part Scroll Bar Part: Part of scroll bar that was clicked by user.

Event.Field Editing Field Number: Editing field that was clicked by the user. Zero (0)
indicated that the item clicked is not an editing field.

Event.ListBox.Num List Box Number: List box number that was clicked by the user. Zero (0)
indicates that the item clicked is not a list box.

Event.Event The Event ManagerÕs Event Record: Event record as retrieved from the
Event Manager.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down when the close box was clicked (during
the mouse-down).

..

doDeactivate event
Indicator that a window has been deactivated.

The doDeactivate event is reported whenever an active window is deactivated. Unlike the Event Manager, Tools Plus
queues doDeactivate events and reports them correctly regardless of the number of windows that are opened, closed,
activated, deactivated, hidden or displayed (or the sequence in which any of these actions occur). The only applications
that need to respond to doDeactivate events are those that manually deactivate objects when a window becomes active.
Most applications will ignore this event.

Tools Plus

456

Programming Considerations

¥ Your application receives a doDeactivate event when a standard window (not a tool bar or floating palette) becomes
inactive. This can occur under any of the following conditions:

¥ a standard window is opened or unhidden in front of a standard window
¥ your application is suspended
¥ when running under Finder (pre-System 7), and a desk accessory is opened

¥ Your application receives a doDeactivate event when a tool bar or floating palette becomes inactive. This can occur
under any of the following conditions:

¥ a modal window is opened and you have a tool bar and/or floating palettes open
¥ when running under Finder (pre-System 7), and a desk accessory is opened

¥ A doDeactivate event is only generated for windows in your application. It is not generated for desk accessories, the
Dialog ManagerÕs dialogs, alerts, or Dynamic Alerts. These events are handled automatically.

Valid Event Record Fields

Event.Window Window Number: Window number that was deactivated

..

doGoAway event
Request to close the active window.

The request to close the active window is made in response to the user clicking inside the windowÕs ÒcloseÓ box. This
has the same effect as choosing the File menuÕs Close item.

Programming Considerations

¥ A window is closed by using the WindowClose routine.

¥ If the window has an active editing field, you may want to validate its edited text before allowing the user to close
the window. If this is the case, use GetEditString (or GetEditHandle) to obtain a copy of the edited text, then your
application can check the string for errors. If an error is detected, display an appropriate alert box and ignore the
doGoAway event. If no error is detected, call the SaveFieldString routine to save the edited text as the fieldÕs string,
then close the required window.

¥ If any changes have been made in the windowÕs data, your application should display an appropriate alert box and
ask the user if changes should be saved. The options should be Yes, No, and Cancel, the last of which would ignore
the doGoAway event.

¥ The doGoAway event will never occur when the watch cursor is displayed, since the close box cannot be clicked.

¥ A doGoAway event is not generated when the user clicks a desk accessoryÕs close box. The desk accessory is closed
automatically.

¥ You may want to consider hiding a window (with the WindowDisplay routine) instead of closing it in situations
where a window is opened and closed frequently, such as a floating palette or tool bar. Hiding and showing a
window preserves the windowÕs setting and location, and is much faster than opening a window and recreating the
user interface elements. However, hiding a window does not release the memory consumed by the objects in the
window (such as picture buttons, list boxes, etc.)

Valid Event Record Fields

Event.Window Window Number: Window number the user is trying to close (frontmost
standard window, or a floating palette).

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down when the close box was clicked (during
the mouse-down).

..

16 Event Management

WaterÕs Edge Software 457

doGrowWindow event
Indicator that user has changed a windowÕs size.

The doGrowWindow event reports that the user has changed a window by dragging a windowÕs Òsize box.Ó This will
always occur on the active window.

Programming Considerations

¥ Your application can call the WindowStatus routine to obtain the windowÕs new width and height in pixels.

¥ If the window is enlarged either vertically or horizontally, Tools Plus will report a doRefresh event for this window.

¥ This event will never occur when the watch cursor is displayed, since the size box cannot be clicked.

¥ Tools Plus may resize a tool bar automatically in response to the user changing the main monitorÕs size or resolution.
When this happens, Tools Plus reports a doGrowWindow event for the tool bar.

¥ A doGrowWindow event is not generated when the user changes a desk accessoryÕs size. The process is handled
automatically.

Valid Event Record Fields

Event.Window Window Number: Window number that was re-sized.

..

doKeyDown event
Indicator that the user pressed down a key.

The user has pressed down a key on the keyboard or numeric pad, and the key cannot be processed internally by Tools
Plus.

Programming Considerations
¥ This event is generated only if the key can not be processed internally by Tools Plus.

¥ Command key sequences that are equivalents to menu items generate doMenu events.

¥ If a Command key equivalent for a hierarchical menu item is typed, and the hierarchical menu is not ultimately
attached to a pull-down menu, a doKeyDown or doAutoKey event is reported instead (as though the hierarchical
menu did not exist).

¥ The Modifiers field tells your application if the key down event was a Command key sequence. All Command key
sequences that are not menu equivalents are returned to your application as doKeyDown or doAutoKey events. If
your application gets such a Command key sequence, it should carry out the appropriate action, or beep the user if
the Command key sequence is illegal.

¥ If Return or Enter are typed when the active window has a default button, a doButton event is reported for the default
button.

¥ If an active editing field exists on the active window, key strokes will affect the field and will not generate events.
This applies even if the fieldÕs length is limited, or if Return has been disallowed in a field.

¥ The HaveTabInFocus routine can be used to detect if the user hit the Tab or Shift-Tab key in an active field or in an
object that has the keyboard focus, and therefore want to move to the next/previous item that wants the keyboard
focus. The TabToFocus routine moves the focus to the next/previous item. If you initialized Tools Plus with the
initAutoFocusChanges option, tabbing to the next/previous field or keyboard focus item is automatic.

¥ If Tab is typed and the window contains an active editing field, it indicates that the user wants to tab to another field
or keyboard focus item. You may want to validate the active fieldÕs edited text before allowing the user to tab to the
new item. If this is the case, use GetEditString (or GetEditHandle) to obtain a copy of the edited text, then your
application can check the string for errors. If an error is detected, display an appropriate alert box and ignore the
doKeyDown event. If no error is detected, call the SaveFieldString routine to save the edited text as the fieldÕs string,
then call the TabToFocus routine. If you initialized Tools Plus with the initAutoFocusChanges or
initAutoSaveFieldString options, an active fieldÕs edited text is automatically saved without calling SaveFieldString.

Tools Plus

458

¥ A Return key is reported only if the window does not have a default button or active field.

¥ If Enter is typed, it usually indicates that the user wants to enter the screenÕs data. This is the same process that is
carried out by clicking an OK button. See ÒTabÓ above, regarding validating and saving a fieldÕs edited text. An
Enter key is reported only if the window does not have a default button.

¥ When the watch cursor is displayed, the only doKeyDown event that is reported is a 1-., which indicates that the
user is halting a lengthy process. Other doKeyDown events are discarded.

¥ If the active window has an active editing field, Tools Plus automatically processes the Command key equivalents
for the Edit menuÕs Undo, Cut, Copy, and Paste commands. These selections do not generate events.

¥ There are two situations where several keys produce the same key character: the Clear and Escape keys, and the F1
through F15 keys. In these cases, use the key code to differentiate the keys. Constants are provided for these key
characters and key codes.

¥ A doKeyDown event is not generated when the user types in a desk accessory. These key strokes are handled
automatically.

Valid Event Record Fields

Event.Window Window Number: Active window number (frontmost standard window, tool
bar, or a floating palette)

Event.Key.Code Key Number: Number of the key that was pressed down. This key code is a
key number that is not affected by the Caps Lock, Shift, Option, Command
or Control modifiers.

Event.Key.Chr Key Character: Character resulting from a key that was pressed down. This
character is affected by the Caps Lock, Shift, Option, and/or Command
modifiers.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down immediately before the key was pressed
down.

Event.Field Editing Field Number: Active editing field number when key was pressed.

CONST {Key characters and key codesÉ }
EnterKey = char($03); {KEYS: Key characters (ASCII) for common }
BackSpaceKey = char($08); { non alpha-numeric keys. }
DeleteKey = BackSpaceKey; { In some cases, several keys }
TabKey = char($09); { produce the same ASCII character. }
ReturnKey = char($0D); { They can be differentiated by }
EscClearKey = char($1B); { ($1B) using the key code as indicated }
LeftArrowKey = char($1C); { below. Some keys are available }
RightArrowKey = char($1D); { only on an extended keyboard. }
UpArrowKey = char($1E); { }
DownArrowKey = char($1F); { }
HelpKey = char($05); { }
HomeKey = char($01); { }
DeleteFwdKey = char($7F); { }
EndKey = char($04); { }
PageUpKey = char($0B); { }
PageDownKey = char($0C); { }
FKey = char($10); { ($10) Function keys F1 to F15 }
EscKeyCode = $35; { ($1B) KEY CODES used to differentiate }
ClearKeyCode = $47; { ($1B) between keys which produce }
F1KeyCode = $7A; { the same key characters. }
F2KeyCode = $78; { }
F3KeyCode = $63; { }
F4KeyCode = $76; { }
F5KeyCode = $60; { }
F6KeyCode = $61; { }
F7KeyCode = $62; { }
F8KeyCode = $64; { }
F9KeyCode = $65; { }
F10KeyCode = $6D; { }
F11KeyCode = $67; { }
F12KeyCode = $6F; { }
F13KeyCode = $69; { }
F14KeyCode = $6B; { }
F15KeyCode = $71; { }

16 Event Management

WaterÕs Edge Software 459

doKeyInControl event
Indicator that the user pressed down a key, or a key is repeating and it was applied to a control.

The user has pressed down a key on the keyboard or numeric pad, or is holding a key, and that key was applied to an
Appearance Manager-savvy control.

Programming Considerations
¥ Only Appearance Manager-savvy controls can process keystrokes. An example of such a control is the ÒClockÓ

control which allows the user to enter the time by typing in numeric values for hours, minutes and seconds. The
Clock control also lets the user increase or decrease the selected hour, minute or second field by typing the up cursor
or down cursor key.

¥ The keystroke is always applied to the control with the keyboard focus in the active window.

¥ Typing the Tab key automatically advances the keyboard focus. Similarly, typing Shift-Tab automatically reverses
the keyboard focus. Note that the control indicated by Event.Button.Num or Event.ScrollBar.Num is the control that
had the keyboard focus before the tab key was typed.

Valid Event Record Fields

Event.Window Window Number: Active window number (frontmost standard window, tool
bar, or a floating palette)

Event.Key.Code Key Number: Number of the key that was pressed down. This key code is a
key number that is not affected by the Caps Lock, Shift, Option, Command
or Control modifiers.

Event.Key.Chr Key Character: Character resulting from a key that was pressed down. This
character is affected by the Caps Lock, Shift, Option, and/or Command
modifiers.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down immediately before the key was pressed
down.

Event.Button.Num Button Number: Button number that processed the keystroke. A value of zero
indicates that the affected control was implemented as a scroll bar.

Event.ScrollBar.Num Scroll Bar Number: Scroll bar number that processed the keystroke. A value
of zero indicates that the affected control was implemented as a button.

Event.ListBox.Num List Box Number: List box number that processed the keystroke.

..

doKeyUp event
Indicator that the user released a key.

The user has released a key on the keyboard or numeric pad, and the key cannot be processed internally by Tools Plus.
Normally the Macintosh does not report doKeyUp events nor do applications typically respond to them. See ÒKey-Up
EventsÓ in the Designing Your Application chapter for details on the SetEventMask routine.

Programming Considerations

¥ This event is generated only if your application has used the SetEventMask routine to make the Macintosh respond
to key-up events, and if the active window does not have an active editing field.

¥ Tools Plus and desk accessories do not require key-up events, and therefore ignore them.

¥ There are two situations where several keys produce the same key character: the Clear and Escape keys, and the F1
through F15 keys. In these cases, use the key code to differentiate the keys. Constants are provided for these key
characters and key codes.

¥ When the watch cursor is displayed, all doKeyUp events are discarded and are not generated.

Tools Plus

460

Valid Event Record Fields

Event.Window Window Number: Active window number (frontmost standard window, tool
bar, or a floating palette)

Event.Key.Code Key Number: Number of the key that was released. This key code is a key
number that is not affected by the Caps Lock, Shift, Option, Command or
Control modifiers.

Event.Key.Chr Key Character: Character resulting from a key that was released. This
character is affected by the Caps Lock, Shift, Option, and/or Command
modifiers.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down immediately before the key was released.

CONST {Key characters and key codesÉ }
EnterKey = char($03); {KEYS: Key characters (ASCII) for common }
BackSpaceKey = char($08); { non apha-numeric keys. }
TabKey = char($09); { In some cases, several keys }
ReturnKey = char($0D); { produce the same ASCII }
EscClearKey = char($1B); { ($1B) character. They can be }
LeftArrowKey = char($1C); { differentiated by using the key }
RightArrowKey = char($1D); { code, as indicated below. }
UpArrowKey = char($1E); { Some keys are available only }
DownArrowKey = char($1F); { on an extended keyboard. }
HelpKey = char($05); { }
HomeKey = char($01); { }
DeleteFwdKey = char($7F); { }
EndKey = char($04); { }
PageUpKey = char($0B); { }
PageDownKey = char($0C); { }
FKey = char($10); { ($10) Function keys F1 to F15 }
EscKeyCode = $35; { ($1B) KEY CODES used to differentiate }
ClearKeyCode = $47; { ($1B) between keys which produce }
F1KeyCode = $7A; { the same key characters. }
F2KeyCode = $78; { }
F3KeyCode = $63; { }
F4KeyCode = $76; { }
F5KeyCode = $60; { }
F6KeyCode = $61; { }
F7KeyCode = $62; { }
F8KeyCode = $64; { }
F9KeyCode = $65; { }
F10KeyCode = $6D; { }
F11KeyCode = $67; { }
F12KeyCode = $6F; { }
F13KeyCode = $69; { }
F14KeyCode = $6B; { }
F15KeyCode = $71; { }

..

doListBox event
Indicator that user clicked or double-clicked in a list box.

The doListBox event reports that the user has clicked somewhere in a list box (on a line that contains text or a blank
line). This event is not generated when the user just scrolls the list box by using its scroll bar.

Programming Considerations

¥ If your application treats double-clicks in list boxes like clicking the OK button, use the GetListBoxLine routine to
determine which line was selected (or GetListBoxLines if multiple lines can be selected in the list box), then flash
the OK button with the FlashButton routine.

¥ This event will never occur when the watch cursor is displayed, since list boxes cannot be clicked.

¥ A doListBox event is not generated when the user clicks list boxes in a dialog box or desk accessory. These events
are handled automatically.

16 Event Management

WaterÕs Edge Software 461

Valid Event Record Fields

Event.Window Window Number: Window number containing the affected list box (frontmost
standard window, tool bar, or a floating palette)

Event.ListBox.Num List Box Number: List box number that was clicked by the user.

Event.ListBox.DoubleClick List BoxÕs Double-click Status: Was a line in the list box was double-clicked?

Event.Event The Event ManagerÕs Event Record: Event record as retrieved from the
Event Manager. This will always be one of the following toolbox events:
keyDown, autoKey, or mouseDown.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down when the user interacted with the list box.

..

doManualEvent event
Indicator that an event has been reported that canÕt be processed by Tools Plus.

The doManualEvent event reports that some type of event has occurred which may need to be processed by your
application. This includes ten possible types of events as defined by the Event Manager, which are listed below. If
your application does not make use of any of these events, it can ignore the doManualEvent event code.

updateEvt Your application receives an update event as a doManual event for any window that is
opened using standard toolbox routines when that window needs to be refreshed. This
happens only in rare circumstances, such as running a custom ÒOpenÉÓ dialog, or in plug-
ins when the host applicationÕs window needs to be updated. The Event.Event.message
field contains a window pointer to a foreign (non-Tools Plus) window or dialog. In this
case, you must call the toolboxÕs BeginUpdate and EndUpdate routines for the target
window in order to clear the update event. If you donÕt, your application or plug-in will not
receive doNothing events.

diskEvt The Standard File Package takes care of all disk-inserted events, so applications using this
package can ignore diskEvt events. If your application is unusual and it circumvents the
Standard File package, your application will have to handle disk-inserted events itself.

networkEvt Your application needs to respond to network events only if it is going to be
communicating with the AppleTalk manager. If it is, you should read the appropriate
documentation in Inside Macintosh regarding networks.

driverEvt If your application does not intend to work with device drivers, it can ignore these events.
Otherwise, you should read the appropriate documentation in Inside Macintosh regarding
device drivers.

app1Evt
app2Evt
app3Evt
app4Evt
osEvt

Application-defined events 1 through 4. These are events whose meaning is defined by
your application. If your application does not define custom events, it can ignore these
event codes. Note that app4Evt (or osEvt) will only be reported if your application does
not respond to Suspend/Resume events. See the SIZE resource for details. If your
application does respond to Suspend/Resume events, it will receive a doSuspend or
doResume Tools Plus event.

kHighLevelEvt
High level events (known as Apple Events) will only be reported to your application as
doManualEvent events under any of the following conditions:

¥ Your applicationÕs SIZE resource is set to not respond to High Level events, and your
application posted a High Level event.

¥ Your application is running under System 6 or older, and it posted a high level event.
¥ Your applicationÕs SIZE resource is set to respond to High Level events, it is running

under System 7 or later, but you have not written or installed an Apple Event handler
routine for a specific Apple Event.

Tools Plus

462

Valid Event Record Fields

Event.Event The Event ManagerÕs Event Record: Event record as retrieved from the
Event Manager.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down immediately before the key was pressed
down.

..

doMenu event
Indicator that the user selected a pull-down or hierarchical menu item.

The user selected a pull-down or hierarchical menu by either clicking in the menu bar and selecting an item, or by
typing a Command key equivalent for a menu item.

Programming Considerations

¥ The menuÕs name in the menu bar is automatically highlighted (white letters on black background) when the user
makes a menu selection. Your application must call MenuHilite(0) to remove the highlighting when it is finished
with its process.

¥ If a hierarchical menu item is selected, the name of its ultimate parent menu is highlighted in the menu bar (white
letters on black background). Your application must call MenuHilite(0) to remove the highlighting when it is
finished with its process. If a Command key equivalent for a hierarchical menu item is typed, and the hierarchical
menu is not ultimately attached to a pull-down menu, a doKeyDown or doAutoKey event is reported instead (as
though the hierarchical menu did not exist).

¥ If your application determines that the selected menu item affects the active editing field, you may want to validate
the fieldÕs edited text before allowing the user to complete the action. If this is the case, use GetEditString (or
GetEditHandle) to obtain a copy of the edited text, then your application can check the string for errors. If an error is
detected, display an appropriate alert box then use MenuHilite to remove the highlighting from the selected menu. If
no error is detected, call the SaveFieldString routine to save the edited text as the fieldÕs string, then complete the
menuÕs action.

¥ This event will never occur when a modal window is active, or when the watch cursor is displayed since the menu
cannot be clicked and Command key equivalents are ignored.

¥ If the active window has an active editing field, Tools Plus will process the Edit menuÕs Undo, Cut, Copy, Paste, and
Clear commands automatically. These selections will not generate doMenu events.

¥ A doMenu event is not generated when the user selects desk accessory menus. These selections are handled
automatically.

Valid Event Record Fields

Event.Menu.Num Menu Number: Menu number that was selected by the user. Menus 1 through
15 are pull-down menus, and 16 through 200 are hierarchical menus. The
following constants are helpful for other menus:

mAppleMenu = -1; Apple menu, ÒAboutÉÓ item selected
mHelpMenu = -2; Help menu (System 7.0 or higher)

Event.Menu.Item Menu Item: Item number that was selected by the user

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down immediately before selecting the menu.

..

16 Event Management

WaterÕs Edge Software 463

doMoveCursor event
Indicator that the cursor has moved into another window or cursor zone.

When the cursor moves between active windows, or between cursor zones, a doMoveCursor event is generated. You
can think of this event as telling your application Òthe cursor is pointing at something different.Ó

Programming Considerations

¥ If your want to determine what the cursor is pointing at, call GetCurrentCursorZone. It reports the window number,
the cursor table used by that window, and the cursor zone beneath the cursor.

..

doMoveWindow event
Indicator that user moved a window.

The doMoveWindow event reports that the user has repositioned a window by dragging it by its title bar. Most
applications will choose to ignore this event.

Programming Considerations

¥ The dragged window might not be the active window. The user can drag an inactive window by holding down the
Command key before beginning the drag.

¥ If part or all of a window is exposed by the drag and needs to be refreshed, Tools Plus will report a doRefresh event
for this window.

¥ Your application may call WindowStatus to obtain the windowÕs new location in the screenÕs global co-ordinates.

¥ The only time this event can occur while the watch cursor is displayed is when a movable dialog (procID =
movableBoxProc) is moved.

¥ Tools Plus may move a tool bar automatically in response to the user moving the applicationÕs menu bar to another
monitor and changing the tool barÕs co-ordinates. When this happens, Tools Plus reports a doMoveWindow event for
the tool bar.

¥ A doMoveWindow event is not generated when the user drags a desk accessory. The process is handled
automatically.

Valid Event Record Fields

Event.Window Window Number: Window number that was repositioned.

..

doNothing event
No event has occurred. Also called a Ònull event.Ó

The doNothing event indicates that the event queue is empty and that no event has occurred.

Programming Considerations

¥ If your application does Òbackground processing,Ó that is, it performs an on-going task while it waits for events, then
your application should perform one ÒcycleÓ of its background process each time it receives a doNothing event. A
single cycle of your applicationÕs background process should take no longer than 1/20 of a second. Any longer than
that and the user will perceive reduced responsiveness. See the SetNullTime routine to set the interval at which your
application receives doNothing events.

¥ Picture buttons with the Òrepeating eventsÓ option turned on may report doNothing events between button value
changes. This causes no side-effects, but you should be aware of it.

¥ Scroll bars that are throttled may produce doNothing events between scroll bar value changes. This causes no side-
effects, but you should be aware of it.

Tools Plus

464

¥ To get the best performance from Tools Plus, do not alter any of the values in the event record.

¥ Consider using a Timer in place of responding to a doNothing events. See the section on Timers in this chapter for
details.

Valid Event Record Fields

Event.What Set to zero (0)

Event.Event The Event ManagerÕs Event Record: Event record as retrieved from the
Event Manager.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down.

..

doOpenApplication event
This event is reported only if your application is launched without any files to open or print. When your application
gets this event, it should open a blank document or perform some similarly suitable operation.

Programming Considerations

¥ If your application fails to correctly execute its Òopen applicationÓ code for any reason, such as requiring the user to
launch the application only by double clicking a document or dragging a document onto the application, display an
appropriate message to alert the user. You may also choose to call the QuitToolsPlus to quit your application. You
can also optionally call the SetEventError routine with a relevant error code if want to provide feedback to the
calling application as to why your application could not open.

¥ If your application is Apple Event aware (i.e., its ÔSIZEÕ resource is set with the ÒHigh level event awareÓ flag on),
and it is running under System 7 or later, Tools Plus reports the Òopen applicationÓ Apple Event as a
doOpenApplication event.

¥ If your application is not Apple Event aware, or if it is running under System 6 or older, the ProcessEvents routine
synthesizes a doOpenApplication event if it is appropriate.

¥ While your application is responding to the doOpenApplication event, Tools Plus suspends the reporting of Apple
Events. That way, you can be sure your application will have the opportunity to perform all necessary work before it
gets additional requests to open documents, print documents, or quit.

¥ In an Apple Event aware applications running on System 7 or later, you can override Tools PlusÕs default reporting
of a doOpenApplication event by installing your own Apple Event Handler routine for the Òopen applicationÓ event.

Valid Event Record Fields

Event.Event The Event ManagerÕs Event Record: Event record as retrieved from the
Event Manager. This record is empty if the ProcessEvents routine
synthesized a doOpenApplication event.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down. This record is empty if the ProcessEvents
routine synthesized a doOpenApplication event.

..

16 Event Management

WaterÕs Edge Software 465

doOpenDocuments event
This event indicates that the Finder (or another application) has requested that your application open one or more
documents. This can occur as a result of the user dragging a document onto your application, double-clicking a
document that was created by your application, or a client application making the request of your application via an
Apple Event. From a high level, the code you use to step through the list of documents that need to be opened is as
follows:

C for (theIndex = 1; theIndex <= CountNumberOfFiles(); theIndex++)
 if (GetIndexFileFSS(theIndex, &myFSS))
 MyOpenDoc(&myFSS);

Pascal for theIndex := 1 to CountNumberOfFiles do
 if GetIndexFileFSS(theIndex, myFSS) then
 MyOpenDoc(myFSS);

You will likely want to modify the above code to add logic that stops going through the file list if your application
cannot open any more files, or if it encounters a error. The GetIndexFileFSS routine retrieves an FSSpec record that
can be used to open a document in System 7 or later. For 680x0 applications running on System 6 or older, or those
680x0 applications that are not Apple Event aware, use the GetIndexFile routine in place of GetIndexFileFSS.

Programming Considerations

¥ This event may be reported if your application is Apple Event aware (i.e., its ÔSIZEÕ resource is set with the ÒHigh
level event awareÓ flag on) and your application is runing under System 7 or later.

¥ If your 680x0 application is running under System 6 or older, or it is not Apple Event aware, the ProcessEvents
routine may report a doOpenDocuments event if one or more documents need to be opened when your application is
first launched. This simulates the effect of an Òopen documentsÓ Apple Event when Apple Events are not available.

¥ Call the SetEventError routine if your application fails to open all the requested documents, or chooses not to open
any of them for any reason.

¥ While your application is responding to the doOpenDocuments event, Tools Plus suspends the reporting of Apple
Events. That way, you can be sure your application will have the opportunity to open all the requested documents
before it gets additional requests to open documents, print documents, or quit.

¥ If the opening and displaying of documents is a lengthy process, consider displaying a modal window with an
appropriate message (such as ÒPlease wait while documents are openingÓ) and periodically calling
Process1EventWhileBusy to give other processes some processing time. The modal window will prevent the user
from activating other applications or using pull-down menus while your application opens the required documents.

¥ In an Apple Event aware applications running on System 7 or later, you can override Tools PlusÕs default reporting
of doOpenDocuments events by installing your own Apple Event Handler routine for the Òopen documentsÓ event.

Valid Event Record Fields

Event.Event The Event ManagerÕs Event Record: Event record as retrieved from the
Event Manager. This record is set to zeros if the ProcessEvents routine
synthesized a doOpenDocuments event.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down. This record is set to zeros if the
ProcessEvents routine synthesized a doOpenDocuments event.

..

Tools Plus

466

doPictButton event
Indicator that user has clicked a picture button, or is holding down a repeating picture button.

The doPictButton event reports that the user has clicked a picture button in the active window. The doPictButton event
is also reported if the user holds down a repeating picture button. Repeating picture buttonÕs will produce events as
long as: [1] the mouse button is held down, [2] the button does not reach the end of its range, and [3] the mouse pointer
stays inside the picture buttonÕs region.

Programming Considerations

¥ If the Òautomatic value changeÓ option is not on, your application has to set the picture buttonÕs value by using
SetPictButtonVal or SetPictButtonValSelect.

¥ If you have created a picture button that is Òlock selectedÓ with the Òautomatic value changeÓ option off, and youÕve
done this to validate the picture button before proceeding to the next stage, do the following: validate the button. If it
can proceed to the next stage, use SetPictButtonValSelect to deselect the button and increment its value, otherwise
use SetPictButtonValSelect to deselect the button and leave its value unchanged.

¥ If the user clicked a picture button that is functioning like a radio button, use SelectPictButton to deselect the other
picture buttons in the group. Note that a panel can be used to automatically deselect other picture buttons in the
group.

¥ This event will never occur when the watch cursor is displayed, since picture buttons cannot be clicked. The
exception is if the WatchCursorButtons routine has been used to allow the watch cursor to click picture buttons.

¥ Picture buttons with the Òrepeating eventsÓ option turned on may produce doNothing events between button value
changes. This will cause no ill side-effects, but you should be aware of this.

¥ A doPictButton event is not generated when the user clicks picture buttons in another application, control panel or
desk accessory. These events are handled automatically.

Valid Event Record Fields

Event.Window Window Number: Window number containing the selected picture button
(frontmost standard window, tool bar, or a floating palette).

Event.Button.Num Button Number: Picture button number that was clicked by the user.

Event.Button.Part Button Part: Part of button that was clicked by user. A value of inButton is
returned for all buttons except those that are split. Buttons with a left/right
split return inDownButton when the left side is clicked and inUpButton
when the right side is clicked. Buttons with a top/bottom split return
inDownButton when the bottom is clicked and inUpButton when the top is
clicked.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down when the picture button was clicked
(during the mouse-down).

CONST {Picture button partsÉ }
inButton = 10; {A picture button that is not split }
inUpButton = 20; {Top or right side of a split button was clicked }

{ (button value is being incremented). }
inDownButton = 21; {Bottom or left side of a split button was clicked }

{ (button value is being decremented). }

..

16 Event Management

WaterÕs Edge Software 467

doPopUpMenu event
Indicator that the user selected a pop-up menu item.

Programming Considerations

¥ If your application determines that the item selected by the user should be checked, use CheckPopUp or PopUpMark
to mark the item with a check mark or other special character. By default, the previously selected item is
automatically unchecked (although you can override this behavior when creating the pop-up menu).

¥ If your application determines that the selected pop-up menu item affects the active editing field, you may want to
validate the fieldÕs edited text before allowing the user to complete the action. If this is the case, use GetEditString
(or GetEditHandle) to obtain a copy of the edited text, then your application can check the string for errors. If an
error is detected, display an appropriate alert box. If no error is detected, call the SaveFieldString routine to save the
edited text as the fieldÕs string, then complete the menuÕs action.

¥ A doPopUpMenu event is not generated when the user selects desk accessory menus. These selections are handled
automatically.

Valid Event Record Fields

Event.Window Window Number: Win(frontmost standard window, tool bar, or a floating
palette)

Event.Menu.Num Menu Number: Pop-up menu number that was selected by the user

Event.Menu.Item Menu Item: Item number that was selected by the user

Event.Menu.SubMenu Submenu Number: Hierarchical menu number in which the item was selected
(0 if a submenu is not used)

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down immediately before selecting the pop-up
menu.

..

doPreRefresh event
A windowÕs contents may be refreshed (redrawn) before Tools Plus refreshes its own objects.

Most applications will ignore this event. A doPreRefresh event is reported when a window is completely or partially
obscured, then becomes uncovered and needs to be redrawn. The doPreRefresh event lets your application draw
objects before Tools Plus draws its own objects. Tools Plus takes care of redrawing buttons, panels, scroll bars, editing
fields, list boxes, pop-up menus, picture buttons and custom controls. Your application must take care of refreshing
anything else, such as icons, pictures, lines, or text that it may have drawn to the window. After Tools Plus draws it
own objects, your application gets a doRefresh event for the same window to let it do any drawing after Tools PlusÕs
objects.

An example of the doPreRefresh eventÕs usefulness is if your application displays a picture as a windowÕs background.
When your application receives a doPreRefresh event, it can draw the background picture only. When your event
handler routine finishes execution, Tools Plus refreshes its own objects, then it reports a doRefresh event to let you
draw anything after Tools PlusÕs user interface elements.

When a doPreRefresh event is reported, the windowÕs Òupdate regionÓ defines the exact area that needs to be
refreshed. Although you can redraw everything in the window, the visible drawing is limited to the parts of the
window that are visible and that need refreshing.

Programming Considerations

¥ If your application did not put anything in the window except buttons, panels, picture buttons, scroll bars, editing
fields, list boxes, pop-up menus, and custom controls, it should ignore this event.

Tools Plus

468

¥ If your application responds to this event, it should do so in the following manner:
for theScreen := 1 to NumberOfScreens do {Repeat drawing for each monitor in which the }
 begin { window appears. }
 BeginUpdateScreen(theScreen); {Drawing area reduced to the specified screen }

 {insert your color-dependent drawing code here}

 EndUpdateScreen; {End the drawing for this monitor, and restore }
 end; { the window's visible (drawing) region. }

 {insert your color-independent drawing code here}

¥ By default, when your application gets this event, Tools Plus has already done the following for you:
CurrentWindow(Event.Window); {Make the affected window the current grafPort }
BeginUpdate(WindowPointer(Event.Window)); {Drawing will occur only within the area that }

{ needs refreshing. }

When your application gets this event, all it has to do is draw to the window as required. When your event handler
finishes executing, Tools Plus automatically does the following:
EndUpdate(WindowPointer(Event.Window)); {End the update for the window and restore the }

{ window's visible (drawing) region. }

¥ If you need more control over window drawing when your application responds to this event, first create the window
by adding the wManualUpdate option to the windowÕs spec parameter. When your application gets this event, it
should respond in the following manner:
CurrentWindow(Event.Window); {Make the affected window the current grafPort }
BeginUpdate(WindowPointer(Event.Window)); {Drawing will occur only within the area that }

{ needs refreshing. }

{insert your window drawing code here (see earlier example) }

EndUpdate(WindowPointer(Event.Window)); {End the update for the window }
CurrentWindowReset; {Reset the current window to be the same as }

{ the active window (optional) }

In the example above, BeginUpdate temporarily sets the windowÕs visRgn (visible region where drawing occurs) to
the intersection of the visRgn and updateRgn (region requiring updating). This effectively restricts drawing to the
area that needs updating. During a doPreRefresh event, the affected area may include Tools Plus objects that will be
automatically refreshed after your event handler finishes executing. During a doRefresh event, the affected area
excludes Tools Plus objects that have already been drawn thereby preventing you from drawing over them.
EndUpdate restores drawing to the rest of the window.

¥ It is possible that several windows will need to be refreshed simultaneously if, for instance, a closing window
exposed three windows behind it. Tools Plus reports a doPreRefresh event followed by a doRefresh for each window
that needs refreshing.

¥ Unlike ordinary Macintosh applications, this event is not generated when a window is first opened. If you need this
to happen, you can add the wRefresh option to the windowÕs spec parameter when opening a window. Alternatively,
you can open the window as hidden, create any Tools Plus objects, then display the window.

¥ This event is not generated for desk accessories, the Dialog Manager, alerts, or Dynamic Alerts. These events are
handled automatically.

¥ When responding to this event, your application should limit itself to activities that pertain only to refreshing the
specified window. Some of the things to avoid are creating, modifying, deleting, moving, resizing, showing and
hiding user interface elements.

Valid Event Record Fields

Event.Window Window Number: Window number that needs refreshing.

Programming Tips:
1 If your application does a lot of drawing in a window, you may be able to speed up the refreshing process by

checking if each object needs to be redrawn. On an object-by-object basis, use Tools PlusÕs RectIsVisible or
RgnIsVisible routines to determine if the object needs to be redrawn. If not, your application can save time by
not redrawing that object.

2 If you need to draw things to the window such as line art, pictures, or other dynamic imagery, it may be a
good idea to do this drawing only in response to a doPreRefresh or doRefresh event. When you first create
your window, create it as hidden and create any Tools Plus user interface elements such as buttons and list

16 Event Management

WaterÕs Edge Software 469

boxes. Then display the window which will generate a doPreRefresh event, Tools Plus objects are drawn,
then a doRefresh event is generated. To the user, it just looks like everything is coming up quickly at the same
time.

3 If your application follows the second tip (above), your window refreshing routine can paint the window with
a color or pattern, then draw text and/or lines on top.

4 It may take some time to refresh your window if you need to draw a large picture or a number of pictures. A
worst-case example is having a 32-bit picture as the windowÕs backdrop. You can speed up refreshing by
breaking up the picture into smaller pictures and redrawing only those that need refreshing. Tools PlusÕs
RectIsVisible and RgnIsVisible will help you determine if a picture needs refreshing.

5. If you have a floating palette or toolbar that has a number of picture buttons, you can make it refresh much
faster by doing the following in response to a doPreRefresh event:
1 When you get a doPreRefresh event, draw a picture of the picture buttons. The picture will likely have all

picture buttons drawn in a deselected state. This image will give the illusion that the entire palette is
redrawn instantly.

2 Set your windowÕs clip region to exclude the image of the picture buttons. This prevents Tools Plus from
redrawing the picture buttons.

3 If you can, include selected picture buttons in the clip region to let Tools Plus redraw only those buttons.
Tools Plus redraws the picture buttons that need refreshing and are within the clip region you have defined.
Do the following in response to a doRefresh event:
1 Reset the windowÕs clip region to include the entire window.
2 If you were not able to perform step 3 above, first deselect, then select the required picture buttons (using

SelectPictButton) to overwrite the picture of the deselected buttons.

..

doPrintDocuments event
This event indicates that the Finder (or another application) has requested that your application print one or more
documents. This can occur as a result of the user selecting one or more document that were created by your application
then choosing the File menuÕs Print command from the Finder, or a client application making the request of your
application via an Apple Event. From a high level, the code you use to step through the list of documents that need to
be opened is as follows:

C for (theIndex = 1; theIndex <= CountNumberOfFiles(); theIndex++)
 if (GetIndexFileFSS(theIndex, &myFSS))
 MyPrintDoc(&myFSS);

Pascal for theIndex := 1 to CountNumberOfFiles do
 if GetIndexFileFSS(theIndex, myFSS) then
 MyPrintDoc(myFSS);

You will likely want to modify the above code to add logic that stops going through the file list if your application
cannot print any more files, if it encounters a error, or if the user halts printing. The GetIndexFileFSS routine retrieves
an FSSpec record that can be used to open a document in System 7 or later. For 680x0 applications running on System
6 or older, or those 680x0 applications that are not Apple Event aware, use the GetIndexFile routine in place of
GetIndexFileFSS.

Programming Considerations

¥ This event may be reported only if your application is Apple Event aware (i.e., its ÔSIZEÕ resource is set with the
ÒHigh level event awareÓ flag on) and your application is runing under System 7 or later.

¥ If your 680x0 application is running under System 6 or older, or it is not Apple Event aware, the ProcessEvents
routine may report a doPrintDocuments event if one or more documents need to be printed when your application is
first launched. This simulates the effect of an Òprint documentsÓ Apple Event when Apple Events are not available.

¥ Call the SetEventError routine if your application fails to print or chooses not to print all the requested documents
for any reason.

Tools Plus

470

¥ While your application is responding to the doPrintDocuments event, Tools Plus suspends the reporting of Apple
Events. That way, you can be sure your application will have the opportunity to print all the requested documents
before it gets additional requests to open documents, print documents, or quit.

¥ It is best if you do not open a window for each file that needs to be printed. If you must open a window, open it off
screen so that the user does not see it.

¥ It is likely that opening, displaying and printing documents will be a lengthy process, so itÕs a good idea to display a
modal window with an appropriate message (such as ÒPrinting {file name}. To cancel printing, type 1-.Ó) and
periodically call Process1EventWhileBusy to give other processes some processing time. The modal window will
prevent the user from activating other applications or using pull-down menus while your application opens and prints
the required documents.

¥ In an Apple Event aware applications running on System 7 or later, you can override Tools PlusÕs default reporting
of doPrintDocuments events by installing your own Apple Event Handler routine for the Òprint documentsÓ event.

Valid Event Record Fields

Event.Event The Event ManagerÕs Event Record: Event record as retrieved from the
Event Manager. This record is set to zeros if the ProcessEvents routine
synthesized a doPrintDocuments event.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down. This record is set to zeros if the
ProcessEvents routine synthesized a doPrintDocuments event.

..

doQuitApplication event
This event is reported if the Finder or another application wants your application to quit. This event may come as a
result of the user shutting down or restarting their Macintosh, or immediately following a doPrintDocuments event that
launched your application.

Programming Considerations

¥ When your application gets a doQuitApplication event, it should go through the same shutdown process as though
the user had selected your applicationÕs File menuÕs Quit item. Specifically, if any open documents have been
modified, ask the user if the changes should be saved before quitting, save the documents and preferences, close
windows and so on. When your applicationÕs shutdown process is completed, call the QuitToolsPlus routine to
inform Tools Plus that your application has finished processing events. If your application fails to call the
QuitToolsPlus routine, then Tools Plus will understand this to mean your application did not quit, and it is still
running. You can also optionally call the SetEventError routine with a relevant error code if want to provide
feedback to the calling application why your application could not quit.

¥ If your application is suspended (i.e., it is not active), the doQuitApplication event brings your application to the
foreground and activates it.

¥ If your application is Apple Event aware (i.e., its ÔSIZEÕ resource is set with the ÒHigh level event awareÓ flag on),
and it is running under System 7 or later, Tools Plus reports the Òquit applicationÓ Apple Event as a
doQuitApplication event.

¥ If your application is not Apple Event aware, or if it is running under System 6 or older, this event will not normally
be reported. The one exception is for 680x0 applications that are launched as a result of the user selecting one or
more documents, and choosing the File menuÕs Print command from the Finder. In this case, your application will
first receive a doPrintDocuments event followed by a doQuitApplication event.

¥ In an Apple Event aware applications running on System 7 or later, you can override Tools PlusÕs default reporting
of a doQuitApplication event by installing your own Apple Event Handler routine for the Òquit applicationÓ event.

16 Event Management

WaterÕs Edge Software 471

Valid Event Record Fields

Event.Event The Event ManagerÕs Event Record: Event record as retrieved from the
Event Manager. This record is empty if the ProcessEvents routine
synthesized a doQuitApplication event.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down. This record is empty if the ProcessEvents
routine synthesized a doQuitApplication event.

..

doRefresh event
A windowÕs contents need to be refreshed (redrawn) after Tools Plus has refreshed its own objects.

Your application needs to respond to the doRefresh event and/or a doPreRefresh event only if you have drawn objects
in the window. Tools PlusÕs user interface elements (such as buttons, panels, pop-up menus, editing fields, etc.) are
automatically refreshed. A doRefresh event is reported when a window is completely or partially obscured, then
becomes uncovered and needs to be redrawn. Tools Plus takes care of redrawing buttons, panels, scroll bars, editing
fields, list boxes, pop-up menus, picture buttons and custom controls. Your application must take care of refreshing
anything else, such as icons, pictures, lines, or text that it may have drawn to the window. When your application
receives this event, Tools Plus will have already drawn its objects.

When a doRefresh event is reported, the windowÕs Òupdate regionÓ defines the exact area that needs to be refreshed,
excluding the objects drawn by Tools Plus (buttons, panels, picture buttons, scroll bars, editing fields, list boxes, pop-
up menus, and custom controls). Although you can redraw everything in the window, the actual drawing is limited to
the parts of the window that are visible and which need refreshing. Tools Plus changes the windowÕs update region to
exclude its own objects, thus preventing you from accidentally drawing over them.

Your application can ignore the doRefresh event if you have chosen to do all the necessary drawing in response to a
doPreRefresh event, or if the only objects in the window are drawn by Tools Plus (buttons, panels, picture buttons,
scroll bars, editing fields, list boxes, pop-up menus, and custom controls).

Programming Considerations

(see doPreRefresh event)

Valid Event Record Fields

Event.Window Window Number: Window number that needs refreshing.

Programming Tips:
(see doPreRefresh event)

..

doResume event
Indicator that your application has been resumed.

The doResume event reports that your application has become the active application. This occurs under MultiFinder or
System 7 (or later) after your application has become suspended (see the doSuspend event).

Valid Event Record Fields

Event.Event The Event ManagerÕs Event Record: Event record as retrieved from the
Event Manager.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down.

Tools Plus

472

Programming Considerations

¥ If your application is cutting, copying or pasting specialized objects (i.e., not text that is handled by text editing
fields), you may want to check the clipboard to see if it contains the specialized objects that you can paste, then copy
them to your local scrap.

..

doScrollBar event
Indicator that user clicked in a scroll bar.

The doScrollBar event reports that the user has clicked somewhere in a scroll bar or a custom CDEF that is made to
behave like a scroll bar by Tools Plus. The scroll bar has 5 parts: up button, down button, Òpage upÓ region, Òpage
downÓ region, and the thumb. In all cases, your application should respond to the scroll bar event by scrolling the
windowÕs contents (or portion thereof) and drawing any parts that have been newly revealed due to scrolling.

Programming Considerations

¥ If the scroll barÕs thumb was moved, your application can obtain the current value of the scroll bar by calling
GetScrollBarVal. By using this value, your application can determine how much to scroll.

¥ If the scroll barÕs up button, down button, Òpage upÓ region, or Òpage downÓ region was clicked, your application
must scroll the window by the correct amount, then change the scroll barÕs value by using SetScrollBarVal.

¥ If the up arrow or Òpage upÓ region is clicked, subtract the correct amount from the current value. If the down arrow
or Òpage downÓ region is clicked, add the correct amount to the current value.

¥ If the user holds the mouse button down in the up arrow, Òpage upÓ region, down arrow, or Òpage downÓ region,
Tools Plus returns a series of doScrollBar events as readily as your event handler can respond to them. Your
application doesnÕt have to be aware of this, but it is nice to know that scroll bar events will not pile up in the queue.

¥ If the user moves the scroll barÕs thumb and returns it to its original place during the same drag, an event is not
generated.

¥ This event will never occur when the watch cursor is displayed, since scroll bars cannot be clicked.

¥ Scroll bars that are part of a list box are handled automatically.

¥ A doScrollBar event is not generated when the user clicks scroll bars in a dialog box or desk accessory. These events
are handled automatically.

Valid Event Record Fields

Event.Window Window Number: Window number containing the affected scroll bar
(frontmost standard window, tool bar, or a floating palette)

Event.ScrollBar.Num Scroll Bar Number: Scroll bar number that was clicked by the user.

Event.ScrollBar.Part Scroll Bar Part: Part of scroll bar that was clicked by user.

CONST {Scroll Bar parts }
inUpButton = 20; {up arrow of a scroll bar }
inDownButton = 21; {down arrow of a scroll bar }
inPageUp = 22; {"page up" region of a scroll bar }
inPageDown = 23; {"page down" region of a scroll bar }
inThumb = 129; {thumb of a scroll bar }

..

16 Event Management

WaterÕs Edge Software 473

doSuspend event
Indicator that your application is about to be suspended.

The doSuspend event reports that your application will be suspended (or become a ÒbackgroundÓ application) as soon
as the event handler finishes executing. This occurs under MultiFinder or System 7 (or later) when a desk accessory or
other application is launched, or when an inactive window belonging to a desk accessory or another application is
activated.

Programming Considerations

¥ If your application is cutting, copying or pasting specialized objects (i.e., not text that is handled by editing fields),
copy this material from your local scrap to the clipboard.

Valid Event Record Fields

Event.Event The Event ManagerÕs Event Record: Event record as retrieved from the
Event Manager.

Event.Modifiers Modifier Flags: Flags indicating if the Caps Lock, Shift, Option, Command or
Control modifier keys were down.

..

doTimer event
Indicator that a Timer event was generated.

The doTimer event reports that a Timer is reporting a timed event, and it is calling your event handler routine to
respond appropriately.

Programming Considerations

¥ A Timer may not report its event exactly at the expected time if the system is too busy to allow this to happen.

¥ If a Timer is set to report its events at a specific frequency (eg: 90 events per minute), a heavy processor workload or
a high Timer frequency may prevent the Timer from ever catching up to where it should be. If this happens, do not
use the timerLockTimerToCount option.

¥ When the timerLockTimerToCount option is not used, the event recordÕs Event.Timer.Count field indicates the
number of events that should have been reported even though the system may have been too busy to call your event
handler routine each time.

Valid Event Record Fields

Event.Window Window Number: Window for which the event is being reported. Will be zero
(0) is the Timer is not associated with a window.

Event.Timer.Num Timer Number: Timer number that generated the Timer event.

Event.Timer.Count TimerÕs Event Count: Sequential event counter (i.e., the number of times this
Timer should have reported an event).

Event.Timer.NextTime Next time Timer will report an event: Time in ticks from boot time when this
Timer will report its next event.

..

doZoomWindow event
Indicator that user has changed a windowÕs size and/or location by zooming.

The doZoomWindow event reports that the user has changed a windowÕs size and/or position by clicking the Òzoom
box.Ó This will always occur on the active window. Applications will typically ignore this event, or treat it similarly to
the doGrowWindow event.

Tools Plus

474

Programming Considerations

¥ Your application can call the WindowStatus routine to obtain the windowÕs new width and height in pixels, as well
as its new location in the screenÕs global co-ordinates.

¥ The windowÕs entire contents are erased during the zoom. Tools Plus will report a doRefresh event for this window.
Responding to the doRefresh event will regenerate the windowÕs contents.

¥ This event will never occur when the watch cursor is displayed, since the zoom box cannot be clicked.

¥ A doZoomWindow event is not generated when the user clickÕs a desk accessoryÕs zoom box. The process is
handled automatically.

Valid Event Record Fields

Event.Window Window Number: Window number that was zoomed (frontmost standard
window).

..

16 Event Management

WaterÕs Edge Software 475

ÒField To EventÓ Cross reference
The following table provides a quick cross reference between each field in the event record, and which events make
use of that field.

Event.Button doButton, doClickToFocus, doKeyInControl, doPictButton

Event.Event doChgWindow, doClick (first mouse down only), doClickControl, doClickToFocus,
doListBox, doManualEvent, doNothing, doOpenApplication, doOpenDocuments,
doPrintDocuments, doQuitApplication, doResume, doSuspend

Event.Field doAutoKey, doChgInField, doClickToFocus, doKeyDown

Event.KeyÉ doAutoKey, doKeyDown, doKeyInControl, doKeyUp

Event.ListBoxÉ doClickToFocus, doListBox

Event.MenuÉ doMenu, doPopUpMenu

Event.Modifiers doAutoKey, doButton, doClickControl, doClickToFocus, doGoAway, doKeyDown,
doKeyInControl, doKeyUp, doListBox, doManualEvent, doMenu, doNothing,
doOpenApplication, doOpenDocuments, doPictButton, doPopUpMenu,
doPrintDocuments, doQuitApplication, doResume, doSuspend

Event.MouseÉ doClick

Event.ScrollBarÉ doClickToFocus, doKeyInControl, doScrollBar

Event.TimerÉ doTimer

Event.What (all events) doAutoKey, doButton, doChgInField, doChgMonitorSettings, doChgWindow,
doClick, doClickControl, doClickDesk, doClickToFocus, doGoAway, doGrowWindow,
doKeyDown, doKeyInControl, doKeyUp, doListBox, doManualEvent, doMenu,
doMoveCursor, doMoveWindow, doNothing, doOpenApplication, doOpenDocuments,
doPictButton, doPopUpMenu, doPrintDocuments, doQuitApplication, doRefresh,
doResume, doScrollBar, doSuspend, doTimer, doZoomWindow

Event.Window doAutoKey, doButton, doChgInField, doChgWindow, doClick, doClickControl,
doClickToFocus, doGoAway, doGrowWindow, doKeyDown, doKeyInControl,
doKeyUp, doListBox, doMoveWindow, doPictButton, doPopUpMenu, doRefresh,
doScrollBar, doTimer, doZoomWindow

Tools Plus

476

17 Color Drawing & Multiple Monitors

WaterÕs Edge Software 477

17 Color Drawing & Multiple Monitors

If your application does not take advantage of the MacintoshÕs color capabilities (as determined when initializing
Tools Plus by way of the InitToolsPlus routine), you can skip this section. This chapter deals entirely with drawing in
color, as well as with the implications of making your application compatible with Macintoshes that have multiple
monitors. You should already be familiar with the relevant material in Inside Macintosh to understand the concepts
behind color drawing and Color QuickDraw.

Several routines used for highlighting and unhighlighting areas are also useful to developers who create a black and
white interface. Those routines are: UseHiliteColor, UseHiliteText, HiliteRect and HiliteRgn. Also, if your application
is merely testing for the presence or absence of Color QuickDraw, you can just use the HasColorQuickDraw routine.

If you are using the simplest form of color drawing, that is drawing objects or text using fixed colors and letting Color
QuickDraw resolve all color discrepancies between monitors (or different settings on the same monitor), you donÕt
have to read this section. You should read this section if your application behaves differently depending any of the
following:
¥ The number of available colors or shades of gray (black and white, 256 colors, 256 grays, millions of colors, etc.)
¥ Whether Color QuickDraw is available or unavailable on the Macintosh that is running your app.
¥ The orientation, or changes in orientation of multiple monitors (how one monitor is positioned in relation to

another)
¥ Menu barÕs height is changed (can be done by the user in Mac OS 8.5 or later)
¥ Changes in monitor resolution

Within this section, all references to the term ÒcolorÓ also include Ògray-scale,Ó or shades of gray unless otherwise
stated. The term ÒcolorÓ does not include Òblack and whiteÓ such as the original 9 inch monochrome Macintosh
monitors, or when a monitor is set to Òblack and whiteÓ in the Monitors Control Panel.

- Note: All Tools Plus user interface elements (such as picture buttons and pop-up menus, etc.) take care of themselves
when drawing on various monitor settings and multiple monitor setups. You donÕt have to do anything to make
them work. This section is for drawing objects yourself.

Using One Monitor
The majority of Macintoshes have only a single monitor, but even with a single monitor, your application may choose
to behave differently depending on whether the user has set the monitor to 1-bit (black and white), 2-bits (4 colors),
4-bits (16 colors), 8-bits (256 colors), 16-bits (thousands of colors) or 24-bits (millions of colors), or to gray-scale of
equivalent depth. Realize that the user can change a monitorÕs settings in real time by using the appropriate Control
Panel or Control Strip. Also, third party products exist that let the user change the monitorÕs settings without your
application being suspended. An example is a product in which a Òmonitor settingsÓ pop-up menu appears when the
user control-clicks.

Never assume that the user has a specific monitor, or that the monitor is set to a specified number of colors. Before
drawing or refreshing a windowÕs contents, your application should determine the monitorÕs depth in pixels (by using
the ScreenDepth routine), and possibly if the monitor is set to colors or gray-scale (by using the ScreenHasColors
routine), then draw accordingly.

Using Multiple Monitors
With Tools Plus, you can make your application Òmulti-monitor capableÓ almost as simply as making it respond
appropriately to the number of colors available on the main monitor. This is accomplished by drawing the color-
dependent contents of a window once for each monitor the window intersects. If the window is entirely on one
monitor, its contents are drawn only once. If it intersects two monitors, its contents are drawn once for the first monitor
and a second time for the second monitor. The portions of the window that are color-independent (i.e., they are drawn

Tools Plus

478

the same no matter what the monitorÕs color capabilities are), need to be drawn only once.

Logical Screens

Fortunately, Tools Plus has several routines that make the task of drawing a windowÕs contents on multiple monitors
an uncomplicated process, that is by drawing on logical screens instead of physical monitors. A logical screen is the
combined area of all available monitors that have the same [1] screen depth (number of colors) and [2] setting of
ÒcolorsÓ or Ògrays.Ó

If your application is running on a Macintosh with three monitors, each being set to 256 colors, the NumberOfScreens
routine reports 1 logical screen, that being the sum of all three monitors. Your application can then update all three
monitors simultaneously. Conversely, if two of those monitors are set to 256 colors and the third one is set to black and
white, NumberOfScreens reports 2 logical screens. Your application can then update the pair of 256 color monitors
simultaneously (1st logical screen) then the black and white monitor (2nd logical screen). Note that NumberOfScreens
differentiates between color and gray-scale monitors, even if they are set to the same pixel depth.

The following example illustrates a typical applicationÕs source code used to refresh a window. It accounts for multiple
monitors, and for objects that are color-dependent (they are drawn differently depending on the monitorÕs settings), as
well as color-independent (drawn identically, regardless of the monitorÕs settings).

BeginUpdate(WindowPointer(Event.Window)); {Drawing will occur only within the area that }
{ needs refreshing (includes all monitors). }

for theScreen := 1 to NumberOfScreens do {Repeat drawing for each monitor in which the }
 begin { window appears, one screen at a time. }
 BeginUpdateScreen(theScreen); {Drawing area reduced to the specified screen }

 {insert your color-dependent drawing code here}

 EndUpdateScreen; {End the drawing for this monitor, and restore }
 end; { the window's visible (drawing) region. }

{insert your color-independent drawing code here}

EndUpdate(WindowPointer(Event.Window)); {End the update for the window }

Note that this programmatic style is only a recommendation. You may decide to have self-contained color-dependent
routines accessed from within sections of color-independent code.

BeginUpdate is a Macintosh Toolbox routine that sets the specified windowÕs visible region to be the same as the
update region. This limits drawing to the region of the window that needs updating (refreshing). You need to call
BeginUpdate and EndUpdate only if you are responding to a doRefresh or doPreRefresh event, and only if you used
the wManualUpdate option when you opened the window.

The NumberOfScreens routine reports the number of logical screens (not physical monitors) that have unique settings.

Call BeginUpdateScreen just before you begin drawing a windowÕs color-dependent contents. BeginUpdateScreen
temporarily saves a copy of the current windowÕs visible region (visRgn), and replaces it with an intersection of the
windowÕs visible region and the specified logical screen. This limits drawing to the area of the window that is visible
only on the specified logical screen. You can use the ScreenDepth and ScreenHasColors routines to determine the
color characteristics of the specified logical screen.

Call EndUpdateScreen after you have completed drawing a windowÕs color-dependent contents. It restores the
windowÕs visible region (visRgn) to its original value, that being prior to being altered by BeginUpdateScreen.

EndUpdate is a Macintosh Toolbox routine that restores the specified windowÕs visible region to its original value
before you called the toolboxÕs BeginUpdate, that being the entire part of the window that is visible. This restores
drawing ability to the entire window. You need to call BeginUpdate and EndUpdate only if you are responding to a
doRefresh or doPreRefresh event, and only if you used the wManualUpdate option when you opened the window.

If you want to optimize the drawing of color-dependent windows, your application may want to check the current
windowÕs visRgn after calling BeginUpdateScreen. If the visRgn is empty, it means the window does not intersect the
specified logical screen, and therefore does not need updating. Use Tools PlusÕs RgnIsVisible or RectIsVisible routines
to determine if an object you are about to draw is visible. If it is not, you can likely save time by not drawing it.

17 Color Drawing & Multiple Monitors

WaterÕs Edge Software 479

Physical Monitors
Tools Plus also includes routines that help your application determine information about the physical monitors that are
attached and running on your Macintosh. NumberOfMonitors reports the number of monitors that are attached.
MonitorDepth reports a single monitorÕs depth in pixels. MonitorhasColors reports if a monitor is set to display colors
or gray-scale/black and white. MonitorGDevice returns a handle to a monitorÕs Graphics Device, for developers who
want to do their own, more sophisticated graphics manipulation. MainMonitorNumber returns the monitor number that
contains the menu bar (although it can be hidden), and optionally a tool bar.

Detecting Monitor and Screen Changes
Tools Plus is optimized for maximum performance, so it does not constantly check to see if the monitor settings have
changed. Mac OS does not have any mechanism for reporting changes in these settings, so Tools Plus quickly sets an
internal flag whenever the settings may have changed, and that is each time it gets an event. Whenever your
application uses a routine that must report on information pertaining to physical monitors or logical screens, Tools Plus
first checks to see if the settings may have changed, and if so, it recalculates the required information as per the current
settings by calling the CheckForMonitorChanges routine. This way, your application can call twenty routines in a row
that report on monitor and screen settings, and the relevant information is only calculated once.

When the CheckForMonitorChanges routine detects that monitor settings have changed, it will report a
doChgMonitorSettings event to your application. If your application has a tool bar, then it may be moved or resized
automatically in order to ensure that it stays under the menu bar (which the user may move to another monitor), and
that it runs across the entire width of the main monitor (whose dimensions may be changed by the user). In these cases,
Tools Plus will report a doMoveWindow or doGrowWindow for your tool bar window.

Tools Plus checks for monitor changes just before it reports a doPreRefresh event to your application, and when the
user resumes your suspended application. The only time that your application wonÕt be immediately notified of a
change in monitor settings, is if it has no open windows and the user changes monitor setting without suspending your
application, as is possible with a Control Strip.

Changing Screen Settings
Tools Plus automatically recognizes when the user changes monitor settings via the ÒMonitorsÓ Control Panel (in any
version of the System). This includes [1] changing the orientation of multiple monitors in the ÒMonitorsÓ Control
Panel, [2] changing a monitor between color, gray-scale, or black and white, and [3] changing the number of colors or
shades of gray that the monitor will display. Internally, a call to NumberOfScreens detects the change and recalculates
the logical screen table. A doRefresh event is then generated, informing your application that all windows need to be
redrawn incorporating the new settings.

- Note: When your application is running in your development environment, it may not detect the changes in screen
settings when the ÒMonitorsÓ Control Panel is used. This is a limitation of your development environment and
not Tools Plus.

..

HasColorQuickDraw
Determine if the Macintosh running your application has Color QuickDraw.

C pascal Boolean HasColorQuickDraw (void);

Pascal function HasColorQuickDraw: BOOLEAN;

HasColorQuickDraw informs your application if the Macintosh on which it is running has Color QuickDraw, and
Tools Plus makes use of it. If your application has elected not to take advantage of Color QuickDraw (as specified
when calling the InitToolsPlus routine at initialization), or if Color QuickDraw is not available, HasColorQuickDraw
returns false.

Tools Plus

480

Color drawing routines can only be used if the Mac has Color QuickDraw, so your application should not call any of
the Macintosh toolboxÕs color routines unless Color QuickDraw is present. Tools Plus takes care of handling its own
drawing routines.

..

NumberOfScreens
Determine the number of logical screens available on the Macintosh running your application.

C pascal short NumberOfScreens (void);

Pascal function NumberOfScreens: INTEGER;

NumberOfScreens reports the number of logical screens (not physical monitors) that use unique color settings.
Internally, this routine maintains a logical screen table that has one entry for each monitor with unique color or gray-
scale settings. If three monitors are available, two having 256 colors and the third with 16 shades of gray, the logical
screen table will contain two entries: the first being comprised of the combined region of the two 256 color monitors,
and the second being the gray-scale monitor.

Use NumberOfScreens to determine the number of times a windowÕs color-dependent contents have to be drawn (once
for each logical screen).

NumberOfScreens returns a value of 1 if the Macintosh running your application doesnÕt have Color QuickDraw, if
color drawing has been disabled by the InitToolsPlus routine, or if the current grafPort is an off-screen bitmap or
printing grafPort.

NumberOfScreens is optimized to rebuild the internal tables only if the user changes monitor settings.

..

BeginUpdateScreen
Begin updating the portion of the current window that is on the specified logical screen.

C pascal void BeginUpdateScreen (short TheScreen);

Pascal procedure BeginUpdateScreen (TheScreen: INTEGER);

TheScreen specifies the logical screen number on which the drawing will occur. This number must be between 1 and
the value returned by the NumberOfScreens routine.

Call BeginUpdateScreen just before you begin drawing the current windowÕs color-dependent contents.
BeginUpdateScreen temporarily stores a copy of the current windowÕs visible region (visRgn) and replaces it with an
intersection of the windowÕs visible region and the specified logical screen. This limits drawing to the area of the
window that is visible only on the specified logical screen.

Subsequent calls to the ScreenDepth and ScreenHasColors routines will refer to the logical screen specified by
theScreen.

Each call to BeginUpdateScreen must be balanced by a call to EndUpdateScreen. Also, BeginUpdateScreen and
EndUpdateScreen cannot be nested (that is, you must call EndUpdateScreen before the next call to
BeginUpdateScreen).

If the Macintosh running your application doesnÕt have Color QuickDraw, or if color drawing has been disabled by the
InitToolsPlus routine, or if theScreen is not a valid logical screen number, BeginUpdateScreen does nothing.

..

17 Color Drawing & Multiple Monitors

WaterÕs Edge Software 481

EndUpdateScreen
End updating the portion of the current window that is on the specified logical screen.

C pascal void EndUpdateScreen (void);

Pascal procedure EndUpdateScreen;

Call EndUpdateScreen after you have completed drawing a windowÕs color-dependent contents. It restores the
windowÕs visible region (visRgn) to its original value, that being prior to being altered by BeginUpdateScreen.

Each call to BeginUpdateScreen must be balanced by a call to EndUpdateScreen. Also, BeginUpdateScreen and
EndUpdateScreen cannot be nested (that is, you must call EndUpdateScreen before the next call to
BeginUpdateScreen).

If BeginUpdateScreen did not successfully modify the current windowÕs visible region, EndUpdateScreen does
nothing.

..

ScreenDepth
Determine the number of colors (or shades of gray) available on the current logical screen.

C pascal short ScreenDepth (void);

Pascal function ScreenDepth: INTEGER;

The ScreenDepth routine reports the current logical screenÕs depth (in bits) as set by the ÒMonitorsÓ control panel. Its
value determines the number of colors (or shades of gray) that are seen on the logical screen. ScreenDepth is useful for
optimizing programs to take advantage of whatever color capability a monitor has. The table below shows the number
of colors that are available per ScreenDepth value.

ScreenDepth
Value

Colors/Grays
Available

1 black & white
2 4
4 16
8 256
16 thousands
24 millions
32 millions+

ScreenDepth returns a valid value only if it is situated between calls to BeginUpdateScreen and EndUpdateScreen,
since BeginUpdateScreen sets the current logical screen number. If ScreenDepth is called outside a
BeginUpdateScreen / EndUpdateScreen structure, it reports on the main screen (the one containing the menu bar).

If the Macintosh running your application doesnÕt have Color QuickDraw, or if color drawing has been disabled by the
InitToolsPlus routine, or if BeginUpdateScreen did not successfully modify the current windowÕs visible region,
ScreenDepth returns a value of 1.

..

Tools Plus

482

ScreenHasColors
Determine if a screen is set to draw in color (not gray-scale or black & white).

C pascal Boolean ScreenHasColors (void);

Pascal function ScreenHasColors: BOOLEAN;

ScreenHasColors returns true if the current logical screen has been set by the ÒMonitorsÓ control panel to display in
color, and if Tools Plus has been initialized to make use of color via the InitToolsPlus routine. Use ScreenHasColors if
you want to determine if a multi-bit screen is color or gray-scale.

ScreenHasColors returns a valid value only if it is situated between calls to BeginUpdateScreen and EndUpdateScreen,
since BeginUpdateScreen sets the current logical screen number. If ScreenHasColors is called outside a
BeginUpdateScreen / EndUpdateScreen structure, it reports on the main screen (the one containing the menu bar).

If the Macintosh running your application doesnÕt have Color QuickDraw, or if color drawing has been disabled by the
InitToolsPlus routine, or if BeginUpdateScreen did not successfully modify the current windowÕs visible region,
ScreenHasColors returns false.

..

CheckForMonitorChanges
Recalculate settings for physical monitors and logical screens.

C pascal void CheckForMonitorChanges (void);

Pascal procedure CheckForMonitorChanges;

CheckForMonitorChanges recalculates the settings for all monitors to determine logical screens, and to have this
information available for subsequent calls by NumberOfScreens, ScreenDepth, ScreenHasColors, NumberOfMonitors,
MonitorDepth, MonitorHasColors, MonitorGDevice, and MainMonitorNumber routines.

If monitor changes are detected, they are reported to your application as a doChgMonitorSettings event. In this case,
Tools Plus automatically moves and/or resizes your toolbar to make sure it stays below the menu bar and runs across
the width of the main monitor.

..

NumberOfMonitors
Determine the number of physical monitors available on the Macintosh running your application.

C pascal short NumberOfMonitors (void);

Pascal function NumberOfMonitors: INTEGER;

NumberOfMonitors reports the number of physical monitors that are running on your Macintosh. It returns a value of 1
if the Macintosh running your application doesnÕt have Color QuickDraw. This routine is optimized to rebuild the
internal monitor and logical screen tables only if the user changes monitor settings.

..

17 Color Drawing & Multiple Monitors

WaterÕs Edge Software 483

MonitorDepth
Determine the number of colors (or shades of gray) available on a monitor.

C pascal short MonitorDepth (short MonitorNumber);

Pascal function MonitorDepth (MonitorNumber: INTEGER): INTEGER;

MonitorNumber is the monitorÕs ID as displayed in the Monitors Control Panel or equivalent. It identifies a target
monitor. A monitorÕs ID is set when the Macintosh starts up, and does not change.

The MonitorDepth routine reports the target monitorÕs depth (in bits) as set by the Monitors Control Panel or
equivalent. Its value determines the number of colors (or shades of gray) that are seen on the monitor. MonitorDepth is
useful for optimizing programs to take advantage of whatever color capability a monitor has. The table below shows
the number of colors that are available per MonitorDepth value.

MonitorDepth
Value

Colors/Grays
Available

1 black & white
2 4
4 16
8 256
16 thousands
24 millions
32 millions+

If the Macintosh running your application doesnÕt have Color QuickDraw, or if the specified MonitorNumber is not
with the range of 1 through NumberOfMonitors, then MonitorDepth returns a value of 1.

..

MonitorHasColors
Determine if a monitor is set to draw in color (not gray-scale or black & white).

C pascal Boolean MonitorHasColors (short MonitorNumber);

Pascal function MonitorHasColors (MonitorNumber: INTEGER): BOOLEAN;

MonitorNumber is the monitorÕs ID as displayed in the Monitors Control Panel or equivalent. It identifies a target
monitor. A monitorÕs ID is set when the Macintosh starts up, and does not change.

MonitorHasColors returns true if the target monitor has been set to display in color. Use MonitorHasColors if you
want to determine if a multi-bit monitor is color or gray-scale.

If the Macintosh running your application doesnÕt have Color QuickDraw, or if the specified MonitorNumber is not
with the range of 1 through NumberOfMonitors, then MonitorHasColors returns a value of false.

..

Tools Plus

484

MonitorGDevice
Get a handle to a monitorÕs Graphics Device.

C pascal GDHandle MonitorGDevice (short MonitorNumber);

Pascal function MonitorGDevice (MonitorNumber: INTEGER): GDHandle;

MonitorNumber is the monitorÕs ID as displayed in the Monitors Control Panel or equivalent. It identifies a target
monitor. A monitorÕs ID is set when the Macintosh starts up, and does not change.

MonitorGDevice returns a handle to the monitorÕs Graphics Device for developers who need more sophisticated
functionality. If the Macintosh running your application doesnÕt have Color QuickDraw, or if the specified
MonitorNumber is not with the range of 1 through NumberOfMonitors, then MonitorGDevice returns a value of nil.

..

MainMonitorNumber
Determine the main monitor number (the one with the menu bar).

C pascal short MainMonitorNumber (void);

Pascal function MainMonitorNumber: INTEGER;

MainMonitorNumber reports the main monitor number which contains the menu bar (which may be hidden by your
application). It returns a value of 1 if the Macintosh running your application doesnÕt have Color QuickDraw. This
routine is optimized to rebuild the internal monitor and logical screen tables only if the user changes monitor settings.

..

RectIsVisible
Determine if a rectangle falls within a windowÕs (or grafPortÕs) visible region.

C pascal Boolean RectIsVisible (const Rect *TheRect);

Pascal function RectIsVisible (TheRect: RECT): BOOLEAN;

If your application does a lot of drawing in a window, you may be able to speed up the refreshing process by checking
if each object needs to be redrawn. On an object-by-object basis, use RectIsVisible (or RgnIsVisible) to determine if
the object falls within the windowÕs visible region (visRgn). If it does not, your application can save time by not
redrawing that object. This routine works on the current grafPort which can be an off-screen bitmap or printing
grafPort.

TheRect specifies a rectangle in the current windowÕs local co-ordinates.

RectIsVisible returns true if the specified rectangle lies within (in whole or on part) the current windowÕs visible
region (visRgn). Otherwise, it returns false. This routine works equally well inside or outside a BeginUpdate/
EndUpdate structure, or a BeginUpdateScreen/EndUpdateScreen structure. The following example shows how you can
use RectIsVisible:

for theScreen := 1 to NumberOfScreens do {Repeat drawing for each monitor in which the }
 begin { window appears. }
 BeginUpdateScreen(theScreen); {Drawing area reduced to the specified screen }

 if RectIsVisible(myObjRect) then {If the rect is visible on the specified screenÉ }
 {insert your color-dependent drawing code here}

 EndUpdateScreen; {End the drawing for this monitor, and restore }
 end; { the window's visible (drawing) region. }

 if RectIsVisible(myObjRect) then {If the rect needs refreshingÉ }
 {insert your color-independent drawing code here}

17 Color Drawing & Multiple Monitors

WaterÕs Edge Software 485

Note carefully that a windowÕs visible region has a different meaning depending on whether BeginUpdate and
BeginUpdateScreen are used or not, and therefore, RectIsVisible will return different results. The table below explains
this.

Where is RectIsVisible called? WindowÕs visRgn EnclosesÉ RectIsVisible meansÉ
outside of

BeginUpdate
EndUpdate
structure

outside of
BeginUpdateScreen
EndUpdateScreen

structure

The current windowÕs visible area (i.e.,
not off the monitor or obscured by other
windows, palettes, menu bar, or tool
bar).

Can you see any part of the area
enclosed by the rectangle?

outside of
BeginUpdate
EndUpdate
structure

inside
BeginUpdateScreen
EndUpdateScreen

structure

The current windowÕs visible area that is
part of the logical screen number
specified in BeginUpdateScreen.

Can you see any part of the area
enclosed by the rectangle within the
logical screen number specified in
BeginUpdateScreen?

inside
BeginUpdate
EndUpdate

structure

outside of
BeginUpdateScreen
EndUpdateScreen

structure

The current windowÕs area that needs
refreshing (i.e., it has been newly
exposed and objects inside this area must
be redrawn)

Does any area enclosed by the rectangle
need to be refreshed?

inside
BeginUpdate
EndUpdate

structure

inside
BeginUpdateScreen
EndUpdateScreen

structure

The current windowÕs area that needs
refreshing and is part of the logical
screen number specified in
BeginUpdateScreen.

Does any area enclosed by the rectangle
and which is located in the logical
screen specified by BeginUpdateScreen
need to be refreshed?

Also see: RgnIsVisible.

..

RgnIsVisible
Determine if a specific region falls within a windowÕs (or grafPortÕs) visible region.

C pascal Boolean RgnIsVisible (RgnHandle TheRgn);

Pascal function RgnIsVisible (TheRgn: RGNHANDLE): BOOLEAN;

RgnIsVisible is identical to the RectIsVisible routine, except that it accepts a region handle in place of a rectangle.

..

GetFrontRGB
Get a windowÕs foreground color.

C pascal void GetFrontRGB (RGBColor *Color);

Pascal procedure GetFrontRGB (var Color: RGBColor);

Color is the current portÕs foreground color. If Color QuickDraw is not available on the Macintosh running your
application, or if Color QuickDraw is not used (as specified when using the InitToolsPlus routine), Color returns with
a value set to black (red, green and blue components all set to 0).

GetFrontRGB is functionally equivalent to the toolboxÕs GetForeColor routine, except that it also works on
Macintoshes without Color QuickDraw. This means you can program assuming that Color QuickDraw is available,
and your application will still run on a Macintosh without Color QuickDraw.

..

Tools Plus

486

GetBackRGB
Get a windowÕs background color.

C pascal void GetBackRGB (RGBColor *Color);

Pascal procedure GetBackRGB (var Color: RGBColor);

Color is the current portÕs background color. If Color QuickDraw is not available on the Macintosh running your
application, or if Color QuickDraw is not used (as specified when using the InitToolsPlus routine), Color returns with
a value set to white (red, green and blue components all set to 65535).

GetBackRGB is functionally equivalent to the toolboxÕs GetBackColor routine, except that it also works on
Macintoshes without Color QuickDraw. This means you can program assuming that Color QuickDraw is available,
and your application will still run on a Macintosh without Color QuickDraw.

..

SetFrontRGB
Set a windowÕs foreground color.

C pascal void SetFrontRGB (const RGBColor *Color);

Pascal procedure SetFrontRGB (Color: RGBColor);

Color is the current portÕs new foreground color. Color QuickDraw remaps the specified color to the nearest match it
can find for the current port. If Color QuickDraw is not available on the Macintosh running your application, or if
Color QuickDraw is not used (as specified when using the InitToolsPlus routine), SetFrontRGB does nothing.

SetFrontRGB is functionally equivalent to the toolboxÕs RGBForeColor routine, except that it also works on
Macintoshes without Color QuickDraw. This means you can program assuming that Color QuickDraw is available,
and your application will still run on a Macintosh without Color QuickDraw.

..

SetBackRGB
Set a windowÕs background color.

C pascal void SetBackRGB (const RGBColor *Color);

Pascal procedure SetBackRGB (Color: RGBColor);

Color is the current portÕs new background color. Color QuickDraw remaps the specified color to the nearest match it
can find for the current port. If Color QuickDraw is not available on the Macintosh running your application, or if
Color QuickDraw is not used (as specified when using the InitToolsPlus routine), SetBackRGB does nothing.

SetBackRGB is functionally equivalent to the toolboxÕs RGBBackColor routine, except that it also works on
Macintoshes without Color QuickDraw. This means you can program assuming that Color QuickDraw is available,
and your application will still run on a Macintosh without Color QuickDraw.

..

17 Color Drawing & Multiple Monitors

WaterÕs Edge Software 487

SetRGB
Store a colorÕs components in an RGB Color record.

C pascal void SetRGB (RGBColor *Color, long Red, long Green, long Blue);

Pascal procedure SetRGB (var Color: RGBColor; Red, Green, Blue: LONGINT);

SetRGB simply copies the R, G, and B components (supplied by your application) into a color record. It is functionally
equivalent to the following code:

Color.red := Red;
Color.green := Green;
Color.blue := Blue;

Using this routine generates about 8 bytes more object code than the equivalent procedural instructions, but it makes
your code more readable and it saves Pascal programmers from having to typecast the color components to integers.

Color is an RGB color record being populated by the individually specified color components.

Red is the RGB value of the colorÕs red component (0 to 65535).

Green is the RGB value of the colorÕs green component (0 to 65535).

Blue is the RGB value of the colorÕs blue component (0 to 65535).

..

RedrawRect
Erase a rectangular area using the windowÕs backdrop color, then force its contents to be redrawn.

C pascal void RedrawRect (const Rect *TheRect);

Pascal procedure RedrawRect (TheRect: RECT);

RedrawRect is the perfect way to erase an object, especially if that object overlaps others. The specified rectangle is
filled with the current windowÕs backdrop color, then it is invalidated. This causes a doPreRefresh and doRefresh
event to be generated, which in turn makes your application refresh objects within the rectangle. Tools Plus objects
inside the rectangle are automatically refreshed.

TheRect specifies the target rectangle in the current windowÕs local co-ordinates.

Also see: RedrawRgn.

..

RedrawRgn
Erase a region using the windowÕs backdrop color, then force its contents to be redrawn.

C pascal void RedrawRgn (RgnHandle TheRgn);

Pascal RedrawRgn (TheRgn: RgnHandle)

RedrawRgn is identical to RedrawRect, except that a region handle is passed as a parameter to specify a region.

Also see: RedrawRect.

..

Tools Plus

488

GetDimColor
Calculate a disabled color.

C pascal Boolean GetDimColor (const RGBColor *Front, const RGBColor *Back,
RGBColor *DimColor);

Pascal function GetDimColor (Front: RGBColor; Back: RGBColor;
var DimColor: RGBColor): boolean;

GetDimColor calculates an objectÕs color when it is disabled. If you use GetDimColor inside a BeginUpdateScreen/
EndUpdateScreen block, the calculation is performed on the logical screen specified by BeginUpdateScreen. If you use
it outside of the block the calculation is performed on the main monitor.

Front is the objectÕs foreground RGB color when it is enabled.

Back is the background RGB color on which the object is placed.

DimColor is the calculated color of the object when it is disabled.

The routineÕs value returns as true if a disabled color is available. If a disabled color is not available, DimColor if set
to the same value as Front and the routine returns with a value of false. Your application must dither the object if a
disabled color is not available. The following example shows how to use this routine:

for theScreen := 1 to NumberOfScreens do {Cycle through each logical screen }
 begin { }
 BeginUpdateScreen(theScreen); {Restrict drawing to the specified logical screen }
 PenColorNormal; {Set black on white for monochrome monitor. PatCopy }

{ mode makes pen draw using solid foreground color. }
 SetFrontRGB(ObjectColor); {If Color QuickDraw is used, set foreground and }
 SetBackRGB(ObjBackColor); { background colors. Tools Plus ignores these if }

{ Color QuickDraw is not available or is not used. }
{Calculate the disabled color. Does the object need }
{ to be dithered?É }

 dithered := not GetDimColor(ObjectColor, ObjBackColor, DimTextColor); { }
 if dithered then {If the object must be ditheredÉ }
 PenPat(Gray); { switch to 50% gray pattern to dither the object. }
 SetFrontRGB(DimTextColor); {Set dim color (may be same as ObjectColor) }

 {Draw the object here. The gray pattern makes all pen drawing use a dithered combination of }
 { the foreground color and background color. The following code is used to dither an }
 { object _after_ it is drawn. This is needed in situations where it is not possible to }
 { dither the object as it is being drawn, such as text before System 7's grayishTextOr text }
 { transfer mode was available. }

 if dithered then {If the object needs to be ditheredÉ }
 begin { }
 PenPat(Gray); {Use 50% gray pattern to dither the object }
 PenMode(patBic); {PatBic paints using the background wherever there is }

{ a black pixel in the gray pattern. }
 PaintRgn(ObjectRgn); {Dither the object's region }
 end; { }
 EndUpdateScreen; {Remove restricted drawing }
 end; { }

..

17 Color Drawing & Multiple Monitors

WaterÕs Edge Software 489

PenColorNormal
Reset the current windowÕs pen to the default values.

C pascal void PenColorNormal (void);

Pascal procedure PenColorNormal;

PenColorNormal is a color equivalent of QuickDrawÕs PenNormal routine in that it resets the pen to its initial state
(1x1 size, patCopy mode, black pattern). Additionally, if the Macintosh running your application has Color
QuickDraw, and if color drawing has been enabled by the InitToolsPlus routine, the foreground color is set to black
and the background color is set to white.

You can use the PenColorNormal routine in place of PenNormal throughout your application, regardless if Color
QuickDraw is available or not.

..

UseHiliteColor
Set the current windowÕs foreground color to the systemÕs highlight color, and the background color to white.

C pascal void UseHiliteColor (void);

Pascal procedure UseHiliteColor;

When your application needs to draw using the systemÕs highlight color, the UseHiliteColor routine calls
PenColorNormal (which resets the pen to its initial state of 1x1 size, patCopy mode, black pattern), then it sets the
current windowÕs foreground color to the systemÕs highlight color, and the background color to white. All subsequent
drawing will be done using the highlight color.

This routine works perfectly regardless of your monitorÕs settings, the presence of multiple monitors, or if Color
QuickDraw is available or not. QuickDraw (or Color QuickDraw if itÕs available) maps the highlight color to the
closest approximation available on the target monitor.

You can use PenColorNormal to restore the windowÕs foreground and background colors to the default black and
white.

Also see: UseHiliteText, HiliteRect and HiliteRgn.

..

UseHiliteText
Set the current windowÕs text drawing mode for drawing on the highlight color.

C pascal void UseHiliteText (void);

Pascal procedure UseHiliteText;

Use the UseHiliteText routine just before your application needs to draw text on the systemÕs highlight color.
Typically, your application would use both UseHiliteColor and UseHiliteText within the same piece of code.

This routine works perfectly regardless of your monitorÕs settings, the presence of multiple monitors, or if Color
QuickDraw is available or not. If UseHiliteText is used outside a BeginUpdateScreen / EndUpdateScreen structure, it
sets the text drawing mode to be appropriate for the highlight color used on the main monitor. When used inside a
BeginUpdateScreen / EndUpdateScreen structure, it sets the text drawing mode to be appropriate for the highlight
color used on the logical screen specified by BeginUpdateScreen.

UseHiliteColor; {Draw using the highlight color }

{draw your highlights here (foreground color is the highlight color) }

Tools Plus

490

for theScreen := 1 to NumberOfScreens do {Repeat drawing for each monitor in which the }
 begin { window appears. }
 BeginUpdateScreen(theScreen); {Drawing area reduced to the specified screen }
 UseHiliteText; {Set text drawing mode for drawing on the }

{ highlight color as it appears on this screen. }
 MoveTo(20, 200); {Position the pen for drawing the text }
 DrawString('Highlighted Text'); {Draw text on the highlighted color }
 TextMode(srcOr); {Restore default text drawing mode }
 EndUpdateScreen; {End the drawing for this monitor, and restore }
 end; { the window's visible (drawing) region. }

UseHiliteText sets the text drawing mode and the windowÕs foreground colors such that black text is drawn on the
windowÕs highlight color. When the windowÕs highlight color is very dark or black, UseHiliteText sets the text
drawing mode to srcBic resulting in white characters upon the highlight color.

After you finish drawing text, you can restore the text drawing mode to the default setting using TextMode(srcOr).

Also see: UseHiliteColor, HiliteRect and HiliteRgn.

..

HiliteRect
Highlight or unhighlight a rectangle on the current window, and prepare to draw text in it.

C pascal void HiliteRect (const Rect *TheRect, Boolean Hilite);

Pascal procedure HiliteRect (TheRect: Rect; Hilite: boolean);

HiliteRect is an intelligent combination of the UseHiliteColor and UseHiliteText routines. It is used to highlight or
unhighlight a rectangular area (likely a cell in a spreadsheet or a line in a custom list), and prepare for drawing text in
that area.

TheRect is the affected area specified as a rectangle.

Hilite specifies if the rectangle is to be highlighted or unhighlighted. You can use the constants on or off for this
purpose.

When a rectangle is highlighted (Hilite = true), the rectangle is filled with the systemÕs highlight color. QuickDraw (or
Color QuickDraw if it is available) maps the highlight color to the closest approximation available on the target
monitor. PenColorNormal is called to restore the windowÕs pen settings to their defaults (1x1 size, patCopy mode,
black pattern, black foreground and white background). Then text drawing mode is set to srcOr for drawing black
characters upon the highlight color, or srcBic if the highlight color is black (or it translates to black on the target
monitor) to produce white characters on the black highlight.

When the rectangle is unhighlighted (Hilite = false), the rectangle is filled with white. PenColorNormal is called to
restore the windowÕs pen settings to their defaults (1x1 size, patCopy mode, black pattern, black foreground and white
background). Then text drawing mode is set to srcOr mode for drawing black characters regardless of the background.

After using HiliteRect, you can draw the text in the affected area using DrawString (or an equivalent). You may also
draw icons or other objects over the highlighted color. You can restore the text drawing mode to its default setting
using TextMode(srcOr) after you have finished drawing in the rectangle.

This routine works perfectly regardless of your monitorÕs settings, the presence of multiple monitors, or if Color
QuickDraw is available or not. If HiliteRect is used outside a BeginUpdateScreen / EndUpdateScreen structure, it sets
the text drawing mode to be appropriate for the highlight color used on the main monitor. When used inside a
BeginUpdateScreen / EndUpdateScreen structure (the recommended way), it sets the text drawing mode to be
appropriate for the highlight color used on the logical screen specified by BeginUpdateScreen.

17 Color Drawing & Multiple Monitors

WaterÕs Edge Software 491

for theScreen := 1 to NumberOfScreens do {Repeat drawing for each monitor in which the }
 begin { window appears. }
 BeginUpdateScreen(theScreen); {Drawing area reduced to the specified screen }
 HiliteRect(myRect, true); {Highlight the rectangle, and set text drawing }

{ mode for drawing on the highlight color as it }
{ appears on this screen. }

 MoveTo(20, 200); {Position the pen for drawing the text }
 DrawString('Highlighted Text'); {Draw text on the highlighted color }
 TextMode(srcOr); {Restore default text drawing mode }
 EndUpdateScreen; {End the drawing for this monitor, and restore }
 end; { the window's visible (drawing) region. }

Also see: UseHiliteColor, UseHiliteText and HiliteRgn.

Programming Tips:
1 For the best results, highlight objects only when the window displaying them is active. You can use the

WindowIsActive routine in conjunction with the Hilite parameter to accomplish this, such as
HiliteRect (myRect, HiliteFlag and WindowIsActive(CurrentWindowNumber));

2. If you are following tip 1, make sure your application responds to a doActivate event (window was activated)
and doDeactivate event (window was deactivated) by highlighting or unhighlighting selected items.

..

HiliteRgn
Highlight or unhighlight a region on the current window, and prepare to draw text in it.

C pascal void HiliteRgn (RgnHandle TheRgn, Boolean Hilite);

Pascal procedure HiliteRgn (TheRgn: RgnHandle; Hilite: boolean);

HiliteRgn is an intelligent combination of the UseHiliteColor and UseHiliteText routines. It is used to highlight or
unhighlight a region and prepare for drawing text in that area. This routine is a functional equivalent to HiliteRect,
except that it accepts a region instead of a rectangle as a parameter.

TheRgn is the affected area specified as a region.

Hilite specifies if the region is to be highlighted or unhighlighted. You can use the constants on or off for this purpose.

Also see: UseHiliteColor, UseHiliteText and HiliteRect.

..

GetColorPenState
Get the current windowÕs pen settings.

C pascal void GetColorPenState (ColorPenState *ThePenState);

Pascal procedure GetColorPenState (var ThePenState: ColorPenState);

GetColorPenState is a color equivalent of QuickDrawÕs GetPenState routine in that it obtains a copy of the current
windowÕs pen location, size, pattern, and display mode in ThePenState. Additionally, if the Macintosh running your
application has Color QuickDraw, and if color drawing has been enabled by the InitToolsPlus routine, the foreground
and background color are also stored in ThePenState. These settings can be restored later with SetColorPenState.

This routine is useful when calling subroutines that operate in the current window but must change the graphics pen.
Each such routine can save the penÕs state, perform whatever tasks it needs to do, then restore the original pen state
immediately before returning. The ColorPenState record is defined as such:

Tools Plus

492

ColorPenState = record {Color equivalent for a 'PenState' record }
PenState: PenState; {Standard QuickDraw pen state }
ForegroundColor: RGBColor; {Window's foreground color }
BackgroundColor: RGBColor; {Window's background color }

end;

You can use the GetColorPenState routine in place of GetPenState throughout your application, regardless if Color
QuickDraw is available, or if it is used (as specified when calling InitToolsPlus).

..

SetColorPenState
Get the current windowÕs pen settings.

C pascal void SetColorPenState (const ColorPenState *ThePenState);

Pascal procedure SetColorPenState (ThePenState: ColorPenState);

SetColorPenState is a color equivalent of QuickDrawÕs SetPenState routine in that it sets the current windowÕs pen
location, size, pattern, and display mode according to the values stored in ThePenState. Additionally, if the Macintosh
running your application has Color QuickDraw, and if color drawing has been enabled by the InitToolsPlus routine,
the foreground and background colors are also set.

This is usually done at the end of a routine that has altered the pen parameters and wants to restore them to their
original state that existed at the beginning of the routine. (See GetColorPenState.)

You can use the SetColorPenState routine in place of SetPenState throughout your application, regardless if Color
QuickDraw is available, or if it is used (as specified when calling InitToolsPlus).

..

18 User Notification

WaterÕs Edge Software 493

18 User Notification

This chapter describes Tools PlusÕs implementation of the Macintosh toolboxÕs Notification Manager. The
Notification Manager is used to tell the user that there is something happening they need, or want to be aware of in an
inactive application. This feature is available in System 6 (when running MultiFinder) and System 7 or higher. An
example of the Notification Manager at work is when Print Monitor tells your application it needs a sheet of paper to
be inserted for a manual page feed.

Tools Plus does more than just simplify access to the Notification Manager. User notification is automatic whenever
your application displays a Dynamic Alert box. If your application is inactive when it uses the AlertBox routine, Tools
Plus notifies the user by displaying a notification dialog such as the one shown below.

Your application can customize how the user is notified by using the SetNotification routine. The user can be notified
by any of the following means (including and combination).

¥ Display a flashing icon in the Application menu (System 7 or higher) or Apple menu (System 6)
¥ Play a sound (or the systemÕs default error sound)
¥ Display an alert with a message in it that requires the user to click the OK button before continuing.

To comply with Macintosh user interface guidelines, you should think of notifications as three levels:
1 Display a flashing icon
2 Display a flashing icon and play a sound
3 Display a flashing icon, optionally play a sound, and display a message

Ideally, your application should let the user decide if and how they want to be notified, as demonstrated by the Print
MonitorÕs notification options.

Default notification dialog displayed while your application is inactive and needing attention

Notifying the User
Tools Plus automatically accesses the Macintosh toolboxÕs Notification Manager if your application is inactive and it
uses the AlertBox routine. A default notification message is displayed, as shown on the previous page.

Your application can use the SetNotification routine to specify a small icon (ÔSICNÕ resource) that will flash in the
menu bar during notification. SetNotification also specifies the sound that is used (if any), and the message that is
displayed in a notification alert (if any) when the user is notified.

If your application wants to notify the user without using a Dynamic Alert, it can do so with the PostNotification
routine. If your application is inactive, PostNotification notifies the user as per the settings specified by
SetNotification.

When your application is activated, the notification is cleared.

..

Tools Plus

494

SetNotification
Define the settings for notifying the user.

C pascal void SetNotification (short IconID, short SoundID,
const Str255 Message, Boolean ResetAfterUse);

Pascal procedure SetNotification (IconID, SoundID: INTEGER; Message: STRING;
ResetAfterUse: BOOLEAN);

IconID is the resource ID for an ÔSICNÕ small icon that is flashed in the menu bar during notification. Tools Plus loads
this resource into memory and locks it while posting the notification. If you donÕt want to display an icon, use the
NoIcon constant.

SoundID is the resource ID for an Ôsnd Õ sound that is played when the user if first notified. Tools Plus loads this
resource into memory and locks it while posting the notification. You can use the nmSysBeep constant if you want to
play the default system error sound, or nmSilentNote if you donÕt want to play a sound at notification.

Message is the string that is displayed in the notification alert. You can use the nmDefaultMsg constant if you want to
use the default notification message, or the nmNoMsg constant if you donÕt want a notification alert displayed. The
message can contain two string variables that are replaced by Tools Plus:

^0 is replaced by your applicationÕs name
^1 is replaced by the ð symbol in System 6, and the word ÒApplicationÓ under System 7 or higher

These two variables can be combined to produce tailored messages that adapt automatically to System 6 and System 7
or higher. Tools PlusÕs default message is:

Ò^0Ó needs your attention.

Please choose Ò^0Ó from the ^1 menu or click the Ò^0Ó window.

In all cases, Ò^0Ó is replaced with your applicationÕs name. The Ò^1Ó is replaced by text that is dependent on the
system version on which your application is running. Therefore, the default string is automatically changed to:

System 6: ÒAppNameÓ needs your attention.

Please choose ÒAppNameÓ from the ð menu or click the ÒAppNameÓ window.

System 7+: ÒAppNameÓ needs your attention.

Please choose ÒAppNameÓ from the Application menu or click the ÒAppNameÓ window.

ResetAfterUse specifies if the notification settings should be reset to their default values after notification is posted. If
ResetAfterUse is true, the settings revert to their default values. If ResetAfterUse is false, the specified settings remain
in effect until they are changed by SetNotification. You can use the nmResetWhenDone and nmKeepSettings
constants for this item.

Also see: PostNotification.

CONST {Notification constantsÉ }
nmSysBeep = -1; {NOTIFICATION: Use System Error sound }
nmSilentNote = 0; { Silent notification }
nmDefaultMsg = ' '; { Use default message }
nmNoMsg = ''; { Don't display an alert }
nmResetWhenDone = true; { Reset to defaults after used }
nmKeepSettings = false; { Keep settings after used }
NoIcon =-32768; {ICONS: No icon used }

- Note: If your application is displaying an icon during notification, and/or plays a sound other than the default system
error sound, the ÔSICNÕ and Ôsnd Õ resources are locked in memory by Tools Plus until your application is
activated. Therefore, you can flag these resources as ÒpurgeableÓ to save memory.

..

18 User Notification

WaterÕs Edge Software 495

PostNotification
Notify the user that your application needs attention.

C pascal Boolean PostNotification (void);

Pascal function PostNotification: BOOLEAN;

If your application is inactive, PostNotification notifies the user that your application needs attention. If
SetNotification has been used to specify notification settings, then those settings are used. Otherwise, Tools PlusÕs
default settings are used.

If your application is inactive when PostNotification is called, the routine returns true. If your application is active, or
it is running under System 5, or it is running under System 6Õs Finder (not MultiFinder), PostNotification does nothing
and returnÕs false.

..

Tools Plus

496

19 Dynamic Alerts

WaterÕs Edge Software 497

19 Dynamic Alerts

Dynamic alerts are very similar to the MacintoshÕs alerts, only they are much better in most situations. They
automatically change size and shape to accommodate the text that is displayed in them, and they are always centered
on the main monitor. ItÕs like having hundreds of custom alerts available, without having to design any of them!

When a dynamic alert is displayed, it optionally beeps the user and the cursor is changed to the Macintosh arrow. The
alert box is automatically sized to accommodate the text specified by your application, and it is centered on the main
monitor to be aesthetically pleasing. An icon can optionally be displayed in the top left corner of the alert. Your
application also specifies the combination of buttons that appear at the bottom of the alert.

The AlertBox routine automatically processes mouse clicks and typing events, and applies them to the alert. When the
user clicks one of the buttons, or types Return or Enter to activate a default button, the alert box closes and control is
returned to your application. The AlertBox routine returns the value of the button that was selected by the user.

Multitasking in Dynamic Alerts

When your application calls the AlertBox routine, Tools Plus opens a window, populates it appropriately, and sets up a
private window event handler to handle mouse clicks, typing, and refreshing events for the alert. While the dynamic
alert is displayed, Tools Plus calls your applicationÕs event handler routine(s) to do such things as process doRefresh
events for your applicationÕs windows, doDeactivate events, and possibly other events.

By default, Tools Plus does not report doNothing events to your application when a dynamic alert is displayed because
your application may display a dynamic alert in response to a doNothing event. In such cases, this may cause your
application to recursively redisplay the same alert.

If you write your event handler routine in such a way that it senses if a dynamic alert is displayed and thereby prevents
the recursive redisplaying of an alert, then you can have Tools Plus report doNothing events to your event handler
while a dynamic alert is displayed by using the SetAlertBoxNullEvents routine. Doing this allows your application to
continue to carry on with background processing in response to a doNothing event, even while a dynamic alert is
displayed. You can use the AlertBoxCount routine to determine how many dynamic alerts are displayed.

Tools Plus allows the simultaneous displaying of up to three (3) dynamic alerts. The following is an example of how it
may be possible to have multiple dynamic alerts open simultaneously:

¥ Your application allows the reporting of doNothing events while a dynamic alert is displayed (see the
SetAlertBoxNullEvents routine)

¥ The user starts searching a database for records. The search runs as a background process in response to
doNothing events.

¥ The user closes one of your applicationÕs document windows, to which your application responds by displaying a
dynamic alert: ÒSave changes before closing this document?Ó (Yes, No, Cancel buttons are available). This is the
first alert displayed. While the alert is waiting for the userÕs response, your application continues to receive
doNothing events and it continues to search the database.

¥ The database search finishes without finding any entries, and it displays a second dynamic alert: ÒNo records
found.Ó (Ok button is available)

At this time, two dynamic alerts are displayed with the most recent one being active. As soon as the user dismisses the
second alert, the first alert is activated and the user can decide if they want to save the document before closing it.

Tools Plus

498

Icons

When Tools Plus draws the icon in the dynamic alert, it does so by accessing an icon family and by being sensitive to
the settings of the monitor on which the icon is being displayed. This means that it displays the best available icon
(cicn, icl8, icl4, ICN#, or ICON resource) for the target monitor. You can define ÔcicnÕ or Ôicl8Õ icons for use with
monitors set to 8-bits or higher, Ôicl4Õ icons for monitors set to 4-bits or higher, and ÔICN#Õ or ÔICONÕ icons for
monitors set to 1-bit or higher. For more details about how icons are displayed, see the DrawIcon routine which is used
by AlertBox to draw the icon.

The System file includes 3 icons that are ready for your use. These are the ÒstopÓ, ÒnoteÓ, and ÒcautionÓ icons as
illustrated below. Constants have been defined to let you use these system icons without system compatibility
concerns.

0 1 2
Stop Note Caution

Text

The text displayed by dynamic alerts is automatically split into multiple lines by using word-wrap if necessary.
AlertBox adjusts the boxÕs width to make the length of multiple lines as similar as possible. A Carriage Return (ASCII
code $0D) can be used within the text to start a new line. You can use the ReturnKey constant to make your program
more readable. This lets you form an alert box with multiple lines of text by using a single line of source code in your
program.

A dynamic alertÕs text is left-aligned unless it has no buttons, in which case the text is centered.

Buttons

Dynamic alerts can display up to three buttons, including an optional default button. The default button is outlined
with a border and is automatically selected if the user presses the Return or Enter key. Several common button
combinations have been defined for you as constants (samples provided later). Later in this manual, you will be shown
how to define your own button combinations.

The user can select a button on a dynamic alert by using a command key equivalent. The Escape key or 1-.
(Command-period) can be used to select the ÒCancelÓ button or a language-dependent equivalent. All other buttons
can be selected by using the command key in conjunction with the first character of the buttonÕs title.

RoutineÕs Value

The AlertBox routine returns with a value that indicates the button that was clicked by the user. If you display an alert
with no buttons, AlertBox returns with a value of 1 when the alert is clicked by the user. Constants are defined to let
your application match the routineÕs value to a button name more easily. A value of -1 indicates that the alert could not
be opened, either due to a severe memory shortage, or more likely, because 3 dynamic alerts are already open
concurrently, and your application likely has recursive code that, if allowed, would continue to open dynamic alerts
infinitely.

Automatic User Notification

If your application is running under System 6Õs MultiFinder or System 7 or higher, dynamic alerts automatically make
use of the Macintosh toolboxÕs Notification Manager. The Notification Manager is used to tell the user that there is
something happening they need, or want to be aware of in an inactive application. An example of the Notification
Manager at work is when Print Monitor tells your application it needs a sheet of paper to be inserted for a manual page
feed.

19 Dynamic Alerts

WaterÕs Edge Software 499

If your application is inactive when it uses the AlertBox routine, Tools Plus notifies the user by displaying a
notification dialog. Your application can customize the notification by using the SetNotification routine.

Appearance Manager

There are two ways you can make dynamic alerts Appearance Manager savvy. The easiest way is to initialize Tools
Plus (InitToolsPlus routine) with the initAppearanceManagerSavvy option. This automatically replaces all references
to classic System 7 style buttons and windows with 3D equivalents made available by the Appearance Manager. Your
dynamic alerts will automatically use the correct window, background theme, buttons, and font as specified by the
Appearance ManagerÕs current Òtheme.Ó Alternatively, you can use the SetAlertBoxPrefs routine to manually specify
window colors, fonts, and button appearance details.

The Appearance ManagerÕs background is applied to the alert if you leave the background color at its default color,
white. If you specify a different background color, the Appearance ManagerÕs background is not applied to the
dynamic alert.

Alert Samples

The following are examples of predefined dynamic alert types. In each case, the left column shows a specific type
without an icon, and the right column with an icon. Your application is not limited to the alerts shown below. You can
define your own custom button combinations, and button names as well.

NoButtonAlert:
clicking in the box clears the alert.
Value of 1 is always returned

OkAlert:
clicking OK returns a value of 1

CanAlert:
clicking Cancel returns a value of 2

OkCanAlert:
clicking OK returns a value of 1,
clicking Cancel returns a value of 2

CanOkAlert:
clicking OK returns a value of 1,
clicking Cancel returns a value of 2

Tools Plus

500

YesNoAlert:
clicking Yes returns a value of 3,
clicking No returns a value of 4

NoYesAlert:
clicking Yes returns a value of 3,
clicking No returns a value of 4

YesNoCanAlert:
clicking Yes returns a value of 3,
clicking No returns a value of 4,
clicking Cancel returns a value of 2

NoYesCanAlert:
clicking Yes returns a value of 3,
clicking No returns a value of 4,
clicking Cancel returns a value of 2

..

19 Dynamic Alerts

WaterÕs Edge Software 501

AlertBox
Display a dynamic alert box.

C pascal short AlertBox (short theIcon, const Str255 AlertText,
long AlertCode);

Pascal function AlertBox (theIcon: INTEGER; AlertText: STRING;
AlertCode: LONGINT): INTEGER;

TheIcon is the icon ID that is displayed in the alert. If the icon ID you specify does not exist, then the noteIcon is
displayed in its place. Your application can specify any icon it wants, providing the icon resource exists in either the
System file or your application. For more details about how the icon is drawn, see the DrawIcon routine which is used
by AlertBox to draw the icon. If your application will run on a Macintosh with an Appearance Manager, use either a
ÔcicnÕ icon, or an icon suite that includes an Ôicl8Õ icon, an optional Ôicl4Õ icon, and an ÔICN#Õ icon with mask. The
Appearance Manager checks for an ÔcicnÕ before an icon suite. The Appearance Manager also includes 3D icons for
the standard Stop, Note, and Caution icons.

AlertText is the text that is displayed in the dynamic alert. A Carriage Return (ASCII code $0D) can be used in the text
to start a new line. You can use the ReturnKey constant to make your program more readable. A dynamic alertÕs text is
left-aligned unless the alert has no buttons, in which case the text is centered.

AlertCode specifies the button layout that appears in the dynamic alert. See ÒCustom Button CombinationsÓ (below) to
define your own button layouts.

The AlertBox routine returns with a value that indicates which button was clicked by the user. If AlertBox displays an
alert with no buttons, it returns with a value of 1 when the user clicks in the alert. Constants are defined to let your
application match the routineÕs value to a button name more easily. The AlertBox routine returns a value of -1 if it
cannot display the alert for any reason such as a severe memory shortage or the maximum number of dynamic alerts
are already open.

Custom Button Combinations

AlertCode lets you specify the button layout that appears on dynamic alerts. This code is a long integer whose value is
broken into 5 single-digit numbers, each of which specifies something about the button combination:

(1) Number of buttons displayed in the alert [0 to 3]
(2) Default button position [1 to 3, from right to left]. 0 if no default button

(3) 1st button name [from 1 to 7, rightmost button]. 0 if no button in this position.
(4) 2nd button name [from 1 to 7, second from right]. 0 if no button in this position.

(5) 3rd button name [from 1 to 7, third from right]. 0 if no button in this position.

3 3 2 4 3 This AlertCode means: 3 buttons in the alert
3rd button from the right is the default
button no. 2 (ÒCancelÓ) is the 1st button on the right
button no. 4 (ÒNoÓ) is the 2nd button from the right
button no. 3 (ÒYesÓ) is the 3rd button from the right (default)

Single button alerts have the button centered between the left and right side of the alert box. Two button alerts have
their buttons placed side by side in the bottom right corner of the alert. Three button alerts have the first button placed
on the bottom right side of the box, and the next two are paired off further to the left.

If you initialize Tools Plus using the initAppearanceManagerSavvy option, and providing you donÕt specify a
background color for dynamic alerts (using the SetAlertBoxPrefs routine), dynamic alerts adopt the Appearance
ManagerÕs background theme. In cases when you want to override this behavior and have a plain white dynamic alert,
add the alertPlainBackdrop option to the AlertCode.

If the value of AlertCode is negative, the dynamic alert doesnÕt beep when displayed. We suggest that you define your
own custom alert codes as constants, and use those constants to make your source code more readable.

Tools Plus

502

Advanced Techniques

If your application uses a lot Alerts, or you want to make as efficient use of memory as possible, you can store all the
alertsÕ messages as string resources and write your own routine that accepts a string resource ID from the calling
application, then loads the string resource, and hands it off to the AlertBox routine.

If you want to get even more advanced, you can add some extra data bytes to the end of your string resource,
representing the icon number and button combination. Your application would call your alert routine and provide it
with a string resource ID. Your alert routine would then load the string resource, read the data bytes and parse them
into the theIcon and AlertCode parameters for the AlertBox routine. By using this concept, you could process an alert
with a call that looks like the following:

UserButton := MyAlert(501);

The number 501 would be your string resource ID, and UserButton would return the button that was selected by the
user. You still have the advantage of using a dynamic alert, and you can enjoy even greater simplicity.

Also see: AlertBox3 and AlertButtonName to rename buttons in dynamic alerts.

CONST {Icon IDs for alert iconsÉ }
NoIcon =-32768 {no icon displayed in alert box }
stopIcon = 0; {stopIcon will automatically access }
noteIcon = 1; { ID = 3 in system files version 5 or }
cautionIcon = 2; { 6. }

{Dynamic alert buttonsÉ }
OkAltBut = 1; {OK }
CanAltBut = 2; {Cancel }
YesAltBut = 3; {Yes }
NoAltBut = 4; {No }
ContAltBut = 5; {Continue }
SkipAltBut = 6; {Skip }
QuitAltBut = 7; {Quit }

{Dynamic alert button combinationsÉ }
NoButtonAlert = 0; {No buttons }
OkAlert = 11100; {OK (OK default) }
CanAlert = 11200; {Cancel (Cancel default) }
OkCanAlert = 22210; {OK + Cancel (OK default) }
CanOkAlert = 21210; {OK + Cancel (Cancel default) }
YesNoAlert = 22430; {Yes/No (Yes default) }
NoYesAlert = 21430; {Yes/No (No default) }
YesNoCanAlert = 33243; {Yes/No + Cancel (Yes default) }
NoYesCanAlert = 32243; {Yes/No + Cancel (No default) }

alertPlainBackdrop = 1000000; {Do not fill alert with Appearance Manager's }
{ theme. }

- Note: (System 5 and System 6Õs Finder only) It is possible for your application to call AlertBox when none of its
windows are active. An example of this occurs as follows: [1] user enters text in an editing field on window
ÒaÓ, [2] user opens a desk accessory, [3] user clicks on another window (ÒbÓ) belonging to your application,
[4]Êyour application determines that the user cannot activate window ÒbÓ until the field in window ÒaÓ is
corrected, so it displays a dynamic alert stating so.
ÊÊWhenever a dynamic alert is called, it automatically insures that the frontmost window belonging to your
application is active before the alert is displayed.

Programming Tips:
1 If you want your application to be in Òfull colorÓ by displaying colorized stop, note, and caution icons in your

alerts, include the demo applicationÕs Ôicl8Õ, Ôicl4Õ and ÔICONÕ icons (ID numbers 0, 1 and 2). AlertBox will
display the icon that is best for your monitor settings.

..

19 Dynamic Alerts

WaterÕs Edge Software 503

AlertBox3
Display a dynamic alert box using temporary button titles.

C pascal short AlertBox3 (short theIcon, const Str255 AlertText,
long AlertCode, const Str255 But1, const Str255 But2,
const Str255 But3);

Pascal function AlertBox3 (theIcon: INTEGER; AlertText: STRING;
AlertCode: LONGINT; But1, But2, But3: STRING): INTEGER;

AlertBox3 is identical to the AlertBox routine, except that it accepts an additional three strings to temporarily replace
the titles of the first three (of a possible nine) buttons. The dynamic alert displays the button titles you specify then it
reverts to the original titles after the alert is closed.

But1 through But3 are strings that represent temporary replacement titles for buttons 1 through 3.

This routine is helpful if your application frequently creates alerts with custom button titles.

- Note: Make sure your AlertCode references only button numbers 1, 2 and 3 in places where you want to temporarily
substitute the standard button titles with the titles you specify in the routine.

..

AlertButtonName
Change the button title on dynamic alert boxes.

C pascal void AlertButtonName (short Button, const Str255 Title);

Pascal procedure AlertButtonName (Button: INTEGER; Title: STRING);

Tools Plus provides seven different button titles that may be used in various combinations on dynamic alert boxes.
Although button titles and button number constants are provided for only seven buttons (as detailed in AlertBox), a
total of nine buttons are available for use.

Button specifies the button number (from 1 to 9) that is affected.

Title specifies the buttonÕs title that will appear on all subsequent dynamic alerts. Each buttonÕs size changes to
accommodate the buttonÕs title width, so it is important that you test your alerts to ensure that they look good. The
specified title stays in effect until it is explicitly changed by your application. If a null string is provided, the button
resumes its default title (the default titles are listed earlier in this chapter).

Your application can rename any or all of the button titles as required, but keep in mind that the constants defined for
the AlertCode and buttons will not work correctly because buttons have been renamed.

..

GetAlertBoxPrefs
Get preferences for dynamic alerts.

C pascal void GetAlertBoxPrefs (TPAlertBoxPrefs *Prefs);

Pascal procedure GetAlertBoxPrefs (var Prefs: TPAlertBoxPrefs);

The GetAlertBoxPrefs routine retrieves preferences settings for dynamic alerts in a preferences record. You can then
change individual items in the record and save the new settings with SetAlertBoxPrefs.

The Prefs record contains preferences for dynamic alerts and is defined as such:

Tools Plus

504

C struct TPAlertBoxTextPrefs { /* Settings for message displayed in the alert: */
short Font; /* ¥ Font */
short Size; /* ¥ Font's size */
short Style; /* ¥ Font's style */
RGBColor Color; /* ¥ Font's color */
};

typedef struct TPAlertBoxTextPrefs TPAlertBoxTextPrefs;
struct TPAlertBoxButtonPrefs { /*Settings for button displayed in the alert: */

short ProcID; /* ¥ ProcID */
short Font; /* ¥ Font */
short Size; /* ¥ Font's size */
short Style; /* ¥ Font's style */
RGBColor FrameColor; /* ¥ Frame's color */
RGBColor BodyColor; /* ¥ Body's color */
RGBColor TextColor; /* ¥ Text's color */
RGBColor BackColor; /* ¥ Background color (ignored by most CDEFs) */
};

typedef struct TPAlertBoxButtonPrefs TPAlertBoxButtonPrefs;
struct TPAlertBoxPrefs { /*Dynamic Alert's preferences */

RGBColor Backdrop; /* ¥ Window's backdrop color */
TPAlertBoxTextPrefs Text; /* ¥ Text preferences */
TPAlertBoxButtonPrefs Button1; /* ¥ Prefs for button in 1st position (right) */
TPAlertBoxButtonPrefs Button2; /* ¥ Prefs for button in 2nd position */
TPAlertBoxButtonPrefs Button3; /* ¥ Prefs for button in 3rd position */
};

typedef struct TPAlertBoxPrefs TPAlertBoxPrefs;

Pascal TPAlertBoxTextPrefs = record {Settings for message displayed in the alert: }
Font: integer; { ¥ Font }
Size: integer; { ¥ Font's size }
Style: Style; { ¥ Font's style }
Color: RGBColor; { ¥ Font's color }

end;
TPAlertBoxButtonPrefs = record {Settings for button displayed in the alert: }

ProcID: integer; { ¥ ProcID }
Font: integer; { ¥ Font }
Size: integer; { ¥ Font's size }
Style: Style; { ¥ Font's style }
FrameColor: RGBColor; { ¥ Frame's color }
BodyColor: RGBColor; { ¥ Body's color }
TextColor: RGBColor; { ¥ Text's color }
BackColor: RGBColor; { ¥ Background color (ignored by most CDEFs) }

end;
TPAlertBoxPrefs = record {Dynamic Alert's preferences }

Backdrop: RGBColor; { ¥ Window's backdrop color }
Text: TPAlertBoxTextPrefs; { ¥ Text preferences }
Button1: TPAlertBoxButtonPrefs; { ¥ Prefs for button in 1st position (right) }
Button2: TPAlertBoxButtonPrefs; { ¥ Prefs for button in 2nd position }
Button3: TPAlertBoxButtonPrefs; { ¥ Prefs for button in 3rd position }

end;

..

SetAlertBoxPrefs
Set preferences for dynamic alerts.

C pascal void SetAlertBoxPrefs (const TPAlertBoxPrefs *Prefs);

Pascal procedure SetAlertBoxPrefs (Prefs: TPAlertBoxPrefs);

The SetAlertBoxPrefs routine stores preferences settings for dynamic alerts. See the GetAlertBoxPrefs routine to
retrieve the preferences before making changes, and to see the TPAlertBoxPrefs record layout.

The Prefs record contains preferences for dynamic alerts and is defined as such:

The following example shows how to change preferences for dynamic alerts:
GetAlertBoxPrefs(Prefs); {Get dynamic alert preferences }
Prefs.Text.Font := geneva; {Message will be displayed using Geneva 9pt }
Prefs.Text.Size := 9; { }
Prefs.Button1.ProcID := 32000 + useWFont; {1st (right most) button has procID of 32000 }

{ (for CDEF resource ID = 2000) and it uses }
{ a custom font. }

Prefs.Button1.Font := helvetica; {1st button uses Helvetica 10pt }
Prefs.Button1.Size := 10; { }

19 Dynamic Alerts

WaterÕs Edge Software 505

Prefs.Button2 := Prefs.Button1; {2nd button uses same settings as 1st button }
SetAlertBoxPrefs(Prefs); {Store dynamic alert preferences }

..

SetAlertBoxNullEvents
Allow/disallow doNothing events while a dynamic alert is open.

C pascal void SetAlertBoxNullEvents (Boolean AllowNulls);

Pascal procedure SetAlertBoxNullEvents (AllowNulls: BOOLEAN);

The SetAlertBoxNullEvents routine allows or disallows the reporting of doNothing events while a dynamic alert is
displayed. By default, doNothing events are not reported to your event handler when a dynamic alert is open. The
ÒMultitasking in Dynamic AlertsÓ section at the beginning of this chapter details the ramifications of allowing or
disallowing doNothing event reporting when a dynamic alert is open.

AllowNulls specifies if doNothing events are reported to your event handler while a dynamic alert is displayed. A
setting of true allows reporting, while a value of false disallows it. You can use the constants on and off for this
purpose.

..

AlertBoxCount
Determine the number of dynamic alerts that are open.

C pascal short AlertBoxCount (void);

Pascal function AlertBoxCount: INTEGER;

The AlertBoxCount routine returns the number of dynamic alerts that are open. Your application may need to know
this if it takes steps to prevent the recursive redisplaying of dynamic alerts, as described early in this chapter in the
ÒMultitasking in Dynamic AlertsÓ section. Your application can also compare this value to the MaxAlertBoxes
constant (which represents the maximum number of dynamic alerts that can be open simultaneously) to determine if it
is possible to open more alerts.

CONST MaxAlertBoxes = 3; {Maximum number of Dynamic Alerts that can be }
{ open concurrently. }

..

Tools Plus

506

20 Miscellaneous Routines

WaterÕs Edge Software 507

20 Miscellaneous Routines

This section contains some routines that simplify and enhance the programming experience. Some routines were
developed specifically to replace similar parts of the MacintoshÕs toolbox by providing simpler or more useful
counterparts, such as Tools PlusÕs DrawIcon. Other routines were written to mimic existing Macintosh user interface
features to which programmers do not have access, such as the Òzoom linesÓ that are seen when the Finder opens a
document, or the standard Macintosh thermometer that indicates an applicationÕs progress. And yet other routines are
included because they were needed for the internal working of Tools Plus, and we thought they would be useful to you
as well.

..

StrInBox
Draw a string in a bounding rectangle without creating a field.

C pascal void StrInBox (short left, short top, short right, short bottom,
const Str255 Text, long DispSpec, short Just);

Pascal procedure StrInBox (left, top, right, bottom: INTEGER;
Text: STRING; DispSpec: LONGINT; Just: INTEGER);

StrInBox is a substitute for the toolboxÕs TextBox routine. It offers several improvements not found in TextBox:
¥ the concept of a single-line display area
¥ text color options
¥ background options including: Òclear before displayÓ and Òtransparent backgroundÓ
¥ sensitivity to multiple monitors with different settings
¥ sensitivity to presence or absence of Color QuickDraw.

The string is drawn using the current windowÕs font, size and style settings (as set by the TextFont, TextSize, and
TextFace routines).

Left, top, right, and bottom define a rectangle in local co-ordinates that determines the display area and location in the
current window. These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom
right-hand corner (right,bottom). The rectangle must be wide enough for at least 1 character. For best results, the
height of the rectangle should be the same as a fontÕs height (font height can be determined by calling the GetFontInfo
routine and adding Ascent + Descent + Leading). If multiple lines are displayed, the height should be in increments of
the font height. If the rectangleÕs height is not greater than the fontÕs height, a single-line display area exists and word
wrap is not applied to the text.

Text is the string that is displayed in the rectangle.

DispSpec specifies how the text and its background are drawn. The value for this 4-byte long integer can be specified
by adding a set of constants to obtain the desired result.

Choose only one of the following background optionsÉ
teWhiteBack Before the Text is drawn, the area enclosed by the rectangle is erased with white. This is the

default, so omitting all options implies using this one.

teBackdrop Before the Text is drawn, the area enclosed by the rectangle is erased with the windowÕs
backdrop color.

Tools Plus

508

teColorBack Before the Text is drawn, any portion of the rectangle that is on a monitor with a bit depth of
4-bits or more is erased using the windowÕs background color. Otherwise, the rectangle is
erased using white. If Color QuickDraw is unavailable (or unused), the rectangle is erased
using white.

teNoBack The rectangleÕs area is unaffected before the text is drawn, thus having the appearance of
drawing on a transparent background. This option is best for drawing text over patterns or
pictures.

Choose only one of the following text color optionsÉ
teBlackText Text is black. This is the default, so omitting all options implies using this one.

teColorText If any portion of the text is drawn on a monitor with a bit depth of 4-bits or more, it is drawn
using the windowÕs foreground color. Otherwise, the text is black. If Color QuickDraw is
unavailable (or unused), the text is black.

Just specifies if a field is left aligned, right aligned, or centered. See the relevant constants at the end of this section.

Also see: StrInBoxRect, TextInBox and TextInBoxRect.

+ Warning: StrInBox must be called outside a BeginUpdateScreen / EndUpdateScreen structure.

CONST {Background Drawing: }
teWhiteBack = $0000; { White background (default) }
teBackdrop = $0001; { Draw on backdrop color }
teColorBack = $0002; { Color background }
teNoBack = $0008; { Transparent background }

{Text Drawing: }
teBlackText = $0000; { Black text (default) }
teColorText = $0010; { Foreground colored text }

{Combined text and background constants: }
teBlackOnBackdrop = teBlackText + teBackdrop; {Black text on backdrop }
teBlackOnWhite = teBlackText + teWhiteBack; {Black text on white }
teBlackOnColor = teBlackText + teColorBack; {Black text on color }
teBlackOnClear = teBlackText + teNoBack; {Black text, no background }
teColorOnBackdrop = teColorText + teBackdrop; {Color text on backdrop }
teColorOnWhite = teColorText + teWhiteBack; {Color text on white }
teColorOnColor = teColorText + teColorBack; {Color text on color }
teColorOnClear = teColorText + teNoBack; {Color text, no background }

{Text alignment: }
teJustLeft = 0; { Left aligned (default) }
teJustCenter = 1; { Centered }
teJustRight =-1; { Right aligned }

..

StrInBoxRect
Draw a string in a bounding rectangle without creating a field.

C pascal void StrInBoxRect (const Rect *Bounds, const Str255 Text,
long DispSpec, short Just);

Pascal procedure StrInBoxRect (Bounds: RECT; Text: STRING;
DispSpec: LONGINT; Just: INTEGER);

StrInBoxRect is identical to the StrInBox routine, except that it accepts the Bounds rectangle in place of the individual
left, top, right and bottom co-ordinates.

..

20 Miscellaneous Routines

WaterÕs Edge Software 509

TextInBox
Draw text in a bounding rectangle without creating a field.

C pascal void TextInBox (short left, short top, short right, short bottom,
const Ptr TextPtr, short Length, long DispSpec, short Just);

Pascal procedure TextInBox (left, top, right, bottom: INTEGER; TextPtr: PTR;
Length: INTEGER; DispSpec: LONGINT; Just: INTEGER);

TextInBox is identical to StrInBox except instead of passing a string, you pass the following parameters:

TextPtr is a pointer to the text being displayed.

Length is the length of the text being displayed.

..

TextInBoxRect
Draw text in a bounding rectangle without creating a field.

C pascal void TextInBoxRect (const Rect *Bounds, const Ptr TextPtr,
short Length, long DispSpec, short Just);

Pascal procedure TextInBoxRect (Bounds: RECT; TextPtr: PTR; Length: INTEGER;
DispSpec: LONGINT; Just: INTEGER);

TextInBoxRect is identical to the TextInBox routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

..

DrawPict
Draw a picture (PICT resource).

C pascal void DrawPict (short BaseID,
short left, short top, short right, short bottom, long DispSpec);

Pascal procedure DrawPict (BaseID: INTEGER;
left, top, right, bottom: INTEGER; DispSpec: LONGINT);

DrawPict is a replacement for the toolboxÕs DrawPicture routine. It offers several improvements not found in
DrawPicture:

¥ selective scaling or clipping to a viewing rectangle
¥ drawing a picture using its original size (without decoding the resource)
¥ background options including Òclear before displayÓ and Òtransparent backgroundÓ
¥ sensitivity to multiple monitors and settings (different PICTs can be used for different monitor settings)
¥ sensitivity to presence or absence of Color QuickDraw
¥ shifting a picture within a clipped viewing rectangle (see DrawShiftPict).

BaseID specifies the base ÔPICTÕ resource ID number. If you are drawing a single PICT resource, BaseID represents
the ID number of that resource. If you are displaying different pictures depending on the monitorÕs settings, BaseID is
the resource number of the Black and White picture (all other pictures in the set are numbered higher than this one).
See ÒResource IDsÓ later in this section for a detailed description of ÔPICTÕ resource numbering.

Tools Plus

510

Left, top, right, and bottom define a rectangle in the current windowÕs local co-ordinates where the picture is displayed.
These parameters can be seen as two corners; the upper left-hand corner (left,top) and the bottom right-hand corner
(right,bottom) of a display rectangle. You can optionally retain the pictureÕs original proportions (as detailed later by
DispSpec), in which case the pictureÕs upper left-hand corner is drawn at the co-ordinates specified by left and top.

DispSpec specifies how the picture is displayed (clipping, scaling, background options, resource searching, etc.) The
value for this 4-byte long integer can be specified either by adding a set of constants to obtain the desired result, or by
using a specially defined variant record. See the ÒAppearance and BehaviorÓ section for details.

PICT Resource IDs

You do not need to read this section if you are displaying a single ÔPICTÕ resource. This section applies only if you
need to display a different picture depending on the monitorÕs settings.

Up to six versions of the same picture can be created, one for each of the different monitor settings shown below. By
default, DrawPict looks for the PICT resource that is best suited for the monitorÕs settings. This is true even if the
picture straddles multiple monitors. If the best suited picture is not available, DrawPict looks for an equivalent picture
that is normally used when the monitor is at the next lower setting (gray is a lower setting than color). You can
override this behavior by telling DrawPict to use a higher quality image and have QuickDraw remap the colors. For
example, you may decide to create only a Black and White (1-bit) picture and an 8-bit color equivalent, and when the
monitor is set to 4-bit gray or color, or 8-bit gray, to use the 8-bit color picture instead of dropping down to the Black
and White one.

The following chart describes the PICT resource numbering scheme for creating pictures that are sensitive to monitor
settings (this also takes Macs with multiple monitors into account):

ÔPICTÕ Resource ID
Screen Depth Gray Color

B&W Base ID
4-bit Base ID + 1 Base ID + 2
8-bit Base ID + 3 Base ID + 4

16+ bit Base ID + 5

Please observe Macintosh user interface guidelines by creating at least the Black and White picture (with a resource ID
number equal to BaseID).

Appearance and Behavior

DispSpec specifies how the picture is displayed (clipping, scaling, background options, resource searching, etc.) The
value for this 4-byte long integer can be specified either by adding a set of constants to obtain the desired result, or by
using a specially defined variant record, as illustrated below.

pictScale1PICT Use this constant alone to draw a single PICT, and to have it scaled to the specified
rectangle. This is the default way of displaying a picture, and is functionally
equivalent to the toolboxÕs DrawPicture routine.

pictUsePictRect Use the resourceÕs rectangle for drawing the picture. This option ensures that the
picture is drawn using exactly the same height and width as when it was created.
The pictureÕs upper left-hand corner is drawn at the co-ordinates specified by left
and top.

pictClipToRect Clip the picture within the rectangle specified by left, top, right and bottom. If you
are not using pictClipToRect or pictUsePictRect, the picture is scaled to fit into the
rectangle.

20 Miscellaneous Routines

WaterÕs Edge Software 511

pictOnBackdrop Clear the display rectangle using the windowÕs backdrop color before drawing the
picture. This is useful for clearing out a previous picture or making sure the image is
displayed on a background that is the same color as the windowÕs backdrop.
Without this option, your picture will be drawn on top of whatever exists in the
display rectangle as though the new picture has a transparent background.

pictOnWhite Clear the display rectangle with white before drawing the picture. This is useful for
clearing out a previous picture or making sure the image is displayed on a white
background. Without this option, your picture will be drawn on top of whatever
exists in the display rectangle as though the new picture has a transparent
background.

pictOnColor Clear the display rectangle using the windowÕs background color before drawing the
picture. This is useful for clearing out a previous picture or making sure the image is
displayed on the windowÕs background color. Without this option, your picture will
be drawn on top of whatever exists in the display rectangle as though the new
picture has a transparent background.

pictMultiPICT Use this constant if you are displaying different pictures depending on the monitorÕs
settings.

pictBWplus When used in conjunction with pictMultiPICT, this option tells DrawPict to use a
higher resolution picture if a Black and White resource canÕt be found (the Black
and White picture has a resource ID equal to BaseID).

pictGray4plus When used in conjunction with pictMultiPICT, this option tells DrawPict to use a
higher resolution picture if a 4-bit gray scale resource canÕt be found (the 4-bit gray
scale picture has a resource ID equal to BaseID + 1).

pictColor4plus When used in conjunction with pictMultiPICT, this option tells DrawPict to use a
higher resolution picture if a 4-bit color resource canÕt be found (the 4-bit color
picture has a resource ID equal to BaseID + 2).

pictGray8plus When used in conjunction with pictMultiPICT, this option tells DrawPict to use a
higher resolution picture if an 8-bit gray scale resource canÕt be found (the 8-bit
gray scale picture has a resource ID equal to BaseID + 3).

pictColor8plus When used in conjunction with pictMultiPICT, this option tells DrawPict to use a
higher resolution picture if an 8-bit color resource canÕt be found (the 8-bit color
picture has a resource ID equal to BaseID + 4).

As an example, if you want to draw a picture that uses multiple PICTs (depending on the monitorÕs settings), and you
want to retain the pictureÕs original proportions, you should use the combined constants pictMultiPICT +
pictUsePictRect. Alternatively, a C structure and a Pascal variant record are available to help you define the DispSpec
in a more intuitive way, as shown below:

Tools Plus

512

C union TPDrawPictSpec { /*Picture drawing appearance & behavior */
/* specifications in 2 formatsÉ */

 struct{ /* ¥ Parsed into components: */
 short bits31to16; /* (reserved bits) */
 unsigned short bit15 :1; /* (reserved bit) */
 unsigned short bit14 :1; /* (reserved bit) */
 unsigned short bit13 :1; /* (reserved bit) */
 unsigned short bit12 :1; /* (reserved bit) */
 unsigned short bit11 :1; /* (reserved bit) */
 unsigned short Color8plus :1; /* Use better pict if 8-bit color not avail */
 unsigned short Gray8plus :1; /* Use better pict if 8-bit gray not avail */
 unsigned short Color4plus :1; /* Use better pict if 4-bit color not avail */
 unsigned short Gray4plus :1; /* Use better pict if 4-bit gray not avail */
 unsigned short BWplus :1; /* Use better pict if B&W not available */
 unsigned short MultiPICT :1; /* Use different PICT/monitor setting */
 unsigned short DrawOnColor : 1; /* Clear with background color before drawing? */
 unsigned short DrawOnWhite : 1; /* Clear with white before drawing? */
 unsigned short DrawOnBackdrop : 1; /* Clear with backdrop color before drawing? */
 unsigned short ClipToRect :1; /* Clip picture to rectangle? */
 unsigned short UsePictRect :1; /* Use picture's rectangle? */
 } Bits; /* */
 long Num; /* ¥ Long equivalent */
}; /* */
typedef union TPDrawPictSpec TPDrawPictSpec;

Pascal TPDrawPictSpec = packed record {Picture drawing appearance and behavior }
{ specifications in 2 formatsÉ }

 case integer of { }
 0: ({ ¥ Parsed into components: }
 bits31to16: integer; { (reserved bits) }
 bit15, bit14, bit13: boolean; { (reserved bits) }
 bit12, bit11: boolean; { (reserved bits) }
 Color8plus: boolean; { Use better pict if 8-bit color not available }
 Gray8plus: boolean; { Use better pict if 8-bit gray not available }
 Color4plus: boolean; { Use better pict if 4-bit color not available }
 Gray4plus: boolean; { Use better pict if 4-bit gray not available }
 BWplus: boolean; { Use better pict if B&W not available }
 MultiPICT: boolean; { Use different PICT per monitor setting }
 DrawOnColor: boolean; { Clear with background color before drawing? }
 DrawOnWhite: boolean; { Clear with white before drawing? }
 DrawOnBackdrop: boolean; { Clear with backdrop color before drawing? }
 ClipToRect: boolean; { Clip picture to rectangle? }
 UsePictRect: boolean; { Use picture's rectangle? }
); { }
 1: ({ ¥ Integer equivalent: }
 Num: longint; { Specification longint }
); { }
 end;

As an example, lets draw a picture that uses multiple images (depending on the monitorÕs setting), clears the
destination rectangle before drawing, and uses an 8-bit color image in place of 4-bit color or gray or 8-bit gray. The
following code sample illustrates how this is done:

procedure DoItNow;
 var
 DispSpecs: TPDrawPictSpec; {Declare the variable used for the Display Specs }
 begin
 DispSpecs.Num := 0; {Initialize all the bits to zero values }
 DispSpecs.MultiPICT := true; {Use multiple PICTs }
 DispSpecs.DrawOnWhite := true; {Clear destination rect with white before drawing }
 DispSpecs.Gray4plus := true; {Use better image if 4-bit gray PICT not found }
 DispSpecs.Color4plus := true; {Use better image if 4-bit color PICT not found }
 DispSpecs.Gray8plus := true; {Use better image if 8-bit gray PICT not found }
 DrawPict(myBaseID, 10, 10, 275, 300, DispSpecs.Num); {Draw the picture }

You can use whatever you like best as the DispSpec, a single constant, several constants added together, a variable, or
the short or 4-byte long integer component of a structure or variant record.

Also see: DrawPictRect, DrawShiftPict, and DrawShiftPictRect.

+ Warning: DrawPict must be called outside a BeginUpdateScreen / EndUpdateScreen structure.

20 Miscellaneous Routines

WaterÕs Edge Software 513

- Note: To avoid icon and picture conflicts while you are developing your application, avoid resource numbers that are
used by your development environment (THINK C or THINK Pascal). THINK C and THINK Pascal
sometimes supply their own resources in place of those in your resource file whenever resources numbers
coincide.

You can create and edit resources with a resource editor such as AppleÕs ResEdit. Remember to use ID
numbers 128 or higher. The rest are reserved numbers.

CONST {Picture drawing behavior & appearance Specs: }
pictScale1PICT = $0000; {Scale PICT to specified rectangle }
pictUsePictRect = $0001; {Use picture's rectangle? }
pictClipToRect = $0002; {Clip picture to rectangle? }
pictOnBackdrop = $0004; {Clear with backdrop color before drawing? }
pictOnWhite = $0008; {Clear with white before drawing? }
pictOnColor = $0010; {Clear with backgnd color before drawing? }
pictMultiPICT = $0020; {Use different PICT per monitor setting }
pictBWplus = $0040; {Use better pict if B&W not available }
pictGray4plus = $0080; {Use better pict if 4-bit gray not available }
pictColor4plus = $0100; {Use better pict if 4-bit color not available }
pictGray8plus = $0200; {Use better pict if 8-bit gray not available }
pictColor8plus = $0400; {Use better pict if 8-bit color not available }

..

DrawPictRect
Draw a picture (PICT resource) in a bounding rectangle.

C pascal void DrawPictRect (short BaseID, const Rect *Bounds, long DispSpec);

Pascal procedure DrawPictRect (BaseID: INTEGER; Bounds: RECT; DispSpec: LONGINT);

DrawPictRect is identical to the DrawPict routine, except that it accepts the Bounds rectangle in place of the individual
left, top, right and bottom co-ordinates.

..

DrawShiftPict
Draw a picture (PICT resource) offset in its frame.

C pascal void DrawShiftPict (short BaseID,
short left, short top, short right, short bottom,
short dh, short dv, long DispSpec);

Pascal procedure DrawShiftPict (BaseID: INTEGER;
left, top, right, bottom: INTEGER;
dh, dv: INTEGER; DispSpec: LONGINT);

DrawShiftPict is identical to the DrawPict routine, except that it accepts additional parameters for offsetting the picture
within the specified rectangle.

Dh and dv specify the horizontal and vertical number of pixels by which the picture is offset. If dh and dv are positive,
the offsetting is to the right and down. If either are negative, offsetting is in the opposite direction.

..

Tools Plus

514

DrawShiftPictRect
Draw a picture (PICT resource) offset in its frame.

C pascal void DrawShiftPictRect (short BaseID, const Rect *Bounds,
short dh, short dv, long DispSpec);

Pascal procedure DrawShiftPictRect (BaseID: INTEGER; Bounds: RECT;
dh, dv: INTEGER; DispSpec: LONGINT);

DrawShiftPictRect is identical to the DrawShiftPict routine, except that it accepts the Bounds rectangle in place of the
individual left, top, right and bottom co-ordinates.

..

DrawIcon
Draw an icon and optionally make it appear selected (darkened) or disabled (grayed).

C pascal void DrawIcon (short theIcon, short left, short top,
Boolean EnabledFlag, Boolean SelectedFlag);

Pascal procedure DrawIcon (theIcon, left, top: INTEGER;
EnabledFlag, SelectedFlag: BOOLEAN);

TheIcon is the icon ID that is displayed. This includes any of the standard Macintosh icons: cicn, icl8, icl4, ICN#,
ICON, ics8, ics4, ics# and SICN.

Left and top define the top left-hand corner in the current windowÕs local co-ordinates where the icon is drawn.

The EnabledFlag indicates if the icon is drawn as enabled or not. An enabled icon is displayed normally, whereas a
disabled icon is dimmed or Ògrayed out.Ó The two constants that can be used for this flag are enabled and disabled. In
nearly all cases, you will want to draw the icon as enabled. If you were to superimpose the icon with a zone from a
cursor table (to make it a click-sensitive area and behave like a button), you may want to draw it as disabled to signify
that it canÕt be selected.

The SelectedFlag indicates if the icon is to be drawn as selected or not. An unselected icon is displayed normally,
whereas a selected icon is darkened. The two constants that can be used for this flag are selected and notSelected. In
nearly all cases, you will want to draw the icon as notSelected. If you were to superimpose the icon with a zone from a
cursor table (to make it a click-sensitive area and behave like a button), you may want to draw it as selected.

Intelligent Icon Drawing

The DrawIcon routine is flexible in that it can draw color and black & white icons of various types under any
conditions. It does so by using the most appropriate icon in an icon family (detailed below), depending on the number
of colors displayed, and whether the icon is selected, not selected, enabled, or disabled.

If your application runs on a Macintosh with multiple monitors, DrawIcon automatically draws the icon correctly, even
if the icon straddles multiple screens. For this reason, DrawIcon must be placed outside any BeginUpdateScreen /
EndUpdateScreen structures.

20 Miscellaneous Routines

WaterÕs Edge Software 515

Icon Family

DrawIcon can draw any of the following icon types:
cicn variable size 8-bit color icon + monochrome (1-bit) equivalent + mask
icl8 32x32 pixel 8-bit color icon used primarily by the Finder as your applicationÕs icon
icl4 32x32 pixel 4-bit color icon used primarily by the Finder as your applicationÕs icon
ICN# 32x32 pixel monochrome (1-bit) icon + mask used primarily by the Finder as your applicationÕs icon
ICON 32x32 pixel monochrome (1-bit) icon
ics8 16x16 pixel 8-bit color icon used primarily by the Finder as your applicationÕs icon
ics4 16x16 pixel 4-bit color icon used primarily by the Finder as your applicationÕs icon
ics# 16x16 pixel monochrome (1-bit) icon + mask used primarily by the Finder as your applicationÕs icon
SICN 16x16 pixel monochrome (1-bit) icon*

*Although SICN resources can contain several icons, DrawIcon only draws the first one in the resource.

When a specific icon ID is shared by two or more of the icon types listed above, those related icons are called an Òicon
family.Ó The simplest example of an icon family is found in the bundle (BNDL) resource in almost all Macintosh
applications. The bundle resource, usually just called a bundle, is an organization of icons used by the Finder to
display your application (and its related documents) on the desk top and in folders. The icon family with an ID of 128
is usually the icon that depicts your application, where icl8 is the 8-bit icon, icl4 is the 4-bit icon, and ICN# is the 1-bit
icon and mask.

DrawIcon makes use of icon families to display the best available icon. You can create and edit icons with a resource
editor such as AppleÕs ResEdit. When you create icons, remember to use ID numbers 128 or higher. The rest are
reserved numbers.

- Note: To avoid icon conflicts while you are developing your application, do not create icon numbers that are used by
your development environment (THINK C or THINK Pascal). THINK C and THINK Pascal sometimes supply
their own icons in place of those in your resource file whenever icon numbers coincide.

+ Warning: If you are using a ÔcicnÕ (variable size color) icon that may be displayed on a Macintosh that doesnÕt have
Color QuickDraw, make sure the iconÕs size is set to at least 9 pixels wide (although the actual image and
mask can be smaller). A bug in the MacintoshÕs ROMs causes a crash when CopyBits tries to work on a
BitMap that is 8 pixels wide or less. Tools Plus circumvents this bug by not displaying the ÔcicnÕ.

Icon Selection

When you specify an icon ID, DrawIcon selects an appropriate icon from the available icon family based on [1] the
number of colors available on the screen, and [2] whether the icon is selected or not. If Color QuickDraw is not
available on the Macintosh running your application (Macintosh 512KE and Macintosh Plus only), or if your
application has chosen not to use Color QuickDraw when executing the InitToolsPlus routine, DrawIcon will behave
as though you are using a monochrome (black and white) monitor.

When selecting an appropriate icon from the specified icon family (as depicted in the table below), DrawIcon first
attempts to find a large icon. Failing that, it will search through the small icons. When searching for an icon, DrawIcon
determines the number of colors available on the screen. It then checks if the icon is selected or not. Once these two
criteria have been determined, DrawIcon tries to find the optimum icon type in the icon family. If the optimum icon
type is not available, DrawIcon descends to the second best choice, and so on down the list. DrawIcon will use icons
intended for a lesser number of colors (i.e., from 256 to 16) if an appropriate icon isnÕt available to take advantage of
all the colors the screen has to offer.

Tools Plus

516

Icon Screen Depth Available Icon Selection Order
Size (in bits) Colors Not Selected Selected

8 (or more) 256 (or more) icl8
cicn

icl8
cicn

Large or
Variable

4 16 icl4
cicn

1 or 2 4 or
black & white

ICN#
ICON
cicn

ICN#
ICON
cicn

8 (or more) 256 (or more) ics8 ics8
Small 4 16 ics4

1 or 2 4 or
black & white

ics#
SICN

ics#
SICN

 Black and white portion only.

If, for example, your application is running on an 8-bit monitor and it is trying to display a selected icon with an ID of
130, DrawIcon will always look for icon types whose ID is 130, and will first try to display an icl8. If an icl8 canÕt be
found, it will try to find a cicn. If neither of those icons can be found, DrawIcon will continue down the list to the icons
best suited for a 4-bit monitor. Since there arenÕt any in the ÒselectedÓ column, it will descend again to 2-bit monitors,
where it will try to find ICN#, ICON and cicn icon types. If no large icon is found, DrawIcon repeats the process for
small icons by first searching for an ics8, then an ics# and SICN icon.

Drawing the Icon, Selecting, Disabling, and Masking

All icon types are drawn within a limited square, such as the 32x32 bit ICON or 16x16 bit ics4. When the icon is
displayed by DrawIcon, the iconÕs image and the background within the boundaries of the square are drawn on the
window. You can liken this process to using MacPaint and selecting the image by using the frame selection tool (not
the lasso), then copying that image and pasting it on the destination window. As you will notice, the background is also
pasted.

Selecting the icon darkens it when using color or gray-scale, except for icl4 icons which canÕt be darkened (in which
case a substitute monochrome icon is used and darkened). On black and white monitors, the icon image is inverted
(black turns to white and white turns to black).

Disabling the icon overlays a gray pattern to make the icon look Ògrayed out.Ó You can specify the appearance of
disabled icons by using the DefaultIconLook routine.

Each of these processes, drawing, selecting, and disabling, is done using the iconÕs bounding square. If you want to
limit the process to a smaller area, say, for example, to an area that is identical to an oddly shaped icon image, you can
incorporate an icon mask. All drawing, selecting and disabling is performed only within the area defined by the icon
mask. The cicn, ICN#, and ics# icons have integrated masks. If you use an icl8 or icl4 icon, also include an ICN# icon
with the same ID, and DrawIcon will use its mask. The same applies for ics8 and ics4 icons which rely on the ics# icon
for a mask. The example below demonstrates the difference a mask makes.

ICON ICON ICN# ICON or ICN#
not selected (selected) mask (selected)

no mask using ICN# mask

Creating Your Own Icons

You can create your own icons using a resource editor, such as AppleÕs ResEdit. When creating cicn, icl8 and ics8
icons with ResEdit, you have a choice of two pallets: ÒApple icon colorsÓ or ÒStandard 256 colors.Ó If your icon is
going to be drawn as selected, use only the Apple icon colors, since they will guarantee that your icon can be darkened
properly. Note that icons that are displayed as both selected and disabled are usually difficult to read, since
simultaneously darkening and grayed out often makes the image illegible.

20 Miscellaneous Routines

WaterÕs Edge Software 517

You can also replace the systemÕs standard Stop, Note, and Warning icons with your own customized icons, simply by
creating icons with the same IDs and including them in your application.

Also see: DrawSICN and DrawSICNmode.

+ Warning: DrawIcon must be called outside a BeginUpdateScreen / EndUpdateScreen structure.

..

DrawSICN
Draw an SICN (small indexed) icon.

C pascal void DrawSICN (short theIcon, short left, short top, short index);

Pascal procedure DrawSICN (theIcon, left, top, index: INTEGER);

DrawSICN is similar to DrawIcon except that is handles a very specific case: the small indexed icon, the ÔSICNÕ
resource. SICNs can have one or more 16x16 pixel black and white images in each resource. The DrawIcon routine
displays only the first image whereas this routine can display any of them. The image is drawn using the srcCopy
mode.

TheIcon is the SICN resource ID that is displayed.

Left and top define the top left-hand corner in the current windowÕs local co-ordinates where the icon is drawn.

Index specifies which image in the resource is drawn (1 being the first, 2 being the second, etc.) If index does not
represent an image that exists on the resource, DrawSICN does nothing.

Also see: DrawSICNmode.

..

DrawSICNmode
Draw an SICN (small indexed) icon using any transfer mode.

C pascal void DrawSICNmode (short theIcon, short left, short top, short index,
short mode);

Pascal procedure DrawSICNmode (theIcon, left, top, index, mode: INTEGER);

DrawSICNmode is identical to DrawSICN except that is requires an additional mode parameter that specifies the
transfer mode. The constants you can use for the transfer mode are srcCopy, srcOr, srcXor, srcBic, notSrcCopy,
notSrcOr, notSrcXor, or notSrcBic.

..

Tools Plus

518

DefaultIconLook
Specify the default appearance for disabled icons.

C pascal void DefaultIconLook (long IconSpec);

Pascal procedure DefaultIconLook (IconSpec: LONGINT);

The DefaultIconLook routine specifies the appearance of disabled icons that are drawn by DrawIcon (Tools Plus also
uses DrawIcon whenever it needs to draw an icon). Your application should use DefaultIconLook early on to ensure
that all icons have the same appearance. If your application uses DefaultIconLook later in its execution, it will only
affect icons that are drawn (or refreshed) after the change is made.

IconSpec specifies the default appearance for all icons. The value for this 4-byte long integer can be specified by
adding a set of constants to obtain the desired result See the section below for details. Tools PlusÕs picture buttons also
rely on this setting to draw disabled buttons, however, each picture button can have its own settings which do not use
the default.

Default Appearance for Disabled Icons

IconSpec specifies the default appearance for all icons. The value for this 4-byte long integer can be specified by
adding a set of constants to obtain the desired result, as illustrated below. The following table illustrates the three
possible dimming effects (only one can be chosen at a time), plus an option that preserves the iconÕs border when it is
drawn as disabled. 8-bit and 1-bit (black and white) examples are provided to show you the effect in various
environments. The table is based on a single icon, the standard ÒprinterÓ icon in color, and black and white.

Appearance of Disabled Icon
Border is affected by disabling Border unaffected (DfltIconLeaveBorder)

8-bit (Color or Gray) Black & White 8-bit (Color or Gray) Black & White
Dimming Options (use one only) not selected selected not selected selected not selected selected not selected selected

Enabled icons
(no disabling effect applied)

DfltIconDimBlackLtPat
Overlay image with black color using a
Òlight grayÓ (25%) pattern.

DfltIconDimWhiteLtPat
Overlay image with white color using a
Òlight grayÓ (25%) pattern.

DfltIconDimWhitePat
Overlay image with white color using a
Òmedium grayÓ (50%) pattern.

The optional DfltIconLeaveBorder constant is used to preserve the iconÕs border by limiting the dimming effect to an
area that is 1 pixel smaller than the iconÕs mask (icons that do not have a mask, such as the ÔICONÕ, have an effective
mask that is the iconÕs entire area).

If your application ever has the need to globally change the default appearance and have it instantly reflected in all the
windows, add the DfltIconUpdateNow constant to the IconSpec. This option forces a doRefresh event for all open
windows in your application, thereby insuring that all icons are redrawn using the new default. Picture buttons using
the default settings are also updated.

CONST {Disabled icons' default appearanceÉ }
DfltIconDimBlackLtPat = $01; { Overlay Black color w/ Lt Gray pattern }
DfltIconDimWhiteLtPat = $02; { Overlay White color w/ Lt Gray pattern }
DfltIconDimWhitePat = $04; { Overlay White color w/ Gray pattern }
DfltIconLeaveBorder = $20; {Leave border when selected or disabled }
DfltIconUpdateNow =$8000; {Update all windows with changes }

20 Miscellaneous Routines

WaterÕs Edge Software 519

Maintaining Indexed String (ÔSTR#Õ) Structures

An indexed string record is a structure that contains from 0 to 32767 Pascal strings, each of which can be from 0 to
255 characters in length. Unlike an ordinary array of strings, an indexed string structure is dynamic, in that new strings
can be added to the structure and existing strings can be deleted. Another significant difference is that the amount of
memory required to store each string in the structure is less than in a traditional array of strings -- an indexed string
structure uses one byte per character in the string (plus a length byte) whereas an array allocates the maximum string
length.

Although indexed string structures are much more memory-efficient than string arrays, accessing their data is slower.
The performance penalty is relatively minor, but it increases as the number of strings in the structure increases.

An indexed string record has the same structure as an ÔSTR#Õ resource. It begins with a 2-byte integer (short) whose
value represents the number of strings in the structure, followed by the stringsÕ data. Because the indexed string record
is dynamic (its size can grow or shrink as its data changes), it is always referenced by a handle. Always use Tools Plus
routines to maintain the data in an indexed string record.

There are two ways to get a handle to an indexed string record: [1] load an ÔSTR#Õ resource, or [2] use Tools PlusÕs
NewIndexStringHandle routine to create a new, empty indexed string record. In both cases, a handle to the record is
returned to you. You can then use Tools Plus routines to:

NewIndexStringHandle create a new indexed string record
GetIndexString read a string
SetIndexString change the value of a strings
InsertIndexString add a new string to the structure (insert between records or append to end)
DeleteIndexString delete a string from the structure
CountIndexString count the number of strings in the structure

+ Warning: Tools Plus routines perform no integrity checks on your indexed string record (it is assumed that your
record is not corrupted). Create ÔSTR#Õ resources using a reputable resource editor. Use only Tools Plus
routines to modify the indexed string record.

..

NewIndexStringHandle
Create a new indexed string record.

C pascal Handle NewIndexStringHandle (short NumberOfStrings);

Pascal function NewIndexStringHandle (NumberOfStrings: INTEGER): HANDLE;

NewIndexStringHandle creates a new indexed string record and allocates the minimum space required to store the
number of strings specified by the NumberOfStrings parameter. The number of bytes allocated by this routine are
NumberOfStrings + 2.

A handle to the indexed string record is returned. It is best to never lock this handle since there is never a need to do
so.

..

Tools Plus

520

CountIndexString
Determine the number of strings in an indexed string record.

C pascal short CountIndexString (Handle hRec);

Pascal function CountIndexString (hRec: HANDLE): INTEGER;

hRec is a handle to an indexed string record (as created by NewIndexStringHandle), or a handle to an ÔSTR#Õ resource.

The routine returns the number of strings in the indexed string record. This routine does not actually count the number
of strings in the structure. It simply returns the value of a counter at the beginning of the record.

..

GetIndexString
Get a string from an indexed string record.

C pascal void GetIndexString (Handle hRec, short Index, Str255 Text);

Pascal procedure GetIndexString (hRec: HANDLE; Index: INTEGER; var Text: Str255);

hRec is a handle to an indexed string record (as created by NewIndexStringHandle), or a handle to an ÔSTR#Õ resource.

Index specifies the string you want to receive (1 = first string, 2 = second string, etc). This number should be in the
range of 1 to the value of CountIndexString.

Text is the string obtained from the indexed string record belonging to the hRec handle. If the value of index does not
represent a string that exists in the record, Text is returned as a null string.

..

SetIndexString
Store a string in an indexed string record.

C pascal void SetIndexString (Handle hRec, short Index, const Str255 Text);

Pascal procedure SetIndexString (hRec: HANDLE; Index: INTEGER; Text: Str255);

hRec is a handle to an indexed string record (as created by NewIndexStringHandle), or a handle to an ÔSTR#Õ resource.

Index specifies the string you want to update with a new value (1 = first string, 2 = second string, etc). This number
should be in the range of 1 to the value of CountIndexString.

Text is the new value for a string that exists in the indexed string record belonging to the hRec handle. If the value of
index does not represent a string that exists in the record, SetIndexString does nothing.

+ Warning: Make sure that the hRec handle is not locked when passing it to this routine (this handle never needs to be
locked). If hRec is a handle to an ÔSTR#Õ resource, also make sure it is not flagged as Òprotected.Ó Failure
to observe this warning may result in corrupted data or unexpected results.

..

20 Miscellaneous Routines

WaterÕs Edge Software 521

InsertIndexString
Insert a new string in an indexed string record, or append a new string to the end of the record.

C pascal void InsertIndexString (Handle hRec, short Index, const Str255 Text);

Pascal procedure InsertIndexString (hRec: HANDLE; Index: INTEGER; Text: Str255);

hRec is a handle to an indexed string record (as created by NewIndexStringHandle), or a handle to an ÔSTR#Õ resource.

Index specifies where the new string is added (1 = first string, 2 = second string, etc). Specify a value of
CountIndexString + 1 to add a new string to the end of the record.

Text is the new string being added to the indexed string record belonging to the hRec handle. If the value of index is
not valid, InsertIndexString does nothing.

The fastest way to add a set of strings to the end of the list is to make sure that NewIndexStringHandle does not
allocate space for unused strings. For example, to add 100 new strings, use NewIndexStringHandle(0) to create an
empty ÔSTR#Õ structure, then use InsertIndexString 100 times to add the new strings in sequence 1 to 100.

+ Warning: Make sure that the hRec handle is not locked when passing it to this routine (this handle never needs to be
locked). If hRec is a handle to an ÔSTR#Õ resource, also make sure it is not flagged as Òprotected.Ó Failure
to observe this warning may result in unexpected results.

..

DeleteIndexString
Delete a string from an indexed string record.

C pascal void DeleteIndexString (Handle hRec, short Index);

Pascal procedure DeleteIndexString (hRec: HANDLE; Index: INTEGER);

The specified string is deleted from the indexed string record. This is not the same as setting a string to null (where the
string is merely set to ÒÒ to occupy less memory). When a string is deleted from an indexed string record, a subsequent
call to CountIndexString will be decreased by 1.

hRec is a handle to an indexed string record (as created by NewIndexStringHandle), or a handle to an ÔSTR#Õ resource.

Index specifies which string is deleted (1 = first string, 2 = second string, etc). This number should be in the range of 1
to the value of CountIndexString.

+ Warning: If hRec is a handle to an ÔSTR#Õ resource, also make sure it is not flagged as Òprotected.Ó Failure to
observe this warning may result in unexpected results.

..

Tools Plus

522

BitMaps and PixMaps

Tools Plus provides routines for creating and destroying black and white and color bitmaps (called PixMaps). Within
this section, the term BitMap is used to refer to a black and white bitmap, while PixMap is used for color bitmaps. The
term bitmap refers to a generic bitmap object, either black and white or color. A detailed explanation of the need for
bitmaps and their use is beyond the scope of this document. For complete information on BitMaps and PixMaps, see
the Inside Macintosh reference manuals, or AppleÕs Macintosh Technical Note #120.

A BitMap, in its simplest terms, is a record for storing a bitmapped image. PixMaps are similar except they store color
images. Two very common uses for bitmaps are:
¥ Temporarily copying an image from a window or screen: An example of this occurs when a pull-down menu

temporarily obscures various objects such as parts of a window and its contents, desk accessories and the desk top.
Just before the pull-down menu descends, a copy of the area it will cover is copied to a bitmap. When the pull-
down menu withdraws, the image is copied from the bitmap back to its original location, thereby restoring the
image.

¥ Animation: Animation is achieved by drawing a composite image on a bitmap, the image being made up of a
background and the animated objects. Several bitmaps may exist: one for the background, one or more containing
the various objects being animated, and one that is used as a scratch pad. When an animated object moves, your
application copies a small part of the background bitmap to the scratch pad bitmap thereby covering up the object at
its old location (i.e., the object is erased by the background). The objectÕs image is copied from the object bitmap to
the scratch pad bitmap in its new location. Finally, the sum of the objectÕs old location and new location are copied
from the scratch pad bitmap to the window. All the user sees is that the object has moved from its old location to a
new one, without seeing the layer by layer buildup of the image or any screen flicker.

Creating a bitmap

Your application uses the CreateBitMap routine to create an off screen BitMap or PixMap. There are several different
ways to create a bitmap depending on your applicationÕs needs. The simplest method is to create a 1-bit deep black and
white BitMap. Your application simply specifies the BitMapÕs co-ordinates and CreateBitMap does the work.

Color bitmaps are a bit more complex because a PixMap needs a color table to correctly map RGB colors to the
available number of colors that can be represented by the bit depth of the PixMap. The CreateBitMap routine has
several ways of using a graphics device (GDevice) as the basis for creating a color PixMap. In each case, the PixMap
makes a copy of the graphics deviceÕs color table for itself. The methods for using a GDevice to create a PixMap are as
follows:
¥ Use the GDevice with the greatest depth that intersects a specified rectangle: This method of creating a PixMap is

best when you want to temporarily store part of a window in a PixMap then later restore it. Your application
specifies a rectangle in the current windowÕs local co-ordinates and CreateBitMap uses the GDevice belonging to
the monitor with the greatest pixel depth that intersects the rectangle.

¥ Use a specific GDevice: Your application can create a PixMap based on a specific GDevice, likely one you have
created with your own color table. This method is most suited for developers who create a custom GDevice.

¥ Use the current GDevice: This is similar to the method above, except that it uses the current graphics device instead
of the one with the greatest depth.

¥ Use the maximum GDevice. A PixMap is created using the GDevice with the greatest bit depth.

When your application creates a bitmap, the CreateBitMap routine returns a GrafPtr to the bitmap and in the case of a
color bitmap, it also returns a handle to the GDevice that was used to create the bitmap. Your application can treat the
GrafPtr like a pointer to a window, except that drawing occurs in the off screen bitmap and is not visible.

Drawing to a bitmap

Before you draw to a bitmap, determine the current grafPort and GDevice by using the toolboxÕs GetPort and
GetGDevice. You will be changing one or both of these items, so itÕs a good idea to store their current settings so that
you can restore them after you finish drawing to the bitmap.

20 Miscellaneous Routines

WaterÕs Edge Software 523

Next, just as required when drawing to a window, you must make the bitmap the current grafPort by using SetPort and
specify the bitmapÕs GrafPtr. This tells QuickDraw that subsequent drawing operations take place on the bitmap. You
can now think of the bitmap as a window and draw accordingly utilizing the clip region, text settings and so on.

When using a color bitmap, some Color QuickDraw routines perform calculations based on the current graphics
deviceÕs color table. An example of this is drawing disabled text using System 7Õs grayishTextOr text transfer mode.
When text is drawn using grayishTextOr mode, the current graphics deviceÕs color table is used to calculate a suitable
intermediate color or an appropriate dithering pattern. If your application uses routines that depend on the current
GDevice, or if you are uncertain of this and you just want to be safe, set the current GDevice using SetGDevice and
specify the GDHandle returned by CreateBitMap.

When you finish drawing to a bitmap, restore the original grafPort and GDevice by using the toolboxÕs SetPort and
SetGDevice with the values you obtained prior to drawing. You will thereby insure a stable environment for the Mac
OS, extensions such as QuickTime, and third party software products.

Copying to a bitmap or to a window

Images can be copied from a window to a bitmap, from bitmap to bitmap, and from a bitmap to a window. The easiest
way to do this is to first make the target the current grafPort. This process is identical to preparing to draw in the target
window or bitmap, as described in the previous section titled Òdrawing to a bitmap.Ó Set the destinationÕs foreground
and background colors to black and white respectively to ensure accurate color mapping between the source and
destination. Finally, use the toolboxÕs CopyBits routine to copy the image from the source to the destination. The line
below is an example of how CopyBits is used to copy an image from a bitmap to a window:

CopyBits(bitmapPtr^.portBits, Wptr^.portBits, sourceRect, destRect, srcCopy, maskRgn);

..

CreateBitMap
Create a BitMap or a PixMap.

C pascal Boolean CreateBitMap (GrafPtr *newPort, GDHandle *hGDevice,
const Rect *Bounds, short TypeOfMap);

Pascal function CreateBitMap (var newPort: GrafPtr; var hGDevice: GDHandle;
var Bounds: RECT; TypeOfMap: INTEGER): BOOLEAN;

This routine can create a bitmap in a variety of ways:
¥ black and white BitMap
¥ color PixMap based on an area in a window
¥ color PixMap based on a specified GDevice
¥ color PixMap based on the current GDevice
¥ color PixMap based on the GDevice with the greatest pixel depth

NewPort returns a pointer to a newly created and initialized GrafPort or CGrafPort (color grafPort). This grafPort
contains the required BitMap or PixMap. A value of nil is returned if the required bitmap could not be created.

HGDevice is the graphics device (GDevice) upon which a PixMap is based. Normally, you specify nil. If you are
creating a PixMap based on a known GDevice (i.e., when you include then bitmapFromGDevice option in the
TypeOfMap parameter), specify the handle to the desired GDevice in hGDevice. This routine returns hGDevice set to
the graphics device upon which the PixMap is based. A nil value is returned when a black and white BitMap is created.

Bounds specifies the dimensions of the bitmap being created. Tools Plus creates a bitmap with a width that is rounded
up to a long integer (4 byte) boundary to provide the best performance. When TypeOfMap has a value of
bitmapFromWindow, this rectangle also specifies an area in the current window that is being ÒmatchedÓ by the bitmap.
The bitmap is created based on the maximum pixel depth within this rectangle. The resulting bitmap will have the
same co-ordinates specified by Bounds. You can change these co-ordinates by using the toolboxÕs SetOrigin.

Tools Plus

524

TypeOfMap specifies what kind of bitmap is created, and how it is created. One of the following constants should be
used:

bitmapBW Create a black and white BitMap using the co-ordinates specified by the
Bounds rectangle.

bitmapFromWindow If Color QuickDraw is available and being used (as defined by
InitToolsPlus), create a color PixMap based on the GDevice with the
greatest pixel depth that intersects the specified rectangle (Bounds) on the
current window. If Bounds doesnÕt intersect the window, a bitmap is not
created.

bitmapFromGDevice If Color QuickDraw is available and being used (as defined by
InitToolsPlus), create a color PixMap based on the GDevice specified by
hGDevice. The PixMap has the same pixel depth as the specified GDevice,
and has a copy of the GDeviceÕs color table.

bitmapFromCurrentGDevice If Color QuickDraw is available and being used (as defined by
InitToolsPlus), create a color PixMap based on the current GDevice. The
PixMap has the same pixel depth as the current GDevice, and has a copy of
the GDeviceÕs color table.

bitmapFromMaxGDevice If Color QuickDraw is available and being used (as defined by
InitToolsPlus), create a color PixMap based on the GDevice with the
greatest pixel depth. The PixMap has the same pixel depth as the GDevice,
and has a copy of the GDeviceÕs color table.

This routine returns true if the bitmap was created. If the routine returns with a value of false, no bitmap was created.
Bitmaps are typically not created because there is insufficient memory.

+ Warning: Use GetPort to obtain the current grafPort before creating a bitmap or using SetPort to make a bitmap the
current grafPort. When you are finished drawing to the bitmap, restore the original grafPort. Failure to do
so may make parts of Tools Plus or other software malfunction.

CONST {Methods and types of bitmapsÉ }
bitmapBW = 0; {B&W bitmap (1-bit) }
bitmapFromWindow = 1; {Color bitmap based on window's max pixel depth }
bitmapFromGDevice = 2; {Color bitmap based on a specified GDevice }
bitmapFromCurrentGDevice = 3; {Color bitmap based on the current GDevice }
bitmapFromMaxGDevice = 4; {Color bitmap based on maximum GDevice }

..

DestroyBitMap
Destroy a BitMap or PixMap.

C pascal void DestroyBitMap (GrafPtr oldOffscreen);

Pascal procedure DestroyBitMap (oldOffscreen: GrafPtr);

OldOffscreen is a bitmap created by CreateBitMap or any other method of creating bitmaps. The following operations
are performed on black and white BitMaps:

ClosePort(oldOffScreen);
DisposePtr(oldOffscreen^.portBits.baseAddr);
DisposePtr(oldOffscreen);

The following operations are performed on color PixMaps:
CloseCPort(oldOffscreen);
DisposeHandle(oldOffscreen^.portPixMap^^.pmTable);
DisposePtr(oldOffscreen^.portPixMap^^.baseAddr);
DisposePtr(oldOffscreen);

20 Miscellaneous Routines

WaterÕs Edge Software 525

BitMap2Region
Convert a BitMap or PixMap to a region.

C pascal OSErr BitMap2Region (RgnHandle Region, BitMap bMap);

Pascal function BitMap2Region (Region: RgnHandle; bMap: BitMap): OSErr;

BitMap2Region is identical to the toolboxÕs BitMapToRegion routine, except that this one is available to applications
running under any system version whereas BitMapToRegion is available only under System 7 or later. There is no
need to use this routine if your source code always runs on System 7 or later (as is the case with PowerMacs). If your
application is running on System 7 or later, BitMap2Region calls the toolboxÕs BitMapToRegion routine. In the
PowerMac Tools Plus libraries, BitMap2Region simply calls the toolboxÕs BitMapToRegion routine and there is no
alternate code.

Region is a handle to a valid region. The region is modified to be an equivalent to the supplied bitmap. Note that the
regionÕs co-ordinates match those of the bitmap (i.e., the top left corner is not necessarily set to 0,0. If the regionÕs size
exceeds the 32K limit it returns empty.

BMap is either a BitMap or PixMap record. When supplying a PixMap record, the bit depth must be 1 or the region
will return empty and an error code will result.

The routine returns an OS error code resulting from the conversion. The possible error codes are:
noErr (0) No error
pixmapTooDeepErr (-148) Pixel map record is deeper than 1 bit per pixel
rgnTooBigErr (-500) Bitmap would convert to a region that is bigger than 32K

..

SystemVersion
Determine what version of the System file is being used.

C pascal double SystemVersion (void);

Pascal function SystemVersion: EXTENDED;

SystemVersion determines the version of the System file being used by your application (located on your startup disk).
The System fileÕs version is expressed as three numeric components separated by periods (i.e., 7.0.1). Because a
floating-point number has a single decimal, the second period is omitted to present the decimal equivalent of 7.01.

Because this routineÕs source code is compiled as part of your application (it can be found in the ToolsPlus.c file for C
programmers, and the ToolsPlus.p interface file for Pascal programmers), it is compiled according to your projectÕs
compiler settings for 680x0 processor optimization and/or math co-processor optimization. Therefore, SystemVersion
returns a floating-point number that can be compared to constants in your source code, such as the following example:

if (SystemVersion >= 7.0) then

Programming Tips:
1 If your application uses SystemVersion often, or in ways in which processing speed is important, you should

realize that floating-point operations are slower than integer operations, and they consume more memory.
Instead of using the SystemVersion routine throughout your application, you can use the _SYSV routine
which simply returns the System file version as an integer (i.e., system 7.0.1 is returned as 701). Then
throughout your program, you can use constants to compare against the integer-formatted system version. The
following example illustrates this:

Tools Plus

526

const
System6 = 600; {Use these constants to compare the system }
System7 = 700; { file's version to specific version }
System7_0_1 = 701; { numbers. }

var
SysVersion: integer; {Use this variable as the System file }

{ version throughout your application. }
begin

SysVersion := _SYSV; {Get System version as an integer (i.e. }
{ System 7.0.1 returns as 701) }

if (SysVersion >= System6) and (SysVersion <= System7) then {This line checks for all }
begin { versions between 6.0 and 7.0 inclusiveÉ }

2 A second method, which is faster still and more memory conservative, makes all evaluations at the beginning
of the application, then uses the result throughout.

const
System6 = 600; {Use these constants to compare the system }
System7 = 700; { file's version to specific version }
System7_0_1 = 701; { numbers. }

var
SysVersion: integer; {Use this variable as the System file }

{ version throughout your application. }
Sys6_to_Sys7: boolean; {Is system between 6.0 and 7.0? }
Sys7_plus: boolean; {Is system 7.0 or greater? }

begin
SysVersion := _SYSV; {Get System version as an integer (i.e. }

{ System 7.0.1 returns as 701) }
Sys6_to_Sys7 := ((SysVersion >= System6) and (SysVersion <= System7)); {Set boolean }
Sys7_plus := (SysVersion >= System7); { variables with values that are determined }

{ now. You'll use these booleans through- }
{ out your application. }

if Sys6_to_Sys7 then {This line checks for all system versions }
{ between 6.0 and 7.0 inclusive. It runs }
{ quicker and takes up less memory than }
{ comparing numbers. }

..

GetToolsPlusVersion
Determine what version of Tools Plus is being used.

C pascal void GetToolsPlusVersion (Str255 Version);

Pascal procedure GetToolsPlusVersion (var Version: Str255);

GetToolsPlusVersion determines the version of Tools Plus libraries being used by your application.

Version returns with a string containing the Tools Plus version number formatted in the following manner:
3.1.6a where 3 = Major version number (significant revisions/enhancements to Tools Plus)

1 = Minor release number (minor revisions/enhancements)
6 = Maintenance release number (bug fixes, incidental changes)
a = Very minor patch (recompile with newer compiler, typographical errors)

The Tools Plus version number is meant to be used for display purposes only, such as in an ÒAboutÉÓ dialog. Your
application is compiled with a known version of Tools Plus, so there is never any need to have conditional code based
on the available version of Tools Plus unlike the MacintoshÕs System version.

..

20 Miscellaneous Routines

WaterÕs Edge Software 527

Beep
Play the System Error sound.

C pascal void Beep (void);

Pascal procedure Beep;

Beep replaces the Macintosh toolboxÕs SysBeep routine. On the Macintosh 512KE, Plus and SE, the parameter passed
to the SysBeep routine specifies the duration (in clock ticks) for which the ÒSimple BeepÓ sound is played. If any other
sound is selected (by the Sound control Panel), or if the sound is played on a computer other than the Macintosh
512KE, Plus and SE, the parameter is ignored.

Using Beep instead of SysBeep ensures that the System Error sound is played for the correct duration regardless of the
computer on which it is running. It also saves you typing, as well as two bytes of application per use.

In later versions of System 7, the Sound Manager plays the System Error sound asynchronously, so when your
application calls the Beep routine, control is immediately returned to your application to allow it to perform other tasks
such as opening a window while the System Error sound plays out. This enhancement may have some implications if
you expect a rapid response from the user as a result of the beep because your application can queue several beeps
before the first one finishes playing. For example, a fast typist can types five illegal key strokes in the time it takes the
first error sound to play.

Also see: BeepSynch.

..

BeepSynch
Play the System Error sound synchronously.

C pascal void BeepSynch (void);

Pascal procedure BeepSynch;

BeepSynch is identical to the Beep routine except it plays the System Error sound synchronously, meaning that control
is returned to your application when the System Error sound finishes playing. This is useful in situations where you do
not want to queue up a number of beeps as a result of the userÕs actions, such as when the user types several illegal key
strokes. What you can do is maintain a global variable that keeps track of when the last System Error sound completed
playing by calling the toolboxÕs TickCount routine immediately after BeepSynch. Then when each illegal keystroke is
detected, play BeepSynch only if the keystroke occurred after the completion of the most recent System Error sound
(the keystrokeÕs time is reported by Tools Plus in Event.Event.when). From the userÕs perspective, the single System
Error sound applies to the first detected keystroke and to all illegal keystrokes that that were made while the sound was
playing.

..

Wait
Wait for a specified time.

C pascal void Wait (long ClockTicks);

Pascal procedure Wait (ClockTicks: LONGINT);

ClockTicks specifies the time that is to be waited in sixtieths of a second, or clock ticks. The Wait routine returns to the
calling application after the specified number of clock ticks have transpired. If the number is less than or equal to zero,
Wait returns immediately.

Tools Plus

528

One example of using this routine is when an application is first launched. After initializing Tools Plus, your
application may decide to display an identification window that tells the user about the program and version number.
While the window is displayed, your application can open files and obtain resources. You may decide to display the
window for no less than 3 seconds, in which case you would first obtain the current number of ticks since startup from
the TickCount routine, display the identification window, then perform your other duties. When these tasks are
completed, call TickCount again to determine how much time has transpired, then use Wait to delay for 180 ticks (3
seconds x 60 ticks), less the number of ticks that have passed since the window was first opened.

+ Warning: Use Wait judiciously because events will still be accumulating in the event queue while your application is
waiting, and older events may be lost. Also, other applications wonÕt be getting any processing time while
your application is waiting.

..

SynchToVideo
Synchronize to video (wait until vertical retrace occurs before continuing).

C pascal void SynchToVideo (void);

Pascal procedure SynchToVideo;

When displaying objects in quick succession, such as during object animation or when dragging a line across a
window, an undesirable side effect called ÒstrobingÓ is often seen. Strobing manifests as white flickers, missing steps
in a sequence of images, or other image instability. Call SynchToVideo immediately before erasing/displaying an
image. SynchToVideo waits until the vertical retrace is executed, then it returns control to your application. The
duration of the wait can be as much as 1/60 of a second.

..

ZoomLines
Draw Òzoom linesÓ from one rectangle to another.

C pascal void ZoomLines (const Rect *OldRect, const Rect *NewRect, short Zoom);

Pascal procedure ZoomLines (OldRect, NewRect: RECT; ZoomType: INTEGER);

The drawing of Òzoom linesÓ creates an illusion of transition between two objects. A good example of zoom line use is
in the Finder. Whenever a document, application, or disk is opened, zoom lines expand from the object. This creates an
illusion that the object is opening. Zoom lines also create an apparent screen depth, since they make an object appear
to zoom towards the user when it is opening, and zoom back down onto the screen when it closes. This process is
called Òzooming inÓ or Òzooming out,Ó as illustrated as follows:

20 Miscellaneous Routines

WaterÕs Edge Software 529

Step 1 -- Lines start emanating
from the starting rectangle,
which in this case is a floppy
disk. Several zoom lines are
visible at the same time.

Step 2 -- At first, the zoom lines move slowly and are
closely spaced, since they are in the Òdistance.Ó They
accelerate as they approach their final size. The lines
are dotted on a white background, and black on the
desk topÕs gray background.

Step 3 -- When the final size is reached, the zoom
lines disappear and the new object, which in this
example is an open window, appears.

The example above demonstrates Òzooming out.Ó The process of Òzooming inÓ is reversed: the expanded object
disappears and zoom lines are drawn from the co-ordinates of the expanded object down to the co-ordinates of the
closed object.

Another type of zoom lines is available, and that is Òzooming across.Ó This involves a single objectÕs transition from
one shape to another. An example of zooming across is when a windowÕs Òzoom boxÓ is clicked. The window changes
from a user state to a standard state (or vice versa). When zooming across, the zoom lines move at a constant rate from
the old co-ordinates to the new. Because no acceleration or deceleration occurs, screen depth appears to be constant.
Zooming across is illustrated below:

Step 1 -- A single rectangle moves at a constant rate, steadily making
the transition between the old co-ordinates and the new. The
rectangle is dotted on a white background, and white on the desk
topÕs gray background.

Step 2 -- The last rectangle has the same co-ordinates as the new
rectangle. The old object disappears and is recreated using the new co-
ordinates.

OldRect and NewRect specify the original and destination rectangles in the screenÕs global co-ordinates. Transition
always occurs starting at OldRect and ending at NewRect, regardless if you are zooming in, zooming out, or zooming
across.

ZoomType specifies the type of zoom operation being performed. The constants for this are: ZoomIn, ZoomOut and
ZoomAcross.

CONST {Zoom Types }
ZoomIn =-1; {zoom down to an object }
ZoomOut = 1; {zoom up from an object }
ZoomAcross = 0; {transition from one object to another }

..

Tools Plus

530

DrawThermometer
Draw the standard Macintosh progress thermometer in the current window.

C pascal void DrawThermometer (const Rect *DisplayRect, long Value,
long Maximum);

Pascal procedure DrawThermometer (DisplayRect: RECT; Value, Maximum: LONGINT);

DrawThermometer draws the standard Macintosh progress thermometer, such as the one seen in the Finder when a file
is being copied or duplicated. The thermometer is drawn according to the system that your Macintosh is running, and
the settings of the monitor(s) on which the thermometer is displayed. The thermometer drawn by this routine is always
similar to the one seen in the Finder.

DisplayRect is the display rectangle in the current windowÕs local co-ordinates. If the rectangle is taller than it is wide,
a vertical thermometer is created. Otherwise a horizontal thermometer is drawn. If you are using Aaron, a system
extension that runs under System 7 to give you the desk top icons, windows and controls as seen in Mac OS 8, set the
display rectangle to be either 11 or 12 pixels high to make Aaron draw the thermometer using a Mac OS 8 style.

Value and Maximum are used to express the percentage completed (completed = value ¸ maximum). Progress is
indicated in a left to right motion on horizontal thermometers, and from the bottom up on vertical ones. Use negative
values to have the thermometer indicate progress in the reverse direction.

- Note: Even though DrawThermometer draws the thermometer very quickly, it may not be fast enough for
applications that perform many thousands or even millions of operations during the thermometerÕs progression.
In that case, use the toolboxÕs TickCount routine to time calls to DrawThermometer at a less frequent rate,
perhaps once per second.

- Note: If your application determines that the Appearance Manager is present with the HasAppearanceManager
routine, create your thermometer using NewScrollBar and use the kControlProgressBarProc procID (80). A
standard System 7 thermometer is also available as a CDEF in SuperCDEFs.

+ Warning: DrawThermometer must be called outside a BeginUpdateScreen / EndUpdateScreen structure.

..

HasAppearanceManager
Determine if the Macintosh running your application has an Appearance Manager.

C pascal Boolean HasAppearanceManager (void);

Pascal function HasAppearanceManager: BOOLEAN;

HasAppearanceManager informs your application if the Macintosh on which it is running has an Appearance Manager.
If it does then your application has access to Appearance Manager-savvy windows and controls as documented in
Inside Macintosh. This is a good way to determine if you need to use a custom window definition (WDEF resource)
such as the Infinity Windoid to create a floating palette, or a custom control definition (CDEF resource) such as
SuperCDEFs to create a slider.

If the Macintosh running your application has an Appearance Manager, then the HasAppearanceManager routine
returns with a value of true. This does not mean that standard windows and controls will be mapped to the Apple gray
scale appearance, only that your application can make use of the additional window definitions and control definitions
that are supplied by the Appearance Manager.

- Note: This routine always returns with a value of false if you initialize Tools Plus (using the InitToolsPlus routine)
without the initAppearanceManagerSavvy option. Doing so helps simulate your application running on a Mac
without the Appearance Manager.

Also see: HasAppearanceManagerRoutines, UsingAppearanceManager, ReplaceWindowProcID and

20 Miscellaneous Routines

WaterÕs Edge Software 531

ReplaceControlProcID.

..

HasAppearanceManagerRoutines
Determine if your application has access to Appearance Manager routines.

C pascal Boolean HasAppearanceManagerRoutines (void);

Pascal function HasAppearanceManagerRoutines: BOOLEAN;

HasAppearanceManagerRoutines informs your application if it has access to the Appearance ManagerÕs routines. You
only need to be aware of this if your application takes advantage of the Appearance ManagerÕs features beyond the
simple use of its 3D buttons, scroll bars, and windows.

In 680x0 code, this routine always returns the same value as the HasAppearanceManager routine (i.e., if the Macintosh
running your application has an Appearance Manager, then your application has access to its routines).

In PowerPC code, references to Appearance Manager routines made by Tools Plus libraries must be resolved when
you link your application, either to real Appearance Manager routines found in the AppearanceLib (included with your
compiler), or with dummy routines found in the ToolsPlus.c or ToolsPlus.p files. When you compile your application
with the UseAppearanceManager #define (or Pascal compiler directive) set to 1, you will be required to include the
AppearanceLib library, and your application will have access to the Appearance ManagerÕs routines. In this case,
HasAppearanceManagerRoutines returns with the same value as the HasAppearanceManager routine. On the other
hand, if you leave the UseAppearanceManager #define (or Pascal compiler directive) undefined or you set it to 0,
Tools Plus links in dummy Appearance Manager routines to allow your application to link with Tools Plus libraries. In
this case, HasAppearanceManagerRoutines returns false, and your application should not call any Appearance
Manager routines.

- Note: Your application should not use any Appearance Manager routines if HasAppearanceManagerRoutines returns
false. It can still use the 3D buttons, scroll bars, and windows providing the Appearance Manager is available.

- Note: This routine always returns with a value of false if you initialize Tools Plus (using the InitToolsPlus routine)
without the initAppearanceManagerSavvy option. Doing so helps simulate your application running on a Mac
without the Appearance Manager.

Also see: HasAppearanceManager, UsingAppearanceManager, ReplaceWindowProcID and ReplaceControlProcID.

..

UsingAppearanceManager
Determine if the Macintosh running your application has an Appearance Manager and it is running.

C pascal Boolean UsingAppearanceManager (void);

Pascal function UsingAppearanceManager: BOOLEAN;

UsingAppearanceManager informs your application if the Macintosh on which it is running has an Appearance
Manager, and that it is running. When the Appearance Manager is running it automatically maps standard System 7
window and control definitions to use the Apple gray scale appearance, which is essentially a 3D look. This effectively
makes regular applications take on a 3D look, at least in terms of the windowsÕ frames, buttons and scroll bars. The
Appearance Manager can also be Òturned offÓ by the user to put the Mac into a ÒSystem 7 compatibilityÓ mode in
which your applicationÕs window frames and controls are not altered (they look like regular, flat controls).

If the Macintosh running your application has an Appearance Manager and it is turned on (i.e., not in ÒSystem 7
compatibilityÓ mode), then the UsingAppearanceManager routine returns with a value of true. In this case, your
windows and controls will take on the Apple gray scale appearance providing that you used standard Apple procIDs
for your windows and controls, and that you did not override the window and control definitions with custom WDEFs

Tools Plus

532

and CDEFs that use the same procIDs as Apple.

If you want to make sure your application has a floating palette and/or 3D buttons regardless if the Appearance
Manager is running, you will need a floating palette WDEF such as the Infinity Windoid and 3D controls like
SuperCDEFs. You can switch between using standard window and control definitions and custom ones by using
ReplaceWindowProcID and ReplaceControlProcID.

- Note: This routine always returns with a value of false if you initialize Tools Plus (using the InitToolsPlus routine)
without the initAppearanceManagerSavvy option. Doing so helps simulate your application running on a Mac
without the Appearance Manager.

Also see: HasAppearanceManagerRoutines, HasAppearanceManager, ReplaceWindowProcID and
ReplaceControlProcID.

..

SetToZero
Set all bytes in a record to zero.

C pascal void SetToZero (const void *RecPtr, long RecSize);

Pascal procedure SetToZero (RecPtr: PTR; RecSize: LONGINT);

SetToZero initializes any variable, record or structure to zeros. This effectively sets numbers to zero values, booleans
to false, strings to a length of zero, and pointers and handles to nil.

RecPtr is a pointer to the first byte of the affected object. In C, you can specify an objectÕs address by using the
ampersand, such as &MyObject. In Pascal, @MyObject accomplishes the same thing.

RecSize is the size of the affected object specified in bytes. Starting at the address indicated by RecPtr, RecSize number
of bytes are set to zero. If RecSize is less than one, no change occurs.

..

EqualMem
Determine if two structures are equal.

C pascal Boolean EqualMem (const void *Ptr1, const void *Ptr2,
long BytesToCheck);

Pascal function EqualMem (Ptr1: PTR; Ptr2: PTR; BytesToCheck: LONGINT): BOOLEAN;

EqualMem determines if two structures are equal to each other. This routine can be used to test small structures such
as Color QuickDrawÕs ÒcolorÓ records, or very large structures.

Ptr1 and Ptr2 are pointers to the two objects being tested. In C, you can specify an objectÕs address by using the
ampersand, such as &MyObject. In Pascal, @MyObject accomplishes the same thing.

BytesToCheck is the number of bytes being tested. This number is usually the objectÕs size specified in bytes.
EqualMem makes no assumptions about the size of each record. It merely tests the specified number of bytes for
equality, starting at the locations specified by Ptr1 and Ptr2.

The routineÕs value returns true if the specified number of bytes in the first record matches those in the second.

- Note: Record packing can insert unused bits or bytes into a record to align fields (or subrecords) to certain
boundaries. For example, a 10 character string in THINK Pascal actually consumes 12 bytes of memory
(1Êlength byte + 10 data bytes + 1 unused byte for alignment to an even boundary). To account for this, ensure
that the two records are equal to each other bit for bit before making changes. You can do this by using
BlockMove to copy one record into another.

20 Miscellaneous Routines

WaterÕs Edge Software 533

+ Warning: Structures containing strings that are altered will not be equated correctly because EqualMem does not
ignore the Ògarbage bytesÓ that may exist between the last valid character and the end of the stringÕs
record boundary.

..

Min
Determine the minimum value of two numbers.

C pascal long Min (long Val1, long Val2);

Pascal function Min (Val1, Val2: LONGINT): LONGINT;

Val1 and Val2 are two numbers whose value can be of integer or longint type.

The routineÕs value returns the lesser value of Val1 or Val2.

..

Max
Determine the maximum value of two numbers.

C pascal long Max (long Val1, long Val2);

Pascal function Max (Val1, Val2: LONGINT): LONGINT;

Val1 and Val2 are two numbers whose value can be of integer or longint type.

The routineÕs value returns the greater value of Val1 or Val2.

..

Tools Plus

534

21 Multiple Languages

WaterÕs Edge Software 535

21 Multiple Languages

Tools Plus libraries support languages other than English (such as French, German, Italian, etc.) by letting you replace
words and phrases that are displayed by Tools Plus. The best example of this is how Tools Plus handles your
applicationÕs Edit menu. Tools Plus automatically maintains the first five items in the Edit menu (Undo, Cut, Copy,
Paste and Clear) by enabling and disabling them appropriately, and by changing the Undo itemÕs text to reflect the
currently available command, such as ÒCanÕt UndoÓ, ÒUndo CutÓ, ÒRedo CutÓ, etc. As you may notice, all these words
and phrases are in the English language, but Tools Plus lets you replace those words with the language of your choice
as your application starts up, and it lets you change languages while your program is running (just in case you wrote an
application that lets the user change the language under the applicationÕs control).

Where do those words appear?
The table included later in this chapter is a comprehensive list of each of the phrases and words, and where they appear
in Tools Plus. There are four areas where Tools Plus presents words or phrases that are dependent on a language:

¥ Tools Plus error and warning messages
¥ the Edit menuÕs Undo item (changes to ÒUndo CutÓ, ÒRedo CutÓ, ÒUndo CopyÓ, Redo CopyÓ, etc.)
¥ User Notification (the message delivered by the Notification Manager)
¥ Dynamic Alerts (default button names)

Changing the words
Your application can replace Tools PlusÕs standard English phrases and words with another language by including an
ÔSTR#Õ resource containing the appropriate replacement strings (detailed later). When your application calls
InitToolsPlus, Tools Plus looks for an ÔSTR#Õ resource with an ID of 32767. If it is found, this resourceÕs strings are
used to replace the English words found throughout Tools Plus.

If your application gives the user the ability to change languages under application control, use the ToolsPlusLanguage
routine to specify another ÔSTR#Õ resource ID that contains the strings in the language of your choice.

The STR# Resource
Your application can have multiple ÔSTR#Õ resources, one for each language your application supports (other than
English), plus ÔSTR#Õ resources of your own that wonÕt be used for this purpose. ID number 32767 is reserved by
Tools Plus as the default resource that is loaded when Tools Plus is initialized. If this resource is missing, Tools Plus
will initialize using English words throughout.

If your application supports only the English language, do not include an ÔSTR#Õ resource with the ID of 32767. You
wonÕt save any memory by including a resource and shortening or removing the strings.

If your application is localized for a single language other than English, create a single ÔSTR#Õ resource with an ID of
32767, or make a copy of the one weÕve included in the ÒOptional ResourcesÓ folder.

If your application supports multiple languages other than English, create an ÔSTR#Õ resource for each supported
language (or copy ours). If your application starts up with a default language, give the related ÔSTR#Õ resource an ID
of 32767, and all other supported languages a unique ID (likely 32766 and descending).

It is a smart idea to flag these resources as non-purgeable, locked, protected and pre-loaded to ensure that they are
always available to Tools Plus. Even though this may consume a few hundred additional bytes of memory, it wonÕt
fragment memory and it will free you from the worry of running out of memory when you can least afford to.

Tools Plus

536

No English Equivalent Use in Tools Plus & Comments
1 CanÕt Undo Edit menuÕs ÒUndoÓ item. Tools Plus automatically changes the
2 Undo item to the correct phrase.
3 Undo Cut
4 Undo Copy
5 Undo Paste
6 Undo Typing
7 Undo Clear
8 Redo Cut
9 Redo Copy
10 Redo Paste
11 Redo Typing
12 Redo Clear
13 OK Default button titles in Dynamic Alerts. Do not change the
14 Cancel meaning of the first seven items (i.e., the first one must be an
15 Yes equivalent to ÒOKÓ, the second must be an equivalent to
16 No ÒCancelÓ).
17 Continue If you want to change buttonsÕ titles in Dynamic Alerts, use
18 Skip the AlertButtonName routine to do so, our use the AlertBox3
19 Quit routine.
20 (reserved for future consideration - leave blank)
21 (reserved for future consideration - leave blank)
22 Ò^0Ó needs your attention.

Please choose Ò^0Ó from the ^1 menu or click
the Ò^0Ó window.

Default message displayed by the Notification Manager when
your application is suspended and requires attention.
 ^0 is replaced by your applicationÕs name.
 ^1 is replaced by the ð symbol in System 6, and the word
ÒApplicationÓ under System 7.

23 ERROR: Parameter passed to a Tools Plus routine
 is not within the legal range of values.

Error displayed by Tools Plus when your application passes a
parameter to a Tools Plus routine, and the parameterÕs value is
outside of a legal range of values. This message includes spaces
to make it look good when displayed in Chicago 12pt.

24 This application will run only on a Macintosh
512KE or higher.

Error message displayed when calling InitToolsPlus if the Mac
running your application is a Lisa (Mac XL), Mac 128K or
standard Mac 512K, none of which are supported by Tools Plus.
If your application is PowerMac native without 680x0 code, you
can leave this string empty.

25 Tools Plus libraries must all be the same version. Error message displayed when calling InitToolsPlus if the
correct number of Tools Plus libraries are included in your
application, but one or more libraries are from a different version
of Tools Plus. If your application is PowerMac native without
680x0 code, you can leave this string empty.

26 Low memoryÉ
 Continue without ÒUndo/RedoÓ?

Just before the user makes a change in a field, Tools Plus checks
to see if there is enough free memory to (1) complete the edit,

27 WARNINGÉ
 Not enough memory for this operation.

and (2) implement the Undo/Redo feature. One of these
messages is displayed if there isnÕt enough free memory.

28 WARNINGÉ Low memory! Periodic reminder when the user is typing in a field and memory
is getting low.

ÔSTR#Õ resource used to change phrases and words in Tools Plus to another language

..

21 Multiple Languages

WaterÕs Edge Software 537

ToolsPlusLanguage
Change the language in which Tools Plus messages, phrases and words are displayed.

C pascal void ToolsPlusLanguage (short ResID);

Pascal procedure ToolsPlusLanguage (ResID: INTEGER);

ResID specifies the ÔSTR#Õ resource ID number that contains the strings used to replace the English phrases in Tools
Plus. Use a value of 0 (zero) to revert to English.

This routine has an immediate effect on the Edit menuÕs ÒUndoÓ item. It also replaces Dynamic Alert button names
with the new languageÕs defaults, thereby overriding any changes you may have previously made.

..

Tools Plus

538

22 Other Macintosh Features

WaterÕs Edge Software 539

22 Other Macintosh Features

This section of the user manual deals with parts of the Macintosh toolbox that you may or may not decide to
incorporate into your application. They are:

¥ Alerts
¥ Dialogs
¥ Custom Controls
¥ Lists

Except for Custom Controls, Tools Plus provides viable alternatives to the MacintoshÕs native toolbox routines. This
chapter details those alternatives.

..

Alerts
Macintosh alert boxes, as described in the Dialog Manager in Inside Macintosh, can be used with Tools Plus with no
ill effects. Because alerts are modal windows, and the MacintoshÕs Dialog Manager takes care of creating and
maintaining the alertÕs window as well as the objects in the window, no conflicts will arise.

You should consider using Tools PlusÕs AlertBox routine, which gives you several advantages that regular alert boxes
donÕt:

¥ Because you donÕt have to use AppleÕs Resource Editor (ResEdit), you can create alert boxes as the need
for them arises, and you donÕt have to leave your development environment to do it.

¥ Your applicationÕs source code will be more readable because the icon, text, and button configuration will
all be stated in the same line of source code.

¥ The text in the dynamic alert box is self-aligning to make the text look aesthetically pleasing. You have to
take care of this yourself when designing alert boxes as resources.

¥ Your alert boxes are always centered on the main monitor regardless of the Macintosh your application is
running on or the System version itÕs running. Standard Macintosh alerts wonÕt.

Dialogs
Tools Plus supports dialog (ÔDLOGÕ) resources, but because it completely circumvents the Macintosh toolboxÕs
Dialog Manager, Tools Plus does not inherit any of the difficulties or short-comings that are regularly encountered
when working with dialogs. Tools Plus handles multiple modeless and modal dialogs with ease, regardless of their
complexity. Full details about Tools PlusÕs implementation of dialogs can be found in this manualÕs Windows chapter.

We strongly recommend that you use only Tools Plus routines to create and maintain dialogs, and that you avoid using
the Dialog Manager and its routines for this purpose. The reason for this is that the Dialog Manager is by far less
sophisticated than Tools Plus is and it encumbers you with much more restrictive demands. If you must use the Dialog
Manager, then do so only with modal dialogs.

Tools Plus

540

Custom Controls
Custom controls (CDEFs) can be created by programmers and used in applications that are created with Tools Plus. If
you want Tools Plus to automatically manage these controls to behave like push buttons, check boxes, radio buttons,
scroll bars or sliders, create the control using Tools PlusÕs NewButton or NewScrollBar routine.

If you have custom controls that you want to handle yourself, you can create them using standard toolbox routines.
Tools Plus recognizes then as ÒforeignÓ controls and does not act upon them. All interaction with the custom control
must be handled by your application. When a mouse-down event occurs in a custom control that is flagged in this
manner, Tools Plus generates a doClickControl event and provides the Event ManagerÕs event to your application.

See the Special Routines chapter in this manual. It will explain the caution that needs to be exercised when using some
of the MacintoshÕs toolbox routines.

Lists
The List ManagerÕs routines may be incorporated into your application to handle sophisticated or custom lists. Your
application must handle all events pertaining to the list and its controls. Beware of the toolboxÕs LClick routine. It
modifies the controlÕs reference value (the contrlRfCon field of the control record), so if you store anything in the
reference constant of a list boxÕs scroll bar(s), you may lose that value by calling LClick.

See the Special Routines chapter in this manual. It will explain the caution that needs to be exercised when using some
of the MacintoshÕs toolbox routines.

In most situations, Tools PlusÕs lists will fulfill your applicationÕs needs for creating and maintaining a list.
Considering how easy Tools PlusÕs lists are to create and use, why not use them instead of the MacintoshÕs List
Manager?

+ Warning: AppleÕs List Manager (and the LDEF written by Apple) is limited to 32K of data. This means that your list
canÕt contain more than thirty-two thousand characters. Third-party LDEFs address this issue. For the
most comprehensive solution to your list and table needs, see Introduction chapter and read the section
named ÒThe List Manager, List Boxes, Tables and Beyond.Ó

23 Memory

WaterÕs Edge Software 541

23 Memory

All of code in Tools Plus libraries, and the objects it creates exist in your applicationÕs heap (the memory you allocate
to an application in the ÒGet InfoÓ dialog under MultiFinder or System 7 or higher). The only exception to this is
Tools PlusÕs global record that is used to keep its internal workings functioning. The Tools Plus global record is kept
on your applicationÕs stack. Fortunately, the global record is less than 3K, so it consumes relatively little stack space
of the 32K limit for 680x0 applications (the stack on a Power Mac is not limited to 32K).

Almost all the objects created by Tools Plus routines are relocatable, and are therefore accessed internally by handles.
The use of relocatable objects eliminates memory fragmentation caused by non-relocatable objects (locked handles, or
dynamically allocated objects created by using a pointer). The only non-relocatable objects created by Tools Plus are
window records, but this is not a problem providing your application calls InitToolsPlus early in your application.
Calling InitToolsPlus early allocates the window records in memory where they wonÕt cause any heap fragmentation.

You should be careful to avoid creating dynamically allocated non-relocatable objects, if possible. This will prevent
memory fragmentation and make your application or plug-in much more memory efficient. In cases where you cannot
avoid creating dynamically allocated non-relocatable objects, such as when you create UPPs for event handler
routines, you should create these objects as early in your application as possible to minimize or eliminate memory
fragmentation.

Each routine (Tools Plus or otherwise) consumes stack memory just to be able to execute its own code. After the
routine has completed execution, its stack memory is automatically released. The user interface elements created by
Tools Plus routines (such as buttons, list boxes, etc.) continue to occupy memory in your applicationÕs heap until they
are explicitly deleted, or their parent window is closed, or when your application ends.

It is your responsibility to ensure that an operation can be completed with the amount of memory that is available in
your application. For example, testing can determine the exact amount of memory required to open a window with 5
buttons, two list boxes, and 40 editing fields. Your application should ensure that the memory required to create such a
window can be allocated safely before the window is opened.

Testing Memory Requirements

The best way to test how much memory your application needs to perform an operation, is to so see how much
memory is available before the operation is performed, and to compare that value to how much memory is available
after the operation is performed. This should be done during the testing phase of your project in a fashion that
resembles the steps below. The code detailed below is only temporary, and should be removed after you have the
information you require. In the example below, weÕll be opening a dialog with numerous user interface elements on it.
1 Define three long integer (32 bits) variables: memBefore, memAfter, memAfterPurge
2 Just before opening the dialog, call the toolboxÕs MaxMem routine. You can ignore the routineÕs parameters.

MaxMem purges all purgeable objects from your heap.
3 Call the toolboxÕs FreeMem routine to determine the amount of free memory that is available to your application.

Save this value in the memBefore variable.
4 Open the dialog and create any user interface elements and dynamic objects that are associated with that window.

This operation consumes memory in two ways. First, objects that permanently consume memory, such as buttons
and fields, will consume the memory they require. This memory is consumed for as long as the window stays
open. Second, temporary (purgeable) objects may be loaded into memory. These objects are needed on a
temporary Òas neededÓ basis, typically when the window is first opened, and possibly when the window is
refreshed. A ÔPICTÕ resource is an example of such an object, providing it is flagged as Òpurgeable.Ó

5 Call the toolboxÕs FreeMem routine to determine the amount of free memory that is available to your application.
Save this value in the memAfter variable.

6 Call the toolboxÕs MaxMem routine. You can ignore the routineÕs parameters.
7 Call the toolboxÕs FreeMem routine to determine the amount of free memory that is available to your application.

Save this value in the memAfterPurge variable.

Tools Plus

542

You now have three pieces of information:
Memory needed to first open your window = memAfter - memBefore
Memory needed to keep your window open = memAfterPurge - memBefore
Additional memory needed to refresh your window = memAfterPurge - memAfter

You can display this information in a temporary alert, then delete all the code you used to determine the windowÕs
memory consumption.

Testing for Memory Availability

If your application can operate safely and with certainty with the minimum amount of memory specified in its ÒGet
InfoÓ box in the Finder, then you never need to test for memory availability. To be sure of this, force your application
to consume the maximum amount of memory and use the FinderÕs About This Macintosh feature to see how much
free memory is available to your application. Forcing the use of application memory usually entails opening all
windows, filling all editing fields with the maximum amount of text, then clicking in an inactive full field and typing
and filling it again (to force the Òundo bufferÓ to fill).

You will most likely choose not to be so generous with your use of memory, especially in larger applications that can
potentially consume many megabytes of memory if it is available, and that can also operate with much smaller
memory spaces if required. In such cases, your application needs to check for the availability of memory before it
attempts to consume it.

Before your application attempts to open a window or perform some other function that will consume memory, we
recommend that you determine if the available memory is sufficient to perform the required function. You want to
ensure that there is enough memory to perform the required operation, and you also want to make sure that other
items, such as other open windows, have sufficient memory to keep working properly (i.e., you donÕt cut into other
itemÕs work memory). You start off by having a global constant or #define that represents the worst-case example of
required working memory (shown as ÒAdditional memory needed to refresh your windowÓ a few paragraphs earlier).
If you have three windows requiring 5K, 8K and 16K of working memory respectively, then your worst-case is 16K.
This figure represents memory that you always want to have free to be able to keep things running smoothly. We
recommend that you make this figure at least 100K over the amount you believe to be true, just to add a margin of
safety. WeÕll refer to this value as workingMemoryNeeded throughout this text.

Write a routine that takes a single parameter (the total amount of memory needed) and returns a boolean to indicate if
that required memory is available. The following routines are provided as examples:

C Boolean EnoughMemory (long ramRequired)
 {
 Boolean ok;
 long xLong;

 if (ramRequired <= FreeMem()) // Enough memory without compacting heap?
 ok = true
 else {
 xLong = MaxMem(xLong); // Purge dynamic objects, compact memory
 ok = (ramRequired <= FreeMem());
 };
 if (!ok)
 NotEnoughMemoryAlert(); // This is your own lack of memory alert
 return (ok); // Return functionÕs value
 }

23 Memory

WaterÕs Edge Software 543

Pascal function EnoughMemory (ramRequired: LONGINT): BOOLEAN;
 var
 ok: BOOLEAN;
 xLong: LONGINT;
begin
 if ramRequired <= FreeMem then {Enough memory without compacting heap? }
 ok := true
 else
 begin
 xLong := MaxMem(xLong); {Purge dynamic objects, compact memory }
 ok := (ramRequired <= FreeMem)
 end;
 if not ok then
 NotEnoughMemoryAlert; {This is your own lack of memory alert }
 EnoughMemory := ok; {Return functionÕs value }
end;

Once you have the above routine, your application can use it to test if the next operation will fit into the available
memory, and if not, a dialog is displayed with an appropriate message such as ÒInsufficient free memory to perform
operation. Try closing other windows, or quit the application and give it more memory in the ÔGet InfoÕ dialog.Ó An
example of using this routine is as follows:

if EnoughMemory (ramNeededForWindow1 + workingMemoryNeeded) then
OpenWindow1;

In the example above, ramNeededForWindow1 represents the amount of memory that is needed to keep the window
open (memAfterPurge - memBefore), while workingMemoryNeeded represents the worst case requirement of opening
a window or refreshing it (memAfterPurge - memAfter).

Editing Fields

Each editing field can consume up to 32K of memory, depending on how much text is stored by the field. This amount
is minimized by using length-limited editing fields which limits stored text to a specified number of characters (i.e., 30
character field instead of 32K). Additionally, the one field on each window that contains the cursor when the window
is active, can consume another 32K of memory (temporarily edited text versus permanently stored text). This too is
minimized when a length-limited field is used. Lastly, the one field that is currently being edited by the user stores a
temporary copy of the fieldÕs text when the user starts typing to allow an Òundo/redoÓ operation.

To summarize, the working memory required for all editing fields in your application is as follows:
1 Add the maximum editable text for all fields in all windows
2 Add the maximum editable text for the largest field in each window
2 Add the single, largest value for a single window you calculated in step 2

Keep in mind that Tools Plus performs advanced memory checks when editing fields. If memory is tight, it will warn
the user that an undo operation will not be available, and will allow a field to be edited. If memory is still tighter,
Tools Plus will periodically warn the user of insufficient memory as he/she is typing. In the worst case, Tools Plus will
not allow a field to be activated if there is not enough memory.

Handle Blocks

Many Tools Plus objects contain handles to other objects, and because of this, they consume memory from handle
blocks. Handle blocks are a pool of handles that are available to any process or object that requires them. When a
process or object no longer requires a handle, the handle is released back into the available pool. Additional memory
will not be required providing that the demand for handles never exceeds the available supply. As soon as the demand
for handles exceeds the available supply, an additional block of 64 handles is automatically created, thereby
consuming 512 bytes of memory. An entire block will be created even if only one more handle is needed.

It is always best to allocate the number of required Handle Blocks by specifying the count as a parameter in
InitToolsPlus when your initialize your application. This prevents memory fragmentation. A product like ZoneRanger

Tools Plus

544

(included with CodeWarrior) can be used to determine how many handles are used by your application, and how many
are free. To determine the handle requirements for your application, run it as extensively as possible, excercising every
opetion and window available, the use ZoneRanger to determine the number of handles in use and the number that are
available. Take this sum (used + available), divide by 64, and this is the number of handle blocks required by your
application. Make sure that your create at least that many when you initialize Tools Plus by using the InitToolsPlus
routine.

The Style Table

Tools Plus uses a memory-efficient method of storing font information for objects that use styles (buttons, scroll bars,
editing fields, list boxes, panels and pop-up menus). The Style Table keeps a record for each unique combination of
font, font size, and font style. These settings are stored in an 8-byte record that is automatically referenced by the GUI
elements that use those settings.

An 8-byte Style Table record is created for each unique combination of font, font size, and font style, regardless of the
number of objects that use the same setting, while the objects that refer to those styles use only a 2-byte reference
each.

Good memory habits

ItÕs a very good idea to check the amount of contiguous memory that is available before allocating objects or calling a
routine that may need to be loaded from disk (i.e., a 680x0 code segment that is not yet in memory). Do the same
when you open a document too, because there are a number of applications out there that bomb just because a user
created a document on a 8-meg Mac and tried to open it on another Mac with less memory. Users perceive this type of
behavior as being indicative of an unreliable program (Òit keeps bombing on me for no reasonÓ).

24 Font Heights

WaterÕs Edge Software 545

24 Font Heights

The following is a list of font heights (in pixels) for some of the MacintoshÕs most popular fonts. A fontÕs height for
any font can be determined by calling GetFontInfo and adding Ascent + Descent + Leading. Please note that these
numbers are for reference purposes only.

Font Name Pt: 9 10 12 14 16 18 20 24 36
Athens 23
Cairo 26
Chicago 16
Courier 11 12 12 15 18 23
Geneva 12 13 16 19 23 24 29
Helvetica 11 12 14 18 25
London 23
Los Angeles 16 29
Monaco 11 16
New York 12 12 16 19 23 24 29 40
San Francisco 23
Times 11 12 12 15 19 24
Venice 19

+ Note: Font heights can vary depending on whose fonts you use. With bit-mapped, TrueType and PostScript fonts
being available, as well as the proliferation of suppliers, it is possible that one MacintoshÕs Helvetica 12pt may
have a different height than anotherÕs.

ItÕs a good habit to rely on the MacintoshÕs core set of fonts: Chicago 12pt, Geneva 9pt, and Monaco 9pt
wherever possible. Always check that a font exists before using it!

Tools Plus

546

25 Special Routines

WaterÕs Edge Software 547

25 Special Routines

Use these routines with caution, or donÕt use them!
The following routines should be used with caution, or not at all. The Òcomments or special instructionsÓ column
explains if the routine can be used in a limited way, or if a Tools Plus equivalent should be used instead. If the column
is blank, the Macintosh toolbox routine should not be used at all.

If Inside Macintosh states that a specific routine should not be called because it is automatically called by the system
when it starts up, you need not reference that routine in this section.

Some routines that are not listed here can be used, but they will require a pointer to a window. Your application can
use Tools PlusÕs WindowPointer routine to determine a windowÕs pointer.

Toolbox Routine Comments or Special Instructions
AddResMenu Use AppleMenu
AdvanceKeyboardFocus
AEProcessAppleEvent Called automatically by InitToolsPlus
AppendMenu Use Menu
AutoEmbedControl Use SetAutoEmbed
BackColor Use SetBackRGB
BackPat A windowÕs background pattern should never be changed from white
BeginUpdate This is done automatically when your application receives a doPreRefresh or doRefresh event. If

you want to call BeginUpdate and EndUpdate yourself in response to a doPreRefresh or
doRefresh event, add the wManualUpdate option to the windowÕs spec parameter when you
create the window.

BringToFront
CheckItem Use CheckMenu
ClearKeyboardFocus
ClearMenuBar
CloseDialog Use WindowClose
CloseWindow Use WindowClose
CouldDialog
CountMItems Use MenuItemCount or PopUpItemCount
CreateRootControl
DeleteMenu Use RemoveMenu or RemovePopUp
DelMCEntries
DelMenuItem Use RemoveMenu or RemovePopUp
DialogSelect
DisableItem Use EnableMenu
DispMCInfo
DisposeControl Use with custom controls only
DisposeDialog Use WindowClose
DisposeMenu
DisposeWindow
DlgCopy
DlgCut
DlgDelete
DlgPaste
DragControl Use with custom controls only
DragGrayRgn Make sure you call ResetMouseClicks immediately after using DragGrayRgn because

DragGrayRgn consumes a mouse-up event at the end of the drag.
DragWindow
Draw1Control Use with custom controls only
DrawDialog

Tools Plus

548

Toolbox Routine Comments or Special Instructions
DrawGrowIcon
DrawMenuBar Use UpdateMenuBar
EmbedControl Use the appropriate Tools Plus routine to embed the control. See the chapter regarding the

control you want to embed, such as ÒButtonsÓ (EmbedButtonInButton), ÒPop-Up MenusÓ
(EmbedPopUpInButton), etc.

EnableItem Use EnableMenu or EnablePopUp
EndUpdate This is done automatically when your application finishes executing your event handler routine

after receiving a doPreRefresh or doRefresh event. If you want to call BeginUpdate and
EndUpdate yourself in response to a doPreRefresh or doRefresh event, add the wManualUpdate
option to the windowÕs spec parameter when you create the window.

EventAvail Under MultiFinder and System 7 or higher, this routine will switch tasks to other applications
and desk accessories. DonÕt use this routine unless you really know what you are doing and you
thoroughly test your results.

FindControl Done automatically for buttons and scroll bars
FindWindow
ForeColor Use SetFrontRGB
FlashMenuBar
FlushEvents InitToolsPlus flushes all events when Tools Plus is initialized. You may flush mouse-down,

mouse-up, key-down, key-up and auto-key events, as well as application-defined events 1
through 4. When flushing mouse-up events, you may be disrupting a drag that is already in
progress. If the StillDown routine returns true, a drag is in progress, and Tools Plus will
continue processing the drag until a mouse-up event is encountered.

As a rule, donÕt use this routine unless you really know what you are doing and you
thoroughly test your results.

FreeDialog
FrontWindow This routine is almost useless if your application has a tool bar or floating palettes. See

ToolBarNumber, FirstPaletteNumber, FirstStdWindowNumber, WorkWindowNumber and
GetWindowInOrder.

GetBackColor You can use the safer GetBackRGB for Macs with and without Color QuickDraw
GetCTitle Use with custom controls only
GetCtlMax Use with custom controls only. For scroll bars, use GetScrollBarMax
GetCtlMin Use with custom controls only. For scroll bars, use GetScrollBarMin
GetCtlValue Use with custom controls only. For scroll bars, use GetScrollBarVal. For buttons (check boxes

or radio buttons), use ButtonIsSelected
GetDItem Use GetDialogItemRect to obtain the itemÕs display rectangle. All other information that is

returned by GetDItem is maintained automatically by Tools Plus and is therefore inaccessible.
GetForeColor You can use the safer GetFrontRGB for Macs with and without Color QuickDraw
GetItem Use GetMenuString
GetItemCmd Use GetMenuCmd
GetItemIcon Use GetMenuIcon or GetPopUpIcon
GetItemMark Use GetMenuMark or GetPopUpMark
GetIText Use GetEditString or GetEditHandle to access a fieldÕs edited text. Use GetFieldString or

GetFieldHandle to access a fieldÕs saved text.
GetMCEntry Use GetMenuBarColors, GetMenuColors, or GetMenuItemColors
GetMHandle Use GetMenuHandleFromMemory. You should never need to get a menuÕs handle
GetMenu Use LoadMenu, Menu or NewPopUp instead
GetMHandle Use GetMenuHandleFromMemory. You should never need to get a menuÕs handle.
GetNewControl Use LoadButton or LoadScrollBar to create a control using a ÔCNTLÕ resource template
GetNewCWindow Use LoadWindow, WindowOpen, WindowOpenRect, or ToolBarOpen instead
GetNewDialog Use LoadDialog
GetNewMBar Use LoadMenuBar
GetNewWindow Use LoadWindow, WindowOpen, WindowOpenRect, or ToolBarOpen instead
GetNextEvent Your application will intercept events so that they never reach Tools Plus. Also note that under

MultiFinder and System 7 or higher, this routine will switch tasks to other applications and desk
accessories.

DonÕt use this routine unless you really know what you are doing and you thoroughly test
your results.

25 Special Routines

WaterÕs Edge Software 549

Toolbox Routine Comments or Special Instructions
GetOSEvent Your application will intercept events so that they never reach Tools Plus. Also note that under

MultiFinder and System 7 or higher, this routine will switch tasks to other applications and desk
accessories.

As a rule, donÕt use this routine unless you really know what you are doing and you
thoroughly test your results.

GetPenState You can use the safer GetColorPenState for Macs with and without Color QuickDraw
GrowWindow
HandleControlClick
HandleControlKey
HideControl Use ButtonDisplay or ScrollBarDisplay instead. Use this routine with custom controls only.
HideWindow Use WindowDisplay
HiliteControl Use with custom controls only. For scroll bars, use EnableScrollBar. For buttons, use

EnableButton.
HiliteMenu Use MenuHilite
HiliteWindow
IdleControls
InitCursor Use CursorShape or ResetCursor routines instead
InitDialogs
InitMenus Not required in THINK Pascal
InitWindows
InsertMenu Use Menu or NewPopUp
InsertResMenu
InsMenuItem Use InsertMenuItm
IsControlActive Use related Tools Plus routine (ButtonIsEnabled, etc.)
IsControlVisible Use related Tools Plus routine (ButtonIsVisible, etc.)
IsDialogEvent
KillControls
List Manager List Manager routines may be incorporated into your application to handle sophisticated lists.

However, the listÕs scroll bars must be flagged as Òcustom controls,Ó and your application must
handle all events pertaining to the list.

MaxApplZone Called automatically by InitToolsPlus
MenuEvent
MenuKey
MenuSelect
ModalDialog If the dialogÕs procID is dBoxProc, the dialog is automatically modal. To make any other dialog

modal, open the modal window using WindowOpen, then attach the dialog list using
LoadDialogList.

MoveControl Use with custom controls only. For buttons, use MoveButton. For scroll bars, use
MoveScrollBar.

MovePortTo The co-ordinates may be changed temporarily, providing they are reset prior to calling any Tools
Plus routine

MoveWindow Use WindowMove
NewCDialog Use LoadDialog, or WindowOpen combined with LoadDialogList
NewControl Use with custom controls only. For scroll bars, use NewScrollBar. For buttons, use NewButton.

If you create a custom control, see Tools PlusÕs DeleteControl routine.
NewDialog Use LoadDialog, or WindowOpen combined with LoadDialogList
NewMenu Use Menu or NewPopUp
NewWindow Use WindowOpen, WindowOpenRect, or ToolBarOpen
NMInstall Use SetNotification and PostNotification
NMRemove Executed automatically (if required) when your application is activated
OpenDeskAcc
PenNormal You can use the safer PenColorNormal for Macs with and without Color QuickDraw
PopUpMenuSelect
PostEvent Do not post app4Evt (or osEvt in System 7 or higher) events. They are used by MultiFinder and

System 7Õs (or higher) Finder.
RegisterAppearanceClient Option in InitToolsPlus
ReverseKeyboardFocus
RGBBackColor You can use the safer SetBackRGB for Macs with and without Color QuickDraw

Tools Plus

550

Toolbox Routine Comments or Special Instructions
RGBForeColor You can use the safer SetFrontRGB for Macs with and without Color QuickDraw
SelectWindow Use ActivateWindow
SelIText Use SetFieldSelection
SendBehind
SetApplLimit You may use the simpler Set68KStackSize or ChangeStackSize
SetCCursor User CursorShape
SetClikLoop Needed only when creating non-Tools Plus fields. If you must use SetClikLoop when writing a

680x0 application, call it just before using TEClick. Otherwise, a bug in the 680x0 ROMs will
use the most recently installed click loop proc, which may be another proc or the proc used by
Tools PlusÕs fields.

SetControlData If possible, use the appropriate Tools Plus routine
SetControlFontStyle Use the appropriate Tools Plus routine (SetButtonFontSettings, etc.)
SetControlVisibility
SetCTitle Use with custom controls only. For buttons, use ButtonTitle.
SetCtlMax Use with custom controls only. For scroll bars, use SetScrollBarMax.
SetCtlMin Use with custom controls only. For scroll bars, use SetScrollBarMin.
SetCtlValue Use with custom controls only. For scroll bars, use SetScrollBarVal. For buttons (check boxes or

radio buttons), use SelectButton.
SetCursor Use CursorShape or ResetCursor routines instead
SetDAFont Use SetDialogFontInfo
SetDialogFont Use SetDialogFontInfo
SetDItem
SetEventMask Upon startup, key-up events are disabled. Do not disable the following events: mouseDown,

MouseUp, keyDown, autoKey, updateEvt, activateEvt, and app4Evt
SetGDevice First use GetGDevice to get the current graphic device, then remember to restore the original

gDevice before using a Tools Plus routine
SetItem Use RenameItem or RenamePopUp
SetItemCmd Use MenuCmd
SetItemIcon Use MenuIcon or PopUpIcon
SetItemMark Use MenuMark or PopUpMark
SetItemStyle Use MenuStyle or PopUpStyle
SetIText Use PasteIntoField
SetKeyboardFocus
SetMCEntries Use SetMenuBarColors, SetMenuColors, or SetMenuItemColors
SetMCInfo
SetMenuBar
SetOrigin The co-ordinates may be changed temporarily, providing they are reset to (0,0) prior to calling

any Tools Plus routine
SetResLoad Must be set to SetResLoad(true) before calling any Tools Plus routine
SetThemeWindowBackground Use SetBackgroundTheme
SetWinColor
SetWindowPic Nothing other than the picture should be put in the window
SetWTitle Use WindowTitle
SetZone If your application has multiple heap zones, make sure you reset the current zone to be the

applicationÕs default heap zone before using any Tools Plus routines.
ShowControl Use ButtonDisplay or ScrollBarDisplay instead. Use this routine with custom controls only.
ShowHide Use WindowDisplay
ShowWindow Use WindowDisplay
SizeControl Use with custom controls only. For buttons, use SizeButton. For scroll bars, use SizeScrollBar.
SizeWindow Use WindowSize
SpaceExtra SpaceExtra must be set to 0, the initial value, when calling any Tools Plus routine
SysBeep Use Beep (for convenience)
SystemClick
SystemEdit
SystemEvent
SystemMenu

25 Special Routines

WaterÕs Edge Software 551

Toolbox Routine Comments or Special Instructions
TEActive Use ActivateField
TEAutoView
TECalc
TEClick Use ClickToFocus
TECopy
TECut
TEDeactivate Use DeactivateField
TEDelete
TEDispose Use DeleteField
TEFromScrap
TEGetText Use GetEditString
TEIdle Done when your application finishes executing an event handler routine, or by calling

Process1EventWhileBusy
TEInit
TEInsert
TEKey
TENew Use NewField
TEPaste
TEPinScroll
TEScroll
TESelect Use SetFieldSelection
TESelView
TESetClickLoop Needed only when creating non-Tools Plus fields. If you must use TESetClickLoop when

writing a 680x0 application, call it just before using TEClick. Otherwise, a bug in the 680x0
ROMs will use the most recently installed click loop proc, which may be another proc or the
proc used by Tools PlusÕs fields.

TESetJust
TESetText
TEToScrap
TEUpdate
TrackBox
TrackControl Done automatically for buttons and scroll bars
TrackGoAway
UnloadSeg Do not unload the segments containing Tools PlusÕs libraries
UnregisterAppearanceClient Automatic in DeinitToolsPlus if application was optionally registered by InitToolsPlus
UpdtControl
WaitNextEvent Your application will intercept events so that they never reach Tools Plus. Also note that under

MultiFinder and System 7 or higher, this routine will switch tasks to other applications and desk
accessories.

DonÕt use this routine unless you really know what you are doing and you thoroughly test
your results.

ZoomWindow

Tools Plus

552

26 Completing Your Application

WaterÕs Edge Software 553

26 Completing Your Application

This section details the final steps that you must take to produce a stand-alone, double-clickable application. The
requirements for an application using Tools Plus libraries are nearly identical to those of ordinary Macintosh
applications, except that the SIZE resource has some very specific needs. It is assumed that by the time you address
these items, you have already written and debugged an application within your development environment and that you
are ready to make it a stand-alone application.

All the work encompassed in this section requires that you use a resource editor such as AppleÕs ResEdit to create
and/or modify resources. The Symantec and Metrowerks development environments allow you to use a resource file as
part of your project. That resource file is automatically merged into your compiled code when you build your project.
Therefore we recommend you create and save these resources in a separate resource file and allow your development
environment to merge them with your application (instead of manually adding them to your compiled application).

Completing your application involves making some decisions, then creating the appropriate resources. The table below
summarizes the various tasks and their significance to your final application.

Task (section in this chapter) Significance to your application
Application Icons
File Types, Creators, and the Application Signature
Bundle (BNDL resource)

Defines the icons that are displayed by the Finder for your
application and the files it creates. The bundle resource also
defines file types, and optionally folders, that can be opened or
processed by your application at the request of an Apple Event.

Version (vers resource) For displaying a version number in your applicationÕs ÒGet
InfoÓ box. An application description can also be displayed.
(Optional)

mstr resource Remapping of the File menuÕs ÒQuitÓ item and the File menuÕs
ÒOpenÉÓ item to another menu and/or menu item. You only
need to do this if your application will run on System 6 or
older, or if you choose not to make it Apple Event aware.

The ÒQuitÓ command is automatically invoked when your
application is running and the user selects the Special menuÕs
Restart or Shut Down commands.

The ÒOpenÉÓ command is automatically invoked when
your application is running and the user double-clicks (opens) a
document created by your application, or drags a document
onto your application to launch it.

If your application does not have the ÒOpenÉÓ or ÒQuitÓ
items in a ÒFileÓ menu, and your application will [i] run on
Macs with System 5 or 6, or [ii] not process high-level events,
you need to add mstr resources.
(Optional)

ÕSIZEÕ resource Defines your applicationÕs behavior and memory requirements
in a multitasking environment. Needed for MultiFinder and
System 7 or higher.

Tools Plus

554

ApplicationÕs Icons
The MacintoshÕs Finder displays an application and its related files as icons. In order for the Finder to do this, it needs
to know what each icon looks like. Without this information, your application will have the Ògeneric applicationÓ icon
and its related files will have the Ògeneric documentÓ icon. These Finder defaults are displayed below:

Generic Generic
Application Document

At the very least, you will need to create a large (32 x 32 bit) black and white icon (ICN#) for your application, and
one for each type of document it creates. You should also consider creating equivalent small (16x16 bit) black and
white icons (ics#), because the Finder displays these miniatures when a diskÕs or folderÕs view is set to Òsmall icon,Ó or
when System 7 or higher displays lists with icons.

System 7 or higher can display your applicationÕs icons in color, so you can optionally include color icons as
equivalents for the black and white ones. The icl8 and icl4 icon types are large icons using 8 bits (256 colors) and 4
bits (16 colors) respectively. Small color icons can also be created as ics8 and ics4 type icons. Later, the ÒbundleÓ
describes how to integrate the icon resources into your finished application.

Icon Family

When a specific icon ID number is shared by two or more icon types, those related icons are called an Òicon family.Ó
The icon family with an ID of 128 is usually the icon that depicts your application. Your applicationÕs document icons
would likely be numbered 129 and up. When you create icons, remember to use ID numbers 128 or higher. The rest
are reserved numbers. The following table depicts three font families for a completed application:

Large Icons Small Icons
ICN# icl4 icl8 ics# ics4 ics8

Application
(ID = 128)

Sounds File
(ID = 129)

Songs File
(ID = 130)

- Note: When creating icl8 and ics8 icons with ResEdit, you have a choice of two color palettes: ÒApple icon colorsÓ
or ÒStandard 256 colors.Ó Use the Apple icon colors, since they will guarantee that your icon can be selected
(darkened) properly.

26 Completing Your Application

WaterÕs Edge Software 555

File Types, Creators, and the Application Signature
On the Macintosh, all files (including application, desk accessories, documents, etc.) have a file type and a creator
code. Both of these items are always four characters long, allowing any visible or invisible characters and spaces. The
file type tells the Macintosh what the file contains, such as plain text (ÔTEXTÕ type) or a picture (ÔPICTÕ type). Your
application will always have a file type of ÔAPPL.Õ You can define your own file types for the documents created by
your application if they donÕt fit into any of the existing general types as follows:

APPL Launchable application
DFIL File for sorting DAs
DRVR Driver
FFIL File for sorting fonts
INIT System extension
PICT QuickDraw picture
PRER Printer driver
RDEV Chooser extension
TEXT Stream of ASCII characters

adev Network extension
appe Background-only application
cdev Control panel
edtp Edition for sharing graphics
edts Edition for sharing sound
edtt Edition for sharing text
ffil Font
ifil Script system resources
kfil Keyboard layout

pref Preferences file
qery Query document (databases)
scri System extension for scripting
sfil Sound
tfil TrueType font
ttro TeachText read-only file
zsys A system file

Later, the ÒbundleÓ describes how to integrate file type(s) into your finished application.

Signature (the Creator code)

Each application must have a unique, four character signature. A signature is often called a creator code because it
answers the question Òwho created meÓ for every document on a Macintosh (an application is considered to be its own
creator). Your applicationÕs signature will be used as the creator code for all the documents it creates.

The Finder makes an association between each application and its related documents by using your applicationÕs
signature. When a document is opened by the Finder, it knows which application created the file and automatically
launches that application.

Notice that some file types can be opened by several applications. If you double-click a ÔTEXTÕ file, it will be opened
by the application that launched it (because the Finder recognizes the creator for the file is identical to the parent
applicationÕs signature). However, just about any word processor can open a ÔTEXTÕ document, as can the TeachText
and SimpleText application thatÕs included with System 7 or later. Your development environment allows you to set
your projectÕs ÒtypeÓ and ÒcreatorÓ codes.

- Note: Apple reserves the use of all file types and signatures (creator codes) whose names contain only lowercase
letters, and those that contain only non-alphabetic characters. Your file types and signatures must contain at
least one uppercase letter. Since the system software never displays the file type or signature to users, these
codes donÕt have to be meaningful to anyone but you.

All file types and signatures must be registered with Apple to guarantee uniqueness and prevent conflicts
between applications.

+ Warning: When deciding upon a signature for your application, be careful to avoid signatures that are identical to
any existing resource type, such as ÔICONÕ or ÔSTR Ô. An owner resource must be created with a type that
matches your applicationÕs signature, and if it coincides with existing resources types, conflicts may arise.
For a comprehensive list of resource codes, please refer to the ResEdit Reference manual, or contact
Apple.

Tools Plus

556

Bundle
The BNDL resource, which is simply called the Òbundle,Ó is used to Òbundle upÓ several related resources that are
needed to define the association between your application, its documents, and the icons displayed by the Finder. If you
use ResEdit to create the BNDL resource, you will be presented with a window that looks like the one below.

Enter the four character signature you have selected for
your application. In the example at right, the signature is
ÔSP12Õ.

Next, use the Resource menuÕs ÒCreate New File TypeÓ
command to create a new line. Enter the file type. Note
that the first line should have a type of ÔAPPLÕ
(application). Double-click its ÒFinder IconsÓ section and
you will be presented with a list of icons that you created
earlier in the ÒApplication IconsÓ section of this chapter.
Select the icon you want to use to represent the specified
file type. Repeat this for each file type that is supported
by your application.

In the example at right, the application (type ÔAPPLÕ)
uses icon family 128. The sound file (type ÔSPsdÕ) uses
icon family 129, and the song file (type ÔSPsqÕ) uses icon
family 130.

The last thing you must do to complete the bundle is to
set the Òbundle bit.Ó The bundle bit tells the Finder that your application has a bundle present. In THINK Pascal, you
set the bundle bit by using the Project menuÕs ÒSet project TypeÓ command, then building the application. The bundle
bit is set automatically in THINK C/C++ and Metrowerks compilers.

When creating the BNDL resource, ResEdit automatically creates several other supporting resources. One FREF
resource (Finder REFerence) is created for each file type. In the example above, a total of three FREFs would be
created. An ÒOwner ResourceÓ is also created (ID = 0). Its resource type matches your applicationÕs signature. In the
above example, the type would be ÔSP12Õ. The owner resource is essentially a string resource that lets you enter a
comment that is displayed as version information in the FinderÕs ÒGet InfoÓ box (providing you donÕt create ÔversÕ
resources).

- Note: If you change your applicationÕs icons, you will have to rebuild the desk top file to force the Finder to use your
new icons. To rebuild the desk top, restart your Macintosh while holding the option and 1 keys down, and
continue to hold them until you see a dialog that asks you if you want to rebuild your desk top. Click the OK
button to start rebuilding.

A similar problem sometimes occurs when an application is copied to a disk using an installer or
decompression program. These kinds of programs may not have the intelligence to update the desk top file like
the MacintoshÕs Finder does.

Version
Your application can display some descriptive information in the FinderÕs ÒGet InfoÓ box by having ÔversÕ resources.
The two vers resources you can include in your applications are:

ID = 1 Application version number (i.e., 5, ©1998-99 WaterÕs Edge Software)
ID = 2 Application info displayed beneath the file name (i.e., Tools Plus Library (1 of 7))

By using vers resources, any file can bear version information, including documents created by your application.

26 Completing Your Application

WaterÕs Edge Software 557

mstr Resources
This section describes how System 5 and 6Õs MultiFinder and System 7 or higher automatically interact with your
applicationÕs menus if your application does not support Apple Events. You should set the appropriate bit in your
applicationÕs SIZE resource to indicate if it supports Apple Events or not. You can skip this section if your Apple
Event aware application runs only on System 7 or later.

Both MultiFinder (running under System 5 or 6) and System 7 or higher can automatically interact with your
application through its menus. If your application is running while the user double-clicks (or select-opens) one of your
applicationÕs documents from the Finder, the affected document is automatically opened by your application. Also, if
the user selects the Special menuÕs Restart or Shut Down command while your application is running, it is instructed
to quit.

In both these cases, the system simulates the selection of a menu item. Typically applications have a File menu with an
item named ÒOpenÉÓ (including the ellipsis, the Option-; character), and the last item named ÒQuitÓ. In the case of
opening a document, Tools Plus reports a doMenu event to your application indicating that the File menuÕs ÒOpenÉÓ
command was selected, in which case your application would do whatever is appropriate, like display an SFGetFile
dialog to let the user choose which file to open. The system fools your application into thinking that the double-clicked
file was selected from an SFGetFile dialog (which is not actually displayed). When the user selects Restart or Shut
Down, Tools Plus reports a doMenu event to your application indicating that the File menuÕs ÒQuitÓ command was
selected, in which case your application would do whatever is appropriate, such as asking if open documents should be
saved before quitting.

If your application does not (1) open files by using the File menuÕs ÒOpenÉÓ command, or (2) quit by using the File
menuÕs ÒQuitÓ command, these functions can be remapped to other menu items by including ÔmstrÕ resources in your
application. Each mstr resource is a Pascal string (byte-0 is the length byte) that tells the Macintosh which menu and
menu item to use in place of the standard ones:

mstr ID = 100 Name of the menu containing the equivalent of the ÒQuitÓ command
mstr ID = 101 Name of the menu item that is the equivalent of the ÒQuitÓ command
mstr ID = 102 Name of the menu containing the equivalent of the ÒOpenÉÓ command
mstr ID = 103 Name of the menu item that is the equivalent of the ÒOpenÉÓ command

Tools Plus

558

ÔSIZEÕ Resource
If your application is going to run under MultiFinder or System 7 or higher, it needs a SIZE resource. If you are using
CodeWarrior, Symantec C/C++ or THINK C/C++, you can set these project settings from within your development
environment. THINK Pascal users have to use a resource editor like ResEdit to create a SIZE resource in a resource
file that is compiled into your application. The SIZE resource settings specify how your application behaves in a
multitasking environment.

You will create a single resource with an ID of -1, but be aware that the Macintosh may clone (make a duplicate with a
possible minor variation) your SIZE resource in your stand-alone application under certain conditions. The SIZE
resource is comprised of sixteen bits that can be set to a value of 0 or 1, and two long integers. Tools Plus requires that
some of these items be set to a specific value while others depend upon how you want your application to behave. The
table below details the SIZE resource.

Compulsory Setting Recommended Setting
SIZE ResourceÕs Field Name Comments
Save screen (obsolete) 0 0 (obsolete)
Accept suspend events 1 1 0 = doSuspend and doResume events are not reported to your application.

1 = Your application receives a doSuspend event prior to being suspended, and a
doResume event immediately after being activated.

0 0 (obsolete)
Can background 1 0 = When your application is suspended, it receives no processing time

1 = When your application is suspended, it receives processing time in the way
of doNothing events.

If ÒAccept suspend eventsÓ is set to 0, this item must be set to 1.
Does activate on FG switch 1 1 0 = The MacintoshÕs operating system takes care of activating and deactivating a

window when your application is suspended or resumed.
1 = Your application takes care of activating or deactivating its windows in

response to a doSuspend or doResume event (automatic in Tools Plus).
This item must have the same setting as ÒAccept suspend events.Ó

Only background 0 0 0 = Your application is a regular application.
1 = Your application runs only in the background. Usually, this is because it

doesnÕt have a user interface and cannot run in the foreground.
Get front clicks 0 0 = Your application does not receive the mouse-down used to activate it after

being suspended. Most applications work this way.
1 = The mouse-down that activates your application is applied to your

application. This may mean that a button is selected, drawing begins, or an
insertion point is set. The Finder works in this manner.

Accept app died events
(debuggers)

0 0 = ApplicationDied events are not generated
1 = Your application is notified (via an ApplicationDied event) when an

application or process launched by your application has terminated or has
crashed. Read about System 7Õs Process Manager for more details.

32 bit compatible 1 0 = Your application is not 32-bit compatible
1 = Your application can be run with the 32-bit Memory Manager.
Modern Mac compilerÕs generate 32-bit compatible code, so your app is 32-bit
clean providing you do not modify your applicationÕs addressing.

High level event aware 1 0 = No high-level events are received or sent by your application
1 = Your application can receive and send high-level events (System 7+)
If this item is set to 0, MultiFinder and System 7 or higher will automatically
interact with your applicationÕs menus. See the Menus chapter for details.

Local and remote high level
events

0 0 = Your application cannot be accessed by applications running on other
computers on a network.

1 = Your application is accessible by applications running on other computers on
a network, and it can receive high-level events across a network (System 7 or
higher).

Stationery aware 0 0 = If the user opens a stationary document (System 7 or higher), the Finder
makes a copy of the file and asks the user to name the copy.

1 = Your application knows how to work with stationery documents (System 7
or higher).

26 Completing Your Application

WaterÕs Edge Software 559

Compulsory Setting Recommended Setting
SIZE TemplateÕs Field Name Comments
Use text edit services 0 0 = Your application does not use inline TextEdit services

1 = Your application uses inline TextEdit services (System 7 or higher).
Tools plusÕs editing fields donÕt use inline TextEdit services. Set this item to 1
only if you have designed your own editing fields that use these services.

Reserved bit 0 0 (reserved for future use)
Reserved bit 0 0 (reserved for future use)
Reserved bit 0 0 (reserved for future use)
Size The memory size at which your application can run most efficiently. When your

application is launched, the Operating System tries to secure this amount of
memory.

Min size The memory limit below which your application will not run.

Cloned SIZE resources

Although you need to create only one SIZE resource (ID =-1), the Macintosh may make clones of it when the user
makes changes in the FinderÕs ÒGet InfoÓ box. When the user makes changes in the ÒGet InfoÓ box, the Macintosh
clones (makes a copy of the SIZE resource with ID =-1) and lets the user makes changes to the ÒSizeÓ and ÒMin sizeÓ
fields of the clone. You only need to be concerned with this if you want to preset your applicationÕs memory
requirements to something other than the recommended limits defined by your original SIZE resource.

The table below describes the contents of the ÒSizeÓ and ÒMin sizeÓ fields for the original SIZE resource, as well as
any clones that may be created by the Macintosh.

System File
Version

SIZE
ID

FieldÕs
Name

Title in
ÒGet InfoÓ box Contents

5 to 7.0.x -1 Size Application memory size Memory required for optimum performance
Min size Suggested memory size Memory limit below which your application wonÕt run

0 Size Application memory size UserÕs setting
Min size Suggested memory size Memory limit below which your application wonÕt run

(same as ID =-1)
7.1 or higher -1 Size Suggested size Memory required for optimum performance

Min size (not displayed) Memory limit below which your application wonÕt run
0 Size Preferred size UserÕs preferred memory allowance

Min size (not displayed) Memory limit below which your application wonÕt run
(same as ID =-1)

1 Size (not displayed) UserÕs preferred memory allowance
(same as ID = 0)

Min size Minimum size UserÕs minimum memory allowance below which your application
wonÕt run.

Tools Plus

560

27 Technical Support

WaterÕs Edge Software 561

27 Technical Support

Unlimited best-in-class Technical Support is available only to registered Tools Plus users. We also provide limited
support to developers who are evaluating Tools Plus.

What does Technical Support do?

WaterÕs Edge Software Technical Support provides the following services:
¥ Referring to the user manual and indicating where the requested information can be found
¥ Clarifying the user manual where information is not clear or if something is misunderstood
¥ Explaining how to apply Tools Plus to achieve the desired results
¥ Communicate information about the latest version of Tools Plus (i.e., version number, new features, etc.)
¥ Logging your requests to add functionality or to make enhancements to Tools Plus, or its manual

What doesnÕt Technical Support do?

As the creator and publisher of Tools Plus, WaterÕs Edge Software is prepared to support its own product. We cannot,
however, support othersÕ products even though you may be using them to develop or maintain your applications.
Specifically, our Technical Support staff will not do your homework for you regarding:

¥ Computer hardware and peripherals
¥ Macintosh system software
¥ Your development environment (CodeWarrior, THINK C/C++, ResEdit, etc.) or other applications
¥ Your programming language (we wonÕt teach you how to program, or how to use C/C++ or Pascal)
¥ The Macintosh toolbox (Inside Macintosh and THINK Reference are both excellent resources)
¥ Queries that are beyond the scope of Tools Plus, such as Òhow do you do animation?Ó or Òhow do I include

QuickTime movies in my application?Ó These items are not specific to Tools Plus, and you can implement them
in a Tools Plus application in a fashion that is similar, if not identical, to a non-Tools Plus application.

If your query is specific to Tools Plus, you can be sure that weÕll be able to help. A special case exists when it comes
to plug-ins. The variety of applications that support plug-ins is so vast, and the frequency with which these
architectures change their requirements for plug-ins is so rapid, that WaterÕs Edge Software does not have the expertise
to tell you how to do something in a plug-in. Even so, we can offer valuable assistance in telling you how Tools Plus
behaves, what it expects, and how it responds inside any plug-in environment. This information, when combined with
your knowledge of your plug-in environment, will help you quickly create plug-in solutions. Tools Plus has been used
to create plug-ins for Adobe Acrobat, Photoshop, and other applications.

Electronic Mail (Email) and Web Support

Why email? Our Technical Support department is best equipped to respond to urgent matters by being able to
prioritize all incoming requests then assigning our people to the most urgent ones. Your urgent requests will typically
be resolved within hours. WaterÕs Edge Software can be reached at WaterEdg@interlog.com

Include the words ÒTechnical SupportÓ or ÒTech SupportÓ (without the quotations) in your emailÕs subject to route
your message directly to our technical support staff. Please do not send files without first obtaining authorization from
a technical support representative.

Similarly, you can submit reports by web at the following URL:
http://www.interlog.com/~wateredg/_Comments/TechSupport/Form.html

Tools Plus

562

Mail Support

WaterÕs Edge Software also offers a mail-in Technical Support service. We will endeavor to respond within three
business days of receiving your letter. Our mailing address is:

WaterÕs Edge Software
Technical Support
2441 Lakeshore Road West, Box 70022
Oakville, Ontario
Canada, L6L 6M9

Fax Support

WaterÕs Edge Software also offers Technical Support by fax. Our fax number is: 1-905-847-1638.

Telephone Support

Due to the technical nature of Tools Plus, we cannot offer unlimited telephone support. Users are encourages to use
email or fax as a primary means of support (typically, youÕll get an answer within hours). WaterÕs Edge Software
Technical Support can be reached at our office number 1-416-219-5628. A menu will direct you to our Technical
Support staff.

Notification by Email

If you have an email account at which you can be readily reached, it is always to your advantage to receive
notifications and news by email instead of conventional mail. YouÕll get the most recent news as quickly as possible,
as well as being notified of upgrades before the press even hears about them. Just send us an email requesting this free
service. Include your full name so we can confirm that you are a registered developer.

Updates and Upgrades by Email

You can receive Tools Plus updates and upgrades electronically as a file enclosure using conventional email. Your
email service must be capable of receiving large enclosures as large as 1MB (or 1000K). Some email systems segment
incoming mail into smaller chunks (usually less than 32K) and require that the segments be reassembled before the
enclosure can be decoded and decompressed. If you are running a ÒpureÓ Internet account, it may be as simple as using
a different application for your email to prevent segmentation, such as Eudora, a shareware email application that can
send and receive very large enclosures. Your email account must also be able to receive volume as high as 20 MB (a
set of twenty enclosures, each being 1 MB). Check with your email service provider to ensure that your email account
can support this high volume because some email gateways have a limited capacity, and they simply reject all email
when they are full.

Our updates are compressed by StuffIt Deluxe 5 (to save downloading time) and encoded using BinHex 4.0 format (to
allow transmission on a text-only medium such as Internet), so you will need an application that can decode the
BinHexed file and decompress it. An excellent application that does just this is Aladdin SystemÕs ÒStuffIt ExpanderÓ
which is available as freeware from most electronic bulletin boards. You will need StuffIt Expander version 5 or
newer.

To receive updates and upgrades by email, just send us an email requesting this free service. Include your full name so
we can confirm that you are a registered developer.

27 Technical Support

WaterÕs Edge Software 563

Updates by the web

If you have Internet access and a web browser, you can obtain software updates and upgrades from our web site. Our
updates page provides all the details about what you need to do to download and install the latest update. This is an
excellent alternative to getting updates by email because this free service lets you obtain the update at your own
leisure, and it circumvents problems that may occur if your email gateway has difficulty processing large enclosures.

Just send us an email requesting this free service. Include your full name so we can confirm that you are a registered
developer. WeÕll notify you by email with instructions on how to access the secret updates area of our web site.

Mail updates

If you donÕt have Internet access for obtaining updates from our web site, or if updates by email are not possible or
they are not practical for you, we also offer updates on CD by conventional mail.

Tools Plus Developer Forum

WaterÕs Edge Software offers a free electronic forum where Tools Plus developers can meet, discuss issues, and
exchange information. If you would like to talk with these developers or just lurk to see whatÕs happening, send an
email to TPDevLst@interlog.com and weÕll send you more information about the forum and how to get on it. You
donÕt need any special software other than your email application.

Known Bug List

You can get a copy of all confirmed bugs in the latest version of Tools Plus by sending an email to
WaterEdg@interlog.comwith a subject of Òsend Tools Plus bug listÓ (without the quotes). This is a free, on-demand
service for registered developers only, so please do not release this information publicly. Our bug list is updated as
soon as new bugs are confirmed. This is typically a very short list.

Bug Alert Service

We can alert you by email as soon as new bugs are discovered in Tools Plus. To subscribe to this free service, send an
email to WaterEdg@interlog.comwith a subject of Òsubscribe Tools Plus bugsÓ (without the quotes). As soon as a new
bug is confirmed, you will receive a notification by email. History has shown us that Tools Plus is exceedingly stable
and bug free, so you can expect negligible email traffic from this source. Developers with mission-critical or high-
profile projects are encouraged to subscribe to this free service. Please do not make this information public as it is
available to registered developers only.

Registered Developer Benefits Period

As part of your Tools Plus licensing fee, WaterÕs Edge Software provides the following products and services to you
for one full year starting from your initial purchase, at no additional cost:

¥ Prompt, world-class technical support with no limit to the number of emails/calls
¥ Software updates (bug fixes and minor revisions)
¥ Software upgrades (major releases containing considerable new functionality and/or improvements to existing

services and features)
¥ Access to the electronic Tools Plus Developer Forum where you can meet other Tools Plus developers and

leverage their expertise and experiences.
¥ Access to the online Tools Plus Known Bug List (a detailed list of all known bugs confirmed to date, their status,

work arounds, and what we are doing about them)

Tools Plus

564

¥ Subscription to the Tools Plus Bug Alert Service. This service sends you an email as soon as a new bug is
discovered and confirmed in Tools Plus libraries + framework. The email details the impact of the bug, work
arounds, and what we are doing about it. This service is highly recommended for all developers!

¥ Subscription to Water's Edge Software's press releases, as well as internal communiqu�s that are intended only for
Tools Plus licensees. This service keeps you informed about what we are doing and the projects that are being
planned.

Your benefit period starts with your initial Tools Plus purchase, and continues for one full year. Software updates and
upgrades include delivery to you at no additional cost. Our goal is to have at least two substantial releases per year. We
automatically send you a reminder by email and regular mail when it is time to renew your benefits period for an
additional year. The reminder includes complete details about your renewal.

How to Submit Queries or Problem Reports

Should you require the assistance of our Technical Support services, please be prepared by being able to communicate
to them what the issue is, and how you want to resolve it. Some of the things you may want to think about before you
contact us are:

¥ Have you read the Tools Plus user manual and looked for the answer yourself?

¥ Does the Tools Plus demo application or one of our tutorials have a working example of what you are
trying to do? If so, inspect it to see what you are doing differently.

¥ What is the nature of your query:
- Are you trying to implement a feature and donÕt know how to start?
- Have you written some code that isnÕt working the way you expect it to?
- Are you in need of information that you canÕt find in the user manual?
- Is the user manual unclear about something?
- Are you requesting new features or additional services?

¥ If you suspect a bug, or Tools Plus isnÕt working the way you expect it toÉ
- Submit only one item at a time and work through that item until it is resolved. We find that if you have

several issues on the go, the process slows down considerably as we try to determine which of the
issues weÕre talking about, and whether one issue is related to another.

- Which WaterÕs Edge Software product and version are you using (i.e., Tools Plus Pro 4.5 for
CodeWarrior, C/C++ PowerPC libraries)

- Which development environment are you using? (Software, version, Macintosh model, system version,
amount of memory, etc.) In the case of CodeWarrior, tell us which CD you are using (i.e.,
CodeWarrior Pro 4) rather than the IDE version number.

- What is the nature of the problem? What do you want it to do, and what is it actually doing?
- Does the problem occur in the development environment, in a stand alone application, or both?
- Does it happen all the time, or is it intermittent?

Remember that you are describing a problem to someone who does not know your history, cannot see your screen, and
has not seen your code.

Reporting a Simple Bug

If you can describe a bug you have encountered in a sentence or two, then that implies it should be easy for our
Technical Support staff to duplicate it. These kinds of issues are typically simple, easily reproduced, and they occur
without other influencing conditions. An example of this is Òwhen I create a certain kind of Bevel Button control, it
crashes my Mac as soon as I click it.Ó In a case like this, all youÕd need to do is email us a copy of the line of code you
used to create the button and the resource(s) that are needed to create the control.

If the bug is a little more complex, consider sending us a report that includes step-by-step instructions on how we can
reproduce the problem. For example:

¥ Problem: Dynamic alert does not behave modally, and active window misbehaves after dynamic alert is
closed

¥ Open a modeless window #1 [provide code used to open window]
¥ Open a dynamic alert [provide code used to open the alert]
¥ Click on window #1 (window #1 activates, but all controls are disabled)

27 Technical Support

WaterÕs Edge Software 565

BUG: Window #1 should not activate because the dynamic alert should be modal
¥ Click on the dynamic alert (dynamic alert disables)
¥ Dismiss the dynamic alert by clicking the OK button
BUG: Window #1 is active, but all controls are still disabled

IÕm using Tools Plus Pro 4.5, 68K C/C++ libs for applications, Power Mac 8500,
Mac OS 8.5.1, and CodeWarrior Pro 2.

As you can see in this fictitious example, it provides all the information we need to reproduce the problem, and to
identify what you see as the problem.

Reporting a More Complex Bug

If you come across a bug that cannot be described in very simple terms, chances are that it will be difficult or time-
consuming for us to reproduce. To help us reproduce your problem and track down the cause, please do the following:

1. Create a mini-application that does nothing other than show the problem. Make it absolutely minimal to
eliminate the possibility of your code being the source of the problem. Remove all code other than the
minimum that is needed to demonstrate the problem. Do not send a stripped down version of your
application or of our framework because the volume of code means that we would have to validate it all to
determine if it is contributing to the issue you are reporting.

2. Email the following to us at wateredg@interlog.com
- Project file (with binaries removed)
- Source files
- Resource files
- Any other support files required for the mini-app that are not part of the standard development

environment.
Do not send Tools Plus libraries.

3. Include a step-by-step account of how we can reproduce your problem. Detail what we will be seeing as a
demonstration of the problem. Describe what we should see if the problem was to be fixed.

4. Tell us:
- Which compiler are you using (i.e., CodeWarrior Pro 4, C/C++, 68K)
- Tell us the computer you are encountering the problem on (i.e., Quadra 840AV)
- System version (i.e., Mac OS 8.0)
- Tools Plus versions (i.e., 5)

Why is it important to write a mini-app?

¥ A mini-app reduces or eliminates the possibility that your code is causing a problem, and it clearly points to Tools
Plus. Minimal code leaves no place for bugs to hide. In most cases, when a developer writes a mini-app to
demonstrate a problem, it disappears! As they work to reproduce the error in the mini-app, they discover that there
was an error in their source code rather than in Tools Plus libraries. If your mini-appÕs source code is more than a
few dozen lines, eliminate more code!

¥ We have found that we spend over 80% of our technical support time just trying to recreate a user's reported
problem, and often we were not be able to do so. We want to make sure that we have exactly the same source code
and resources that you do to help us duplicate your problem. If we can't duplicate it, we can't do anything about it.

¥ Providing a mini-app lets us be most effective in discovering and resolving your reported problems. As an example,
we can easily spend half an hour setting up a test case in an attempt to reproduce your reported bug. With a mini-
app, we can eliminate that half hour of non-productive time and get to your specific issues within seconds.

¥ If we can duplicate the problem, we will correct Tools Plus libraries and use the new libraries on the same mini-
application to make sure that our change has resolved your problem.

Tools Plus

566

Index

WaterÕs Edge Software 567

Index

3D Buttons (see Picture Buttons)
4-byte integers (in CodeWarrior C/C++) 60

A
About box 353, 359
Action routine 211, 231, 233
ActivateButton routine 175
ActivateField routine 262
ActivateListBox routine 293
ActivateScrollBar routine 222
ActivateWindow routine 140
Active application 436
Active window 139, 140, 141
ActiveFieldNumber routine 270
ActiveWindowNumber routine 148
AddResMenu routine 547
Address changes 43
Address of WaterÕs Edge Software 562
AdvanceKeyboardFocus routine 547
AEProcessAppleEvent Routine 547
ALERT BOXES 497

Allow/disallow doNothing events 505
Changing button titles 503
Determine number of open alerts 505
Dynamic alerts 501
Getting preferences 503
Macintosh Alerts 539
Maximum number of open alerts 505
Setting preferences 504

AlertBox routine 501
AlertBox3 routine 503
AlertBoxCount routine 505
AlertButtonName routine 503
alertPlainBackdrop constant 502
Alerts 109
alphaLock constant 417, 418
altDBoxProc constant 120, 123
altPaletteProc constant 120
AnimateCursor routine 384
Animated cursor (see Cursors)
Animation 522
Appearance Manager 78, 91

Are Appearance Manager routines available? 531
Auto-embedding controls 111
Background theme 103, 112, 122, 136, 137
Clicking to a new keyboard focus 166, 214, 248, 264,

285
Compiling 680x0 apps 91
Compiling PowerPC apps 91
Containers 92
Controls 91, 92, 102, 111, 159, 212, 248, 284

Bevel button 128, 160, 310
Chasing Arrows 128, 163
Check box 129, 160
Clock 128, 162
Disclosure triangles 128, 162

Edit Text 128, 249
Group Box 128, 162
Icon Control 129, 165
Image Well 128, 164
List Box 129, 285
Little Arrows 128, 163, 213
Picture Control 129, 164
Placard 128, 163
Pop-Up Arrows 128, 164
Pop-Up menu 128, 312
Progress indicator 128, 213
Push button 129, 160
Radio button 129, 160
Scroll bar 129
Slider 128, 213
Standard scroll bar 213
Static Text 129, 163, 249
Tabs 128, 161
Thermometer 128, 213
User Pane 128, 165
Visual Separator 128, 164
Window Header 129, 165

Embedding 92
Embedding a button 172
Embedding a field 257
Embedding a list box 290
Embedding a pop-up menu 316, 317
Embedding a scroll bar 218
Embedding controls 171
Getting the keyboard focus 152
Is Appearance Manager available? 530
Is Appearance Manager running? 531
Keyboard focus 140, 166, 175, 214, 222, 248, 262,

264, 265, 266, 285, 293
Keyboard focus in toolbar or floating palette 238
Keyboard focus window 150
Remove keyboard focus 140
Substituting a button ProcID 158, 186
Substituting a scroll bar ProcID 211
Substituting a window ProcID 118, 154
Tabbing to a new keyboard focus 166, 214, 248, 266,

285
Windows 91, 102, 111, 122

Appearance.h header file 91
Appearance.p interface file 91
AppearanceLib library 91, 159, 212, 248, 284
AppendDialogList routine 131
AppendMenu routine 547
APPLE EVENTS 354

Awareness (making your app Apple Event aware) 426
Making your application Apple Event aware 558
Not using them (or pre System 7) 557
Open Application 426, 464
Open Documents 426, 465
Overview 33, 426
Print Documents 426, 469
Quit Application 426, 470

Tools Plus

568

Setting an Apple Event error 431
Simulated Apple Events 427, 430

Apple menu (ð) 356, 359
AppleChar constant 326, 327, 373
AppleMenu routine 359
AppleTalk Manager 461
Application heap (consumption) 541
Application Zone limit 98
ApplicationÕs signature 555
Applications (hiding other apps and Finder) 153
ApplicationSuspended routine 436
Architecture model for Tools Plus 31
arrowCursor constant 383, 385, 386
AttachMenu routine 364
AttachPopUpSubMenu routine 318
AutoEmbedControl routine 547
Automatic cursor changes 379
AutoMoveSize routine 153
AutoMoveSizeButton routine 182
AutoMoveSizeField routine 278
AutoMoveSizeListBox routine 304
AutoMoveSizePanel routine 348
AutoMoveSizePictButton routine 207
AutoMoveSizePopUp routine 331
AutoMoveSizeScrollBar routine 227

B
BackColor routine 547
Backdrop color (setting it) 112, 135, 136
BackdropColor routine 135
Background color (also see backdrop color)

Getting a windowÕs background color 486
Setting a windowÕs background color 486

Background processing 418, 434, 435, 438, 441
Background theme 112, 136, 137
BackPat routine 547
BackSpaceKey constant 448, 458, 460
BALLOON HELP 391

Help for menus 392
Help for objects in windows 392
Help for the Finder 392
Inheritance 392
Issues with THINK Pascal 398
Performance 397

bAutoMoveSize constant 167
bCDEFCheckBox constant 168
bCDEFPushButton constant 168
bCDEFRadioButton constant 168
bCmdKey constant 167
bColorButton constant 167
bDefault constant 167
Beep routine 527
Beeping the user 527
BeepSynch routine 527
BeginUpdate routine 547
BeginUpdateScreen routine 468, 480, 517
Bevel buttons (see Buttons)
bHidden constant 167
Bit depth of a monitor 483
Bit depth of a screen 481
BitMap2Region routine 525
bitmapBW constant 524

bitmapFromCurrentGDevice constant 524
bitmapFromGDevice constant 524
bitmapFromMaxGDevice constant 524
bitmapFromWindow constant 524
BitMaps 522

Converting a BitMap to a region 525
Create a BitMap 523
Destroy a BitMap 524

bold constant 144, 145, 183, 228, 260, 300, 328, 331,
349, 375

BringToFront routine 547
btnState constant 417, 418
Bugs (source of most) 44
Build Order for THINK Pascal projects 72
Bundle bit 556
bUseWFont constant 167
Busy mode 380
ButtonColors routine 173
ButtonDisplay routine 174
ButtonIsEnabled routine 177
ButtonIsSelected routine 177
ButtonIsVisible routine 175
BUTTONS 157

Activating a button 175
Appearance Manager 102, 111
Appearance/behavior specifications 167
Automatic moving/resizing 153, 167, 182
cctb resource 170, 171
Changing a buttonÕs co-ordinates 181
Changing a buttonÕs size 181
Changing a buttonÕs title 180
Changing button titles on dynamic alert boxes 503
Clicking in a button with keyboard focus 264
Clicking with the wrist watch cursor 390
CNTL resource 170, 171
Color 158, 167

Default colors for multiple buttons 173
Getting a buttonÕs colors 184
Setting a buttonÕs colors 184
Setting colors for multiple buttons 173

Color resources 170, 171
Command key in buttons 167
Creating a button 166, 169, 170
Creating using a ÔCNTLÕ resource 170, 171
Current value

Getting the current value 179
Setting the current value 179

Custom buttons 157, 168
Default button 167

Removing default status 185
Setting the default button 185

Deleting a button 174
Deselecting

Deselecting a button (un-checking) 177
Is a button deselected (un-checked) 177

Determining if a button is visible 175
Disabling

Disabling a button 176
Is a button disabled 177

Enabling
Enabling a button 176
Is a button enabled 177

Flashing a button 180

Index

WaterÕs Edge Software 569

Font
Getting the font, size and style 183
Setting the font, size and style 158, 183

Font (setting the font) 167
Getting a buttonÕs co-ordinates 176
Handle (getting it) 185
Hiding a button 167, 174, 175
Maximum value limit

Getting the maximum limit 178
Setting the maximum limit 179

Minimum value limit
Getting the minimum limit 178
Setting the minimum limit 178

Moving a button 180
New button (creating a) 166, 169, 170
New button (using ÔCNTLÕ resource) 170, 171
Obscuring a button 175
Scrolling buttons 175
Selecting

Is a button selected (checked) 177
Selecting a button (checking) 177

Selecting with Command key 158, 167
Setting Help for a button 399, 400
Showing a button 174
Styles

Bevel button 128, 160
Chasing Arrows 128, 163
Check box 128, 129, 160, 167, 168
Clock 128, 162
Disclosure triangles 128, 162
Edit Text 128
Group Box 128, 162
Icon Control 129, 165
Image Well 128, 164
Little Arrows 163
Picture Control 129, 164
Placard 128, 163
Pop-Up Arrows 128, 164
Push button 128, 129, 160, 167, 168
Radio button 128, 129, 160, 167, 168
Static Text 129, 163, 249
Tabs 128, 161
User Pane 128, 165
Visual Separator 128, 164
Window Header 129, 165

Substituting a ProcID throughout your app 91, 102, 158,
186, 530, 531

Tabbing between buttons with keyboard focus 265, 266
Unused button number (getting the) 173

ButtonTitle routine 180

C
C2PStr routine in C 89
CanAlert constant 502
CanAltBut constant 502
CanOkAlert constant 502
Caps Lock key 409
Caret 236, 241
Cascading menus (see Menus)
cautionIcon constant 502
Change of address notice 43
ChangedCursorZone routine 388

ChangedHelp routine 407
ChangeStackSize routine 106
Character shifting (to upper/lower case) 240, 279
Chasing Arrows control (see Buttons)
Check boxes (see Buttons)
checkBoxProc constant 167
CheckChar constant 326, 327, 373
CheckForMonitorChanges routine 482
CheckItem routine 547
CheckMenu routine 372
CheckPopUp routine 326
Child menu (see Menus)
Class Libraries 36
ClearFocus routine 140
ClearKeyboardFocus routine 547
ClearKeyCode constant 448, 458, 460
ClearListBox routine 299
ClearMenuBar routine 547
ClearPopUp routine 322
ClickToFocus routine 264
Clock control (see Buttons)
CloseDialog routine 547
CloseWindow routine 547
cmdKey constant 417, 418
Co-ordinates

Global 116
Local 116
Screen 116

Code Generators 36
Code modules 93
CODE resources 39
CodeWarrior C/C++ 39
CodeWarrior Pascal 39
COLOR

Color pen state record 491
Color-dependent drawing 477, 480, 481, 482
Determining if Color QuickDraw is available 479
Does a monitor have color? 483
Does a screen have color? 482
Drawing in color 477
Get the pen state 491
Highlight color

Drawing text on the highlight color 489
Drawing with the highlight color 489
Highlighting a rectangle 490
Highlighting a region 491

Number of colors available on a monitor 483
Number of colors available on a screen 481
QuickDraw (using or ignoring Color QuickDraw) 99
Reset pen to initial state 489
Set the pen state 492

Color cursor (see Cursors)
Color QuickDraw (see Color)
COLORS

Settings for dialog items 116
Command key 309, 358, 360, 409
Compiler directives 97
COMPILERS

CodeWarrior C 42
CodeWarrior C++ 42
CodeWarrior Pascal 42
Symantec C++ 42
THINK C 42
THINK Pascal 41, 42

Tools Plus

570

ContAltBut constant 502
Content color (see backdrop color)
Control key 409
Control Panels 39
controlKey constant 417, 418
CONTROLS (see Buttons and Scroll Bars)

CDEF 159, 212, 248, 284
Deleting a control that has Help 406
Setting Help for a control 406

CopyBits bug 190, 515
CouldDialog routine 547
CountIndexString routine 520
CountMItems routine 547
CountNumberOfFiles routine 432
CreateBitMap routine 523
CreateRootControl routine 547
Creator code 555
crossCursor constant 383, 385, 386
Current window 139, 140, 141
CurrentFieldFilter routine 280
CurrentWindow routine 141
CurrentWindowNumber routine 148
CurrentWindowReset routine 141
Cursor Table (see Cursors)
CURSOR TABLES

Setting Help for a Cursor Table 404
Cursor Zones (see Cursors)

Setting Help for a Cursor Zone 405
CURSORS 379

Animation 382
Application startup cursor 104
Automatic changes 379
Changing the cursor 383
Clicking with the wrist watch cursor 390
Color cursor 379
Cursor Tables

Changing the cursor 387
Creating a new cursor table 385
Deleting a cursor table 385
Get a zoneÕs co-ordinates (rectangle) 388
Get a zoneÕs co-ordinates (region) 388
Manually altered cursor zone regions 388
New cursor table (creating a) 385
Unused cursor table number (getting the) 385
Window (attaching to or from a table) 389

Cursor Zones
Changing a cursor zone 386
Changing the cursor 387
Clicking in a zone 389
Creating a new cursor zone 386
Deleting a cursor zone 387
New cursor zones (creating a) 386
Unused cursor zone number (getting the) 387

Force the cursor to animate 384
Initialization 380
Reset the cursor to automatic changes 384
Table (for automatic cursor changes) 381
Watch cursor (Òsystem busyÓ indicator) 380, 412
Wrist watch 104

CursorShape routine 383
CursorZone routine 386
CursorZoneRect routine 386
CursorZoneRgn routine 386
Custom controls 540

D
dBoxProc constant 120, 123
DeactivateField routine 263
DefaultIconLook routine 518
DeinitToolsPlus routine 105
DeleteButton routine 174
DeleteControl routine 406
DeleteCursorTable routine 385
DeleteCursorZone routine 387
DeleteField routine 258
DeleteFwdKey constant 448, 458, 460
DeleteIndexString routine 521
DeleteKey constant 448, 458
DeleteListBox routine 291
DeleteListBoxLine routine 299
DeleteMenu routine 547
DeletePanel routine 344
DeletePictButton routine 199
DeleteScrollBar routine 220
DeleteTimer routine 445
DelMCEntries routine 547
DelMenuItem routine 547
Desk Accessories 39, 88

Apple menu (creating the) 359
Menus

Affected by DAs 357
Requirements 356

Using desk accessories 356
Desk top (rebuilding it) 556
DestroyBitMap routine 524
Determine if two structures are equal 532
DfltIconDimBlackLtPat constant 518
DfltIconDimWhiteLtPat constant 518
DfltIconDimWhitePat constant 518
DfltIconLeaveBorder constant 518
Dialog Manager 34, 92
Dialogs (see Windows), 109, 539
DialogSelect routine 547
DiamondChar constant 326, 327, 373
disabled constant 166, 176, 190, 201, 215, 223, 264, 311,
319, 321, 325, 359, 364, 372, 390, 514

DisabledFieldLook routine 271
DisableItem routine 547
Disabling a field 240
Disclosure triangles (see Buttons)
Disk space requirements 40
DispMCInfo routine 547
DisposeControl routine 547
DisposeDialog routine 547
DisposeMenu routine 547
DisposeWindow routine 547
Dividing line in menus 360
Dividing line in pop-up menus 320
DlgCopy routine 547
DlgCut routine 547
DlgDelete routine 547
DlgPaste routine 547
doActivate constant 423
doAutoKey constant 423
doButton constant 423
doChgInField constant 423
doChgWindow constant 423
doClick constant 423

Index

WaterÕs Edge Software 571

doClickControl constant 423
doClickDesk constant 423
doClickToFocus constant 423
documentProc constant 120, 123
doDeactivate constant 423
doGoAway constant 423
doGrowWindow constant 423
doKeyDown constant 423
doKeyUp constant 423
doListBox constant 423
doManualEvent constant 423
doMenu constant 423
doMoveCursor constant 423
doMoveWindow constant 423
doNothing constant 423
doOpenApplication constant 423
doOpenDocuments constant 423
doPictButton constant 423
doPopUpMenu constant 423
doPreRefresh constant 423
doPrintDocuments constant 423
doQuitApplication constant 423
doRefresh constant 423
doResume constant 423
doScrollBar constant 423
doSuspend constant 423
DotChar constant 326, 327, 373
Double-clickable applications 553
Double-clicking a list box 180, 206
Double-clicking a radio button 180
DownArrowKey constant 448, 458, 460
doZoomWindow constant 423
DragControl routine 547
DragGrayRgn routine 547
DragWindow routine 547
Draw1Control routine 547
DrawDialog routine 547
DrawGrowIcon routine 548
DrawIcon routine 514
Drawing in windows 109
Drawing pictures (PICTs) 509
DrawListBox routine 302
DrawMenuBar routine 548
DrawPict routine 509
DrawPictRect routine 513
DrawShiftPict routine 513
DrawShiftPictRect routine 514
DrawSICN routine 517
DrawSICNmode routine 517
DrawThermometer routine 530
Drivers 39
Drop-down menus (see Pop-Up Menus)
Dynamic alerts (see Alert Boxes)
DynamicFieldHandles routine 271

E
Edit menu 243, 355
Edit Text control (see Editing Fields)
EditFldWindowNumber routine 150, 270
Editing Fields (see Fields)
Email account for WaterÕs Edge Software 561
email updates 562

EmbedButtonInButton routine 172
EmbedButtonInScrollBar routine 172
EmbedControl routine 548
Embedding controls (see appearance Manager)
EmbedFieldInButton routine 257
EmbedFieldInScrollBar routine 257
EmbedListBoxInButton routine 290
EmbedListBoxInScrollBar routine 290
EmbedPopUpInButton routine 316
EmbedPopUpInScrollBar routine 317
EmbedScrollBarInButton routine 218
EmbedScrollBarInScrollBar routine 218
EnableButton routine 176
enabled constant 166, 176, 190, 201, 215, 223, 264, 311,
319, 321, 325, 359, 364, 372, 390, 514

EnableField routine 264
EnableItem routine 548
EnableMenu routine 372
EnablePictButton routine 201
EnablePopUp routine 325
EnableScrollBar routine 223
Enabling a field 240
EndKey constant 448, 458, 460
EndUpdate routine 548
EndUpdateScreen routine 468, 481, 517
EnterKey constant 448, 458, 460
Entity relationship diagram 31
EqualMem routine 532
Error with parameters 36
EscClearKey constant 448, 458, 460
EscKeyCode constant 448, 458, 460
Evaluation Kit 43
Event loop
EVENT MANAGEMENT 409

Background processing 418, 438, 441
Clearing the event queue 104
Creating a UPP 429
Definition of event dispatching 409
Definition of event polling 409
Event Codes 423
Event filter routine 99, 421
Event handler for a window 429
Event handler routine 86, 99, 419
Event loop (replacement for) 419
Event modifiers 416
Event Queue 411
Event Record 412
Event Record Fields 415
Field To Event cross reference 475
File info for a file that needs to be opened or printed 432,

433
Filtering events 99, 421
Getting an event before Tools Plus processes it 99, 421
Interleave (faster processing) 434
Key-Up events 85
Macintosh Event Queue 84
Macintosh Events 84, 411
Macintosh toolbox events

activateEvt 411, 425
app1Evt 411, 426, 461
app2Evt 411, 426, 461
app3Evt 411, 426, 461
app4Evt 411, 426, 461
autoKey 411

Tools Plus

572

diskEvt 411, 426, 461
driverEvt 411, 426, 461
keyDown 411, 425
keyUp 411, 425
kHighLevelEvent 411, 426, 461
mouse moved 426
mouseDown 411, 424
mouseUp 411, 424
networkEvt 411, 426, 461
null 418, 434, 441, 463
nullEvent 95, 411, 424
osEvt 411, 426, 461
updateEvt 95, 411, 425, 461

Modifiers 416
Multitasking during lengthy processes 430
Number of files to open or print 432
Overview 33, 409
Periodic tasks 419, 438
Process a single event 430
Process a single toolbox event 431
Process events continuously 430
Queuing 411
Quit process events 433, 434
Recursion 87
Repeating rate for picture buttons 197
Serial events 422
Setting an Apple Event error 431
Timer events 419, 438
Toolbox to Tools Plus event translation 424
Tools Plus Events 85

doActivate 425, 446
doAutoKey 425, 447
doButton 424, 425, 448
doChgInField 424, 425, 449
doChgMonitorSettings 450
doChgWindow 424, 450
doClick 424, 451
doClickControl 424, 454
doClickDesk 424, 454
doClickToFocus 424, 454
doDeactivate 425, 455
doGoAway 424, 456
doGrowWindow 424, 425, 426, 457
doKeyDown 425, 447, 457, 459
doKeyInControl 425, 459
doKeyUp 425, 459
doListBox 424, 425, 460
doManualEvent 95, 425, 426, 461
doMenu 424, 425, 462
doMoveCursor 463
doMoveWindow 424, 425, 426, 463
doNothing 95, 418, 424, 434, 441, 461, 463
doOpenApplication 426, 427, 430, 464
doOpenDocuments 427, 430, 465
doPictButton 424, 466
doPopUpMenu 424, 467
doPreRefresh 424, 425, 467
doPrintDocuments 427, 430, 469
doQuitApplication 427, 430, 470
doRefresh 424, 425, 471
doResume 426, 471
doScrollBar 424, 472
doSuspend 424, 426, 473
doTimer 424, 473

doZoomWindow 424, 473
UPP for event handler routine 429
Watch cursor 412
Window event handler routine 420

Event modifiers 416
EventAvail routine 548
Events
Extensions 39
External code modules 93

F
F1KeyCode constant 448, 458, 460
F2KeyCode constant 448, 458, 460
F3KeyCode constant 448, 458, 460
F4KeyCode constant 448, 458, 460
F5KeyCode constant 448, 458, 460
F6KeyCode constant 448, 458, 460
F7KeyCode constant 448, 458, 460
F8KeyCode constant 448, 458, 460
F9KeyCode constant 448, 458, 460
F10KeyCode constant 448, 458, 460
F11KeyCode constant 448, 458, 460
F12KeyCode constant 448, 458, 460
F13KeyCode constant 448, 458, 460
F14KeyCode constant 448, 458, 460
F15KeyCode constant 448, 458, 460
Fax number for WaterÕs Edge Software 562
Features found in Tools Plus 47
FieldDisplay routine 259
FieldIsEmpty routine 269
FieldIsEnabled routine 264
FieldIsVisible routine 259
FieldLengthLimit routine 270
FIELDS 235

Activating a field 236, 262
Active field 236
Active field number (determining it) 270
Alignment (left, right, centre) 251
Allocating memory for a fieldÕs string 235, 250
Appearance/behavior specifications 251
Automatic moving/resizing 153, 252, 278
Box around field 251, 252
Buffering 244
C string (handle pointing to it) 252
Capacity 235
Changing a fieldÕs co-ordinates 276, 277
Changing a fieldÕs size 277
Clicking in a field 237, 264
Color 102, 239

Getting a fieldÕs colors 262
Setting a fieldÕs colors 253, 261

Creating a field 250, 255
Creating a field with horiz. scrolling 255, 256, 257
Deactivating a field 263
Dedicated TextEdit record 252
Default spec for edit text items 132
Default spec for editing fields created using a ÔCNTLÕ 132
Default spec for static text fields created using a ÔCNTLÕ

133
Default spec for static text items 132
Deleting a field 258
Determining if a field is visible 259

Index

WaterÕs Edge Software 573

Dimming on an inactive window 251
Disabled appearance of fields 271, 273
Disabled look

Beep when clicked 272, 274
Default settings 272, 274
Dim not dither box (pre-System 7) 272, 274
Dim not dither text (pre-System 7) 272, 273
Never dim color box 272, 273
Never dim color text 272, 273
Never dither B&W box 272, 273
Never dither B&W text 272, 273

Disabling
Disabling a field 264
Is a field disabled 264

Disabling a field 240, 252
Dynamic String Handles 235
Dynamic Text Handles (turning on/off) 252, 271
Edit field window number (determining it) 270
Edit text control 251
Edited text 236

Getting a handle to it 267
Getting edited text 267
Getting its length 267
Saving edited text 269

Editing the text 241
Empty (determining if field is empty) 269
Enabling

Enabling a field 264
Is a field enabled 264

Enabling a field 240, 252
Filtering characters 240
Filters

Applying a filter to a field 252, 280
Applying a filter to multiple fields 280
Creating a field filter 279
New field filter 279

Font
Getting the font, size and style 261
Setting the font, size and style 239, 260

Getting a fieldÕs co-ordinates 260
Hiding a field 252, 259, 260
Large fields 244
Length limiting 237, 252, 270, 271
Live scrolling 245, 252
Menus

Affected by editing fields 356
Affected by fields 243
Required menus to support fields 355

Minimum memory after ÒundoÓ setup 281
Minimum memory during typing 282
Minimum memory for edits 281
Moving a field 276
New field (creating a) 250, 255
New field with horiz. scrolling 255, 256, 257
Obscuring a field 260
Pascal string (handle pointing to it) 252
Pasting into a field

Handle 275
Pointer 275
String 274

Read-only 235
Resetting scrolling to default 252, 279
Return key (allowed or disallowed) 251
Scroll bars 244

Scrolling fields 260
Scrolling several fields on a window 276
Selection Range

Getting the selection range 263
Setting the selection range 263

Setting Help for a field 402
Showing a field 259
Single line fields 240, 253
Static Text 129, 235, 251
Static text control 251
String

Getting a handle to it 268
Getting its length 269
Getting the string 268
Saving edited text 269

String handle 235, 250
Tab in a field 237, 265, 266
TextEdit handle 282
Unused field number (getting the) 258
Using a ÔCNTLÕ resource 249
Using the windowÕs font 251
Vertical scroll bar 252
Word wrap 240

Filter (see Fields)
FindControl routine 548
FindCursorZone routine 389
Finder

Hiding the Finder and other apps 153
Programming for Finder in System 5 and 6 88

Finder icons 554
FinderDisplay routine 153
FindWindow routine 548
FirstPaletteNumber routine 149
FirstStdWindowNumber routine 149
FirstWindowNumber routine 148
FKey constant 448, 458, 460
FlashButton routine 180
FlashMenuBar routine 548
FlashPictButton routine 206
Flickering screen (preventing strobing) 528
Floating Palettes (see Windows)
FlushEvents routine 548
FocusWindowNumber routine 150
Font Manager 109
FONTS

Buttons
Getting the font, size and style 183
Setting the font, size and style 158, 183

Buttons (setting the font) 167
Fields

Getting the font, size and style 261
Setting the font, size and style 239, 260

Height in pixels 545
List boxes

Getting the font, size and style 300
Setting the font, size and style 284, 300

Panels
Getting the font, size and style 349
Setting the font, size and style 335, 349

Panels (setting the font) 337
Pop-up menus

Getting the font, size and style 332
Setting the font, size and style 308, 331

Pop-up menus (setting the font) 312

Tools Plus

574

ROM resident 294, 320, 361
Scroll bars

Getting the font, size and style 228
Setting the font, size and style 210, 228

Settings for dialog items 116
ForeColor routine 548
Foreground color

Getting a windowÕs foreground color 485
Setting a windowÕs foreground color 486

FreeDialog routine 548
Freeze (application freezes) 411, 420
FrontWindow routine 548
Functions (see Tools Plus Routines)

G
Generic Application icon 554
Generic Document icon 554
GetAlertBoxPrefs routine 503
GetBackColor routine 548
GetBackRGB routine 486
GetButtonColors routine 184
GetButtonFontSettings routine 183
GetButtonHandle routine 185
GetButtonMax routine 178
GetButtonMin routine 178
GetButtonRect routine 176
GetButtonVal routine 179
GetColorPenState routine 491, 492
GetCTitle routine 548
GetCtlMax routine 548
GetCtlMin routine 548
GetCtlValue routine 548
GetCurrentCursorZone routine 389
GetCursorZone routine 388
GetCursorZoneRgn routine 388
GetCustomPanelColors routine 344
GetDialogFontInfo routine 144
GetDialogItemRect routine 144
GetDimColor routine 488
GetDItem routine 548
GetEditHandle routine 267
GetEditLength routine 267
GetEditString routine 267
GetFieldColors routine 262
GetFieldFontSettings routine 261
GetFieldHandle routine 268
GetFieldLength routine 269
GetFieldRect routine 260
GetFieldSelection routine 263
GetFieldString routine 268
GetFocusInfo routine 152
GetForeColor routine 548
GetFreeButtonNum routine 173
GetFreeCursorTableNum routine 385
GetFreeCursorZoneNum routine 387
GetFreeFieldNum routine 258
GetFreeHMenuNum routine 363
GetFreeListBoxNum routine 291
GetFreeMenuNum routine 363
GetFreePanelNum routine 341
GetFreePictButtonNum routine 198
GetFreePopUpNum routine 317

GetFreeScrollBarNum routine 219
GetFreeWindowNum routine 135
GetFrontRGB routine 485
GetIndexFile routine 432
GetIndexFileFSS routine 433
GetIndexString routine 520
GetItem routine 548
GetItemCmd routine 548
GetItemIcon routine 548
GetItemMark routine 548
GetIText routine 548
GetListBoxColors routine 301
GetListBoxFontSettings routine 300
GetListBoxHandle routine 305
GetListBoxLine routine 297
GetListBoxLines routine 298
GetListBoxRect routine 293
GetListBoxText routine 296
GetMCEntry routine 548
GetMenu routine 548
GetMenuBarColors routine 368
GetMenuCmd routine 374
GetMenuColors routine 369
GetMenuHandleFromMemory routine 377
GetMenuIcon routine 375
GetMenuItemColors routine 370
GetMenuMark routine 373
GetMenuString routine 371
GetMHandle routine 548
GetNewControl routine 548
GetNewCWindow routine 548
GetNewDialog routine 548
GetNewMBar routine 548
GetNewWindow routine 548
GetNextEvent function 83
GetNextEvent routine 548
GetOSEvent routine 549
GetPanelColors routine 350
GetPanelFontSettings routine 349
GetPanelRect routine 346
GetParentMenu routine 376
GetPenState routine 491, 549
GetPictButtonMax routine 203
GetPictButtonMin routine 202
GetPictButtonRect routine 200
GetPictButtonVal routine 203
GetPopUpColors routine 333
GetPopUpFontSettings routine 332
GetPopUpHandle routine 334
GetPopUpIcon routine 328
GetPopUpItemColors routine 334
GetPopUpMark routine 327
GetPopUpRect routine 323
GetPopUpSelection routine 329
GetPopUpString routine 324
GetScrollBarActionInfo routine 233
GetScrollBarColors routine 229
GetScrollBarFontSettings routine 228
GetScrollBarHandle routine 233
GetScrollBarMax routine 224
GetScrollBarMin routine 223
GetScrollBarRect routine 222
GetScrollBarVal routine 224
GetStandardPanelColors routine 342

Index

WaterÕs Edge Software 575

GetSubMenu routine 377
GetTEHandle routine 282
GetToolsPlusVersion routine 526
GetTPSerialEvent routine 437
GetWindowInOrder routine 147
GetWindowZoom routine 143
Global co-ordinates 116
Global variables 83
GoAway constant 119
Graphic User Interface 43
Graphics Device handle to a monitor 484
Group Box control (see Buttons)
Group Boxes (see Panels), (see Buttons)
Grow box (in a window) 122
GrowWindow routine 549
GUI 43

H
Handle blocks 543
HandleControlClick routine 549
HandleControlKey routine 549
Hang (application hangs) 411, 420
HasAppearanceManager routine 530
HasAppearanceManagerRoutines routine 531
HasColorQuickDraw routine 479
HaveTabInFocus routine 265, 447, 457
hdlg resource 392, 393, 397
HEAP 98

Default memory for application 558
Size 98, 105, 106

Help (see Balloon Help), 561
Methods for displaying balloons

Regular window 399
Save image behind balloon 399
Save image behind balloon + refresh 399

Searching Help resources
All 400
All resources, all states 400
Dialog item list (ÔhdlgÕ) 400
Menu (ÔhmnuÕ) 400
Rectangles (ÔhrctÕ) 400

Searching Help resourcesÕ states
All resources, all states 400
All statesÕ Help data 400
Disabled itemÕs Help data 400
Enabled and checked itemÕs Help data 400
Enabled itemÕs Help data 400
Enabled, other itemÕs Help data 400

Setting help using a Help resource
Setting Help for a button 400
Setting Help for a control 406
Setting Help for a Cursor Table 404
Setting Help for a Cursor Zone 405
Setting Help for a field 402
Setting Help for a list box 403
Setting Help for a panel 404
Setting Help for a picture button 401
Setting Help for a pop-up menu 403
Setting Help for a scroll bar 402

Setting help without using a Help resource
Setting Help for a button 399
Setting Help for a control 406

Setting Help for a Cursor Table 404
Setting Help for a Cursor Zone 405
Setting Help for a field 402
Setting Help for a list box 402
Setting Help for a panel 404
Setting Help for a picture button 401
Setting Help for a pop-up menu 403
Setting Help for a scroll bar 401

User interface object state
Disabled 399
Enabled 399
Enabled and checked 399
Enabled, other 399

Help Manager (see Balloon Help)
helpAllStates constant 400
helpDisabledState constant 400
helpEnabledCheckedState constant 400
helpEnabledOtherState constant 400
helpEnabledState constant 400
HelpKey constant 448, 458, 460
helpUseAllHelp constant 400
helpUseAllRsrc constant 400
helpUseHdlgRsrc constant 400
helpUseHmnuRsrc constant 400
helpUseHrctRsrc constant 400
hfdr resource 392
HideControl routine 549
HideWindow routine 549
Hierarchical menus (see Menus)
Hierarchy triangles (see Buttons, disclosure triangles)
High-level events (see Apple Events), 354
HiliteControl routine 549
HiliteMenu routine 549
HiliteRect routine 490
HiliteRgn routine 491
HiliteWindow routine 549
hmnu resource 392, 397
HomeKey constant 448, 458, 460
hrct resource 392, 393, 397

I
{$I-} compiler directive 97
iBeamCursor constant 383, 385, 386
Icon Buttons (see Picture Buttons)
Icon control (see Buttons)
Icon family 190, 498, 515, 554
ICONS

Creating your own 516
Disabling (graying out) 514, 516, 518
Displayed by the Finder 554
Displaying icons 514, 517
Displaying SICN elements 517
Large (see icl8, icl4, cicn, ICON and ICN# under

Resources)
Menus displaying icons 360
Not displaying correctly 556
Pop-up menus displaying icons 320
Resource IDs for picture buttons 190
Selecting (darkening) 514, 516, 518
Small (see ics8, ics4, SICN and ics# under Resources)
Small icons (see ics#, ics4 and ics8 under Resources)
Using icons as buttons (see Picture Buttons)

Tools Plus

576

IdleControls routine 549
IgnoreFirstMouseClick routine 436
Image Well (see Buttons)
inButton constant 449
inCheckBox constant 449
inClick1 constant 453
inClick1Drag constant 453
inClick2 constant 453
inClick2Drag constant 453
inClick3 constant 453
inClick3Drag constant 453
include statement (C) 83
Indexed strings (see Strings)
inDownButton constant 233, 449, 472
Infinity Windoid 155
initAllWindowsHaveBackgroundTheme constant 103
initAppearanceManagerSavvy constant 102
initAutoFocusChanges 237
initAutoFocusChanges constant 102
initAutoSaveFieldString constant 102
InitCursor routine 383, 549
InitDialogs routine 97, 549
initDontUnloadDeskScrap constant 101
initFasterWinDrag constant 101
InitFonts routine 97
InitGraf routine 97
INITIALIZATION

Application 97
Automatic 97, 101
Tools Plus 97

Initialize a record (set to zero) 532
Initializing a program (deinitializing) 105
Initializing an application or plug-in 99
initIgnoreColor constant 101
initIgnoreTEScrap constant 101
initInheritHelp constant 101, 392
initLiveWindowDrag constant 103
initLiveWindowDrag040 constant 103
initLiveWindowDragPPC constant 103
initMacToolbox constant 101
InitMenus routine 97, 549
initPureAppearanceManager constant 102
initReleaseResources constant 101
INITs 39
initTE32KBuffer constant 100
initTEStr255Buffer constant 100
InitToolsPlus function 97
InitToolsPlus routine 99, 515
initUnloadDeskScrap constant 101
initUseColor constant 100
initUseTEScrap constant 101
InitWindows routine 97, 549
inPageDown constant 233, 472
inPageUp constant 233, 472
InsertIndexString routine 521
Insertion point 236
InsertListBoxLine routine 298
InsertMenu routine 549
InsertMenuItm routine 364
InsertPopUpItem routine 321
InsertResMenu routine 549
InsMenuItem routine 549
Integers (4-byte vs 2-byte in CodeWarrior C/C++) 60
Internet 561

inThumb constant 233, 472
inUpButton constant 233, 449, 472
IsControlActive routine 549
IsControlVisible routine 549
IsDialogEvent routine 549
italic constant 144, 145, 183, 228, 260, 300, 328, 331,
349, 375

J
Jerky behavior 411, 420

K
kControlBehaviorMultiValueMenu constant 310
kControlBehaviorOffsetContents constant 161, 310
kControlBehaviorPushbutton constant 161
kControlBehaviorSticky constant 161
kControlBehaviorToggles constant 161
kControlBevelButtonLargeBevelProc constant 161, 310
kControlBevelButtonMenuOnRight constant 310
kControlBevelButtonNormalBevelProc constant 161, 310
kControlBevelButtonSmallBevelProc constant 161, 310
kControlChasingArrowsProc constant 163
kControlCheckBoxMixedValue constant 160
kControlCheckBoxProc constant 160
kControlClockDateProc constant 162
kControlClockIsDisplayOnly constant 162
kControlClockIsLive constant 162
kControlClockMonthYearProc constant 162
kControlClockNoFlags constant 162
kControlClockTimeProc constant 162
kControlClockTimeSecondsProc constant 162
kControlContentCIconRes constant 161, 164, 310
kControlContentIconRef constant 161, 164, 310
kControlContentIconSuiteRes constant 161, 164, 310
kControlContentPictRes constant 161, 164, 310
kControlContentTextOnly constant 161, 164, 310
kControlEditTextProc constant 249
kControlGroupBoxCheckBoxProc constant 162
kControlGroupBoxPopupButtonProc constant 162
kControlGroupBoxSecondaryCheckBoxProc constant 162
kControlGroupBoxSecondaryPopupButtonProc constant
162

kControlGroupBoxSecondaryTextTitleProc constant 162
kControlGroupBoxTextTitleProc constant 162
kControlIconNoTrackProc constant 165
kControlIconProc constant 165
kControlIconSuiteNoTrackProc 165
kControlIconSuiteProc constant 165
kControlImageWellProc constant 164
kControlListBoxProc constant 285
kControlLittleArrowsProc constant 163, 213
kControlPictureNoTrackProc constant 164
kControlPictureProc constant 164
kControlPlacardProc constant 163
kControlPopupArrowEastProc constant 164
kControlPopupArrowNorthProc constant 164
kControlPopupArrowSmallEastProc constant 164
kControlPopupArrowSmallNorthProc constant 164
kControlPopupArrowSmallSouthProc constant 164
kControlPopupArrowSmallWestProc constant 164
kControlPopupArrowSouthProc constant 164

Index

WaterÕs Edge Software 577

kControlPopupArrowWestProc constant 164
kControlProgressBarProc constant 213
kControlPushButLeftIconProc constant 160
kControlPushButRightIconProc constant 160
kControlPushButtonProc constant 160
kControlRadioButtonProc constant 160
kControlScrollBarLiveProc constant 213
kControlScrollBarProc constant 213
kControlSeparatorLineProc constant 164
kControlSliderHasTickMarks constant 213
kControlSliderLiveFeedback constant 213
kControlSliderNonDirectional constant 213
kControlSliderProc constant 213
kControlSliderReverseDirection constant 213
kControlStaticTextProc constant 163, 249
kControlTabLargeProc constant 161
kControlTabSmallProc constant 161
kControlTriangleAutoToggleProc constant 162
kControlTriangleLeftFacingAutoToggleProc constant 162
kControlTriangleLeftFacingProc constant 162
kControlTriangleProc constant 162
kControlUserPaneProc constant 165
kControlWindowHeaderProc constant 165
kControlWindowListViewHeaderProc constant 165
Keyboard equivalents for menus (see Command key)
KEYS

* 243
+ 243
/ 243
= 243
Backspace key (see Delete key)
Caps Lock 416
Clear 242, 244, 447, 457, 459
Command 158, 167, 241, 309, 358, 360, 416, 498
Control 416
Del (delete forward) 447, 457, 459
Delete 241
Delete Forward 242
Down arrow 243, 447, 457, 459
End 242, 447, 457, 459
Enter 241, 447, 457, 459
Esc 447, 457, 459
Escape 158, 167, 498
F1 through F15 447, 457, 459
Help 447, 457, 459
Home 242, 447, 457, 459
Left arrow 242, 447, 457, 459
Option 416
Page Down 242, 447, 457, 459
Page Up 242, 447, 457, 459
Return 241, 244, 447, 457, 459
Right arrow 242, 447, 457, 459
Shift 416
Tab 237, 241, 265, 266, 447, 457, 459
Up arrow 243, 447, 457, 459

kHMCheckedItem constant 399
kHMDisabledItem constant 399
kHMEnabledItem constant 399
kHMOtherItem constant 399
kHMRegularWindow constant 399
kHMSaveBitsNoWindow constant 399
kHMSaveBitsWindow constant 399
KillButton routine 174
KillControls routine 549

KillField routine 259
KillListBox routine 291
KillPanel routine 345
KillPictButton routine 199
KillPopUp routine 323
KillScrollBar routine 220
KillTPSerialEvent routine 437
kThemeActiveAlertBackgroundBrush constant 136
kThemeActiveDialogBackgroundBrush constant 136
kThemeActiveModelessDialogBackgroundBrush constant
136

kThemeActiveUtilityWindowBackgroundBrush constant
136

kThemeChasingArrowsBrush constant 136
kThemeDocumentWindowBackgroundBrush constant 136
kThemeDragHiliteBrush constant 136
kThemeFinderWindowBackgroundBrush constant 136
kThemeIconLabelBackgroundBrush constant 136
kThemeInactiveAlertBackgroundBrush constant 136
kThemeInactiveDialogBackgroundBrush constant 136
kThemeInactiveModelessDialogBackgroundBrush constant
136

kThemeInactiveUtilityWindowBackgroundBrush constant
136

kThemeListViewBackgroundBrush constant 136
kThemeListViewSeparatorBrush constant 136
kThemeListViewSortColumnBackgroundBrush constant 136
kWindowAlertProc constant 123
kWindowDocumentProc constant 123
kWindowFloatFullZoomGrowProc constant 123
kWindowFloatFullZoomProc constant 123
kWindowFloatGrowProc constant 123
kWindowFloatHorizZoomGrowProc constant 123
kWindowFloatHorizZoomProc constant 123
kWindowFloatProc constant 123
kWindowFloatSideFullZoomGrowProcID constant 123
kWindowFloatSideFullZoomProcID constant 123
kWindowFloatSideGrowProcID constant 123
kWindowFloatSideHorizZoomGrowProcID constant 123
kWindowFloatSideHorizZoomProcID constant 123
kWindowFloatSideProcID constant 123
kWindowFloatSideVertZoomGrowProcID constant 123
kWindowFloatSideVertZoomProcID constant 123
kWindowFloatVertZoomGrowProc constant 123
kWindowFloatVertZoomProc constant 123
kWindowFullZoomDocumentProc constant 123
kWindowFullZoomGrowDocumentProc constant 123
kWindowGrowDocumentProc constant 123
kWindowHorizZoomDocumentProc constant 123
kWindowHorizZoomGrowDocumentProc constant 123
kWindowModalDialogProc constant 123
kWindowMovableAlertProc constant 123
kWindowMovableModalDialogProc constant 123
kWindowPlainDialogProc constant 123
kWindowShadowDialogProc constant 123
kWindowVertZoomDocumentProc constant 123
kWindowVertZoomGrowDocumentProc constant 123

L
Languages (supporting others) 535
Layers (for windows) 115
LeftArrowKey constant 448, 458, 460

Tools Plus

578

Length limiting of fields 237, 270, 271
Lengthy processes (displaying the watch cursor) 380, 412
lExtendDrag constant 287
Lines (drawing zoom lines) 528
Lisa 39
List Box control (see List Boxes), 285
LIST BOXES 283

Activating a list box 293
Appearance/behavior specifications 287
Automatic moving/resizing 153, 288, 304
Changing a list boxÕs co-ordinates 303
Changing a list boxÕs size 303
Changing co-ordinates 303
Clicking in a list box 264
Color

Getting a list boxÕs colors 301
Setting a list boxÕs colors 301

Creating a list box 286, 289
Custom List Boxes 540
Default spec for list boxes created using a ÔCNTLÕ 133
Deleting a list box 291
Determining if a list box is visible 292
Dimming an inactive list 288
Disabling

Is a list box disabled 299
Enabling

Is a list box enabled 299
Font

Getting the font, size and style 300
Setting the font, size and style 284, 300

Getting a list boxÕs co-ordinates 293
Handle (getting it) 305
Hiding a list box 288, 292
Lines

Adding a set of strings (ÔSTR Õ)
Deleting a line 299
Deleting all lines 299
Drawing (turn on/off) 302
Find text 296
Getting text 296
Inserting a blank line 298
Inserting resource names 295
Selecting

Is a line selected 297
Searching for selected lines 298
Selecting/deselecting a line 297

Set text 294
List box control 285, 288
Moving a list box 302
New list box (creating a) 286, 289
No box around list 288
Number of lines in a list box 301
Obscuring a list box 292
Resource names 295
Scrolling list boxes 292
Selection Methods

1 line 287, 288
Default 287, 288
Extend drag 287, 288
First line sensing 287, 288
No disjoints 287, 288
No extensions 287, 288

Setting Help for a list box 402, 403

Showing a list box 292
Tabbing between list boxes 265, 266
Text (see Lines)
Unused List box number (getting the) 291
Using a ÔCNTLÕ resource 129, 285
Using color 288
Using the windowÕs font 288

List Manager 540
List Manager replacement 46
listAutoMoveSize constant 288
ListBoxDisplay routine 292
ListBoxIsEnabled routine 299
ListBoxIsVisible routine 292
ListBoxLineCount routine 301
listColorList constant 284, 288
listDefault constant 288
listDimWhenInactive constant 288
listExtendDrag constant 288
listHidden constant 288
listNoDisjoint constant 288
listNoExtend constant 288
listNoFrame constant 288
listOnlyOne constant 288
listSystemBody constant 285, 288
listUseSense constant 288
listUseWFont constant 288
Little Arrows control (see Buttons, Scroll Bars)
lNoDisjoint constant 287
lNoExtend constant 287
LoadButton routine 170
LoadDialog routine 127
LoadDialogList routine 131
LoadDialogPopUp routine 316
LoadMenu routine 361
LoadMenuBar routine 362
LoadPopUp routine 315
LoadPopUpRect routine 316
LoadScrollBar routine 217
LoadSpecButton routine 171
LoadSpecDialog routine 130
LoadSpecDialogBehind routine 131
LoadSpecScrollBar routine 218
LoadSpecWindow routine 126
LoadSpecWindowBehind routine 127
LoadWindow routine 125
Local co-ordinates 116
Logical screens 478, 480, 481, 482
Long waits (displaying the watch cursor) 380, 412
lOnlyOne constant 287
Lower case (shifting typed letters to) 240, 279
lUseSense constant 287

M
mRuntime.Lib 73
Mac OS 8 91, 115, 354, 410, 557, 558
Mac OS 8 (programming for) 88
Macintosh 128K 39
Macintosh 512K 39
Macintosh 512KE 39
Macintosh XL 39
mail updates 563
MainMonitorNumber routine 484

Index

WaterÕs Edge Software 579

mAppleMenu constant 361, 369, 370, 371, 372, 376, 377
mApplicationsMenu constant 372, 376, 377
Max routine 533
MaxAlertBoxes constant 505
MaxApplZone routine 97, 104, 549
Maximum value of two numbers 533
Memory (applicationÕs) 558
Memory consumption 541
Memory requirements 40
Menu routine 359
MenuBarDisplay routine 367
MenuCmd routine 374
MenuEvent routine 549
MenuHilite routine 377
MenuIcon routine 374
MenuItemCount routine 376
MenuKey routine 549
MenuMark routine 373
MENUS 353

Affected by desk accessories 357
Affected by editing fields 356
Apple menu (creating the) 359
Applications menu 357
Attaching a hierarchical menu 364
Check mark (displaying, hiding) 360
Color 102, 354
Color resources 361
Command key

Getting an itemÕs Command-key equivalent 374
Setting an itemÕs Command-key equivalent 374

Command key equivalents 358, 359
Creating a menu item 359
Creating a pull-down or hierarchical menu 359
Deleting a menu or item 366
Deleting all menus 366
Detaching a hierarchical menu 364
Disabling menus/items 359, 372
Displaying icons in menus 359
Edit menu 355
Edit menu (Select All) 356, 363
Enabling menus/items 372
Fields (effect on menus) 243
Getting a menu itemÕs colors 370
Getting a menuÕs colors 369
Getting an itemÕs text 371
Getting default menu colors 368
Handle (getting it) 377
Help menu 357
Hiding the menu bar 367
Hierarchical 309, 353, 359
Highlighting a menu in the menu bar 377
Icon

Getting a menu itemÕs icon 375
Setting a menu itemÕs icon 374

Icons in menus 360
Insert a menu item 364
Insert resource names 365
Mac OS 8 354, 557
Mark

Check mark (displaying, hiding) 372
Display/clear a menu itemÕs ÒmarkÓ 373
Getting a menu itemÕs ÒmarkÓ 373

Marking menu items (i.e., check mark) 359
MBAR resource 353, 362

mctb resource 361
MENU resource 353, 361, 362
MultiFinder 354, 557
Number of items in a menu 376
OpenÉ 354, 557
Parent Menu

Attaching/detaching a hierarchical menu 364
Getting a menuÕs parent menu 376

Pop-down menus (see Pop-Up Menus)
Pop-up menus (see Pop-Up Menus)
Quit 354, 557
Selection

Deselecting an item 372, 373
Is an item selected 373
Selecting an item 372, 373

Setting a menu itemÕs colors 370
Setting a menuÕs colors 369
Setting default menu colors 368
Showing the menu bar 367
Special characters (displaying, hiding) 360
Styles (setting a menu itemÕs style) 359, 360, 375
SubMenu

Attaching/detaching a hierarchical menu 364
Getting a menu itemÕs submenu 377

System 7 354, 557
Title changes 360, 371
Unused hierarchical menu number (getting the) 363
Unused menu number (getting the) 363
Updating the menu bar 367

MenuSelect routine 549
MenuStyle routine 375
Metacharacters 319, 359
mHelpMenu constant 357, 359, 364, 365, 366, 369, 370,
371, 372, 373, 374, 375, 376, 377

Min routine 533
Minimum value of two numbers 533
Modal constant 119
Modal dialogs 92
ModalDialog routine 549
Modeless dialogs 92
Modifier flags 416
Monitor

Does a monitor have color? 482, 483
Drawing across multiple monitors 477
Main monitor number 484
Number of colors or grays 481, 483
Number of differently set monitors 480
Number of monitors 482
Recalculating monitor and screen settings 482

MonitorDepth routine 483
MonitorGDevice routine 484
MonitorHasColors routine 483
Monitors 483, 484
MoreMasters routine 97, 99
MOUSE

Button 416
Clicks

Detection 451
Discontinuing multiple clicks 435
Fields (click in) 264
Ignoring first of a multiple click sequence 436
Responding to 451
Waiting for next mouse-down/up 435
Zone (click in cursor zone) 381, 389

Tools Plus

580

Dragging
Detection 451
Discontinuing a drag 435
Ignoring first click of the drag 436
Responding to 451
Waiting for mouse-up 435

movableBoxProc constant 120, 123
MoveButton routine 180
MoveControl routine 549
MoveField routine 276
MoveListBox routine 302
MovePanel routine 346
MovePictButton routine 206
MovePopUp routine 329
MovePortTo routine 549
MoveScrollBar routine 225
MoveSizeButton routine 181
MoveSizeButtonRect routine 182
MoveSizeField routine 277
MoveSizeFieldRect routine 278
MoveSizeListBox routine 303
MoveSizeListBoxRect routine 304
MoveSizePanel routine 347
MoveSizePanelRect routine 348
MoveSizePopUp routine 330
MoveSizePopUpRect routine 330
MoveSizeScrollBar routine 226
MoveSizeScrollBarRect routine 227
MoveWindow routine 549
MultiFinder 88, 115, 354, 410, 557, 558

Programming for MultiFinder 88
Multiple monitors 477
Multitasking 88, 410, 558

N
Networks 461
NewButton routine 166
NewButtonControl routine 169
NewButtonControlRect routine 169
NewButtonRect routine 169
NewCDialog routine 549
NewControl routine 549
NewCursorTable routine 385
NewDialog routine 549
NewDialogButton routine 170
NewDialogButtonControl routine 170
NewDialogField routine 255
NewDialogListBox routine 289
NewDialogPanel routine 341
NewDialogPictButton routine 198
NewDialogScrollBar routine 217
NewDialogWideField routine 257
NewEventHandlerProc routine 429
NewField routine 250
NewFieldFilter routine 279
NewFieldRect routine 255
NewIndexStringHandle routine 519
NewListBox routine 286
NewListBoxRect routine 289
NewMenu routine 549
NewPanel routine 336
NewPanelRect routine 341

NewPictButton routine 189
NewPopUp routine 311
NewPopUpRect routine 315
NewScrollBar routine 214
NewScrollBarActionProc routine 232
NewScrollBarRect routine 217
NewStrHandle routine 250
NewTimer routine 442
NewWideField routine 255
NewWideFieldRect routine 256
NewWindow routine 549
NMInstall routine 549
NMRemove routine 549
NoAltBut constant 502
NoBackdropColor routine 135
NoButtonAlert constant 502
NoButtonColors routine 173
NoChar constant 326, 327, 373
NoDefaultButton routine 185
NoGoAway constant 119
noGrowDocProc constant 120, 123
NoIcon constant 502
NoPopUpColors routine 319
NoScrollBarColors routine 220
noteIcon constant 502
Notification Manager 493, 494
NotModal constant 119
notSelected constant 166, 177, 190, 201, 204, 514
NoYesAlert constant 502
NoYesCanAlert constant 502
NumberOfMonitors routine 482
NumberOfScreens routine 468, 480
Numeric pad 243

O
ObscureButton routine 175
ObscureField routine 260
ObscureListBox routine 292
ObscurePanel routine 346
ObscurePictButton routine 200
ObscurePopUp routine 324
ObscureScrollBar routine 221
off constant 270, 271, 297, 326, 373, 390
OffsetButton routine 181
OffsetField routine 276
OffsetListBox routine 303
OffsetPanel routine 347
OffsetPictButton routine 206
OffsetPopUp routine 329
OffsetScrollBar routine 225
Offspring menu (see Menus)
OkAlert constant 502
OkAltBut constant 502
OkCanAlert constant 502
Old keyboard 243
on constant 270, 271, 297, 326, 373, 390
OpenDeskAcc routine 549
Option key 409
ordPaletteProc constant 120
outline constant 144, 145, 183, 228, 260, 300, 328, 331,
349, 375

Index

WaterÕs Edge Software 581

P
P2CStr routine in C 89
PageDownKey constant 448, 458, 460
PageUpKey constant 448, 458, 460
paletteProc constant 120
Palettes (see Windows)
pan3DGroupBox constant 339
panAutoDeselect constant 338
panAutoMoveSize constant 338
panBlackBorder constant 337
panBWGrayBorder constant 337
panCenterTitle constant 338
panColorBack constant 338
panColorBorder constant 338
panColorText constant 338
panCustomColors constant 337
PanelDisplay routine 345
PanelIsVisible routine 345
PANELS 335

3D Title
Inset with heavy shadows 339
Inset with soft shadows 339
Plain style (no 3D) 339
Raised with heavy shadows 339
Raised with soft shadows 339

Appearance/behavior specifications 337
Automatic button deselection 338
Automatic moving/resizing 338, 348
Background filling 337
Centered title 338
Changing a panelÕs co-ordinates 347
Changing a panelÕs size 347
Changing co-ordinates 347
Colors

Custom color table 336, 337, 343, 344
Getting a panelÕs colors 350
Getting colors for multiple panels 342
Getting custom color table 344
Replacement color for background 338
Replacement color for border 338
Replacement color for title 338
Setting a panelÕs colors 350
Setting colors for multiple panels 342
Setting custom color table 343
Standard color table 336, 337, 342

Creating a panel 336, 341
Deleting a panel 344
Determining if a panel is visible 345
Font

Getting the font, size and style 349
Setting the font, size and style 335, 349

Font (setting the font) 337
Getting a panelÕs co-ordinates 346
Group box

3D look 339
Standard look 339

Hiding a panel 338, 345, 346
Left-aligned title 338
Moving a panel 346
New panel (creating a) 336, 341
Obscuring a panel 346
Outline 337
Outline on B&W monitor 337

Plain style (no 3D) 339
Right-aligned title 338
Round corners 339
Scrolling panels 346
Setting Help for a panel 404
Shadows

Inset 339
None 339
Raised 339

Showing a panel 345
Unused panel number (getting the) 341

panFillBack constant 337
panGroupBox constant 339
panHidden constant 338
panInsetShadow constant 339
panInsetTitle constant 339
panInsetTitleDark constant 339
panLeftTitle constant 338
panNoBackdrop constant 338
panNoShadow constant 339
panOutline4bit constant 337
panOutlined constant 337
panPlainTitle constant 339
panRaiseShadow constant 339
panRaiseTitle constant 339
panRaiseTitleDark constant 339
panRightTitle constant 338
panRoundCorner1 through 31 constant 339
panUseWFont constant 337
Parameter range error 36
Parent menu (see Menus)
Pascal.h header file in C 89
PasteHIntoField routine 275
PasteIntoField routine 274
PastePIntoField routine 275
Pausing for a period of time 527
PenColorNormal routine 489
PenNormal routine 489, 549
Periodic tasks (see Event Management)
picbutAutoMoveSize constant 193
picbutAutoValueChg constant 194
picbutBigSICN3D constant 193
picbutDimAltImage constant 195
picbutDimLeaveBorder constant 195
picbutDimNoChange constant 195
picbutDimUsingBlackLite constant 195
picbutDimUsingWhite constant 195
picbutDimUsingWhiteLite constant 195
picbutFastAccel constant 205
picbutGray4use8 constant 193
picbutHidden constant 193
picbutInstantEvent constant 193
picbutLeftRightSplit constant 194
picbutLinear constant 205
picbutLockSelected constant 193
picbutMedAccel constant 205
picbutMultiStage constant 192
picbutRepeatEvents constant 193
picbutScaleFastAccel constant 194
picbutScaleLinear constant 194
picbutScaleMedAccel constant 194
picbutScaleSlowAccel constant 194
picbutSelectAltImage constant 194
picbutSelectDarken constant 194

Tools Plus

582

picbutSelectDarkenSICN3D constant 194
picbutSelectLightenSICN3D constant 194
picbutSelectPushedSICN3D constant 194
picbutSlowAccel constant 205
picbutSwitchSelected constant 193
picbutTopBottomSplit constant 194
picbutTrackWithHilite constant 193
picbutUsePICTS constant 193
picbutValueWrap constant 194
Pick lists (see List Boxes or Pop-Up Menus)
PictButtonDisplay routine 199
PictButtonIsEnabled routine 201
PictButtonIsSelected routine 202
PictButtonIsVisible routine 200
pictBWplus constant 511
pictClipToRect constant 510
pictColor4plus constant 511
pictColor8plus constant 511
pictGray4plus constant 511
pictGray8plus constant 511
pictMultiPICT constant 511
pictOnBackdrop constant 511
pictOnColor constant 511
pictOnWhite constant 511
pictScale1PICT constant 510
PICTURE BUTTONS 187

3D buttons 191, 194
Appearance/behavior specifications 192
Automatic moving 153, 193, 207
Automatic value changes 194
Changing co-ordinates 206
Creating a picture button 189, 198
Current value

Getting the current value 203
Setting the current value 204

Deleting a picture button 199
Deselecting

Deselecting a picture button 201
Is a picture button deselected 202

Deselecting a picture button 204
Determining if a picture button is visible 200
Disabling

Disabling a picture button 201
Is a picture button disabled 201

Disabling effects
Alternate image 195
Light (25%) overlay using black 195
Light (25%) overlay using white 195
Medium (50%) overlay using white 195
No effect 195
Preserving imageÕs border 195

Enabling
Enabling a picture button 201
Is a picture button enabled 201

Enhanced gray scale pictures 193
Flashing a picture button 206
Getting a picture buttonÕs co-ordinates 200
Hiding a button 193
Hiding a picture button 199, 200
Instant Events 193
Large 3D buttons 193
Linear scaling 194
Locking in ÒselectedÓ state 193
Maximum value limit

Getting the maximum value 203
Setting the maximum value 203

Minimum value limit
Getting the minimum value 202
Setting the minimum value 202

Moderately accelerated scaling 194
Moving a picture button 206
Multiple stages 192
New picture button (creating a) 189, 198
Obscuring a picture button 200
PICTs instead of icons 193
Polarized

Left/Right split 194, 466
Top/bottom split 194, 466

Rapidly accelerated scaling 194
Repeating event rate 197
Repeating events 193
Resource IDs 190
Scaling rate of value changes

Fast acceleration 194
Linear 194
Medium acceleration 194
Slow acceleration 194

Scrolling picture buttons 200
Selecting

Is a picture button selected 202
Selecting a picture button 201

Selecting a picture button 204
Selection effects

Alternate image 194
Darkening 194
Darkening an SICN 3D button 194
Lightening an SICN 3D button 194
Pushing in an SICN 3D button 194

Setting Help for a picture button 401
Setting the value change rate 205
Setting the value change speed 205
Showing a picture button 199
Slowly accelerated scaling 194
Switching between selected/deselected state 193
Tracking with highlighting 193
Unused picture button number (getting the) 198
Value wrapping 194

Picture control (see Buttons)
PICTURES

Clipping 510
Drawing across multiple monitors 511
Drawing as per monitor settings 511
Drawing pictures 509
Offsetting in frame 513, 514
Retaining original proportions 510
Scaling 510
Shifting in frame 513, 514
Using pictures as buttons (see Picture Buttons)

pictUsePictRect constant 510
PixMaps 522

Converting a PixMap to a region 525
Create a PixMap 523
Destroy a PixMap 524

Placard (see Buttons)
plainDBox constant 120, 123
Plug-ins 93, 121, 122, 354
plusCursor constant 383, 385, 386
Pointer (getting a windowÕs pointer) 153

Index

WaterÕs Edge Software 583

Polling (see Event Management)
Polling for events (see Event Management)
Pop-down menus (see Pop-Up Menus)
Pop-Up Arrows (see Buttons)
POP-UP MENUS 307

Attaching a hierarchical menu 318
Automatic moving/resizing 153, 313, 331
Changing a pop-up menuÕs co-ordinates 330
Changing a pop-up menuÕs size 330
Changing co-ordinates 329
Check mark (displaying, hiding) 320
Color 102, 308, 312

Default colors for multiple pop-up menus 319
Getting a pop-up menu itemÕs colors 334
Getting a pop-up menuÕs colors 333
Setting a pop-up menu itemÕs colors 333
Setting a pop-up menuÕs colors 332
Setting colors for multiple pop-up menus 318

Color resources 315
Command key equivalents 309
Creating a menu item 319
Creating a pop-up menu 311, 315
Creating using a ÔMENUÕ resource 315, 316
Default appearance and behavior 313
Default spec for pop-ups created using a ÔCNTLÕ 133
Deleting a menu or item 322
Deleting all items 322
Detaching a hierarchical menu 318
Determining if a pop-up menu is visible 324
Dimming selected text 312
Dimming the controlÕs body 312
Dimming the title 313
Disabling

Disabling menus/items 325
Is a pop-up menu disabled 326

Disabling menus/items 319
Displaying icons in menus 319
Dividing lines 320
Down-arrow suppression 313
Drawing on a background 312
Enabling

Enabling menus/items 325
Is a pop-up menu enabled 326

Fixed title in control body 313
Font

Getting the font, size and style 332
Setting the font, size and style 308, 331

Font (setting the font) 312
Getting a pop-up menuÕs co-ordinates 323
Getting an itemÕs text 324
Handle (getting it) 334
Hiding a pop-up menu 313, 323, 324
Hierarchical 309
Icon

Getting a menu itemÕs icon 328
Setting a menu itemÕs icon 327

Icon in controlÕs body 313
Icons in pop-up menus 320
Insert a pop-up menu item 321
Insert resource names 321
Mark

Check mark (displaying, hiding) 326
Display/clear a menu itemÕs ÒmarkÓ 326
Getting a menu itemÕs ÒmarkÓ 327

Marking menu items (i.e., check mark) 319
mctb resource 315
MENU resource 308, 315
Moving a pop-up menu 329
New pop-up menu (creating a) 311, 315
New pop-up menu (using ÔMENUÕ resource) 315, 316
Number of items in a menu 328
Obscuring a pop-up menu 324
Pop-down menu 313
Scrolling pop-up menus 324
Selecting multiple items 313
Selecting single item only 313
Selection

Deselecting an item 326
First item selected 329
Is an item selected 327
Selecting an item 326

Setting Help for a pop-up menu 403
Showing a pop-up menu 323
Special characters (displaying, hiding) 320
Styles

3D body 312
SystemÕs CDEF 312
Tools Plus style 312

Styles (setting a menu itemÕs style) 319, 320, 328
Title changes 325
Unused pop-up menu number (getting the) 317
Using a ÔCNTLÕ resource 128, 129, 309

popup3DBody constant 312
popupAutoMoveSize constant 313
popupColorPopUp constant 312
PopUpColors routine 318
popupDefaultType constant 313
PopUpDisplay routine 323
popupDropDown constant 313
popupHasBackground constant 312
popupHidden constant 313
PopUpIcon routine 327
popupIconTitle constant 313
PopUpIsEnabled routine 326
PopUpIsVisible routine 324
PopUpItemCount routine 328
PopUpMark routine 326
PopUpMenu routine 319
PopUpMenuSelect routine 549
popupMultiSelect constant 313
popupNeverDimOutline constant 312
popupNeverDimSelection constant 312
popupNeverDimTitle constant 313
popupNoArrow constant 313
PopUpStyle routine 328
popupSystemBody constant 312
popupUseWFont constant 312
PostEvent routine 549
PostNotification routine 495
Power Macintosh performance 92
PPC .lib Converter 71
Preloading Tools Plus segments 64, 69, 73
Print Manager 141
Print Monitor 141
Printing text in windows 109
Procedures (see Tools Plus Routines)
Process1EventWhileBusy routine 430
ProcessEvents routine 430

Tools Plus

584

ProcessToolboxEvent routine 431
Progress indicator (see Scroll Bars)
Pull-Down menus (see Menus)
Purging Tools Plus segments 64, 69, 73
Push buttons (see Buttons)
pushButProc constant 167

Q
QCª 44
QDGlobals.a.o library 70
QDGlobals.c library 71
Quality control 44
Queuing (see Event Management)
QuickDraw 109
QuitAltBut constant 502
QuitToolsPlus routine 433

R
Radio buttons (see Buttons)
radioButProc constant 167
Range checking 36
rDocProc constant 120, 123
Rectangle being visiblein current window or grafPort 484
RectIsVisible routine 484
RedrawRect routine 487
RedrawRgn routine 487
RefreshDrawingInWindow routine 147
RefreshToolsPlusInWindow routine 146
Region being visiblein current window or grafPort 485
RegisterAppearanceClient routine 549
RemoveAllMenus routine 367
RemoveMenu routine 366
RemoveMenus routine 366
RemovePopUp routine 322
RenameItem routine 371
RenamePopUp routine 325
Repeating event rate for picture buttons 197
ReplaceControlProcID routine 186
ReplaceWindowProcID routine 154
ResEdit 34, 38, 40, 42, 45, 553
ResetCursor routine 384
ResetFieldScrolling routine 279
ResetMouseClicks routine 435
ResNamesToListBox routine 295
ResNamesToMenu routine 365
ResNamesToPopUp routine 321
Resorcerer 27, 40, 45, 391
Resource Editor 34, 38, 40, 42, 45
Resource file 553
RESOURCES

acur 382
BNDL 515, 553, 556
cctb 170, 171, 217, 218
CDEF 91, 102, 157, 158, 168, 186, 211, 216, 530,

531, 540
CDEF (irregular variant codes) 167
cicn 320, 360, 515
cicn (bug when displaying) 190, 515
cicn icon in pop-up menus 320
CNTL 128, 132, 133, 163, 170, 171, 213, 217, 218,

249, 285, 309

crsr 379, 382
CURS 382
dctb 127
dftb 116
DITL 110, 127, 131
DLOG 110, 127, 130, 131, 539
File containing them 553
FREF 556
hdlg 392, 393, 397
hfdr 392
hmnu 392, 397
hrct 392, 393, 397
icl4 515, 554
icl8 515, 554
ICN# 515, 554
ICON 320, 360, 501, 515
Icons (drawing them) 514, 517
Icons in buttons (see Picture Buttons)
ics# 515, 554
ics4 515, 554
ics8 515, 554
IDs for picture buttons 191
LDEF 287, 288, 540
ldes 284
List box (resource names added to) 295
MBAR 353, 362
mctb 315, 316, 361
MENU 308, 315, 316, 353, 361, 362
Menu (resource names added to) 365
mstr 553, 557
Owner resource 556
PICT (also see Pictures)
PICT (drawing them) 509
PICT ID numbers (for drawing) 510
PICT in buttons (see Picture Buttons), 191, 193
Pop-up menu (resource names added to) 321
Releasing resources 101
Reserved resource IDs 535
Resource Editors 34, 38, 40, 42, 45
SICN 191, 318, 320, 358, 360, 364, 494, 515, 517
SIZE 88, 426, 436, 553, 558
snd 494
STR 397
STR# 535
tab# 161
vers 553, 556
wctb 125
WDEF 91, 102, 113, 118, 120, 122, 154, 530, 531
WIND 110, 125, 126, 127

Resumed application 436
ReturnKey constant 448, 458, 460
ReverseKeyboardFocus routine 549
RGBBackColor routine 549
RGBForeColor routine 550
RgnIsVisible routine 485
RightArrowKey constant 448, 458, 460
ROM requirements 104
ROMs 39
Routines (see Tools Plus Routines)

Index

WaterÕs Edge Software 585

S
SaveFieldString routine 269
Scheduled processing 435
screenBits.bounds global variable 116
ScreenDepth routine 480, 481
ScreenHasColors routine 480, 482
Screens (more than 2) 477
scrlAutoMoveSize constant 216
scrlBusyThermometerMinLimit constant 213
scrlColorScrollBar constant 215
scrlHidden constant 216
scrlLiveScroll constant 215
scrlNoObscure constant 216
scrlStandard constant 215
scrlValueLimit constant 215
SCROLL BARS 209

Action routine 211, 231, 233
Activating a scroll bar 222
Appearance Manager 102, 111
Appearance/behavior specifications 215
Automatic moving/resizing 153, 216, 227
cctb resource 217, 218
Changing a scroll barÕs co-ordinates 226
Changing a scroll barÕs size 226
Changing co-ordinates 225
Clicking in a scroll bar with keyboard focus 264
CNTL resource 217, 218
Color 210, 215

Default colors for multiple scroll bars 220
Getting a scroll barÕs colors 229
Setting a scroll barÕs colors 229
Setting colors for multiple scroll bars 219

Color resources 217, 218
Creating a scroll bar 214, 217
Creating using a ÔCNTLÕ resource 217, 218
Current value

Getting the current value 224
Setting the current value 225

Custom scroll bars 216
Deleting a scroll bar 220
Determining if a scroll bar is visible 221
Disabling

Disabling a scroll bar 223
Is a scroll bar disabled 223

Enabling
Enabling a scroll bar 223
Is a scroll bar enabled 223

Fields (scrolling them) 244
Font

Getting the font, size and style 228
Setting the font, size and style 210, 228

Getting a scroll barÕs co-ordinates 222
Handle (getting it) 233
Hiding a scroll bar 216, 221
Limit value to min/max 215, 216
Live scrolling 211, 215
Maximum value limit

Getting the maximum limit 224
Setting the maximum limit 224

Minimum value limit
Getting the minimum limit 223
Setting the minimum limit 224

Moving a scroll bar 225

New scroll bar (creating a) 214, 217
New scroll bar (using ÔCNTLÕ resource) 217, 218
Obscuring a scroll bar 221
Scrolling scroll bars 221
Setting Help for a scroll bar 401, 402
Showing a scroll bar 221
Speed 210

Line scrolling for new scroll bars 230, 231
Page scrolling for new scroll bars 230, 231

Styles
Custom CDEFs 215, 216
Little Arrows 128, 213
Progress indicator 128, 213
Slider 128, 213
Standard scroll bar 129, 213, 215
Thermometer 128, 213

Substituting a ProcID throughout your app 91, 211, 530,
531

Tabbing between scroll bars with keyboard focus 265,
266

Text 210
Throttling 210
Unused scroll bar number (getting the) 219

Scroll Boxes (see List Boxes)
ScrollBarColors routine 219
ScrollBarDisplay routine 221
ScrollBarIsEnabled routine 223
ScrollBarIsVisible routine 221
ScrollBarLineTime routine 230
ScrollBarPageTime routine 230
scrollBarProc constant 215
Scrolling fields or ÒcellsÓ 276
SDK 27
SearchListBox routine 296
Select All in Edit menu 356, 363
SelectButton routine 177
selected constant 166, 177, 190, 201, 204, 514
SelectPictButton routine 201
SelectWindow routine 550
SelIText routine 550
SendBehind routine 550
Set all bytes in a record to zero 532
Set68KStackSize routine 105
SetAlertBoxNullEvents routine 505
SetAlertBoxPrefs routine 504
SetApplLimit routine 97, 550
SetAutoEmbed routine 171
SetBackdropColor routine 136
SetBackgroundTheme routine 136
SetBackRGB routine 486
SetButtonColors routine 184
SetButtonFontSettings routine 183
SetButtonHelp routine 399
SetButtonHelpRes routine 400
SetButtonMax routine 179
SetButtonMin routine 178
SetButtonVal routine 179
SetCCursor routine 550
SetClikLoop routine 550
SetColorPenState routine 491, 492
SetControlData routine 550
SetControlFontStyle routine 550
SetControlHelp routine 406
SetControlHelpRes routine 406

Tools Plus

586

SetControlVisibility routine 550
SetCTitle routine 550
SetCtlMax routine 550
SetCtlMin routine 550
SetCtlValue routine 550
SetCursor routine 550
SetCursorAnimation routine 384
SetCursorTableHelp routine 404
SetCursorTableHelpRes routine 404
SetCursorZoneCurs routine 387
SetCursorZoneHelp routine 405
SetCursorZoneHelpRes routine 405
SetCustomPanelColors routine 343
SetDAFont routine 550
SetDefaultButton routine 185
SetDialogCNTLEditTextSpec routine 132
SetDialogCNTLListBoxSpec routine 133
SetDialogCNTLPopUpSpec routine 133
SetDialogCNTLStaticTextSpec routine 133
SetDialogEditTextSpec routine 132
SetDialogFont routine 550
SetDialogFontInfo routine 144
SetDialogItemRect routine 143
SetDialogStaticTextSpec routine 132
SetDisabledFieldLook routine 273
SetDItem routine 550
SetEventError routine 431
SetEventMask routine 85, 550
SetFieldColors routine 261
SetFieldFilter routine 280
SetFieldFontSettings routine 260
SetFieldHelp routine 402
SetFieldHelpRes routine 402
SetFieldLengthLimit routine 271
SetFieldSelection routine 263
SetFrontRGB routine 486
SetGDevice routine 550
SetIndexString routine 520
SetItem routine 550
SetItemCmd routine 550
SetItemIcon routine 550
SetItemMark routine 550
SetItemStyle routine 550
SetIText routine 550
SetKeyboardFocus routine 550
SetListBoxColors routine 301
SetListBoxFontSettings routine 300
SetListBoxHelp routine 402
SetListBoxHelpRes routine 403
SetListBoxLine routine 297
SetListBoxText routine 294
SetLiveWindowDragging routine 154
SetMCEntries routine 550
SetMCInfo routine 550
SetMenuBar routine 550
SetMenuBarColors routine 368
SetMenuColors routine 369
SetMenuItemColors routine 370
SetNextWindowBackgroundTheme routine 137
SetNotification routine 494
SetNullTime routine 434
SetOrigin routine 550
SetPanelColors routine 350
SetPanelFontSettings routine 349

SetPanelHelp routine 404
SetPanelHelpRes routine 404
SetParamRangeErrProc routine 106
SetPenState routine 492
SetPictButtonAccel routine 205
SetPictButtonHelp routine 401
SetPictButtonHelpRes routine 401
SetPictButtonMax routine 203
SetPictButtonMin routine 202
SetPictButtonSpeed routine 205
SetPictButtonVal routine 204
SetPictButtonValSelect routine 204
SetPopUpColors routine 332
SetPopUpFontSettings routine 331
SetPopUpHelp routine 403
SetPopUpHelpRes routine 403
SetPopUpItemColors routine 333
SetResLoad routine 550
SetRGB routine 487
SetScrollBarAction routine 231
SetScrollBarColors routine 229
SetScrollBarFontSettings routine 228
SetScrollBarHelp routine 401
SetScrollBarHelpRes routine 402
SetScrollBarLineTime routine 231
SetScrollBarMax routine 224
SetScrollBarMin routine 224
SetScrollBarPageTime routine 231
SetScrollBarVal routine 225
SetSelectAllItem routine 363
SetStandardPanelColors routine 342
SetTELowMemThresh routine 282
SetTENoEditThresh routine 281
SetTENoUndoThresh routine 281
SetThemeWindowBackground routine 550
SetToZero routine 532
SetWinColor routine 550
SetWindowEventHandler routine 429
SetWindowPic routine 550
SetWindowSizeLimits routine 142
SetWindowZoom routine 142
SetWTitle routine 550
SetZone routine 550
shadow constant 144, 145, 183, 228, 260, 300, 328, 331,
349, 375

Shareware 43
Shift key 243, 409
shiftKey constant 417, 418
ShowControl routine 550
ShowCursor routine 383
ShowHide routine 550
ShowWindow routine 550
Signature 555, 556
SizeButton routine 181
SizeControl routine 550
SizeField routine 277
SizeListBox routine 303
SizePanel routine 347
SizePopUp routine 330
SizeScrollBar routine 226
SizeWindow routine 550
SkipAltBut constant 502
Slider (see Scroll Bars)
Software Development Kit (SDK) 27

Index

WaterÕs Edge Software 587

Software updates 43
SOUND

Playing the System Error sound 527
SpaceExtra routine 550
Special routines 547
Spool file name 141
Spotlight 45
STACK 98

Consumption 541
Size 98

Stand-alone applications 553
Static Text control (see Buttons), (see Editing Fields)
Static text in dialog (editing it) 110, 129
StoneTable 46
stopIcon constant 502
STR resource 397
STR#Õ resource;.i.RESOURCES:ÕSTR# 397, 519
Stress testing 44
StrInBox routine 507
StrInBoxRect routine 508
STRINGS

C string parameters in Tools Plus routines 89
Drawing 507
Efficient storage for fields 235, 252, 271
Indexed

Appending a string 521
Counting strings in a record 520
Creating a new record 519
Definition 519
Deleting a string 521
Getting a string 520
Inserting a string 521
Setting a string 520

Memory-efficient arrays 519
Pascal string parameters in Tools Plus routines 89
Pascal String versus C String 89
Str255 in C 89

Strobing (preventing it) 528
StrToListBox routine 295
Style Table 544
Submenus (see Menus)
Support for programmers 561
Suspended application 436
Symantec C/C++ 39
Synchronize to vertical retrace 528
SynchToVideo routine 528
SysBeep routine 550
System 6 (programming for) 88
System 7 115, 354, 410, 557, 558
System 7 and higher (programming for) 88
System Extensions 39
System file version 525
System Requirements 39, 40
SystemClick routine 550
SystemEdit routine 550
SystemEvent routine 550
SystemMenu routine 550
SystemVersion routine 525
_SYSV routine 525

T
Tab controls (see Buttons)
Tabbing in fields 237
TabKey constant 448, 458, 460
Tables 46
TabToFocus routine 266, 447, 457
Task switching 88, 410, 558
tbOffsetNewWindows constant 119, 134, 142, 143
tbShiftWindows constant 134
TEActive routine 551
teAllowCR constant 251
teAutoMoveSize constant 252
TEAutoView routine 551
teBackdrop constant 253, 507, 508
teBlackOnBackdrop constant 508
teBlackOnClear constant 508
teBlackOnColor constant 508
teBlackOnWhite constant 508
teBlackText constant 253, 508
teBottomEdge constant 251
teBox constant 251
teBuffered constant 252
TECalc routine 551
Technical support 561
TEClick routine 551
teClickBeep constant 272, 274
teColorBack constant 253, 508
teColorOnBackdrop constant 508
teColorOnClear constant 508
teColorOnColor constant 508
teColorOnWhite constant 508
teColorText constant 253, 508
teColSys6Box constant 272, 274
teColSys6Text constant 272, 273
TECopy routine 551
teCstring constant 252
TECut routine 551
TEDeactivate routine 551
TEDelete routine 551
teDfltDisabledLook constant 272, 274
teDimWhenInactive constant 251
teDisabled constant 252
TEDispose routine 551
teFilter constant 252
TEFromScrap routine 551
TEGetText routine 551
teHidden constant 252
teHScrollRight15 constant 256
teHScrollRight30 constant 256
teHScrollRight45 constant 256
teHScrollRight60 constant 256
teHScrollRight75 constant 256
teHScrollRight90 constant 256
teHScrollRight105 constant 256
teHScrollRight120 constant 256
teHScrollRight135 constant 256
teHScrollRight150 constant 256
teHScrollRight165 constant 256
teHScrollRight180 constant 256
teHScrollRight195 constant 256
teHScrollRight210 constant 256
teHScrollRight225 constant 256
TEIdle routine 551

Tools Plus

588

teIgnoreCase constant 279
teIgnoreDiac constant 279
TEInit routine 97, 551
teInsert constant 274, 275
TEInsert routine 551
teJustCenter constant 251, 508
teJustLeft constant 251, 508
teJustRight constant 251, 508
TEKey routine 551
teLeftEdge constant 251
teLengthLimit constant 252
Telephone number for WaterÕs Edge Software 562
teLiveScroll constant 252
teNeverDimBWBox constant 272, 273
teNeverDimBWText constant 272, 273
teNeverDimColorBox constant 272, 273
teNeverDimColorText constant 272, 273
TENew routine 551
teNoBack constant 508
teNoBox constant 252
teNoCR constant 251
teNoResetOnDeactivate constant 252
TEPaste routine 551
TEPinScroll routine 551
teReadOnly constant 251
teReplace constant 274, 275
teResizeHdl constant 252
teRightEdge constant 251
TEScroll routine 551
TESelect routine 551
teSelectAll constant 262
teSelectEnd constant 262
teSelectStart constant 262
TESelView routine 551
TESetClickLoop routine 551
TESetJust routine 551
TESetText routine 551
teShiftCaseDown constant 279
teShiftCaseUp constant 279
teStaticText constant 251
Testing your application 44
teSystemBody constant 251
teTabSelectAll constant 253
teTabSelectEnd constant 253
teTabSelectStart constant 253
teTopEdge constant 251
TEToScrap routine 551
TEUpdate routine 551
teUseWFont constant 251
teVScroll constant 252
teVScrollDown30 constant 253
teVScrollDown45 constant 253
teVScrollDown60 constant 253
teVScrollDown75 constant 253
teVScrollDown90 constant 253
teVScrollDown15 constant 253
teVScrollDown105 constant 253
teVScrollDown120 constant 253
teVScrollDown135 constant 253
teVScrollDown150 constant 253
teVScrollDown165 constant 253
teVScrollDown180 constant 253
teVScrollDown195 constant 253
teVScrollDown210 constant 253

teVScrollDown225 constant 253
teWhiteBack constant 253, 507, 508
TEXT

Alignment (left, right, centre) 508
Drawing 509

Text Editing (see Fields)
TextEdit records 244
TextInBox routine 509
TextInBoxRect routine 509
Thermometer (see Scroll Bars)
Thermometer (drawing one) 530
THINK C/C++ 39
THINK Pascal 39
THINK Pascal (issues with Balloon Help) 398
THINK Reference 43
timerDaysBetweenEvents constant 444
timerDeleteForHiddenWindow constant 443, 444
timerEventsPerDay constant 444
timerEventsPerHour constant 444
timerEventsPerMinute constant 444
timerEventsPerSecond constant 443, 444
timerEventsPerTick constant 443, 444
timerHoursBetweenEvents constant 444
timerInstantEvent constant 444
timerLockTimerToCount constant 443, 444
timerMinutesBetweenEvents constant 444
timerOneShot constant 443, 444
TIMERS

Always report physical event for each logical event 443
Behavior specifications 443
Creating a new Timer 442
Delete automatically 443
Deleting a timer 445
Frequency

Events per day 444
Events per hour 444
Events per minute 444
Events per second 443
Events per tick (1/60 second) 443

One shot 443
Overview 438
Period

Days between events 444
Hours between events 444
Minutes between events 444
Seconds between events 444
Ticks between events 444

Synchronize to another Timer 443
timerSecondsBetweenEvents constant 444
timerStandardInitDelay constant 444
timerSyncToTimer constant 443, 444
timerTicksBetweenEvents constant 444
TITLES

Button title changes 180
Getting a menu itemÕs text 371
Getting a pop-up menu itemÕs text 324
List box lines 294, 296
Menu title changes 360, 371
Pop-up menu title changes 325
Window title changes 141

Tool Bar (see Windows)
ToolBarNumber routine 149
ToolBarOpen routine 134
Toolbox events (see Event Management)

Index

WaterÕs Edge Software 589

Toolbox routines to be used with caution or avoided 547
Tools Plus events (see Event Management)
TOOLS PLUS ROUTINES (All, sorted alphabetically)

ActivateButton 175
ActivateField 262
ActivateListBox 293
ActivateScrollBar 222
ActivateWindow 140
ActiveFieldNumber 270
ActiveWindowNumber 148
AlertBox 422, 501
AlertBox3 422, 503
AlertBoxCount 505
AlertButtonName 503
AnimateCursor 384
AppendDialogList 131
AppleMenu 359
ApplicationSuspended 436
AttachMenu 364
AttachPopUpSubMenu 318
AutoMoveSize 153
AutoMoveSizeButton 182
AutoMoveSizeField 278
AutoMoveSizeListBox 304
AutoMoveSizePanel 348
AutoMoveSizePictButton 207
AutoMoveSizePopUp 331
AutoMoveSizeScrollBar 227
BackdropColor 135
Beep 527
BeepSynch 527
BeginUpdateScreen 480
BitMap2Region 525
ButtonColors 173
ButtonDisplay 174
ButtonIsEnabled 177
ButtonIsSelected 177
ButtonIsVisible 175
ButtonTitle 180
ChangedCursorZone 388
ChangedHelp 407
ChangeStackSize 106
CheckForMonitorChanges 482
CheckMenu 372
CheckPopUp 326
ClearFocus 140
ClearListBox 299
ClearPopUp 322
ClickToFocus 264
CountIndexString 520
CountNumberOfFiles 432
CreateBitMap 523
CurrentFieldFilter 280
CurrentWindow 141
CurrentWindowNumber 148
CurrentWindowReset 141
CursorShape 383
CursorZone 386
CursorZoneRect 386
CursorZoneRgn 386
DeactivateField 263
DefaultIconLook 518
DeinitToolsPlus 105
DeleteButton 174

DeleteControl 406
DeleteCursorTable 385
DeleteCursorZone 387
DeleteField 258
DeleteIndexString 521
DeleteListBox 291
DeleteListBoxLine 299
DeletePanel 344
DeletePictButton 199
DeleteScrollBar 220
DeleteTimer 445
DestroyBitMap 524
DisabledFieldLook 271
DrawIcon 514
DrawListBox 302
DrawPict 509
DrawPictRect 513
DrawShiftPict 513
DrawShiftPictRect 514
DrawSICN 517
DrawSICNmode 517
DrawThermometer 530
DynamicFieldHandles 271
EditFldWindowNumber 150, 270
EmbedButtonInButton 172
EmbedButtonInScrollBar 172
EmbedFieldInButton 257
EmbedFieldInScrollBar 257
EmbedListBoxInButton 290
EmbedListBoxInScrollBar 290
EmbedPopUpInButton 316
EmbedPopUpInScrollBar 317
EmbedScrollBarInButton 218
EmbedScrollBarInScrollBar 218
EnableButton 176
EnableField 264
EnableMenu 372
EnablePictButton 201
EnablePopUp 325
EnableScrollBar 223
EndUpdateScreen 481
EqualMem 532
FieldDisplay 259
FieldIsEmpty 269
FieldIsEnabled 264
FieldIsVisible 259
FieldLengthLimit 270
FindCursorZone 389
FinderDisplay 153
FirstPaletteNumber 149
FirstStdWindowNumber 149
FirstWindowNumber 148
FlashButton 180
FlashPictButton 206
FocusWindowNumber 150
GetAlertBoxPrefs 503
GetBackRGB 486
GetButtonColors 184
GetButtonFontSettings 183
GetButtonHandle 185
GetButtonMax 178
GetButtonMin 178
GetButtonRect 176
GetButtonVal 179

Tools Plus

590

GetColorPenState 491
GetCurrentCursorZone 389
GetCursorZone 388
GetCursorZoneRgn 388
GetCustomPanelColors 344
GetDialogFontInfo 144
GetDialogItemRect 144
GetDimColor 488
GetEditHandle 267
GetEditLength 267
GetEditString 267
GetFieldColors 262
GetFieldFontSettings 261
GetFieldHandle 268
GetFieldLength 269
GetFieldRect 260
GetFieldSelection 263
GetFieldString 268
GetFocusInfo 152
GetFreeButtonNum 173
GetFreeCursorTableNum 385
GetFreeCursorZoneNum 387
GetFreeFieldNum 258
GetFreeHMenuNum 363
GetFreeListBoxNum 291
GetFreeMenuNum 363
GetFreePanelNum 341
GetFreePictButtonNum 198
GetFreePopUpNum 317
GetFreeScrollBarNum 219
GetFreeWindowNum 135
GetFrontRGB 485
GetIndexFile 432
GetIndexFileFSS 433
GetIndexString 520
GetListBoxColors 301
GetListBoxFontSettings 300
GetListBoxHandle 305
GetListBoxLine 297
GetListBoxLines 298
GetListBoxRect 293
GetListBoxText 296
GetMenuBarColors 368
GetMenuCmd 374
GetMenuColors 369
GetMenuHandleFromMemory 377
GetMenuIcon 375
GetMenuItemColors 370
GetMenuMark 373
GetMenuString 371
GetPanelColors 350
GetPanelFontSettings 349
GetPanelRect 346
GetParentMenu 376
GetPictButtonMax 203
GetPictButtonMin 202
GetPictButtonRect 200
GetPictButtonVal 203
GetPopUpColors 333
GetPopUpFontSettings 332
GetPopUpHandle 334
GetPopUpIcon 328
GetPopUpItemColors 334
GetPopUpMark 327

GetPopUpRect 323
GetPopUpSelection 329
GetPopUpString 324
GetScrollBarActionInfo 233
GetScrollBarColors 229
GetScrollBarFontSettings 228
GetScrollBarHandle 233
GetScrollBarMax 224
GetScrollBarMin 223
GetScrollBarRect 222
GetScrollBarVal 224
GetStandardPanelColors 342
GetSubMenu 377
GetTEHandle 282
GetToolsPlusVersion 526
GetTPSerialEvent 437
GetWindowInOrder 147
GetWindowZoom 143
HasAppearanceManager 530
HasAppearanceManagerRoutines 531
HasColorQuickDraw 479
HaveTabInFocus 265, 447, 457
HiliteRect 490
HiliteRgn 491
IgnoreFirstMouseClick 436
InitToolsPlus 97, 99
InsertIndexString 521
InsertListBoxLine 298
InsertMenuItm 364
InsertPopUpItem 321
KillButton 174
KillField 259
KillListBox 291
KillPanel 345
KillPictButton 199
KillPopUp 323
KillScrollBar 220
KillTPSerialEvent 437
ListBoxDisplay 292
ListBoxIsEnabled 299
ListBoxIsVisible 292
ListBoxLineCount 301
LoadButton 170
LoadDialog 127
LoadDialogList 131
LoadDialogPopUp 316
LoadMenu 361
LoadMenuBar 362
LoadPopUp 315
LoadPopUpRect 316
LoadScrollBar 217
LoadSpecButton 171
LoadSpecDialog 130
LoadSpecDialogBehind 131
LoadSpecScrollBar 218
LoadSpecWindow 126
LoadSpecWindowBehind 127
LoadWindow 125
MainMonitorNumber 484
Max 533
Menu 359
MenuBarDisplay 367
MenuCmd 374
MenuHilite 377

Index

WaterÕs Edge Software 591

MenuIcon 374
MenuItemCount 376
MenuMark 373
MenuStyle 375
Min 533
MonitorDepth 483
MonitorGDevice 484
MonitorHasColors 483
MoveButton 180
MoveField 276
MoveListBox 302
MovePanel 346
MovePictButton 206
MovePopUp 329
MoveScrollBar 225
MoveSizeButton 181
MoveSizeButtonRect 182
MoveSizeField 277
MoveSizeFieldRect 278
MoveSizeListBox 303
MoveSizeListBoxRect 304
MoveSizePanel 347
MoveSizePanelRect 348
MoveSizePopUp 330
MoveSizePopUpRect 330
MoveSizeScrollBar 226
MoveSizeScrollBarRect 227
NewButton 166
NewButtonControl 169
NewButtonControlRect 169
NewButtonRect 169
NewCursorTable 385
NewDialogButton 170
NewDialogButtonControl 170
NewDialogField 255
NewDialogListBox 289
NewDialogPanel 341
NewDialogPictButton 198
NewDialogScrollBar 217
NewDialogWideField 257
NewEventHandlerProc 429
NewField 250
NewFieldFilter 279
NewFieldRect 255
NewIndexStringHandle 519
NewListBox 286
NewListBoxRect 289
NewPanel 336
NewPanelRect 341
NewPictButton 189
NewPopUp 311
NewPopUpRect 315
NewScrollBar 214
NewScrollBarActionProc 232
NewScrollBarRect 217
NewStrHandle 250
NewTimer 442
NewWideField 255
NewWideFieldRect 256
NoBackdropColor 135
NoButtonColors 173
NoDefaultButton 185
NoPopUpColors 319
NoScrollBarColors 220

NumberOfMonitors 482
NumberOfScreens 480
ObscureButton 175
ObscureField 260
ObscureListBox 292
ObscurePanel 346
ObscurePictButton 200
ObscurePopUp 324
ObscureScrollBar 221
OffsetButton 181
OffsetField 276
OffsetListBox 303
OffsetPanel 347
OffsetPictButton 206
OffsetPopUp 329
OffsetScrollBar 225
PanelDisplay 345
PanelIsVisible 345
PasteHIntoField 275
PasteIntoField 274
PastePIntoField 275
PenColorNormal 489
PictButtonDisplay 199
PictButtonIsEnabled 201
PictButtonIsSelected 202
PictButtonIsVisible 200
PopUpColors 318
PopUpDisplay 323
PopUpIcon 327
PopUpIsEnabled 326
PopUpIsVisible 324
PopUpItemCount 328
PopUpMark 326
PopUpMenu 319
PopUpStyle 328
PostNotification 495
Process1EventWhileBusy 422, 430
ProcessEvents 430
ProcessToolboxEvent 422, 431
QuitToolsPlus 433
RectIsVisible 484
RedrawRect 487
RedrawRgn 487
RefreshDrawingInWindow 147
RefreshToolsPlusInWindow 146
RemoveAllMenus 367
RemoveMenu 366
RemoveMenus 366
RemovePopUp 322
RenameItem 371
RenamePopUp 325
ReplaceControlProcID 186
ReplaceWindowProcID 154
ResetCursor 384
ResetFieldScrolling 279
ResetMouseClicks 435
ResNamesToListBox 295
ResNamesToMenu 365
ResNamesToPopUp 321
RgnIsVisible 485
SaveFieldString 269
ScreenDepth 481
ScreenHasColors 482
ScrollBarColors 219

Tools Plus

592

ScrollBarDisplay 221
ScrollBarIsEnabled 223
ScrollBarIsVisible 221
ScrollBarLineTime 230
ScrollBarPageTime 230
SearchListBox 296
SelectButton 177
SelectPictButton 201
Set68KStackSize 105
SetAlertBoxNullEvents 505
SetAlertBoxPrefs 504
SetAutoEmbed 171
SetBackdropColor 136
SetBackgroundTheme 136
SetBackRGB 486
SetButtonColors 184
SetButtonFontSettings 183
SetButtonHelp 399
SetButtonHelpRes 400
SetButtonMax 179
SetButtonMin 178
SetButtonVal 179
SetColorPenState 492
SetControlHelp 406
SetControlHelpRes 406
SetCursorAnimation 384
SetCursorTableHelp 404
SetCursorTableHelpRes 404
SetCursorZoneCurs 387
SetCursorZoneHelp 405
SetCursorZoneHelpRes 405
SetCustomPanelColors 343
SetDefaultButton 185
SetDialogCNTLEditTextSpec 132
SetDialogCNTLListBoxSpec 133
SetDialogCNTLPopUpSpec 133
SetDialogCNTLStaticTextSpec 133
SetDialogEditTextSpec 132
SetDialogFontInfo 144
SetDialogItemRect 143
SetDialogStaticTextSpec 132
SetDisabledFieldLook 273
SetEventError 431
SetFieldColors 261
SetFieldFilter 280
SetFieldFontSettings 260
SetFieldHelp 402
SetFieldHelpRes 402
SetFieldLengthLimit 271
SetFieldSelection 263
SetFrontRGB 486
SetIndexString 520
SetListBoxColors 301
SetListBoxFontSettings 300
SetListBoxHelp 402
SetListBoxHelpRes 403
SetListBoxLine 297
SetListBoxText 294
SetLiveWindowDragging 154
SetMenuBarColors 368
SetMenuColors 369
SetMenuItemColors 370
SetNextWindowBackgroundTheme 137
SetNotification 494

SetNullTime 434
SetPanelColors 350
SetPanelFontSettings 349
SetPanelHelp 404
SetPanelHelpRes 404
SetParamRangeErrProc 106
SetPictButtonAccel 205
SetPictButtonHelp 401
SetPictButtonHelpRes 401
SetPictButtonMax 203
SetPictButtonMin 202
SetPictButtonSpeed 205
SetPictButtonVal 204
SetPictButtonValSelect 204
SetPopUpColors 332
SetPopUpFontSettings 331
SetPopUpHelp 403
SetPopUpHelpRes 403
SetPopUpItemColors 333
SetRGB 487
SetScrollBarAction 231
SetScrollBarColors 229
SetScrollBarFontSettings 228
SetScrollBarHelp 401
SetScrollBarHelpRes 402
SetScrollBarLineTime 231
SetScrollBarMax 224
SetScrollBarMin 224
SetScrollBarPageTime 231
SetScrollBarVal 225
SetSelectAllItem 363
SetStandardPanelColors 342
SetTELowMemThresh 282
SetTENoEditThresh 281
SetTENoUndoThresh 281
SetToZero 532
SetWindowEventHandler 429
SetWindowSizeLimits 142
SetWindowZoom 142
SizeButton 181
SizeField 277
SizeListBox 303
SizePanel 347
SizePopUp 330
SizeScrollBar 226
StrInBox 507
StrInBoxRect 508
StrToListBox 295
SynchToVideo 528
SystemVersion 525
TabToFocus 266, 447, 457
TextInBox 509
TextInBoxRect 509
ToolBarNumber 149
ToolBarOpen 134
ToolsPlusIsQuitting 434
ToolsPlusLanguage 537
UpdateMenuBar 367
UseCursorTable 389
UseHiliteColor 489
UseHiliteText 489
UsingAppearanceManager 531
Wait 527
WaitAvail 435

Index

WaterÕs Edge Software 593

WaitForMultiClicks 435
WatchCursorButtons 390
WindowClose 137
WindowDisplay 139
WindowDisplayBehind 140
WindowIsActive 151
WindowIsOpen 151
WindowIsVisible 151
WindowKind 152
WindowMove 138
WindowOpen 119
WindowOpenRect 124
WindowOpenRectBehind 125
WindowPointer 153
WindowSize 138
WindowStatus 145
WindowTitle 141
WorkWindowNumber 150
ZoomLines 528

TOOLS PLUS ROUTINES (Buttons only)
ActivateButton 175
AutoMoveSizeButton 182
ButtonColors 173
ButtonDisplay 174
ButtonIsEnabled 177
ButtonIsSelected 177
ButtonIsVisible 175
ButtonTitle 180
DeleteButton 174
EmbedButtonInButton 172
EmbedButtonInScrollBar 172
EnableButton 176
FlashButton 180
GetButtonColors 184
GetButtonFontSettings 183
GetButtonHandle 185
GetButtonMax 178
GetButtonMin 178
GetButtonRect 176
GetButtonVal 179
GetFreeButtonNum 173
KillButton 174
LoadButton 170
LoadSpecButton 171
MoveButton 180
MoveSizeButton 181
MoveSizeButtonRect 182
NewButton 166
NewButtonControl 169
NewButtonControlRect 169
NewButtonRect 169
NewDialogButton 170
NewDialogButtonControl 170
NoButtonColors 173
NoDefaultButton 185
ObscureButton 175
OffsetButton 181
ReplaceControlProcID 186
SelectButton 177
SetAutoEmbed 171
SetButtonColors 184
SetButtonFontSettings 183
SetButtonMax 179
SetButtonMin 178

SetButtonVal 179
SetDefaultButton 185
SizeButton 181

TOOLS PLUS ROUTINES (Color & Multiple Monitors only)
BeginUpdateScreen 480
CheckForMonitorChanges 482
EndUpdateScreen 481
GetBackRGB 486
GetColorPenState 491
GetDimColor 488
GetFrontRGB 485
HasColorQuickDraw 479
HiliteRect 490
HiliteRgn 491
MainMonitorNumber 484
MonitorDepth 483
MonitorGDevice 484
MonitorHasColors 483
NumberOfMonitors 482
NumberOfScreens 480
PenColorNormal 489
RectIsVisible 484
RedrawRect 487
RedrawRgn 487
RgnIsVisible 485
ScreenDepth 481
ScreenHasColors 482
SetBackRGB 486
SetColorPenState 492
SetFrontRGB 486
SetRGB 487
UseHiliteColor 489

TOOLS PLUS ROUTINES (Cursors only)
AnimateCursor 384
ChangedCursorZone 388
CursorShape 383
CursorZone 386
CursorZoneRect 386
CursorZoneRgn 386
DeleteCursorTable 385
DeleteCursorZone 387
FindCursorZone 389
GetCurrentCursorZone 389
GetCursorZone 388
GetCursorZoneRgn 388
GetFreeCursorTableNum 385
GetFreeCursorZoneNum 387
NewCursorTable 385
ResetCursor 384
SetCursorAnimation 384
SetCursorZoneCurs 387
UseCursorTable 389
WatchCursorButtons 390

TOOLS PLUS ROUTINES (Dynamic Alerts only)
AlertBox 422, 501
AlertBox3 422, 503
AlertBoxCount 505
AlertButtonName 503
GetAlertBoxPrefs 503
SetAlertBoxNullEvents 505
SetAlertBoxPrefs 504

TOOLS PLUS ROUTINES (Editing Fields only)
ActivateField 262
ActiveFieldNumber 270

Tools Plus

594

AutoMoveSizeField 278
ClickToFocus 264
CurrentFieldFilter 280
DeactivateField 263
DeleteField 258
DisabledFieldLook 271
DynamicFieldHandles 271
EditFldWindowNumber 270
EmbedFieldInButton 257
EmbedFieldInScrollBar 257
EnableField 264
FieldDisplay 259
FieldIsEmpty 269
FieldIsEnabled 264
FieldIsVisible 259
FieldLengthLimit 270
GetEditHandle 267
GetEditLength 267
GetEditString 267
GetFieldColors 262
GetFieldFontSettings 261
GetFieldHandle 268
GetFieldLength 269
GetFieldRect 260
GetFieldSelection 263
GetFieldString 268
GetFreeFieldNum 258
GetTEHandle 282
HaveTabInFocus 265
KillField 259
MoveField 276
MoveSizeField 277
MoveSizeFieldRect 278
NewDialogField 255
NewDialogWideField 257
NewField 250
NewFieldFilter 279
NewFieldRect 255
NewStrHandle 250
NewWideField 255
NewWideFieldRect 256
ObscureField 260
OffsetField 276
PasteHIntoField 275
PasteIntoField 274
PastePIntoField 275
ResetFieldScrolling 279
SaveFieldString 269
SetDisabledFieldLook 273
SetFieldColors 261
SetFieldFilter 280
SetFieldFontSettings 260
SetFieldLengthLimit 271
SetFieldSelection 263
SetTELowMemThresh 282
SetTENoEditThresh 281
SetTENoUndoThresh 281
SizeField 277
TabToFocus 266

TOOLS PLUS ROUTINES (Event Management only)
ApplicationSuspended 436
CountNumberOfFiles 432
DeleteTimer 445
GetIndexFile 432

GetIndexFileFSS 433
GetTPSerialEvent 437
HaveTabInFocus 447, 457
IgnoreFirstMouseClick 436
KillTPSerialEvent 437
NewEventHandlerProc 429
NewTimer 442
Process1EventWhileBusy 422, 430
ProcessEvents 430
ProcessToolboxEvent 422, 431
QuitToolsPlus 433
ResetMouseClicks 435
SetEventError 431
SetNullTime 434
SetWindowEventHandler 429
TabToFocus 447, 457
ToolsPlusIsQuitting 434
WaitAvail 435
WaitForMultiClicks 435

TOOLS PLUS ROUTINES (Help only)
ChangedHelp 407
DeleteControl 406
SetButtonHelp 399
SetButtonHelpRes 400
SetControlHelp 406
SetControlHelpRes 406
SetCursorTableHelp 404
SetCursorTableHelpRes 404
SetCursorZoneHelp 405
SetCursorZoneHelpRes 405
SetFieldHelp 402
SetFieldHelpRes 402
SetListBoxHelp 402
SetListBoxHelpRes 403
SetPanelHelp 404
SetPanelHelpRes 404
SetPictButtonHelp 401
SetPictButtonHelpRes 401
SetPopUpHelp 403
SetPopUpHelpRes 403
SetScrollBarHelp 401
SetScrollBarHelpRes 402

TOOLS PLUS ROUTINES (Initialization only)
ChangeStackSize 106
DeinitToolsPlus 105
InitToolsPlus 97, 99
Set68KStackSize 105
SetParamRangeErrProc 106

TOOLS PLUS ROUTINES (List Boxes only)
ActivateListBox 293
AutoMoveSizeListBox 304
ClearListBox 299
DeleteListBox 291
DeleteListBoxLine 299
DrawListBox 302
EmbedListBoxInButton 290
EmbedListBoxInScrollBar 290
GetFreeListBoxNum 291
GetListBoxColors 301
GetListBoxFontSettings 300
GetListBoxHandle 305
GetListBoxLine 297
GetListBoxLines 298
GetListBoxRect 293

Index

WaterÕs Edge Software 595

GetListBoxText 296
InsertListBoxLine 298
KillListBox 291
ListBoxDisplay 292
ListBoxIsEnabled 299
ListBoxIsVisible 292
ListBoxLineCount 301
MoveListBox 302
MoveSizeListBox 303
MoveSizeListBoxRect 304
NewDialogListBox 289
NewListBox 286
NewListBoxRect 289
ObscureListBox 292
OffsetListBox 303
ResNamesToListBox 295
SearchListBox 296
SetListBoxColors 301
SetListBoxFontSettings 300
SetListBoxLine 297
SetListBoxText 294
SizeListBox 303
StrToListBox 295

TOOLS PLUS ROUTINES (Menus only)
AppleMenu 359
AttachMenu 364
CheckMenu 372
EnableMenu 372
GetFreeHMenuNum 363
GetFreeMenuNum 363
GetMenuBarColors 368
GetMenuCmd 374
GetMenuColors 369
GetMenuHandleFromMemory 377
GetMenuIcon 375
GetMenuItemColors 370
GetMenuMark 373
GetMenuString 371
GetParentMenu 376
GetSubMenu 377
InsertMenuItm 364
LoadMenu 361
LoadMenuBar 362
Menu 359
MenuBarDisplay 367
MenuCmd 374
MenuHilite 377
MenuIcon 374
MenuItemCount 376
MenuMark 373
MenuStyle 375
RemoveAllMenus 367
RemoveMenu 366
RemoveMenus 366
RenameItem 371
ResNamesToMenu 365
SetMenuBarColors 368
SetMenuColors 369
SetMenuItemColors 370
SetSelectAllItem 363
UpdateMenuBar 367

TOOLS PLUS ROUTINES (Miscellaneous Routines only)
Beep 527
BeepSynch 527

BitMap2Region 525
CountIndexString 520
CreateBitMap 523
DefaultIconLook 518
DeleteIndexString 521
DestroyBitMap 524
DrawIcon 514
DrawPict 509
DrawPictRect 513
DrawShiftPict 513
DrawShiftPictRect 514
DrawSICN 517
DrawSICNmode 517
DrawThermometer 530
EqualMem 532
GetIndexString 520
GetToolsPlusVersion 526
HasAppearanceManager 530
HasAppearanceManagerRoutines 531
InsertIndexString 521
Max 533
Min 533
NewIndexStringHandle 519
SetIndexString 520
SetToZero 532
StrInBox 507
StrInBoxRect 508
SynchToVideo 528
SystemVersion 525
TextInBox 509
TextInBoxRect 509
UsingAppearanceManager 531
Wait 527
ZoomLines 528

TOOLS PLUS ROUTINES (Multiple Languages only)
ToolsPlusLanguage 537

TOOLS PLUS ROUTINES (Panels only)
AutoMoveSizePanel 348
DeletePanel 344
GetCustomPanelColors 344
GetFreePanelNum 341
GetPanelColors 350
GetPanelFontSettings 349
GetPanelRect 346
GetStandardPanelColors 342
KillPanel 345
MovePanel 346
MoveSizePanel 347
MoveSizePanelRect 348
NewDialogPanel 341
NewPanel 336
NewPanelRect 341
ObscurePanel 346
OffsetPanel 347
PanelDisplay 345
PanelIsVisible 345
SetCustomPanelColors 343
SetPanelColors 350
SetPanelFontSettings 349
SetStandardPanelColors 342
SizePanel 347

TOOLS PLUS ROUTINES (Picture Buttons only)
AutoMoveSizePictButton 207
DeletePictButton 199

Tools Plus

596

EnablePictButton 201
FlashPictButton 206
GetFreePictButtonNum 198
GetPictButtonMax 203
GetPictButtonMin 202
GetPictButtonRect 200
GetPictButtonVal 203
KillPictButton 199
MovePictButton 206
NewDialogPictButton 198
NewPictButton 189
ObscurePictButton 200
OffsetPictButton 206
PictButtonDisplay 199
PictButtonIsEnabled 201
PictButtonIsSelected 202
PictButtonIsVisible 200
SelectPictButton 201
SetPictButtonAccel 205
SetPictButtonMax 203
SetPictButtonMin 202
SetPictButtonSpeed 205
SetPictButtonVal 204
SetPictButtonValSelect 204

TOOLS PLUS ROUTINES (Pop-Up Menus only)
AttachPopUpSubMenu 318
AutoMoveSizePopUp 331
CheckPopUp 326
ClearPopUp 322
EmbedPopUpInButton 316
EmbedPopUpInScrollBar 317
EnablePopUp 325
GetFreePopUpNum 317
GetPopUpColors 333
GetPopUpFontSettings 332
GetPopUpHandle 334
GetPopUpIcon 328
GetPopUpItemColors 334
GetPopUpMark 327
GetPopUpRect 323
GetPopUpSelection 329
GetPopUpString 324
InsertPopUpItem 321
KillPopUp 323
LoadDialogPopUp 316
LoadPopUp 315
LoadPopUpRect 316
MovePopUp 329
MoveSizePopUp 330
MoveSizePopUpRect 330
NewPopUp 311
NewPopUpRect 315
NoPopUpColors 319
ObscurePopUp 324
OffsetPopUp 329
PopUpColors 318
PopUpDisplay 323
PopUpIcon 327
PopUpIsEnabled 326
PopUpIsVisible 324
PopUpItemCount 328
PopUpMark 326
PopUpMenu 319
PopUpStyle 328

RemovePopUp 322
RenamePopUp 325
ResNamesToPopUp 321
SetPopUpColors 332
SetPopUpFontSettings 331
SetPopUpItemColors 333
SizePopUp 330

TOOLS PLUS ROUTINES (Scroll Bars only)
ActivateScrollBar 222
AutoMoveSizeScrollBar 227
DeleteScrollBar 220
EmbedScrollBarInButton 218
EmbedScrollBarInScrollBar 218
EnableScrollBar 223
GetFreeScrollBarNum 219
GetScrollBarActionInfo 233
GetScrollBarColors 229
GetScrollBarFontSettings 228
GetScrollBarHandle 233
GetScrollBarMax 224
GetScrollBarMin 223
GetScrollBarRect 222
GetScrollBarVal 224
KillScrollBar 220
LoadScrollBar 217
LoadSpecScrollBar 218
MoveScrollBar 225
MoveSizeScrollBar 226
MoveSizeScrollBarRect 227
NewDialogScrollBar 217
NewScrollBar 214
NewScrollBarActionProc 232
NewScrollBarRect 217
NoScrollBarColors 220
ObscureScrollBar 221
OffsetScrollBar 225
ScrollBarColors 219
ScrollBarDisplay 221
ScrollBarIsEnabled 223
ScrollBarIsVisible 221
ScrollBarLineTime 230
ScrollBarPageTime 230
SetScrollBarAction 231
SetScrollBarColors 229
SetScrollBarFontSettings 228
SetScrollBarLineTime 231
SetScrollBarMax 224
SetScrollBarMin 224
SetScrollBarPageTime 231
SetScrollBarVal 225
SizeScrollBar 226

TOOLS PLUS ROUTINES (User Notification only)
PostNotification 495
SetNotification 494

TOOLS PLUS ROUTINES (Windows only)
ActivateWindow 140
ActiveWindowNumber 148
AppendDialogList 131
AutoMoveSize 153
BackdropColor 135
ClearFocus 140
CurrentWindow 141
CurrentWindowNumber 148
CurrentWindowReset 141

Index

WaterÕs Edge Software 597

EditFldWindowNumber 150
FinderDisplay 153
FirstPaletteNumber 149
FirstStdWindowNumber 149
FirstWindowNumber 148
FocusWindowNumber 150
GetDialogFontInfo 144
GetDialogItemRect 144
GetFocusInfo 152
GetFreeWindowNum 135
GetWindowInOrder 147
GetWindowZoom 143
LoadDialog 127
LoadDialogList 131
LoadSpecDialog 130
LoadSpecDialogBehind 131
LoadSpecWindow 126
LoadSpecWindowBehind 127
LoadWindow 125
NoBackdropColor 135
RefreshDrawingInWindow 147
RefreshToolsPlusInWindow 146
ReplaceWindowProcID 154
SetBackdropColor 136
SetBackgroundTheme 136
SetDialogCNTLEditTextSpec 132
SetDialogCNTLListBoxSpec 133
SetDialogCNTLPopUpSpec 133
SetDialogCNTLStaticTextSpec 133
SetDialogEditTextSpec 132
SetDialogFontInfo 144
SetDialogItemRect 143
SetDialogStaticTextSpec 132
SetLiveWindowDragging 154
SetNextWindowBackgroundTheme 137
SetWindowSizeLimits 142
SetWindowZoom 142
ToolBarNumber 149
ToolBarOpen 134
WindowClose 137
WindowDisplay 139
WindowDisplayBehind 140
WindowIsActive 151
WindowIsOpen 151
WindowIsVisible 151
WindowKind 152
WindowMove 138
WindowOpen 119
WindowOpenRect 124
WindowOpenRectBehind 125
WindowPointer 153
WindowSize 138
WindowStatus 145
WindowTitle 141
WorkWindowNumber 150

Tools Plus version 526
ToolsPlus Plug-In.Lib library 59, 62, 65, 67
ToolsPlus.c source code file 59, 65, 69, 70, 71
ToolsPlus.CW6&7.68K.A4.Lib library 59, 62
ToolsPlus.CW6&7.68K.Lib library 59, 62
ToolsPlus.CW6&7.PPC.Lib library 65, 67
ToolsPlus.h header file 59, 65, 69, 70, 71, 89
ToolsPlus.Lib library 59, 62, 65, 67, 71
ToolsPlus.Lib1 library 59, 62, 69, 72

ToolsPlus.Lib1.o library 70
ToolsPlus.Lib2 library 59, 62, 69, 72
ToolsPlus.Lib2.o library 70
ToolsPlus.Lib3 library 59, 62, 69, 72
ToolsPlus.Lib3.o library 70
ToolsPlus.Lib4 library 59, 62, 69, 72
ToolsPlus.Lib4.o library 70
ToolsPlus.Lib5 library 59, 62, 69, 72
ToolsPlus.Lib5.o library 70
ToolsPlus.Lib6 library 59, 62, 69, 72
ToolsPlus.Lib6.o library 70
ToolsPlus.Lib7 library 59, 62, 69, 72
ToolsPlus.Lib7.o library 70
ToolsPlus.p interface file 62, 67, 72
ToolsPlusIsQuitting routine 434
ToolsPlusLanguage routine 537
TOOLSPLUS_ALLOWS_CSTRINGS 89
TOOLSPLUS_USES_ONLY_CSTRINGS 89
TrackBox routine 551
TrackControl routine 551
TrackGoAway routine 551

U
underline constant 144, 145, 183, 228, 260, 300, 328,
331, 349, 375

Universal Procedure Pointer 429
UnloadSeg routine 551
UnregisterAppearanceClient routine 551
UpArrowKey constant 448, 458, 460
UpdateMenuBar routine 367
Updating software 43
UpdtControl routine 551
Upgrade Notification 562
UPP 429
Upper case (shifting typed letters to) 240, 279
UseCursorTable routine 389
UseHiliteColor routine 489
UseHiliteText routine 489
User notification 493
User Pane control (see Buttons)
uses statement (Pascal) 83
UsingAppearanceManager routine 531

V
VERSION

Application 556
Minimum required for compiler 39
System 525
Tools Plus 526

Visual Separator (see Buttons)

W
Wait routine 527
WaitAvail routine 435
WaitForMultiClicks routine 435
Waiting for a period of time 527
WaitNextEvent 435
WaitNextEvent function 83
WaitNextEvent routine 551
wAllOnScreen constant 121

Tools Plus

598

wAllowEditMenu constant 121
wAllowMenus constant 121
wAnimateMove constant 139
watchCursor constant 383
WatchCursorButtons routine 390
wBackgroundTheme constant 122
wCenter constant 121
wDimEditMenu constant 122
web updates 563
wFloatingKind constant 145, 152
wHidden constant 122
Window Header control (see Buttons)
WindowClose routine 137
WindowDisplay routine 139
WindowDisplayBehind routine 140
WindowIsActive routine 151
WindowIsOpen routine 151
WindowIsVisible routine 151
WindowKind routine 152
WindowMove routine 138
WindowOpen routine 119
WindowOpenRect routine 124
WindowOpenRectBehind routine 125
WindowPointer routine 153
WINDOWS 109

Activating a window 140
Active (determining if a window is) 151
Active field 236
Active Window

Defined 113
Making active window current 141
Number (getting the) 148

Appearance Manager 102, 122
Appearance/behavior specifications 120
Attaching a ÔDITLÕ resource 131
Automatic positioning 121
Background theme 103, 122, 136, 137
Centering 121
Clicking in a zone 389
Close box 111, 119
Closing a window 137
Collapsed 146
Color

Backdrop color (defined) 112
Reset backdrop color for new windows 135
Setting backdrop color for new windows 112, 135,
136

Color resources 125, 127
Current Window

Defined 114
Making a window current 141
Number (getting the) 148

Cursor table (using one) 389
dctb resource 127
Default spec for edit text items 132
Default spec for editing fields created using a ÔCNTLÕ 132
Default spec for list boxes created using a ÔCNTLÕ 133
Default spec for pop-ups created using a ÔCNTLÕ 133
Default spec for static text fields created using a ÔCNTLÕ

133
Default spec for static text items 132
Dialog itemÕs display rectangle 143, 144
Dialogs in Tools Plus 127
DITL resource 127, 131

DLOG resource 127, 130, 131
DonÕt protect GUI elements during doRefresh event 122
Drag/resize windows in real time 103
Drawing 109
Edit menu

Access from modal window 121
Disabling the items 122

Editing Field window
Defined 114
Number (getting the) 150

Event handler for a window 429
Floating Palettes 113, 120

Adding to your project 122
Closing a floating palette 137
Hiding palettes 122, 139, 140
Infinity Windoid 155
Moving a palette 138
Opening a floating palette 119
Position in window list 115
Showing palettes 139, 140
Size (changing the) 138
Window number (getting the) 149

Font settings in dialogs 144
Frontmost standard window number (getting the) 149
Frontmost window number (getting the) 148
Height 145
Hidden (determining if a window is) 151
Hiding a window 122, 139, 140
Inactive (determining if a window is) 151
Inactive window (usage of) 141
Keyboard focus window 150
Kind (determining a windowÕs kind) 152
Layers 115
Live dragging/resizing (turning it on or off) 154
Location 145
Manual BeginUpdate/EndUpdate use 122
Manually refreshing application-drawn elements 147
Manually refreshing GUI elements 146
Maximum number of windows 99
Menu (Edit menu affected by windows) 355
Menu access from modal window 121
Modal/Modeless window 115, 119
Moving a window 138
Moving onto screen 121
New window (opening a window) 119, 124, 125
Open (determining if a window is) 151
Opening a window 119, 124, 125
Opening using a ÔDLOGÕ resource 127, 130, 131
Opening using a ÔWINDÕ resource 125, 126, 127
Order from front to back 147
Pointer (getting a windowÕs pointer) 153
Refresh when opened 122
Reset window operations to the ÒactiveÓ window 141
Showing a window 139, 140
Size (changing the) 138
Size box 112
Sizing limitations 142
Standard windows 113
Status of a window 145
Styles

Desk accessory 120
Drop-shadow dialog 120
Fixed size document 120
Floating palette 120

Index

WaterÕs Edge Software 599

Growable document 120
Movable modal window 120
Plain dialog 120
Standard dialog 120

Substituting a ProcID throughout your app 91, 102, 118,
154, 530, 531

Suppressing zoom lines 122
Text 109
Tiling 121
Title changes 141
Tool Bar 113

Closing a tool bar 137
Height (changing the) 138
Hiding the tool bar 122, 139, 140
Opening a tool bar 134
Position in window list 115
Showing the tool bar 139, 140
Toolbar inside a window 134
Window number (getting the) 149

Type (determining a windowÕs type) 152
Unused window number (getting the) 135
User itemÕs rectangle in a dialog 143, 144
Visible (determining if a window is) 151
wctb resource 125
Width 145
WIND resource 125, 126, 127
Work Window

Defined 114
Getting the work window number 150

Zoom box 111
Zooming

Including a zoom box 122
Standard co-ordinates

Getting standard co-ordinates 143
Setting standard co-ordinates 142

User co-ordinates
Getting user co-ordinates 143
Setting user co-ordinates 142

WindowSize routine 138
WindowStatus routine 145
WindowTitle routine 141
wManualUpdate constant 122
wNoKind constant 145, 152
wNoOffScreen constant 121
wNoZoomLines constant 122
wOffsetForToolBar constant 139
Word wrap 240
WorkWindowNumber routine 150
wPalette constant 120, 122
wRefresh constant 122
Writing in windows 109
wStandardKind constant 145, 152
wTile constant 121
wToolBarKind constant 145, 152
wUnprotectedRefresh constant 122

Y
YesAltBut constant 502
YesNoAlert constant 502
YesNoCanAlert constant 502

Z
Zones (see Cursors)
Zoom lines (drawing them) 528
ZoomAcross constant 529
ZoomBox constant 122
ZoomIn constant 529
ZoomLines routines 528
ZoomOut constant 529
ZoomWindow routine 551

Tools Plus

600

Please send your comments regarding Tools Plus
and other WaterÕs Edge Software products to:

WaterÕs Edge Software
2441 Lakeshore Road West, Box 70022

Oakville, Ontario, Canada L6L 6M9

Phone: 1-416-219-5628
Fax: 1-905-847-1638

Email: WaterEdg@interlog.com

visit our web site at:
http://www.interlog.com/~wateredg

WaterÕs Edge Software offers a free electronic forum where Tools
Plus developers can meet, discuss issues, and exchange information. If
you would like to talk with these developers or just lurk to see whatÕs
happening, send an email to TPDevLst@interlog.com and weÕll send you
more information about the forum and how to get on it.

